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1. Introduction
Although initial studies of Antarctic seismicity were severely limited by the near-absence of seismographs 
on the continent (e.g., Lander,  1959; Okal,  1981), seismicity patterns associated with a variety of solid 
Earth and glaciological processes (e.g., Aster & Winberry, 2017) are emerging through ongoing analyses of 
data collected by several temporary seismic networks during the past 2 decades (e.g., Lough, 2014; Lough 
et al., 2013, 2018; Olinger et al., 2019; Reading et al., 2007; Smith, 2006; Winberry & Anandakrishnan, 2003; 
Winberry et  al.,  2020). In this paper, we provide new observations of Antarctic seismicity by analyzing 
data collected by recent temporary broadband seismic deployments in central West Antarctica (WANT). 
We report information on 117 previously undetected seismic events (1.1 ≤ ML ≤ 3.5) of glacial, tectonic, and 

Abstract We have located 117 previously undetected seismic events mainly occurring between 
2015 and 2017 that originated from glacial, tectonic, and volcanic processes in central West Antarctica 
using data recorded on Polar Earth Observing Network (POLENET/ANET) and UK Antarctic Network 
(UKANET) seismic stations. The seismic events, with local magnitudes (ML) ranging from 1.1 to 3.5, 
are predominantly clustered in four geographic regions; the Ellsworth Mountains, Thwaites Glacier, 
Pine Island Glacier, and Mount Takahe. Eighteen of the events are in the Ellsworth Mountains and can 
be attributed to a mixture of glacial and tectonic processes. The largest event noted in this study was a 
mid-crustal (∼19 km focal depth; ML 3.5) normal mechanism earthquake beneath Thwaites Glacier. We 
also located 91 glacial events near the grounding zones of Thwaites Glacier and Pine Island Glacier that 
are predominantly associated with time periods of significant calving activity. Eight events, likely arising 
from volcano-tectonic processes, occurred beneath Mount Takahe. Using Pn travel times from the seismic 
events, we find laterally variable uppermost mantle structure in central West Antarctica. On average, the 
Ellsworth Mountains are underlain by a faster mantle lid (VPn = ∼8.4 km/s) compared to the Amundsen 
Sea Embayment region (VPn = ∼8.1 km/s). Within the Amundsen Sea Embayment itself, we find mantle 
lid velocities ranging from ∼8.05 to 8.18 km/s. Laterally heterogeneous uppermost mantle structure, 
indicative of variable thermal and rheological structure, likely influences both geothermal heat flux and 
glacial isostatic adjustment spatial patterns and rates within central West Antarctica.

Plain Language Summary In this study, we have identified and located 117 seismic events in 
central West Antarctica. The seismic events originate from both solid-Earth and glacial processes. While 
the seismic events originating from solid-Earth processes are associated with tectonic and volcano-tectonic 
activity in central West Antarctica, the seismic events arising from glacial processes are predominantly 
associated with time periods of significant calving activity at Thwaites Glacier and Pine Island Glacier. 
Using select P-waves produced by seismic events located in this study, we investigate the uppermost 
portion of the mantle beneath central West Antarctica and find that the temperature of the uppermost 
mantle likely varies by at least 160 K across central West Antarctica. Variable uppermost mantle 
temperatures have numerous implications for the dynamics and evolution of the West Antarctic Ice Sheet.
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volcano-tectonic origin in central WANT, primarily occurring between January 2015 and December 2017 
(Figure 1), and use P-wave travel times from these events to constrain uppermost mantle (Pn) velocities.

In this study, we use data from the Polar Earth Observing Network (POLENET/ANET) and UK Antarc-
tic Network (UKANET), which include the first seismographs deployed in WANT that provide sufficient 
station coverage to study regional seismicity and wave propagation across the Amundsen Sea Embayment 
and Haag-Ellsworth-Whitmore Mountains regions. The Amundsen Sea Embayment region encompasses 
the sector of central West Antarctica where Thwaites and Pine Island glaciers flow into the ocean, and the 
Haag-Ellsworth-Whitmore Mountains region is located upstream of several glaciers, including the Rutford 
Ice Stream, that flow into the Weddell Sea (Figure 1). An indicator of lithospheric mantle temperature, Pn 
velocity provides a useful constraint on geothermal heat flow (e.g., Black & Braile, 1982). Geothermal heat 
flow, which influences ice-sheet basal lubrication, is an important boundary condition for the modeling 
of ice sheet dynamics and evolution (e.g., Larour et al., 2012; Pollard et al., 2005; Seroussi et al., 2017). 
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Figure 1. Bedrock topography map of the study area (inset; Morlighem et al., 2020). The grounding line and ice front 
position are delineated by black and gray lines, respectively (Morlighem et al., 2020). Inverted white triangles mark the 
locations of seismic stations. Dashed white lines delineate major crustal blocks described in the text; MBL: Marie Byrd 
Land, TIE: Thurston Island-Eights Coast, and the Haag-Ellsworth Whitmore Mountains. The Thwaites Glacier (TG) 
and Pine Island Glacier (PIG) catchments are outlined in blue and red dashed lines, respectively. The Sentinel Range 
(SR) is outlined in a purple dashed line. The partially open dark red triangles mark the locations of subaerial Cenozoic 
volcanoes (LeMasurier & Thomson, 1990). Blue arrows plot observed horizontal GPS bedrock motions in a frame that 
fixes East Antarctica (Barletta et al., 2018). Other abbreviated geographic features: EM: Ellsworth Mountains, HN: Haag 
Nunataks, WM: Whitmore Mountains, MT: Mount Takahe, BST: Bentley Subglacial Trench, BSB: Byrd Subglacial Basin. 
The gray boxes labeled a, b, c, and d correspond to the locations of the maps in supporting information S7, Figures 2, 7a, 
and 8a, respectively. The focal mechanism corresponds to the source of the ML 3.5 Thwaites Glacier earthquake.
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Additionally, because accurate predictions of glacial isostatic adjustment (GIA) and geoid changes are 
heavily reliant upon estimates of mantle viscosity, improved constraints on uppermost mantle structure 
in WANT are also necessary to further improve models of ice-sheet-solid Earth interactions (e.g., Barletta 
et al., 2018; Groh et al., 2012; Nield et al., 2018; Powell et al., 2020). Considering the accelerating ice mass 
loss throughout much of WANT (e.g., Shepherd et al., 2019), accurate measurements of geothermal heat 
flow and GIA-induced solid earth deformation are crucial in evaluating the future stability and evolution 
of the West Antarctica Ice Sheet (e.g., Whitehouse et al., 2019). The Pn-velocities that we report are the first 
such observations made within parts of central WANT that are undergoing rapid ice mass loss resulting 
from climate change (e.g., Holland et al., 2019; Shepherd et al., 2019).

2. Background
2.1. Tectonic Setting

West Antarctica (WANT) is regarded as an assemblage of four discrete crustal blocks, the Antarctic Pen-
insula (AP), Marie Byrd Land (MBL), Thurston Island-Eights Coast (TIE), and Haag-Ellsworth-Whitmore 
(HEW), with the HEW being separated from the other blocks by the West Antarctic Rift System (WARS) 
(Dalziel & Elliot, 1982) (Figure 1). The central portion of the Amundsen Sea Embayment (ASE) sits at the 
junction of the WARS and two crustal blocks—MBL and the TIE (Figure 1). While the HEW block is consid-
ered an allochthonous continental fragment (Dalziel, 2007; Grunow et al., 1987; Jordan et al., 2017; Randall 
& Mac Niocaill, 2004; Schopf, 1969), MBL, TIE, and the AP developed as fore-arc and magmatic-arc terranes 
along the paleo-Pacific convergent margin of Gondwana (e.g., Dalziel, 1992). The four crustal blocks of 
WANT moved away from the East Antarctica Craton during the first WARS extensional phase between ∼105 
and 85 Ma (e.g., Siddoway, 2008). The WARS continued extending until ∼84 Ma, when seafloor spreading 
between WANT and Zealandia commenced (e.g., Siddoway, 2008). At present, the WARS does not appear to 
be actively extending (e.g., Donnellan & Luyendyk, 2004; Winberry & Anandakrishnan, 2003); GPS meas-
urements and associated modeling indicate that vertical and horizontal bedrock motions in the ASE are 
dominated by GIA associated with extensive recent ice mass loss (Barletta et al., 2018; Groh et al., 2012) 
(Figure 1).

The Ellsworth Mountains are situated in the Ellsworth-Whitmore Mountains province of the HEW, a 
composite crustal block located west of the Weddell Sea Rift System (Figures 1 and 2). The Haag Nuna-
taks province, located adjacent to the Ellsworth Mountains, is considered part of the HEW (e.g., Jordan 
et al., 2017) (Figures 1 and 2). The HEW is a geologically and geophysically distinct crustal block within 
WANT (Schopf, 1969). While the AP, TIE, and MBL crustal blocks were all perturbed, to varying degrees, 
by deformation and magmatism from the Paleozoic through the Cenozoic (e.g., Jordan et al., 2020), inter-
nal deformation within the HEW ceased after the Permo-Triassic Gondwanide orogeny (e.g., Curtis, 2001). 
Prior to the breakup of Gondwana, the HEW underwent translation and rotation to its current position 
(e.g., Jordan et  al.,  2017; Schopf,  1969). Although not internally deformed during the major Cretaceous 
WARS extensional phase, the HEW underwent ∼4 km of uplift during the early Cretaceous (Fitzgerald & 
Stump, 1991). The HEW sits on thicker crust (30–40 km) compared to the other WANT crustal blocks (An 
et al., 2015; Chaput et al., 2014; Dunham et al., 2020; O'Donnell et al., 2019; Ramirez et al., 2016, 2017; Shen 
et al., 2018), but isostatic compensation calculations indicate that the crust is too thin to solely support pres-
ent elevations in the HEW (Chaput et al., 2014). Several seismic studies have imaged high upper mantle ve-
locities beneath much of the HEW block (Lloyd et al., 2015, 2020; Lucas et al., 2020; O'Donnell et al., 2019; 
Shen et al., 2018). In addition to high velocities, Lucas et al. (2020) also imaged a low velocity region at 
depths >200 km beneath the central portion of the HEW indicative of warm upper mantle material and 
argued that the warm upper mantle may provide some thermal support for present elevations in the HEW.

The eastern portion of MBL is located within the ASE (Figure 1). MBL is a high elevation region, like-
ly supported by upwelling low-density mantle associated with alkaline volcanism beginning ∼28–30 Ma 
(LeMasurier & Landis,  1996). MBL hosts 18 large, subaerial basalt-trachyte shield volcanoes, including 
Mount Takahe (LeMasurier & Landis, 1996). The source of Cenozoic alkaline volcanism in MBL is debat-
ed—many studies hypothesize that a mantle plume fed the Cenozoic volcanism (e.g., Hansen et al., 2014; 
Heeszel et al., 2016; Lloyd et al., 2020; O'Donnell et al., 2019; Panter et al., 1997; Weaver et al., 1994), while 
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others attribute magmatism to mantle flow induced by the break-up of the slab associated with premid 
Cretaceous subduction in MBL (e.g., Finn et al., 2005). Consistent with an upper mantle thermal anomaly, 
widespread slow upper mantle seismic velocities have been imaged beneath MBL and other regions of 
WANT (Heeszel et al., 2016; Lloyd et al., 2020; Lucas et al., 2020; O'Donnell et al., 2019; Ramirez et al., 2017; 
Shen et al., 2018; White-Gaynor et al., 2019), with deep low-velocity features that span the mantle transition 
zone (Emry et al., 2015). Using seismograms from a 2012 magnitude 5.6 earthquake in MBL, O'Donnell 
et al. (2017) obtained a regional lithospheric mantle VPn of ∼8.0 km/s beneath the WARS and MBL. Within 
the MBL, crustal seismicity has been attributed to ongoing magmatism at numerous locations (Lough, 2014; 
Lough et al., 2013; Winberry & Anandakrishnan, 2003).

Along with the Pine Island Glacier (PIG) region, the Hudson Mountains, a Neogene volcanic province char-
acterized by three large, extensively eroded stratovolcanoes, is located in the ASE sector of the TIE crustal 
block (Rowley et al., 1990) (Figure 1). There is evidence of a recent (207 BCE ± 240 years) volcanic eruption 
in the Hudson Mountains (Corr & Vaughan, 2008). Although Neogene volcanism may be associated with 
TIE extension (e.g., Jordan et al., 2010), it has also been attributed to an extension of MBL magmatism be-
neath the TIE (Hole & LeMasurier, 1994). Consistent with this hypothesis, a number of studies have imaged 
low seismic velocities extending from MBL toward PIG at upper mantle depths (25–400 km depth) (Heeszel 
et al., 2016; Lloyd et al., 2015, 2020; Lucas et al., 2020; O'Donnell et al., 2019; Shen et al., 2018) and upper 
mantle anisotropy in the ASE, measured by shear-wave splitting, is consistent with radial flow from the 
MBL region (Accardo et al., 2014). Additionally, Kalberg and Gohl (2014) attributed a high-velocity layer 
identified at the base of the lower crust beneath the ASE continental margin to magma flow from the MBL 
region.

Seismic imaging suggests the lithosphere throughout much of the WARS has not been perturbed since 
the formative Jurassic-Cretaceous rifting (Heeszel et al., 2016; Lloyd et al., 2015, 2020; Lucas et al., 2020; 
O'Donnell et al., 2019; Shen et al., 2018). However, evidence of localized Cenozoic rifting within the WARS 
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Figure 2. Bedrock topography map of the Ellsworth Mountains (EM) region. The grounding line is delineated in black 
(Morlighem et al., 2020). The red dashed line outlines the Sentinel Range (SR). Seismic station locations are marked 
with inverted white triangles. Other abbreviated geographic features: HN: Haag Nunataks, BSB: Byrd Subglacial Basin, 
HR: Heritage Range, RIS: Rutford Ice Stream, FRIS: Filchner-Ronne Ice Shelf, FP: Fletcher Promontory, CI: Carson 
Inlet Glacier.
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has been noted for the Pine Island Rift (PIR), located beneath PIG, the Terror Rift, and portions of the 
Bentley Subglacial Trench and Byrd Subglacial Basin (e.g., Clow et al., 2012; Golynsky et al., 2018; Granot 
et al., 2010, 2013; Lloyd et al., 2015; Lucas et al., 2020; O'Donnell et al., 2019). Granot et al. (2013) argued 
that regions of localized Cenozoic rifting may represent Eocene-Oligocene transcurrent faults that were 
reactivated by mid-Miocene to recent extension.

2.2. Glaciologic Setting

Our study area encompasses several major central WANT glacial systems, including the Thwaites Glacier 
(TG), Pine Island Glacier (PIG), and Rutford basins (Figures 1 and 2). Numerous tributary glaciers situated 
in the Ellsworth Mountains flow into the TG, PIG, and Rutford basins (Figure 2). While TG and PIG are both 
marine-terminating glaciers that drain into the ASE, the Rutford Ice Stream is one of the main contributors 
to the Filchner-Ronne Ice Shelf (King, 2009).

Over the past several decades, TG and PIG have both undergone significant ice mass loss, grounding-line 
retreat, and thinning (Mouginot et al., 2014; Rignot et al., 2019; Shepherd et al., 2019). The current TG 
grounding zone can be subdivided into distinct eastern, central, and western regimes that flow into a but-
tressed and confined ice shelf, an unconfined ice shelf, and a mélange of icebergs and sea ice, respectively 
(e.g., Fürst et  al.,  2016; MacGregor et  al.,  2012; Mouginot et  al.,  2014). Although glacial bed conditions 
beneath the West Antarctic Ice Sheet are generally poorly known, there is evidence that TG is underlain by 
a spatially variable bed (e.g., Muto et al., 2019). Compared to TG, PIG has a larger and more coherent ice 
shelf, where a number of upstream tributaries channel ice into the central trunk, which travels along a deep 
subglacial trough that flows into the Pine Island Bay (e.g., Stenoien & Bentley, 2000).

The Ellsworth Mountains are broadly characterized by longitudinal mountain ridges separated by gla-
cier-filled basins (e.g., Sugden et al., 2017). Some glaciers flow west out of the Ellsworth Mountains over 
the Ellsworth Subglacial Highlands toward the ASE. These glaciers span a complex hydrological network, 
including two major subglacial lakes, across the Ellsworth Subglacial Highlands (e.g., Rivera et al., 2015; 
Siegert et al., 2004). Other glaciers originating in the Ellsworth Mountains flow east and eventually merge 
with the Rutford Ice Stream, which flows over a range of subglacial landforms, including mega-scale glacial 
lineations, drumlins, and hummocks, into the Filchner-Ronne Ice Shelf (King et al., 2016). Unlike the ASE, 
the ice mass of the Filchner-Ronne Ice Shelf and associated glaciers has remained relatively stable over the 
past few decades (Rignot et al., 2019).

2.3. WANT Seismicity

Although limited by sparse seismic station coverage, previous studies have found evidence of tectonic, gla-
cial, and volcanic seismicity in central WANT (e.g., Lough, 2014; Lough et al., 2013; Olinger et al., 2019; 
Smith, 2006; Winberry & Anandakrishnan, 2003; Winberry et al., 2020). Along with numerous small earth-
quakes (ML < 1), Winberry and Anandakrishnan (2003) identified larger (ML > 2) earthquakes in two geo-
graphic clusters, one in the northern WARS and a second within the WARS interior. Lough (2014) compiled 
a comprehensive Antarctic seismicity catalog for 2009–2010. Similar to the Winberry and Anandakr-
ishnan (2003) study, Lough (2014) reported minimal tectonic seismicity within the WARS. Lough (2014) 
also identified both tectonic and volcanic seismicity throughout WANT, with a notable majority of the seis-
micity clustered in MBL. Within MBL, Lough et al. (2013) identified a swarm of deep (near Moho depth) 
long-period seismic events, which was interpreted as an active subglacial magmatic complex beneath 
the youngest subaerial volcanoes in the Executive Committee Range. Aside from the isolated clusters of 
tectonic seismicity in the WARS (Winberry & Anandakrishnan, 2003) and magmatic seismicity in MBL 
(Lough, 2014; Lough et al., 2013), prior studies have suggested sparse seismicity in WANT.

While studies of earthquakes and volcano seismicity have been limited by relatively sparse seismic station 
coverage in central WANT, studies of glacial seismicity have been even more limited. Smith (2006) identi-
fied swarms of microseismic activity at the ice-bed interface in a small passive seismic survey on Rutford Ice 
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Stream. Within the ASE, Olinger et al. (2019) and Winberry et al. (2020) identified near-ice front seismicity 
that increased notably prior to large glacial calving events at PIG and TG, respectively.

3. Central WANT Seismicity
This study utilizes broadband seismic data collected by the Antarctic portion of the Polar Earth Observ-
ing Network (POLENET/ANET; https://doi.org/10.7914/SN/YT_2007) and the UK Antarctic Network 
(UKANET; https://doi.org/10.7914/SN/1D_2016) (Figure 1). We use data from Polar Earth Observing Net-
work (POLENET) backbone stations and from the US/UK mini array (MA) (Figure 1). The MA extended 
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Figure 4. (a) Vertical component seismogram record section from the ML 3.5, 13 March 2017 earthquake beneath TG 
(Figure 1). The event origin time corresponds to time zero of the record section. Seismograms are bandpass filtered at 
1–20 Hz. The seismograms are labeled on the right with their respective station codes. Icequakes recorded at PIGD and 
SILY are circled in red. The P-wave arrivals are marked with pink dashed lines. (b) Vertical component seismogram 
recorded at seismic station DNTW from the March 13, 2017 earthquake beneath TG. (c) Spectrogram of waveform 
plotted in (b).

https://doi.org/10.7914/SN/YT_2007
https://doi.org/10.7914/SN/1D_2016
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from the Byrd Subglacial Basin to the Amundsen Sea and consisted of 10 POLENET stations deployed from 
2015 to 2016 and 10 UKANET stations deployed from 2016 to 2017, with roughly 70 km composite intersta-
tion spacing (Figure 1). This study primarily focuses on the 2-year time interval (2015–2017) during which 
the MA was deployed and encompasses the region from −80° to −72° latitude and −120° to −75° longitude.
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Figure 3. Earthquake and icequake signal comparison using events from the Ellsworth Mountains: (a)–(b) 
Seismogram and spectrogram from a May 10, 2016, ML 1.6 earthquake. (c)-(d) Seismogram and spectrogram from a 
June 1, 2016, ML 1.9 icequake. The seismograms are filtered with a 1.2 Hz high-pass filter. Pink dashed lines mark the 
P-wave arrivals.
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We detected and associated seismic events in central WANT using the Antelope software package by man-
ually picking clear P- and S-wave arrivals with typical traveltime picking errors estimated to be ∼0.1–0.2 s 
and ∼0.5  s for P- and S-wave arrivals, respectively. We located seismic events with P-wave arrivals on 
four or more seismic stations using the Hypoinverse earthquake location software (Klein, 2002) with lo-
cal velocity models (Table  S1, S2). The local velocity models used include an ice sheet layer interpolat-
ed from BedMachine (Morlighem et al., 2020), where appropriate, and are based on previous studies of 
shear wave velocity structure and crustal thickness in West Antarctica (e.g., Dunham et  al.,  2020; Shen 
et al., 2018). To estimate seismic event magnitudes consistent with previous WANT seismicity studies (e.g., 
Lough, 2014; Lough et al., 2013), we calculate a local magnitude (ML) for each seismic event using the equa-

tion   
   

 
log 2.76 log 2.48L

AM Dist
T

, where A is the amplitude in microns of the waveforms sampled 

at period T and Dist is the distance between source and receiver in kilometers.

Through this process we identified and located 117 seismic events in central WANT, with local magnitudes 
(ML) ranging from 1.1 to 3.5 (Table S3). Of the 117 seismic events, 99 were located in the ASE and 18 were 
located in the Ellsworth Mountains (Figures 1, 2, 7, and 8). Within the ASE, the seismic events are pre-
dominantly clustered in the TG and PIG regions and at Mount Takahe (Figure 1). Compared to seismic 
event locations, which are constrained with an average horizontal location error of ∼1.8 km, event depths 
are often poorly constrained due to the ray path geometry, with depth location errors ranging from ∼1 to 
∼33 km. Well-constrained seismic event depths generally indicate the inclusion of S-wave arrival times and 
the presence of nearby stations in the event location process.

Seismicity could conceivably arise from glacial, tectonic, or volcano-tectonic processes within central 
WANT. To interpret event types, we investigated source depths, which discriminate tectonic or volcano-tec-
tonic events at crustal depths from glacial events, and evaluated seismogram characteristics. Traditional 
earthquake-location methods, including Hypoinverse, provide a standard error associated with depth es-
timates based on linearized covariance propagation using the least-squares solution. The linearized least-
squares solution is subject to the characteristics of the local error minimum. To assess this, we calculated 
the arrival time misfit for a grid of depths to constrain best-fitting source depths (supporting information 
S2, S3, and S4). In evaluating waveform characteristics, we examined the seismic spectrum, given that both 
tectonic and volcanic sources tend to be characterized by broader frequency content than glacial events 
(supporting information S1) (e.g., Aster & Winberry, 2017; McNutt, 2005; West et al., 2010).

3.1. Seismicity in the Ellsworth Mountains

We located 18 seismic events (1.1 ≤ ML ≤ 2.1) in the Ellsworth Mountains (Figures 1 and 2), and assessed 
that 16 of these are likely of glacial origin (Table S3). Glacial seismicity is predominantly confined to a 
cluster in the southern portion of the Sentinel Range (Figures 1 and 2) and exhibits a maximum spectral 
amplitude at 1–5 Hz (Figures 3c and d, Supp. Info. S1a). Given our seismic station configuration, we cannot 
discriminate the source mechanisms of the glacial processes responsible for the activity, however, it can 
most likely be attributed to glacial stick-slip motion or near-surface ice fracturing in the glacial systems on 
either side of the Sentinel Range.

We also identified and located two seismic events of inferred tectonic origin in the Ellsworth Mountains. 
The first earthquake (February 9, 2013; ML 1.3) is located in the Sentinel Range at ∼8 km depth, and the sec-
ond earthquake (May 10, 2016; ML 1.6) is located near the Fletcher Promontory at ∼6 km depth (Figure 2; 
supporting information S2; Table S3). Both of the Ellsworth Mountains earthquakes exhibit broad spectral 
content (1–18 Hz; Figures 3a and b; supporting information S1a). We attempted to constrain focal mecha-
nism solutions for these earthquakes, but were unable to usefully do so because of limited seismic station 
and ray path coverage. Tectonic seismicity observed in the Ellsworth Mountains may be associated with 
the underlying tectonic stress regime and/or the influence of GIA-induced stress, noting that seismicity 
has been attributed to postglacial rebound in both Fennoscandia and the Laurentide region (e.g., Keiding 
et al., 2015; Steffen et al., 2012). Both of the earthquakes are located in the northern portion of the HEW, a 
region characterized by horst and graben bedrock structures, indicative of rifting (e.g., Doake et al., 1987; 
Garrett et al., 1987). Considering that the Ellsworth Mountains are currently undergoing ∼5 mm/year of 
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uplift due to late Pleistocene deglaciation in Antarctica (Argus et al., 2011) and the horst and graben struc-
tures provide a zone of preexisting tectonic weakness, the earthquakes can likely be attributed to both un-
derlying tectonic stress and GIA-induced stress in the HEW.

3.2. Earthquake Beneath Thwaites Glacier

The largest seismic event (ML = 3.5) identified in this study occurred on March 13, 2017 in the TG region, 
∼20 km west of the seismic station DNTW (Figures 1 and 4). We find a best-fitting source depth of ∼19 km 
using Hypoinverse, indicating that the hypocenter is in the middle to lower crust (Supp. Info. S3). Given 
the proximity of the seismic event to the DNTW seismic station (Figure 1, supporting information S5), we 
also estimate source depth using the traveltime difference between the S- and P-wave arrivals at DNTW. We 
find a traveltime difference of 3.069 s between the S- and P-wave arrivals, which corresponds to a source 
depth of ∼20 km. Using the FOCMEC first-motion program (Snoke, 2003), we obtained a focal mechanism 
that indicates normal faulting with approximately east-west nodal planes (Figure 1, supporting information 
S6). Although this earthquake may be attributed to the tectonic background stress regime, it could also be 
associated with stress reflecting rapid ice mass loss and GIA in the ASE. Notably, the orientations of the 
nodal planes are consistent with the orientation of horizontal GIA-related bedrock motion in the ASE (Bar-
letta et al., 2018) (Figure 1). This interpretation is analogous to that of present-day seismicity in Greenland 
which has been, in part, correlated to regions undergoing recent ice mass loss (Olivieri & Spada, 2014). In 
addition to occurring in deglaciated regions (i.e., Fennoscandia) we may expect that GIA-induced seismic-
ity occurs concurrently with active partial ice mass unloading. Considering the accelerating ice mass loss 
and retreat of the TG (e.g., Shepherd et al., 2019) and the weak ASE upper mantle and rapid crustal uplift 
(Barletta et al., 2018; Groh et al., 2012), this earthquake could thus have resulted from GIA-induced stress 
accumulation.

3.3. Seismicity at Mount Takahe

We located eight seismic events, with source depths of 9–19 km (supporting information S4), beneath the 
edifice of Mount Takahe, a young (<0.3 Ma) trachytic shield volcano near the western boundary of the TG 
catchment (Figure 1, Table S3) (e.g., Palais et al., 1988; LeMasurier & Rex, 1990). These events range in mag-
nitude from ML 1.6–2.5 (Table S3). Considering the location, frequency content (1–10 Hz), and well-con-
strained source depths, the Mount Takahe events likely arise from volcano-tectonic processes (Figures 1 
and 5, supporting information S1b, S4, S7). Due to relatively sparse seismic station coverage around Mount 
Takahe (Figure 1), we cannot reliably differentiate seismic events of volcano-tectonic origin from those of 
purely magmatic origin. However, based on evidence of eruptive activity at Mount Takahe within the past 
40,000 years (e.g., LeMasurier & Rex, 1990; Palais et al., 1988), it is possible that a number of events, if not 
all, can be attributed to magmatic processes.

Further, in addition to the eight well-recorded events, we identified 17 additional events likely located at 
Mount Takahe using cross-correlation analysis (Table S4). The aforementioned additional events are only 
recorded at one or two of the nearest seismic stations; therefore, we cannot determine reliable source loca-
tions. Considering the nearest seismic station, DNTW, is located ∼125 km away from Mount Takahe, lower 
magnitude seismicity associated with this seismic activity likely remains undetected. Seismicity has been 
attributed to subglacial magmatism at a number of volcanoes in MBL (Lough, 2014; Lough et al., 2013; Win-
berry & Anandakrishnan, 2003), and Lough (2014) located two events, likely of volcanic or volcano-tectonic 
origin, near Mount Takahe. In investigating volcanic and volcano-tectonic seismicity in this region, this 
study has been limited by sparse seismic station coverage (Figure 1). We note that since Mount Takahe is at 
the western border of the TG catchment (Figure 1), subglacial volcanic activity may have a long-term impact 
on the evolution and stability of TG.

3.4. Glacial Seismicity in the Central ASE

We located 91 intermediate-frequency (1–4 Hz) seismic events of glacial origin in the ASE during 2015–
2017 (Figures 1 and 6–8). These seismic events exhibit impulsive P-wave arrivals and range in magnitude 

LUCAS ET AL.

10.1029/2020GC009471

9 of 23



Geochemistry, Geophysics, Geosystems

from ML 1.1–3.2, with an average ML of ∼ 2. The events are predominantly clustered in two regions. The first 
cluster is located at the western portion of the TG grounding zone (Figures 1 and 7), and the second cluster 
is located at the grounding zone of the PIG glacier (Figures 1 and 8). We find that the majority of the events 
in this population occur in the days preceding and following major calving events in the ASE (supporting 
information S9 and S10). While we focus on the best-recorded events here, we note that many more events 
were observable at the closest one or two seismic stations, both preceding and following the aforementioned 
calving events.

We identified a number of long-period seismic events, likely produced by ice calving, originating from the 
western terminus of the TG in early July 2017 (supporting information S8a, S9). To confirm the calving at 
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Figure 5. (a) Vertical component seismogram record section from the August 16, 2016, ML 1.6 seismic event near 
Mount Takahe. The event origin time corresponds to time zero of the record section. Seismograms are filtered with a 
1.5 Hz high-pass filter. The seismograms are labeled on the right with their respective station codes. P-wave arrivals are 
marked with pink dashed lines. (b) Vertical component seismogram from the August 16, 2016 event recorded at seismic 
station DNTW. (c) Spectrogram of waveform plotted in (b).
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TG, we compared Sentinel-1 imagery captured on July 2, 2017 and July 4, 2017 (Figures 7b–7e). Consistent 
with the timing of the long-period seismic event, we find that significant calving activity occurred in the 
western portion of the TG between July 2, 2017 and July 4, 2017 (Figures 7b–7e). The July 2017 calving activ-
ity was accompanied by a substantial increase in discrete intermediate-frequency icequakes predominantly 
located in the region of TG calving (Figures 7b–7e; supporting information S9; Table S3). The long-period 
seismic events identified in this study are similar to three seismic events studied by Winberry et al. (2020) 
near the same portion of the TG terminus on April 10, 2017 and November 8, 2018. Using both seismic data 
and optical imagery, the Winberry et al. (2020) study similarly correlated the long-period seismic events to 
calving activity at TG.

We also observe an increase in discrete intermediate-frequency glacial seismicity at the grounding zone of 
PIG that is, likely related to a series of PIG calving events, characterized by ∼11 long-period seismic events 

LUCAS ET AL.

10.1029/2020GC009471

11 of 23

Figure 6. (a) Vertical component seismogram record section from a June 29, 2017, ML 1.6 icequake in the TG region. 
The event origin time corresponds to time zero of the record section. Seismograms are filtered with a 0.8 Hz high-pass 
filter. The seismograms are labeled at right with their respective station codes. Pink dashed lines mark the P-wave 
arrivals. (b) Vertical component seismogram of the June 29, 2017 icequake recorded at seismic station DNTW. (c) 
Spectrogram of waveform plotted in (b).
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(supporting information S8b), that occurred in February 2016 (Figures  1 and 8; supporting information 
S10). Sentinel-1 imagery acquired on February 1, 2016 and February 26, 2016 is used to confirm the calving 
activity (Figures 8b and c). While the high frequency icequakes are primarily located near and slightly up-
stream of the PIG grounding zone, it should be noted that the events are distinctly inland (by up to many 
10s of km) of the calving front (Figure 8).

Overall, we find that the intermediate-frequency icequakes are predominantly located at or near the 
grounding zone of either TG or PIG and occur preceding and following time intervals of significant calving 
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Figure 7. (a) Western TG grounding zone bedrock topography (Morlighem et al., 2020). The black and gray lines 
delineate the grounding line and ice front positions, respectively (Morlighem et al., 2020). Icequake locations are 
demarcated with pink and yellow circles. The location of the imagery in (b)-(c) is marked by a black dashed line. 
(b)-(c) Sentinel-1 imagery showing the evolution of the ice front associated with the July 2017 calving activity. The 
location of imagery in figures (d)-(e) is marked with a black dotted line. (d)-(e) Sentinel-1 imagery of a zoomed-in 
region of the western TG ice front captured on July 2, 2017 (d) and July 4, 2017 (e). (d) The solid purple line indicates 
the TG terminus position on July 2, 2017. (e) The yellow and red polygons outline a newly-calved iceberg and capsized 
icebergs, respectively.
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activity (Figures 1, 7 and 8; supporting information S9 and S10). Winber-
ry et al.  (2020) also identified an increase in discrete, intermediate-fre-
quency icequake activity at the western terminus of the TG prior to the 
November 8, 2018 and April 10, 2017 calving activity, however, they did 
not locate the events. Calving events are inherently characterized by the 
propagation of fractures (e.g., Benn et al., 2007); therefore, the temporal 
correlation between calving activity and glacial seismicity arising from 
fracture propagation is natural. While the Winberry et al.  (2020) study 
attributes the seismicity preceding TG calving activity to elevated rates 
of fracture propagation in the region of incipient tabular iceberg forma-
tion, the icequakes located in this study cannot be wholly attributed to 
processes associated with the formation of incipient tabular icebergs and 
must therefore be generated by other glacial processes (Figures 1, 7, and 
8). Additionally, the majority of PIG icequakes are not located at or near 
the terminus and, therefore, cannot be attributed to iceberg formation 
processes (Figures 1 and 8). Given the temporal association with major 
calving events, waveform characteristics, and proximity to the grounding 
zone, the majority of icequakes located in this study could arise from sub-
glacial, englacial, and/or subaerial fracture development and propagation 
(Figures 1, 6, 7, and 8; supporting information S1b, S9, and S10).

4. Uppermost Mantle Structure
We investigated uppermost mantle structure in the Ellsworth Mountains 
and central ASE using Pg- and Pn-wave arrivals from the seismic events 
discussed above. Pg-waves travel only through the crust, while Pn-waves 
are refracted along the crust-mantle boundary (e.g., Beghoul et al., 1993; 
Menke & Richards,  1980), traveling (1) from a seismic source through 
the crust to the mantle, (2) through the uppermost mantle (the mantle 
lid), and (3) from the mantle back through the crust to the surface. We 
determine the mean regional Pg and Pn velocities for both the Ellsworth 
Mountains and the central ASE by fitting travel times to a straight line as 
a function of epicentral distance (Figure 9). In addition to determining 
the mean regional Pn velocity for the central ASE, we also use the Pn 
arrival times to image lateral variations in the ASE uppermost mantle 
velocity using the tomography method of Hearn (1996) in areas where 
ray coverage is sufficient (Figure  10; supporting information S11 and 
S12). Although S-wave travel times are used to locate many of the seismic 
events, Sg and Sn velocities are not estimated in this study due to sparse 
data coverage.

For the Ellsworth Mountains, Pg and Pn-wave arrivals from 18 well-re-
corded seismic events, including events of both glacial and tectonic ori-
gin (Figures 1 and 2), yield 78 P-wave first arrivals recorded at distances 
between 14 and 284 km. The Pg and Pn traveltime branches are clearly 
evident in the traveltime plot, with a crossover distance of ∼180 km (Fig-
ure 9a), consistent with a mean crustal thickness of 38 km and with prior 
estimates of crustal thickness (An et al., 2015; Chaput et al., 2014; Dun-

ham et al., 2020; O'Donnell et al., 2019; Ramirez et al., 2017, 2016; Shen et al., 2018). Based on the above 
Pg-Pn crossover distance, we classify 33 of the 78 P-wave arrivals as Pn arrivals (Figure 9a).

For the central ASE, Pg and Pn-wave arrivals from 46 well-recorded glacial events yield 290 P-wave first ar-
rivals recorded between 37 and 490 km (Figures 1 and 9b). Both Pg and Pn traveltime branches are evident 
in the traveltime plot, corresponding to a Pg-Pn crossover distance of ∼143 km (Figure 9b), which is con-
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Figure 8. (a) PIG regional bedrock topography (Morlighem et al., 2020). 
The black and gray lines delineate the grounding line and ice front 
positions, respectively (Morlighem et al., 2020). Icequake locations are 
demarcated with pink and yellow circles. The location of the imagery in 
(b)-(c) is delineated with black dashed line. (b)-(c) Sentinel-1 imagery 
showing the evolution of the ice front associated with the February 2016 
calving activity at PIG.
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Figure 9. (a) Travel times versus epicentral distance for seismic events located in the Ellsworth Mountains. We differentiated Pn arrivals from Pg arrivals based 
on a crossover distance of ∼180 km. We fit the Pg and Pn data with a least-squares straight-line to determine an average Pg and Pn velocity of ∼6.40 ± 0.02 km/s 
and ∼8.40 ± 0.03 km/s, respectively. (b) Travel times versus epicentral distance for seismic events of glacial origin located in the central ASE. We differentiated 
Pn arrivals from Pg arrivals based on a crossover distance of ∼143 km. We fit the Pg and Pn data with a least-squares straight-line to determine an average Pg 
and Pn velocity of ∼6.20 ± 0.02 km/s and ∼8.10 ± 0.01 km/s, respectively.
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sistent with a mean crustal thickness of 25 km (An et al., 2015; Dunham et al., 2020; O'Donnell et al., 2019; 
Ramirez et al., 2017, 2016; Shen et al., 2018). Based on the Pg-Pn crossover distance, we classify 151 of the 
290 P-wave first arrivals as Pn arrivals (Figure 9b).

4.1. Pn Inversion Method

Using the tomography method of Hearn (1996), we inverted Pn-wave traveltime residuals to obtain an up-
permost mantle velocity model for the central ASE. The traveltime, tij, of the ray traveling between seismic 
event j and station i is described by

    ij i j ijk kt a b d s 
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Figure 10. Pn velocity tomography model of the central ASE. The grounding line and ice front position are delineated 
by black and gray lines, respectively (Morlighem et al., 2020). Inverted black triangles mark the locations of seismic 
stations. MBL and the TIE crustal block are outlined by dashed white lines. The Thwaites Glacier catchment (TG) and 
Pine Island Glacier (PIG) catchment are outlined in blue and red dashed lines, respectively. Thin black lines contour 
the −1,300 m bedrock elevation. Red triangles mark the locations of subaerial Cenozoic volcanoes (LeMasurier & 
Thomson, 1990). Other abbreviated geographic features: BSB: Byrd Subglacial Basin, SR: Sinuous Ridge, PIR: Pine 
Island Rift; MT: Mount Takahe; HM: Hudson Mountains.
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where ai and bj are the crustal static delays for station i and event j, dijk is the distance traveled by ray ij in 
mantle cell k, and sk is the slowness perturbation for cell k (Hearn 1994, 1996). We assumed azimuthal isot-
ropy in this study and anisotropy terms are thus not included in the traveltime equation. In the Hearn (1996) 
method, a regularized least-squared algorithm (Paige & Saunders, 1982) iteratively solves for mantle-lid 
slowness (sk), and for station (ai), and event (bj) delays.

The surface of the uppermost mantle was gridded into 80 km × 80 km cells, and Laplacian (second-order) 
regularization was applied (Paige & Saunders, 1982). The cell size was selected to ensure multiple ray paths 
within each cell (supporting information S12). The Laplacian regularization weighting parameter controls 
the trade-off between data misfit and resolution (Aster et al., 2018; Hearn, 1996). We chose a damping value 
of 150 in our inversion, which provided acceptable resolution width and error size (supporting information 
S13). Additionally, we required a minimum hit count of five rays per grid cell; cells not meeting this require-
ment were shaded gray in the associated figures (Figure 10; supporting information S12).

4.1.1. Pn Inversion Results and Resolution

Pn inversion results are shown in Figure 10, and estimated uncertainties are shown in Figure 11. The range 
of Pn velocity across the model is about 0.1 km/s, and the average standard deviation is 0.04 km/s, estimated 
from 100 bootstrap iterations with replacement (Hearn & Ni, 1994; Koch, 1992). The highest uncertainties 
(∼0.13 km/s) are found near the grounding line of TG and can likely be attributed to hypocentral location 
errors associated with sparse seismic station coverage (Figure 11).

A synthetic model is used to evaluate the effects of raypath coverage on spatial resolution (supporting infor-
mation S14). We built the synthetic model with the same event-station pairs used in the tomographic inver-
sion of the true data (supporting information S14a). Gaussian noise was added to the synthetic traveltimes 
with a standard deviation of 0.45 s, equivalent to the root-mean-square residual from the actual inversion. 
We find that input synthetic anomalies are well recovered, although subdued in magnitude, after inverting 
the synthetic test model using the same parameters as for the real traveltime data (supporting information 
S14b).

For simplicity, we assume that all glacial events are located at 1 km depth in our inversion. Given the un-
constrained possible glacial seismic source mechanisms, event depth could feasibly vary between 0 km and 
∼2 km. To assess the dependence of the Pn velocity model on glacial event depths, we ran Pn inversions 
for a range of realistic depths (0, 1, and 2 km). We did not find any significant dependence between glacial 
source depth and the Pn velocity model (supporting information S15).

4.2. Discussion of Uppermost Mantle (Pn) Velocities

Pn-wave velocities are often used to infer the thermal and tectonic history and conditions of the litho-
spheric mantle. Lateral Pn velocity variations can be attributed to changes in mantle temperature, compo-
sition, and/or pressure. While uppermost mantle velocities can vary significantly, the average Pn velocity 
of continental lithospheric mantle is ∼8.0 km/s (e.g., Mooney et al., 2002). Tectonically stable mantle lids 
are characterized by higher Pn velocities (>8.0 km/s), while lower Pn velocities (<7.8 km/s) can indicate 
thermal anomalies and the possible presence of partial melt (e.g., Hearn & Ni, 1994; Schutt et al., 2018). 
Because seismic velocities are primarily influenced by temperature at upper mantle depths (e.g., Black & 
Braile, 1982; Faul & Jackson, 2005; Goes et al., 2000), VPn variability can be used to estimate variations in 
uppermost mantle temperature in central WANT. Following the Goes et al. (2000) temperature-velocity re-
lationship indicating that a 100 K temperature anomaly corresponds to a 0.5%–2% P-wave velocity anomaly, 
we calculate minimum temperature changes assuming the lowest end member in this range.

After regressing the traveltime data from the 18 well-recorded seismic events in the Ellsworth Mountain 
region, we find a mean regional Pn velocity of 8.40 ± 0.03 km/s and a Pg velocity of 6.40 ± 0.02 km/s, where 
the uncertainty is the standard deviation of the regression (Figure 9a). With such a high average regional Pn 
velocity, the Ellsworth Mountains are likely underlain by a cool, tectonically stable mantle lid. Consistent 
with this study, Ramirez et al. (2017), Shen et al. (2018), and O'Donnell et al. (2019) also imaged fast veloc-
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ities at uppermost mantle depths beneath the Ellsworth Mountains. The high uppermost mantle velocity 
is consistent with tectonic quiescence in the HEW following the Jurassic extension of the Weddell Sea Rift 
System (e.g., Riley et al., 2020).

For the central ASE, regression of the traveltime data yields a mean Pn velocity of 8.09 ± 0.01 km/s and a 
Pg velocity of 6.20 ± 0.02 km/s (Figure 9b). The small uncertainty in the mean Pn velocity is consistent with 
the small range in Pn velocities of 8.05–8.18 km/s obtained from the tomographic inversion (Figure 10). 
Compared to Pn velocities (∼8.0–8.1 km/s) in the interior of TG (∼−76.0°, −108.0°) and in the PIG region 
(∼−75.0°, −98.0°), slightly higher Pn velocities (∼8.1–8.18 km/s) are imaged near the grounding line of 
TG, and at the boundary of the MBL and TIE crustal blocks (∼−75.77°, −107.33°) (Figure 10). After con-
sidering the errors associated with the inversion (Figure 11), variations in Pn velocity of ∼0.1 km/s appear 
to be resolved in the model, but are near the limit of detectability as controlled by limited ray coverage 
and resolution (Figure  11; supporting information S11, S12, and S14). The indication of slightly higher 
Pn velocities beneath the terminus of TG compared to lower velocities beneath PIG and the TG interior 
is consistent with heterogeneous upper mantle structure across the region seen in the Shen et al. (2018), 
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Figure 11. Standard deviations of Pn velocities computed from bootstrap analysis. Inverted black triangles mark the 
locations of seismic stations. MBL and the TIE crustal block are outlined by dashed white lines. The Thwaites Glacier 
(TG) and Pine Island Glacier (PIG) catchments are outlined in blue and red dashed lines, respectively. Red triangles 
mark the locations of subaerial Cenozoic volcanoes (LeMasurier & Thomson, 1990). Other abbreviated geographic 
features: MT: Mount Takahe; HM: Hudson Mountains.
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O'Donnell et al. (2019), Lloyd et al. (2020), and Lucas et al. (2020) upper mantle velocity models. While the 
crustal thickness in our Pn velocity model is consistent with the crustal thicknesses estimated in Kalberg 
and Gohl (2014), we do not compare Pn velocities found in this study to the Kalberg and Gohl (2014) veloc-
ity model as they do not report Pn velocities.

The velocity transition from higher to slightly lower Pn velocities is located in the same region as the 
boundary of the MBL and TIE crustal blocks; therefore, a variable lithospheric structure is not unexpected 
given the disparate geologic histories of the two crustal blocks (e.g., Mukasa & Dalziel, 2000; Pankhurst 
et al., 1998; Riley et al., 2017; Zundel et al., 2019). Alternatively, variable Pn velocities could indicate that 
the uppermost mantle underlying PIG and the TG interior has been thermally perturbed to a greater de-
gree than the uppermost mantle beneath the TG terminus region. If Pn velocity variability is attributed to 
thermal variability, ∼50 K hotter uppermost mantle material is expected beneath PIG and the TG interior 
compared to the TG terminus. This result is consistent with Lucas et al. (2020) who estimated that PIG is 
underlain by ∼55 K hotter upper mantle material compared to TG.

Although there is some indication of variable ASE uppermost mantle structure, overall fast Pn velocities 
(≥8.05  km/s) indicate a tectonically stable lithospheric mantle. Consistent with this finding, both Shen 
et al. (2018) and O'Donnell et al. (2019) also report overall fast uppermost mantle shear wave velocities be-
neath the ASE. Our results thus support the Shen et al. (2018) interpretation that the high uppermost man-
tle velocities indicate the presence of lithosphere that has cooled significantly since the major Cretaceous 
phase of WARS rifting (Siddoway, 2008). To explain GPS-constrained ASE GIA uplift, Barletta et al. (2018) 
showed that a solid Earth viscoelastic model with a 50–60 km thick elastic lithosphere is required. Strong, 
tectonically stable mantle lithosphere has been correlated with thick elastic lithosphere (e.g., Tesauro 
et al., 2015); therefore, our Pn results are also broadly consistent with the presence of a 50–60 km thick 
elastic lithosphere beneath the ASE.

While Pn velocities indicate that both the ASE and Ellsworth Mountains may be underlain by tectonically 
stable lithospheric mantle, the ASE is characterized by lower Pn velocities (8.1 km/s) compared to the Ells-
worth Mountains (8.4 km/s). To compare the Pn velocities between the Ellsworth Mountains and ASE, they 
first must be corrected for crustal thickness. Assuming a crustal density of 2,750 kg/m3, the ∼25 km thick 
ASE crust (e.g., O'Donnell et al., 2019) correlates to a pressure of ∼675 MPa and the ∼38 km thick Ellsworth 
Mountains crust (e.g., Dunham et al., 2020) correlates to a pressure of ∼1,025 MPa. Following Barazangi 
and Ni (1982), we attribute a 0.1 km/s change in VPn to 1,000 MPa pressure variability, which implies that 
only ∼0.04 km/s of the 0.3 km/s VPn difference between the average uppermost mantle velocities beneath 
the Ellsworth Mountains and ASE can be attributed to a pressure effect. This leaves a ∼0.26 km/s difference 
in Pn velocities between the ASE and the Ellsworth Mountains to be explained by some other mechanism. 
Additionally, although azimuthal anisotropy may impact Pn velocity estimates in this study, the ∼0.26 km/s 
VPn variability in central WANT cannot be explained by anisotropy alone.

The ∼0.26 km/s VPn difference between the ASE and Ellsworth Mountains corresponds to a cumulative VPn 
anomaly of ∼3.2%, similar to the ∼4.0% upper mantle P-wave velocity variation between the ASE and Ells-
worth Mountains reported by Lucas et al. (2020). While local variations (<80 km) in geothermal heat flow 
cannot be constrained in this study, we can infer uppermost mantle thermal variability from Pn velocities 
on a regional scale. The ∼3.2% variability in VPn suggests that the Ellsworth Mountains are underlain by an 
uppermost mantle that is, at least 160 K cooler than the central ASE. This finding is consistent with Lucas 
et al. (2020), who estimated ∼145 K cooler upper mantle beneath the Ellsworth Mountains compared to 
the central ASE. Uppermost mantle thermal variability across central WANT is consistent with previous 
geothermal heat flow estimates that find higher heat flow in the ASE (e.g., Dziadek et al., 2017; Dziadek 
et al., 2019) compared to the HEW (e.g., Shen et al., 2020). Additionally, thermal variations in the uppermost 
mantle have significant implications for upper mantle viscosity, which can vary by two orders of magnitude 
with temperature variations of ±100 K in WANT (O'Donnell et al., 2017). Therefore, our Pn results suggest 
that uppermost mantle viscosity could vary significantly across the central WANT, which could affect GIA 
rebound patterns and rates within the central ASE and across central WANT (e.g., Nield et al., 2018).

Previous studies generally attribute higher upper mantle velocities beneath central WANT to lithosphere 
that has remained unmodified since the Mesozoic rifting of the WARS and lower velocities, such as those 
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found beneath PIG and portions of the Bentley Subglacial Trench, to lithosphere that has been thermally 
altered by localized Cenozoic rifting in the WARS (e.g., Lloyd et al., 2015, 2020; Lucas et al., 2020; O'Don-
nell et  al.,  2019; Shen et  al.,  2018). Although we find lower uppermost mantle velocities in the central 
ASE (∼8.1 km/s) compared to the Ellsworth Mountains (∼8.4 km/s), actively rifting lithosphere is typically 
characterized by uppermost mantle velocities that are even lower (<7.8 km/s) than those observed beneath 
the central ASE. The uppermost mantle velocities found beneath the central ASE do not necessitate the 
presence of thermally perturbed lithosphere by Cenozoic rifting and instead may simply reflect variations in 
the thickness of stable continental lithosphere. This conclusion does not preclude the presence of thermally 
perturbed sublithospheric mantle beneath the ASE and some other parts of WANT argued for by Lloyd 
et al. (2015), Shen et al. (2018), Lloyd et al. (2020), and Lucas et al. (2020).

5. Summary and Conclusions
We located 117 previously unidentified seismic events, mostly occurring between 2015 and 2017, origi-
nating from tectonic, volcano-tectonic, and glacial processes in central WANT. The events are located in 
the Ellsworth Mountains, at TG and PIG, and beneath Mount Takahe (Figures 1, 2, 7a, and 8a; supporting 
information S7; Table S3). In central WANT, tectonic seismicity may be attributed to either the underlying 
tectonic stress regime and/or to GIA-induced stress. We locate a number of events beneath Mount Takahe 
that are likely of volcano-tectonic origin (Figures 1 and 5; supporting information S7) and note an increase 
in discrete, intermediate-frequency glacial seismicity preceding and following time intervals of calving ac-
tivity at TG and PIG (Figures 1, 7, and 8; supporting information S9 and S10). We identify several geographic 
seismicity clusters within central WANT, but find the WARS to be notably devoid of seismic activity (Fig-
ure 1). This corroborates previous studies (e.g., Donnellan & Luyendyk, 2004; Lough, 2014; Winberry & 
Anandakrishnan, 2003), and further suggests that the rift system is no longer undergoing extension.

Using Pg- and Pn-wave arrivals from a number of seismic events in central WANT, we find that both the 
Ellsworth Mountains and central ASE are underlain by a relatively fast uppermost mantle (∼8.1–8.4 km/s). 
Fast uppermost mantle velocities throughout central WANT are consistent with the presence of a tectonical-
ly stable mantle lid, with the Ellsworth Mountains characterized by distinctly higher Pn velocity (8.4 km/s) 
compared to the ASE (8.1 km/s), even after crustal thickness differences are accounted for. Fast uppermost 
mantle velocities throughout central WANT do not support the presence of lithosphere that has been ther-
mally perturbed by localized Cenozoic WARS rifting, as suggested by previous studies, and may simply 
reflect variations in the thickness of stable continental lithosphere. Although our study region can be char-
acterized by a generally fast uppermost mantle, laterally variable uppermost mantle structure likely impacts 
both geothermal heat flow and mantle rheology in central WANT.

Data Availability Statement
All seismic data utilized in this study can be obtained from the IRIS Data Management Center (www.iris.
edu), and all satellite imagery can be obtained from the European Space Agency (ESA) (https://scihub.co-
pernicus.eu/) and the U.S. Geological Survey (USGS) (https://earthexplorer.usgs.gov) data centers.
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