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Spontaneous sparse learning for PCM-based
memristor neural networks
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Neural networks trained by backpropagation have achieved tremendous successes on

numerous intelligent tasks. However, naïve gradient-based training and updating methods on

memristors impede applications due to intrinsic material properties. Here, we built a 39 nm 1

Gb phase change memory (PCM) memristor array and quantified the unique resistance drift

effect. On this basis, spontaneous sparse learning (SSL) scheme that leverages the resistance

drift to improve PCM-based memristor network training is developed. During training, SSL

regards the drift effect as spontaneous consistency-based distillation process that reinforces

the array weights at the high-resistance state continuously unless the gradient-based method

switches them to low resistance. Experiments show that the SSL not only helps the con-

vergence of network with better performance and sparsity controllability without additional

computation in handwritten digit classification. This work promotes the learning algorithms

with the intrinsic properties of memristor devices, opening a new direction for development

of neuromorphic computing chips.
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Recently, the field of artificial intelligence (AI) has witnessed
tremendous advances in deep neural networks (DNNs)1–7.
In DNNs, as a connectionist approach to AI, knowledge is

represented by a hierarchically distributed pattern of activation
nodes and a large number of weights storing the connection
strength between the nodes8–10. Since weights are trainable
depending on some relevant data without explicit rules, ‘learning’
can be defined naturally11. However, to gain powerful general-
ization capabilities, DNNs usually have massive tunable weights,
thus the network training and inference are such data-intensive
that the computation efficiency is usually limited by the memory
access12,13. These networks are highly amenable to computation
via large and dense matrix–vector multiplications that can be
highly parallelized14,15. This has led to tremendous opportunities
for hardware acceleration.

First, DNN accelerators and neuromorphic chips were
designed with the application-specific integrated circuits to alle-
viate the memory access bottleneck to speed up the computa-
tion16. However, using this design approach, the synaptic weights
are still stored in random access memories rather than directly
encoded by the states of emerging analog devices and computed
at the memory locations. Such analog devices assembled systems
enable fundamental Non-von Neumann scheme and are believed
to achieve significant speedup and power reduction for on-chip
implementation of DNNs17–21. One of the most attractive analog
devices is the two-terminal memristor, such as phase change
memory (PCM) and resistive random access memory (RRAM),
which offers the advantages of high density, fast operation speed,
and low-power consumption22,23. The weight elements of DNNs
can be represented by the conductance of memristors, which can
be programmed by update pulses or read by low-amplitude
reading pulses. Therefore, the weights in memristor networks
could be accessed and tuned locally, making it extremely suitable
for the DNN hardware representation24. When implemented in
the crossbar structure, memristor networks are ideal substrates
that directly perform multiply-accumulate operations (MACs) at
the weight locations25. This parallel computing property speeds
up the training and inference of DNNs with significant low-
energy consumption, providing a promising computing paradigm
for neuromorphic computing systems26–28.

However, there is still a huge discrepancy between the ideal
unrestricted weight change in DNNs and the actual conductance
change in memristors, resulting in the imprecise encoding of
network weights and the corresponding computation. The con-
ductance change of memristors is not only non-linear, asym-
metric, and precision-limited, but also stochastic because of the
device-to-device and pulse-to-pulse variations29–31. These prop-
erties generally lead to non-convergence when training real
memristor neural networks. A promising solution to this issue is
developing a co-optimization design that combines device prop-
erties (hardware insights) with DNN training techniques (soft-
ware insights), such as quantization, pruning, and sparsification.
Several approaches have been reported to restore the properties of
the ideal weight, which ensures more stable performance but
results in inefficiency and impracticality17,32,33. Our studies
indicated that an adequate learning scheme able to exploit the
stochasticity in PCM and incorporate brain-inspired approaches
to enhance DNNs is essential to overcome this issue34,35. At
present, the development of memristors is still insufficient to
meet the ideal requirements for DNN training. Comparing the
emerging memories for synapse device, PCM exhibits advantages
on on/off ratio, endurance, and retention than RRAM, and on/off
ratio than MRAM36. In addition, PCM is more mature technol-
ogy as it has been manufacturing on a foundry basis. The physical
mechanism of PCM is also well understood, which facilitates IC
design of chip products. Thus, it is very practical to overcome the

disadvantages of PCM and exploit the high reliability and the
suitability for DNN applications. However, a critical issue for
realization of PCM-based memristor neural network is that even
if the weights represented by the resistance are precisely tuned to
the ideal weights, its most cumbersome feature, the resistance
drift issue, still remains, which has not been considered in pre-
vious studies31,37. Resistance can deviate continuously from the
initial intended values because PCM undergoes a spontaneous
resistance increase due to the structural relaxation after amor-
phization38. The resistance drift not only causes a major reliability
issue of PCM, but also exacerbates the imprecise encoding of
network weights in memristors. The conventional approach is to
minimize the resistance drift by implementing error correction
codes or adding specific periphery circuits, such as customized
circuitry for rapid iterative write, modulation coding for drift-
resilient, coding to new readout schemes that are drift resilient39.
However, such approaches result in significant increase of com-
plexity and power consumptions, and decrease of throughput.

Here we built a 39 nm 1 Gb PCM-based memristor neural
network and quantified its non-ideal characteristics, especially the
unique resistance drift effect. PCM weights play a unique role in
in-memory computations (e.g., measuring time stayed in a weight
state and modifying weight non-linearly according to the time)
but the resistance drift effect is usually thought to be a problem
for application. In this work, we make use of the unique resistance
drift effect to develop a new learning scheme for PCM-based
memristor neural network, and a multi-layer perceptron (MLP)
with 784-256-10 structure and 203,264 weights was built. It has
been reported that resistance drift increases the effect of image
classification in SNNs, but it is explained as an effect of improving
the weight representation and has not been linked to a new
learning method39. In some neuromorphic computing systems,
weights encoded by memristors are binary-valued (+1 or –1) for
feasibility and thus weights stay in either +1 or –1 until an update
process. To embody such abstraction in PCM-based memristor
DNNs, we utilize the power of spontaneity of PCM memristor,
that is, the electrical properties of the resistance drift that can be
described by power law using a defect model40–43. In this setup,
we fill the gap between actual behavior and unrealistic expectation
in a PCM-based memristor DNN accelerator. At the same time,
we incorporate sparsification based on weight consistency in a
very natural way, i.e., discriminating a PCM weight staying
consistently in high resistance with spontaneous resistance
increase. During training, the negative weight (–1) corresponding
to the crystalline state decreases the weighted sum (i.e., sum of
multiplications between each input and weight) but the positive
weight (+1+ δ, δ ≥ 0) corresponding to amorphous state
increases the weighted sum for the non-negative inputs. Because δ
is getting larger as long as a weight remains in the positive state,
therefore, a prior knowledge that the consistency of positive
weights increases the final output values potentially is incorpo-
rated in this PCM-based memristor neural network. Interestingly,
the final output is selectively increased when the prediction is
correct. That is, the consistency correlates with accuracy
improvement. Weight consistency map reveals that the new
learning scheme system prevents weights from being stuck in the
one of weight states during the whole training, which controls the
discrimination of the one weight state from the other weight state,
i.e., the sparsity. It is noticeable that the weight sparsity is
changed differently between input-side weights and output-side
weights. The consistency boosts the tendency of sparsity
enhancement by increasing the number of negative input-side
weights but suppresses the increase of the number of negative
output-side weights. Thus, SSL manifests the negative contribu-
tion of some input data to the accuracy by increasing the sparsity
and utilize the minimize uncontrollable negative contribution to
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the output. A possible outline of PCM-based memristor neural
network system, device implementation, operation schemes, and
solution to resistance drift even after training is carefully
addressed.

Our approach not only improves the classification accuracy of
the PCM-based memristor neural network on MNIST hand-
written digit dataset from 89.6% to 93.2%, but also controls the
weight sparsity differently between layers (+1.4% for the input-
side layer of about 200k weights while –4.5% for the output-side
layer of about 2.5k weights) without any additional computation
and operation. The demonstration based on the statistical para-
meters extracted from a 1 Gb PCM array also indicates higher
feasibility. Unlike the passive approach of suppressing the
drift effect, our SSL promotes the fusion of computer-based
neural algorithms with the intrinsic properties of memristor
devices44–46. To our best knowledge, this is the first learning
method leveraging the PCM resistance drift to improve the
memristor-based neural network performance. This opens up a
new path for the development of PCM-based memristor neuro-
morphic accelerators.

Results
Description of the working system. Our approach is based on
the distributed computing and the data quantization. A neural
network is separated into several feedforward units (FFUs) and a
central backpropagation unit (BPU) as shown in Fig. 1a 47. BPU
calculates weight modifications to update the old weights in high
precision (e.g., float32) according to the feedforward output
received from FFUs and supervised labels. Then the new weights
are binarized in BPU and sent to FFUs. FFUs update their own
PCM weight storage and send the loss for the next input to BPU
again. In this configuration, the multiple FFUs share the com-
putation workloads. Also, the data transfer from BPU to FFUs is
reduced by the data quantization. After the training, the positive
weights are pinned to a fixed value to be used for the inference
without weight variation. BPU has its own full precision weight
storage to be updated, like conventional neural network models
for weight quantization. The weight is quantized and then stored
in FFUs for the feedforward process. Although the storage is just
replaced to PCM memristor in this neural network, the con-
sistency is stored as additional resistance increase in PCM
memristor automatically as shown in Fig. 1b.

A possible weight change in PCM memristor weight storage
can be represented as a combination of three patterns; staying in
–1, alternating between +1 and –1, increasing in +1+ δ (left
column in Fig. 1c). The probability distributions of the
corresponding full precision weights are simplified through the
binarization (middle column). As it is binarized, it discards a lot
of information about the full precision weight. However, Bayesian
inference can be considered as a method to reconstruct
information about the probability distribution of full precision
weights, which predicts posterior probability based on prior
probability and likelihood. Since it is not known how the full
precision weight will be formed, +1, –1 can be thought of as
having a prior probability of 50:50. This is a method of predicting
the distribution of full precision weights based on likelihood
where +1 and –1 appear when binarizing. We can infer that the
distribution of full precision weights is shifted toward the positive
side by reflecting the likelihood of +1. This inferred probability
distribution is called the posterior probability distribution, and in
the next inference, the posterior probability of the previous step
becomes the prior probability, and then inference continues
according to likelihood. There is no way to perfectly reflect this
post-probability in a 1-bit memristor, but PCM can encode the
increased probability with an increase in weight value using the

drift effect. Then, according to the prior (i.e., the significance of
positive weights), the posterior is determined by increasing the
weights inspired from the gain coding (right column)48,49. Thus
the weight increase based on the weight history can be
rationalized by Bayesian inference and the gain coding. The
resistance drift of a PCM memristor is compared after two
different operations, crystallization, and amorphization. Contin-
uous resistance read shows different behaviors between amor-
phous (DRIFT) and crystalline states (ON), as shown in Fig. 1d.
The resistance of the amorphous state is increasing gradually
according to the power law, while the resistance of the crystalline
state is almost constant41,42,50. Thus, the prior can be incorpo-
rated into the weights naturally. Scanning electron microscopy
(SEM) and tunneling electron microscopy (TEM) reveal the PCM
array and the cell structure as shown in Fig. 1e, f (more details of
PCM array and cell in “Methods” section)

PCM memristor operation. In our neural network, although the
conventional weight storage is replaced with PCM memristor, the
operation of the weight storage is the same as the conventional
one. Some memristors are switched (S) and others are not (N).
When a PCM memristor is not switched and remains in the
amorphous state, the resistance is increased due to the sponta-
neous resistance drift. Figure 2a shows an example of how the
resistance state of the PCM memristor changes as a sequence of
specific S and N is delivered. The PCM memristor is switched
occasionally in the middle of continual resistance read. The
resistance read at the amorphous state shows a slight increase in
resistance until it is switched back to the crystalline state. From
200 to 1200 resistance reads, the resistance drift continues
without switching the amorphous state. In this way, the pre-
viously defined consistency in the pattern of weight evolutions is
recorded as a resistance drift.

Dual weight mapping strategy. To implement spontaneous
weight modification from the resistance drift, we must consider
how to map different physical quantities (e.g., high and low
resistances) with positive values to typical weight values (e.g., +1
and –1, respectively). This can be solved by some practical
mapping methods known as 2-memristor cell31,45 or dummy-cell
methods51,52. Also, the mapping from conductance to weight
values helps accelerate feedforward propagation, i.e.,
matrix–vector multiplication or MAC. However, training with
resistance drift in conductance is not effective because some
modifications are required to make the resistance drift effect
equivalent in the conductance scheme. Therefore, we propose a
resistance scheme for the training and conversion to conductance
scheme for the inference.

For the training, the PCM memristor is written and read
memristor cell-by-memristor cell, but is read as an analog
memory in our practice. The computations of the feedforward
propagation are shared with FFUs for several training data
though MAC is not introduced. Thus, it is freer for processing the
resistance values, e.g., taking the logarithmic value of the
resistance to equalize the magnitude of the variations in high
and low resistance (denoted by, Rh and Rl, respectively). As
shown in Fig. 2b, we obtainedWtrain

ji from the measurement of IRji

and some arithmetic operations. The dummy-cell method was
used to assign the weight increase property only to the positive
weights. T denotes the translation (highlighted by red color) to
make a pair of Rh and Rl centered at the zero point and S denotes
the scaling (highlighted by blue color) to make the translated
values +1 and –1, respectively. As a result, we can obtain the
intended weight values as shown in Fig. 2c. Then, the weighted
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sum is calculated separately for the feedforward propagation for
the training.

To accelerate the feedforward propagation during the inference
after the training, it is required to map the weight values from the
conductance. Because we propose the weight pinning, two
distinguished static conductance states are required. Considering

the reuse of the PCM memristor weight, all high resistance
memristors (including resistance drift) are switched to low
resistance (equivalently, high conductance denoted by Gh) while
all low resistance memristors are switched to high resistance
(equivalently, low conductance denoted by Gl). Then, Gh and Gl

are mapped to +1+ δpin and –1, respectively. The mapping for
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the inference is similar to that for the training process except T
and S. In this scheme, the resistance drift is negligible due to the
reciprocal relation between the resistance and the conductance.
To implement MAC, we just measure the total current Ii when
adequate Vj’s are supplied according to the input data. The
measured current can be formulated from the circuit and the
result is identical to the indented weighted sum as depicted in
Fig. 2d.

Classification results. The most prominent result observed in
this research is that the classification accuracy increased up to
~93.2% after the resistance drift effect was introduced. Figure 3a
shows the training (inset) and testing accuracy (from 10 repeats)
for the network with the conventional binary weight (denoted by
‘conventional’) and the network with the spontaneously increas-
ing weight (denoted by ‘drift’). The remarkable fact is that the
improvement in accuracy requires little additional computation
cost and operation energy. Interestingly, drift demonstrated a
larger deviation earlier, but a steady increase in accuracy with
deviation reduced, unlike conventional (error bars) networks.
This is because the consistency for the weight change could not be
sufficiently assessed at the early stage of training and then the
consistency is getting established and incorporated well.

To identify the improvement in accuracy, we examined the
confusion matrix as shown in Fig. 3b and e. The confusion matrix
indicated how many times the neural network classified each
input digit image into each class. The diagonal number indicates
correct classifications for each digit while the off-diagonal
number means the total occurrence of the confusion (i.e., the
discrepancy between the prediction and the truth). The numbers
at the top and right (single row and column, respectively) are the
sum of each row and column except diagonal value. For example,
the highest value ‘205’ (sum of values surrounded by black lines
in the confusion matrix) at the top means that the neural network
mispredicted the input digit images as ‘3’ mostly (denoted by
‘misprediction as ‘3”), and the highest value ‘222’ (sum of values
surrounded by red lines in confusion matrix) at the right means
that the class ‘8’ is mostly mispredicted by the neural network
(denoted by ‘misprediction of ‘8”). Because some specific digits
like ‘3’ and ‘8’ showed distinctive results in confusion matrix, we
compared a digit-wise accuracy during the training. The digit-
wise accuracy is defined as the number of correct predictions
divided by the number of actual images for each digit. Digit ‘0’
and ‘1’ outperform in accuracy while digit ‘8’ shows low accuracy
overall in Fig. 3c. Although ‘3’ and ‘8’ show the top-2 highest
attempt/success ratio (shown in Fig. 3d), the accuracy of ‘3’ is
much higher than the accuracy of ‘8’. The improved result
(denoted by ‘Drift’) shows that the number of misprediction as ‘3’

is reduced from 205 to 109 and the number of misprediction of ‘8’
is reduced from 222 to 76 significantly. The SSL shows accuracy
improvement for most of the digits, especially better for ‘8’ as
found in Fig. 3f.

Drift effect during training. To reveal two contradicting results
related to the output node ‘8’, that is, the weakest drift effect and
the greatest improvement in accuracy, the impact of the drift
effect on the final output in the feedforward process is analyzed in
Fig. 4. Here, the actual 256 nodes in the hidden layer and 10
output nodes were simplified to five (nj= 5, ni= 5) for con-
venience as shown in Fig. 4a. Consequently, there are five classes
(e.g., hand-written digits from 0, 1, 2, 3, and 4) to be distinguished
and the weight has a 5 by 5 dimension. We introduced the drift

effect as an additional term, δ 23ð Þ
ji tð Þ to the weight connecting ith

node in the second (hidden) layer and jth node in the third

(output) layer. It should be noted that δ 23ð Þ
ji (t) is non-zero positive

only for j and i satisfying w 23ð Þbin
ji =+1. In this schematic, the

input vector x 2ð Þ
j and weight matrix w 23ð Þbin

ji are identical to those

in other cases, respectively, but δ 23ð Þ
ji (t) is different for all the

cases. We compared three different cases as shown in Fig. 4b.
Among weights with a value of +1 in the weight matrix, the
weight with a drift value of 0 indicates the PCM cell that has just
switched to +1 state without time to drift. Weights with zero drift
were arbitrarily selected. Those positive weights that are just
switched will have various drift values. The top panel is a con-
ventional drift-less feedforward process so the weighted sum and

the softmax output are calculated as s 3ð Þ
i ¼ P

j x
2ð Þ
j w 23ð Þbin

ji and

x 3ð Þ
i = softmax(s 3ð Þ

i ), respectively. Because x 3ð Þ
i has the highest

value (0.44) at i= 3, the conventional neural network infers that
the input is classi¼3. The middle and bottom panels indicate

different effects of δ 23ð Þ
ji (t), and thus weights experience the drift

differently. For instance, some elements of the weighted sum are
increased or decreased according to which weights experience the
drift effect greater or lesser. The effect of drift to be emphasized is

that the change in each s 3ð Þ
i had a direct influence on every x 3ð Þ

i
because of the mutually exclusive property of the softmax func-

tion. In the middle panel, large d 3ð Þ
i¼3(=1.70−1.10= 0.6) made

x 3ð Þdrift
i¼3 (=softmax(s 3ð Þ

i¼3 + d 3ð Þ
i¼3)= 0.57) larger than x 3ð Þ

i¼2(=0.44)

and x 3ð Þdrift
i¼2 (=softmax(s 3ð Þ

i¼2 + d 3ð Þ
i¼2)=0.28) less than x 3ð Þ

i¼2 ¼ 0:36

even for non-zero d 3ð Þ
i¼2 (=1.01−0.90=−0.11) simultaneously.

Therefore, loss (E ¼ �Pni
i¼1 ti log xið Þ) will be reduced from 0.36

Fig. 1 A PCM-based memristor neural network incorporating the resistance drift for the consistency-induced weight increase under distributed
computing and weight precision reduction for new learning method. a The conventional neural network is depicted as a black box, which is divided into
BPU (back propagation with 32-bit weight storage) and FFU (feed forward with R-drift incorporated PCM weight storage). The training process is
completed with the PCM followed by the pinning operation to prevent unwanted R-drift for inference. b In conventional, weight change pattern does not
affect itself directly. However, it can be possible through the resistance drift. For example, if a PCM remains in amorphous states consistently without
switching, the weight is increased continuously according to the time. Then, weight change patterns can be reflected to weight value. c The high- and low-
resistance are mapped to +1 and −1 weight state, respectively (see Fig. 2). The resistance can be in one of three states of ‘staying’ in crystalline state,
‘alternating’ between amorphous and crystalline, and ‘drifting’ in amorphous. Without priors about the weight, the weight will be +1 or −1 with 1/2 and 1/2
probability, respectively, in the conventional neural network. The probability that the final weight value is +1 is higher than 1/2 based on the likelihood in
+1 state, like the Bayesian inference. The higher probability is encoded as greater weight value (1+ δ) like the gain coding in neuroscience, which indicates
the increase of neural activity in amplitude as the input stimulus becomes certain. d Continuous resistance read shows different behaviors between
amorphous (DRIFT) and crystalline states (ON). The resistance in amorphous is increasing gradually while the resistance in crystalline is almost constant.
The resistance drift can be described by the power law. R(t0) is the first resistance measurement after the time t0. R(t) is resistance at time t (t > t0) and d
is the drift coefficient which can be determined from a curve fitting. e SEM corner view of the PCM (39 nm, 1 Gbit) array used. f TEM images of some cells
in the yz and xz planes reveal the damascene structure of GST layer.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20519-z ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:319 | https://doi.org/10.1038/s41467-020-20519-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


to 0.24 in the middle panel because the index i of the largest d 3ð Þ
i

is 3, which is identical to the index i of the true label of the input

(on the other hand, δð23Þji tð Þ has the opposite (0.4 and 0.1 were
swapped from the middle panel) pattern in the bottom panel, so
the prediction is incorrect (i.e., the indices are not identical each
other) and the loss increases to 0.40.

Because δji tð Þ is determined internally during the training
process, we can only estimate it heuristically through the above
two extreme cases. If the drift effect improves the prediction, the
loss will be reduced and the weight update becomes smaller than
the conventional case. On the contrary, if the drift effect makes
the prediction worse, the loss will increase and the weight update

becomes larger than the conventional case correspondingly. In
this way, some weights that have a significant contribution to
minimizing the loss function will most likely experience the drift
effect.

Weight consistency. Although it is hard to interpret the opti-
mization of the drift effect during the training explicitly, the
weight consistency reveals the pattern of weight changes. Fig-
ure 5a shows the results made from the subtraction of two
heatmaps which implies the weight consistency in the conven-
tional and drift, respectively. Thus, larger values indicate more
significant drift effects on the weight consistency. The numbers in

Fig. 2 Mapping methods and corresponding circuits. a (Top) The schematic indicates the process of switching the PCM weight storage in FFUs according
to the binarization of updated full-precision weight in BPU. (Bottom) A explanatory pattern of the resistance change is shown with corresponding sequence
of S (Switch) and N (Non-switch). b (Top) The equation represents a mapping from resistance to weight. Instead of implementing MAC, resistance Rji is
read cell by cell in this mapping and the asymmetry in resistance variation (large variation in large resistance) is mitigated. (Bottom) The plot shows the
results of the mapping from the resistance change in a. c (Top) The schematic indicates the mapping method defined in b. (Bottom) The resultant weight
from the explanatory pattern of the resistance change in a through the mapping scheme in b. d (Top) The equation represents a mapping for the inference
after the weight pinning process. (Bottom) A possible circuit to implement the feedforward acceleration (i.e., multiply-and-accumulate, MAC) is
represented. The calculated results (Ii) from the input (Vj’s) in this circuit is identical to MAC process.
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the horizontal axis indicates the digits (0–9) to be classified. The
numbers in vertical axis (−10 to +10) denote how many times a
weight stays in the same state for the first 10 epochs. The 256
weights can be considered to be associated with the output node
‘0’. The consistency of these weights can be reflected by adding
each weight value once for each epoch. For example, if a weight
has been in the −1 state for 10 epochs, the added weight value is
−10. Thus, all of 256 weights assigned to each digit falls into one
of the values between −10 and +10 for both the conventional and

drift networks. The negative values at the bottom (deep bluish
squares) indicates the slight reduction of the number of weights
stuck in negative states. During the last 10 epochs, the negative
consistent weights are significantly reduced, and some weights
remain in the positive states long instead in Fig. 5b. For the input-
side weights, the consistency of 28 × 28 weights connected to each
node in hidden layer of the neural network is accumulated. There
is no noticeable pattern during the first 10 epochs, but some
weights connected to the central region of the input images show

Fig. 3 Classification accuracy. a The classification accuracy in the conventional and drift neural network is compared. The line is the mean value and the
bar is standard deviation from 10 runs. Comparing with the conventional in both train and test accuracy, the drift exhibits smaller deviation in latter epochs
while it does larger deviation in former epochs. The final test accuracies are 89.6% and 93.2% in conventional and drift, respectively. b Confusion matrix
reveals the discrepancies between the true label and the prediction. The diagonal and off-diagonal components indicate the number of correct and incorrect
predictions, respectively. The components in the additional row vector at the top and column vector at the right show the aggregated number of incorrect
predictions along each column and true label along each row, respectively. The off-diagonal yellowish component indicates significant incorrect prediction
in the conventional. The mostly mispredicted class is ‘8’ (red boxes) and the sum is 222. Also, the prediction as ‘3’ is mostly incorrect (black boxes) and the
sum is 205. c Digit-wise accuracy reveals the difference of accuracy between digits. The digit ‘1’ seems to be mostly accurate while ‘8’ shows poor
accuracy. d Digit ‘3’ and ‘8’ have top-2 attempt/success ratio of classification. However, the classification of ‘3’ is decent in the accuracy against the high
attempt/success ratio while the classification of ‘8’ is not. e In the drift, the most misprediction of ‘8’ is mostly improved from 222 to 76. Also, the most
misprediction as ‘3’ is mostly improved from 205 to 109, too. f Almost digits are improved in accuracy. Accuracy of digit ‘8’ and ‘9’ is greatly improved.
Digit ‘0’ and ‘1’ still show high accuracy.
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stronger negative contribution to the accuracy during the last 10
epochs as shown in Fig. 5c and d. At the early of training, there is no
significant difference in weight consistency. As the training pro-
gresses, some weights stuck in either positive or negative states are
remarkably reduced and some weights changing between two states
are increased. Interestingly, the input-side and output-side weights
show opposite patterns. Some weights stuck in the positive state are
reduced for the input-side weights but some weights in the negative
state are reduced for the output-side weights. Therefore, the accuracy-
oriented consistency leads to the perturbation of some weights.

Sparsity. Because the perturbation of some weights is not
reflected in the accuracy calculated at a certain time, the weight
sparsity (i.e., the number of negative weights over the number of total
weights) is examined. In the conventional, the number of negative

weights is increased for both the input-side (Fig. 6a) and output-side
(Fig. 6b) weights during the training. On the contrary, in the drift, the
number of negative weights is further increased for the input-side
weights (Fig. 6c) by about 1.4%, but the number of negative weights
is decreased for the output-side weights (Fig. 6d) by about 4.5%. The
blue and red lines indicate the proportion of the total negative and
positive weights, respectively. The output-side weights are grouped by
the output digits and the input-side weights are grouped by each
node in hidden layers (i.e., 256 groups and 28 × 28 weights per
group).

Considering the introduction of the accuracy-oriented con-
sistency, the consistency of some weights compromising the
accuracy will be excluded mostly. We can imagine an overlap
between the consistency and accuracy. The weights can be subdivided
by the position in the neural network (i.e., input-side or output-side),

Fig. 4 Feedforward explains the relation between the weight increase and the output values. a The network model in use is schematically depicted. The
components x, s, w, and t denote for input, weighted sum, weight, and target, respectively. b Three different cases are compared to identify weight increase effects
on the final output with some simplifications. All parameters are identical except the pattern of the weight increase term, δ 23ð Þ

ji ðtÞ. The first panel explains the
conventional feedforward process without the consistency-induced weight increase. The only weights between the hidden and output layers are considered. The
input, weights, and the output are 1 × 5 row vector, 5 × 5 matrix, and 1 × 5 row vector, respectively in this schematic for convenience. The feedforward process can
be calculated straightforwardly. For the input and weights, the final x 3ð Þ

i¼3 has the greatest value and thus the neural network classify the input as classi¼3. In this
case, the loss is 0.36 if the true label is [0 0 1 0 0]. In the middle panel comparing with the bottom panel, δ 23ð Þ

ji ðtÞ has the opposite pattern, i.e., the highest (0.4)
and the lowest (0.1) values are swapped. According to the δ 23ð Þ

ji ðtÞ, d 3ð Þ
i is added to the original s 3ð Þ

i in a, so some components are increased or decreased.
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the consistency, and the sparsity. Therefore, the overlap portion
(denoted by selectivity) determines the effectiveness of SSL scheme.
Because the drift effect increases the output due to the non-negative
contribution to the weighted sum basically, the similarity of the
output vector to a one-hot vector indicates the effectiveness of SSL.

Selectivity. The maximum component in an output vector is <1 and
the rests are larger than 0 as shown in Fig. 7a. We can define the
digit-wise difficulty of classification based on the output vector,
because the neural networks try to make the output like a one-hot
vector as much as possible. The classification of a digit can be con-
sidered much difficult as more as the component of the digit in
output vectors deviates from 1 or 0. In this perspective, the digit ‘8’ is
much difficult to be distinguished from others than ‘1’ in the con-
ventional. Surprisingly, the drift effect discriminates the digit ‘1’
output as two subgroups, though the average output of ‘1’ is close to 1

in Fig. 7a. In each group, the output of ‘1’ in the conventional is
totally different according to whether a certain digit ‘1’ input image
is classified correctly in the drift or not (two top-right bluish lines) as
shown in Fig. 7b. That is, the output of ‘1’ in the conventional is
extremely deviated from 1 for some images classified incorrectly in
the drift. However, digit ‘8’ does not show such dependence on the
correctness in the drift (two top-left reddish lines). The drift effect
makes the output of ‘8’ close to a one-hot vector eventually (orange
lines). In Fig. 7c, the average output is improved and then shows the
promising output like a one-hot vector. The accuracy-oriented con-
sistency subdivides both the digit ‘8’ and ‘0’ according to the diffi-
culty. Then, SSL exploits the decision boundary of classification to
maximize the accuracy.

The number of increases and decreases of Max(xdrifti ) compared
with Max(xi) are plotted with respect to the correctness, as shown in
Fig. 7d. The total number of increases or decreases can be divided
into four cases, I/I, I/C, C/I, and C/C, where I and C denote

Fig. 5 Weight consistency. a The graph explains how the drift effect affects the output-side weight consistency. The numbers in horizontal axis indicates the digit
(0~9) to be classified. The numbers in vertical axis (−10 to +10) means how many times a weight stays in the same state for the first 10 epochs. Thus, all of 256
weights assigned to each digit fall into one of the values between −10 and +10 for both the conventional and drift networks. The values in the heatmap is the
difference between the conventional and drift. The negative values at the bottom (deep blueish squares) indicates the slight reduction of the number of weights
stuck in negative states. b During the last 10 epochs, the negative consistent weights is significantly reduced and some weights remain in the positive states long
instead. c For the input-side weights, the consistency of 28 × 28 weights connected to each node in hidden layer of the neural network is accumulated. There is no
noticeable pattern during the first 10 epochs. d During the last 10 epochs, some weights connected to the central region of the input images show stronger negative
contribution to the accuracy.
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‘incorrect’ and ‘correct’ respectively, and the former and the latter
refer to ‘conventional/drift’. The total number of increases is larger
than that of decreases essentially and the ratio (i.e., the number of
increases over the number of decreases) is 6.29. It is noticeable that
the ratio is remarkably higher when the classification of the drift case
is correct. Simultaneously, the ratio is reduced considerably when the
result is incorrect. The ratios are 10.7 and 9.68 for I/C and C/C
(above the overall ratio), whereas they are 1.06 and 2.85 for C/I and I/
I (below the overall ratio), respectively. The results indicate that the
selectivity of the output increase is originated from the consistency
and can be supported analytically by tracing the backpropagation
process.

Weight pinning. One important issue of the spontaneous weight
modification utilizing resistance drift is that the optimized weight will
undergo inevitable further change after training. However, a suitable
constant weight value can be found to represent all individually
changed weights due to the drift without degrading performance in
the inference process. After training, all positive weights can be
regarded as a fixed positive constant like a conventional digital
memory device. Then we can find the constant that maximizes the
accuracy of the test images. When the fixed positive constant is
changed from 1.05 to 1.70 by 0.05 step, we compared the accuracy
and then found that it is compatible to the accuracy just after the

training when wpin= 1.4 (name after weight pinning) as shown in
Fig. 8a.

Discussion
From the digit-wise analysis, we found some results. (1) Digit ‘8’
classification is mostly inaccurate. (2) The accuracy-oriented con-
sistency (i.e., drift effect) is introduced. (3) The consistency controls
the weight sparsity, so the weights are regrouped based on the digit-
wise (via output-side weights) and image-wise (via input-side
weights) manners. (4) By drift effect, digit ‘1’ input images are
easily subdivided into two parts while digit ‘8’ input images are not.
(5) Then, the network increases the classification accuracy of ‘8’
mostly by exploiting the room for weight modification without
degrading the classification accuracy of ‘1’. The accuracy improve-
ment due to consistency-induced weight increase is summarized as
shown in Fig. 8b.

Our approach is rationalized in that the difficulty of classi-
fication is related to the difficulty of weight determination (i.e.,
consistency)53–55. The difficulty-based accuracy improvement
is similar to the experimental results demonstrating the deci-
sion confidence in the brain56–59. In animal experiments, dif-
ferent neural activity according to the difficulty of the decision
is the most important feature of the confidence49,60. For example, for
a mixture of two stimuli (e.g., scent A and scent B) with a different
ratio, neural activity is most active for incorrect decision in easy

Fig. 6 Weight sparsity. a For input-side weights, the number of negative weights is increased in the conventional. b For output-side weights, the sparsity shows
the gradual increase of negative weights in the conventional. c The negative contribution is promoted in the drift. d The sparsity is fluctuated slightly and not
changed significantly in the drift. Thus, weight sparsity exhibits different trends between output-side and input-side weights.
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decision tasks (A: 100% +B: 0% or A: 0% +B: 100%) and least active
for correct decision in easy decision tasks. In the contrary, for the
decision in difficult decision tasks (A: 51% +B: 49% or A: 49% +B:
51%), neural activity is moderately active regardless of the correct-
ness. For this reason, the process of confidence formation is to
classify easy tasks definitely, which is similar to the classification of ‘1’
under the drift effect.

It is generally known that the reset current decreases as the cell size
decreases61,62. In addition, a lower reset current is associated with a
decrease in amorphous volume and consequent higher amorphous
resistance63. Interestingly, the resistance in the amorphous state
correlates with the drift coefficient64. The higher the amorphous
resistance, the greater the drift coefficient. To our best knowledge,
there is no publication on the impact of technology scaling on the
resistance drift yet.

Various experimental results have explained resistance drift in
different ways and share a commonality that it is related to structural
relaxation and stress release. Therefore, the electronic state of the
material has a direct effect on the resistance drift rather than the
technology node scaling or device structure. When PCM cell is not
fully reset, the drift coefficient as well as resistance becomes smaller.

The drift coefficient of the fully reset GST is ~0.09–0.1139. In our
case, PCM is almost fully reset (~0.10) and thus the impact due to
technology node reduction is negligible. Even if the drift coefficient
becomes greater with the size scaling or structure changes, we can
slightly increase the reset current to decrease the reset resistance, thus
maintaining the drift coefficient to a similar level.

We tested the classification accuracy over a wide range of
drift coefficient means and deviations as shown in Supple-
mentary Fig. 7. The consistently improved accuracy indicates
that our learning scheme is very robust to the changes in drift
effect caused by technology scaling or environmental tem-
peratures. Interestingly, it is known that the drift coefficient
does not depend on the constant temperature42,65. If the tem-
perature rises suddenly, the drift coefficient temporarily
increases. As shown in Supplementary Fig. 7c, the accuracy
remains increasingly improved until the drift coefficient increases
to ~1. Since the drift factor in the fully reset state is bounded, it does
not have a value much higher than 0.12 for GST-based PCM43,66.
Therefore, the accuracy of proposed scheme will not deteriorate at a
high temperature as long as it is below the glass transition tem-
perature of phase change materials.

Fig. 7 Selectivity. a Average output for the test image is compared among digits. The results show the greatest deviation from 1 and 0 for the digit ‘8’, which
indicates ‘8’ is hard to train in conventional. Digit ‘1’ is the closest to 1. b Although the average output of ‘1’ is close to 1 in a, however, drift effect discriminates the ‘0’
input images two subgroups. The output of ‘1’ in the conventional is totally different according to whether the input image is classified correctly in the drift (two top-
right bluish lines). That is, the output of ‘1’ in the conventional is extremely deviated from 1 for some images classified incorrectly in the drift. However, digit ‘8’ do
not show the dependence on the correctness in the drift (two top-left reddish lines). The drift effect makes the output of ‘8’ close to an one-hot vector eventually
(orange lines). c Average output is improved and then shows the promising output like a one-hot vector. d Number of increases and decreases of the maximum
values of xð3Þdrifti with respect to xð3Þi and their ratio demonstrates the selectivity of the output modification. The overall average is 6.29. When the drift neural
network predicts correctly, the ratio is increased to 10.67 (for the test images predicted incorrectly in the conventional neural network) and 9.68 (for the test
images predicted correctly in the conventional neural network). In the contrary, the ratio is far below the average when the drift neural network predicts incorrectly.
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In this work, we built an ensemble of a mature 1 Gb PCM array
with 39 nm technology, and by leveraging the statistical parameters
obtained from the measurement of resistance drift, demonstrated a
spontaneous sparse learning scheme in a PCM-based memristor
neural network. By encoding the consistency of weight changes into
the weight increases spontaneously, the neural network demon-
strates the discriminated weight modification depending on the
classification difficulty. Without any additional computation and
operation costs, this new training scheme with sparsity controlled
(+1.4% for output-side weights and −4.5% for input-side weights)
improves the accuracy (93.2%) of a handwritten digit classification
application (MNIST dataset) compared with the baseline neural
network (89.6%).

Additionally, due to the compatibility of the consistency-
induced weight increase with any PCM-based memristor neural
network, our results have potential to be related to evolutionary
neural networks4,5 inspired by the spontaneous behavior and
modular neural networks6,7,67. Our work provides a potential
prototype neural network that implements a metacognitive
function, such as confidence, with low computation workloads
for lightweight devices. Furthermore, our approach can be
applied to RRAM as well as PCM, and improved learning effects
are expected in more complex networks using multi-level cells.
Although the resistance drift is weak in RRAM, the resistance
drift appears distinctly in the conductive-bridge RAM, one of
RRAM branches, due to the lateral diffusion of the metal con-
stituting the bridge68. Since the drift coefficient is roughly
observed within the range of 0.001–0.1 similar to PCM
depending on the resistance of the initial resistance, the method
presented in this study is expected to be applicable to those
RRAM devices69. Our work may provide inspirations to RRAM
research, i.e., leveraging the unique material characteristics (e.g.,
conductive-bridge modulation) to improve the performance/
efficiency of memristor networks or to incorporate another
learning scheme into memristor networks. The basic operation of
our PCM array is well evaluated up to the 2-bit 4 level. The
proposed SSL algorithm is expected to further improve the
performance of network in the case of multilevel operation.

Our proposed learning scheme utilizes the intrinsic resistance
drift to improve the learning accuracy without additional cost,
which opens up a new path to develop learning schemes using the
materials’ properties.

Methods
Device fabrication. Cross-point PCM arrays of cells with n+-Si/n-Si/p-Si/TiN/
Ge2Sb2Te5 (GST)/TiW/W structures were fabricated on a 300-mm Si wafer. A
highly doped n+-Si layer was prepared with B at a doping concentration exceeding
1022 atoms/cm2. The n-Si/p-Si diode was epitaxially grown on the wafer by chemical
vapor deposition (CVD) with B at a doping concentration of 1021 atoms/cm2 for n-type
and P at a doping concentration of 1020 atoms/cm2 for p-type. TiN films were deposited
on the diodes by physical vapor deposition (PVD) as the bottom electrode (BE). The stack
was dry-etched by etching along the y-direction and then along the x-direction to form
pillar structures. The stack of n-Si/p-Si/TiN was etched into y-axis-oriented parallel lines
using a hard mask of SiO2. The gaps between the etched lines were filled with SiO2. The
gap-filled structure was flattened by chemical–mechanical polishing (CMP) and etched
again with x-axis-oriented parallel lines. This formed word lines (WL) of n+-Si at the
bottom of the diode. The gaps between diodes were then filled with SiO2 and flattened by
CMP. Then, interconnects and trenches were formed in the SiO2 with lithography along
the y-direction to build GST and a top electrode (TE) on the TiN through the dual
damascene process. The interconnects and trenches were filled with GST and then TiW
was deposited as the TE. After CMP, a line of W metal was formed using lithography on
the TiW as the bit line. Finally, the cross-point PCM array was fabricated. The contact
area between the GST and bottom electrode was ~40 nm×80 nm.

PCM Array information. The PCM Array used in the research is an array with 39 nm
technology in the process of developing PCM arrays with 90, 50, 45, 39 and 20 nm
technologies70–72 (officially reported for some technology only). Various operations and
evaluation data including temperature and resistance drift for each technology were
partially disclosed73,74. For example, resistance distributions for four resistance levels of
(00), (01), (10), and (11) after an elapse of 400 h (1.4 × 106 s) and an additional thermal
annealing at 130 °C for 12 h bake were provided for 90 nm PCM array. Also, for 45 nm
PCM array, analysis of the drift effect was presented in depth to improve multi-level
operational characteristics and verify practicality. The total array sizes fabricated by 90
and 45 nm technology are 512Mb (16 banks of 32Mb, 8 blocks/bank) and 1Gbit (16
banks of 64Mb, 8 blocks), respectively. For the 39 nm PCM Array, the temperature and
drift characteristics were not officially disclosed at the wafer-level, but they are similar to
those of the 45 nm PCM array. For the 39 nm PCM array, 2-PCM synapse behavior
was evaluated75. Although the operation circuit was slightly deformed according to the
characteristics of each technology to implement ancillary functions for performance
improvement, such as high read or write throughput, the characteristics of each PCM
array were well evaluated as can be seen in the literature provided.

Measurement. Each PCM cell is in the low resistance state at about 104Ω which was
measured by using 1V pulse with 5 ns rising time, 60 ns duration, and 5 ns falling time.
The cell resistance is increased to about 107Ω using a pulse of 5 V height with 5 ns
rising time, 60 ns duration, and 5 ns falling time. We then make the cell have a few
104Ω by applying a voltage of 3 V with 5 ns rising time, 400 ns duration, and 300 ns
falling time. The PCM cell is switched 20 times between set and reset states with 10
resistance read after each switching. Then the resistance is measured 1000 times just
after the reset switching to measure the resistance drift as depicted in Supplementary
Fig. 1a. A pulse generator (Keysight 33600A) was used to provide electrical pulse to the
cell. A source meter (Keithley 2600) was used to measure the cell resistance. Pulse is
applied to the TE while bottom electrode is ground through the contact pads. Sup-
plementary Fig. 1b shows the wafer being measured.

Fig. 8 Weight pinning and summary. a Due to the spontaneity of the resistance drift, the weight should be pinned not to lose the learned from the consistency.
After the training, we can find a suitable weight valuewpin (e.g., by scanning from 1.05 to 1.70) to maximize the accuracy near the best obtained for the training.wpin

is 1.4 for the neural network and corresponding parameters used in this work. b The effect of the consistency-induced weight increase can be summarized as a
weight sparsification based on the input-wise classification difficulty.
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Parameter extraction. We extracted resistance distribution and deviation from
over 100 cells. For each cell, the set and the reset resistance were measured over
100 data points and then the resistance drift was measured for 1000 data point
with 1 read-operation per 1 s. Then, the sample mean and the sample standard
deviation of the set resistance, the reset resistance, and the drift parameter (d in
Eq. (1)) were extracted and denoted by μsSETi

, σsSETi
, μsRESETi

, σsRESETi
, μsDRIFTi

, and
σsDRIFTi

, respectively, for the ith cell. Then, the statistical parameter for the

resistance distribution, i.e., population mean (μpSETi
, μpRESETi

, and μpDRIFTi
) and

population standard deviation (σpSETi
, σpRESETi

, and σpDRIFTi
) with an error term

depending on the number of sampling data and the distribution model were
calculated for the ith cell. Supposed that the resistance distribution is a normal

distribution, μpi can be estimated as μsi with standard error of μsiffiffi
n

p while σpi can be

estimated as σsi with standard error of
ffiffiffiffiffiffi
2

n�1

q
σsi
� �2

. This process is depicted in

Supplementary Fig. 2 (i and ii) for Rij, jth measurement of resistance of ith cell.
In addition, the cell-to-cell population mean (Mp) and population standard
deviation (Σp) were determined for both distributions of μpi ’s and σpi ’s as shown
in Supplementary Fig. 3 (iii and iv), which are denoted by Mp

μ , Σ
p
μ and Mp

σ , Σp
σ .

By sampling a value from the normal distribution defined by Mp
μ and Σp

μ , we
could determine a mean resistance (μ*) of a possible PCM cell. Then, the
resistance deviation (α*) that corresponds with μ* is determined as a value that
has the same cumulated probability in the normal distribution defined by Mp

σ ,
Σp
σ . Thus, six unique parameters (μ*seti , σ

*
seti

, μ*reseti , σ
*
reseti

, μ*drifti , and σ*drifti ) were
assigned to each PCM cell for set, reset, and drift independently and randomly.
Finally, Rset , Rreset, and ddrift were generated and renewed every switching based
on the uniquely assigned parameters to PCM cells. This process is depicted in
Supplementary Fig. 4 (v, vi, and vii) and key statistical data that is determined
from measurement are represented in bottom of the figure.

Neural network. We used a neural network with 784 nodes in input layer (denoted by

x 1ð Þ
k ), 256 nodes in one hidden layer (denoted by x 2ð Þ

j ), and 10 nodes in output layer

(denoted by x 3ð Þ
i ), for the MNIST hand-written digit classification, as shown in Sup-

plementary Fig. 5. The layers and the weights between the layers are distinguished by
the superscript. All nodes are fully connected and any regularization process such as
batch normalization and dropout are excluded. Each 28 × 28 greyscale input image is

normalized to [0, 1] and denoted by x 1ð Þ
k . The weights are initialized by the variance

scaling initialization. We applied ReLU activation in the hidden layer and softmax in the
output layer, and then cross-entropy function was used as a loss function. To exclude
any adaptive factor, we used stochastic gradient descent optimizer, constant learning
rate of 0.001, and mini-batch size of 100. Because we propose PCM as a weight device,
the full precision weights are binarized and then the results are written in PCM cells.
Some PCM cells which are in amorphous state and not updated experiences the drift
effect. The modified weights increase the weighting of some inputs and affects the whole
training process. The algorithm is described in Supplementary Fig. 6.

Data availability
All the related raw data, trained parameters, and codes are available from the authors
upon reasonable requests.
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