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Abstract 
Recent advances in the face detection (FD) and recognition (FR) technology may give an impression 
that the problem of face matching is essentially solved, e.g. via deep learning models using thousands 
of samples per face for training and validation on the available benchmark data-sets. Human vision 
system seems to handle face localization and matching problem differently from the modern FR 
systems, since humans detect faces instantly even in most cluttered environments, and often require a 
single view of a face to reliably distinguish it from all others. This prompted us to take a biologically 
inspired look at building a cognitive architecture that uses artificial neural nets at the face detection 
stage and adapts a single image per person (SIPP) approach for face image matching. 
 
Keywords: face detection, face matching, artificial neural network, single image per person 

1 Introduction 
Faces play a critical role in social interactions presenting a very convenient and non-intrusive way for 
visual identification and non-verbal communication. Although recent research on macaques indicates 
that facial identity may be encoded via a simple neural code that relies on the ability of neurons to 
distinguish facial features along specific axes in face space [1], we still do not understand how humans 
detect and read faces with little visual sampling per individual, generalizing their recognition ability to 
a vast variety of lighting, poses and expressions. 

Modern face recognition (FR) systems have become quite advanced in recent years, showing near-
human abilities to recognize faces [2]–[4] on very challenging face datasets [5]–[7]. Nearly all of them 
rely on deep neural nets (DNN), whose we recently observed due to the availability of affordable 
graphics processing units (GPU) allowing to train DNNs in hours rather than days. 

DNNs originally have been inspired by biological perceptual systems [8] and have been shown to 
solve complex pattern recognition problems [9], but they appear to learn statistical patterns very 
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differently from humans, as primates typically require just a few visual samples of an object, to start 
recognizing it from various view-points, while their artificial counterparts require thousands of 
samples per object to start approaching human-level recognition accuracy.  

That prompted us to research and develop (R&D) a light weight (yet accurate) face detector and a 
single image per person (SIPP) face matcher, which is less complex than modern DNN systems, yet it 
is able to (a) use a single visual sample per subject, (b) be comparably accurate on unconstrained 
images, (c) adapt to the test visuals, and (d) run in near real-time requiring minimal computing power. 

Our method cannot claim near-human level detection or recognition accuracy, but it does use 
several biologically inspired elements and it is utilized in a real-world face image retrieval system 
[10]. As biological systems inherit and then build up their perceptual abilities from the sensory 
experience, we proceed by R&D of a data-driven perceptual modules modeling inheritance (via coded 
algorithms) and experience (via statistical models). 

2 Face localization in unconstrained images 
Any real world face recognition system requires a reliable face localization (detection) stage that needs 
to be accurate and quick at the same time. Finding faces in unconstrained images presents many 
challenges to FR systems due to large variations of intrinsic (head pose, face expression, makeup, 
jewelry, etc.) as well as extrinsic (lighting, occlusions, blur, defocus, etc.) face image formation 
factors. To remedy these variations, we proceed by augmenting a baseline color-blind rotation-
sensitive detector [11] by taking into account skin color, facial landmarks and face geometry. 

2.1 Skin color mapping 
 

   
(a) (b) (c) 

Figure 1: (a) skin vs. (b) non-skin tone distribution and (c) resulting skin likelihood given color in RGB axes 

We approach the problem of skin mapping by determining a real-valued skin likelihood map over any 
given image with a pixel-wise mapping function s : C → [0,1], where C is some color space and the 
skin likelihood values are real numbers in the range [0,1]. Researchers studied various color spaces 
[12], but for simplicity we start with RGB and use other spaces, as needed. 

We compute skin and non-skin color histograms shown in Figure 1 using skin labeled data [10], 
[13]: (a) skin color forming a near-normal cluster in RGB, (b) non-skin color grouped around the gray-
scale diagonal, and (c) conditional probability of skin (given color). The axes correspond to the color 
components that are quantized into 16 bins each. Each sphere has its bin's color with its size reflecting 
the bin's likelihood. Note that there is not much overlap between the skin and non-skin clouds, thus 
one can build a robust skin color classifier. 

Bayesian skin mapper is based on conditional probability estimate from the source skin and non-
skin pixels: P(s|c) = P(c|s)p(s) / (P(c|s)P(s)+P(c|n)P(n)), where P(s|c) is the probability of skin given 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.01.017&domain=pdf
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factors. To remedy these variations, we proceed by augmenting a baseline color-blind rotation-
sensitive detector [11] by taking into account skin color, facial landmarks and face geometry. 

2.1 Skin color mapping 
 

   
(a) (b) (c) 

Figure 1: (a) skin vs. (b) non-skin tone distribution and (c) resulting skin likelihood given color in RGB axes 

We approach the problem of skin mapping by determining a real-valued skin likelihood map over any 
given image with a pixel-wise mapping function s : C → [0,1], where C is some color space and the 
skin likelihood values are real numbers in the range [0,1]. Researchers studied various color spaces 
[12], but for simplicity we start with RGB and use other spaces, as needed. 

We compute skin and non-skin color histograms shown in Figure 1 using skin labeled data [10], 
[13]: (a) skin color forming a near-normal cluster in RGB, (b) non-skin color grouped around the gray-
scale diagonal, and (c) conditional probability of skin (given color). The axes correspond to the color 
components that are quantized into 16 bins each. Each sphere has its bin's color with its size reflecting 
the bin's likelihood. Note that there is not much overlap between the skin and non-skin clouds, thus 
one can build a robust skin color classifier. 

Bayesian skin mapper is based on conditional probability estimate from the source skin and non-
skin pixels: P(s|c) = P(c|s)p(s) / (P(c|s)P(s)+P(c|n)P(n)), where P(s|c) is the probability of skin given 
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color in (c), with P(c|s) and P(c|n) given by normalized histograms (a) and (b), P(s)=|skin|/|all|, and 
P(n)=1-P(s) with s = skin, and n = non-skin. The optimal threshold for skin/non-skin classification is 
½, which is confirmed by our experiments. The method is simple and fast, as the skin mapping 
problem is reduced to a table look-up. It is data-driven, assumes no predefined distribution for the 
colors and can easily be conditioned by more data samples at any time. However, this approach may 
require a substantial amount of labeled data to build a general histogram for unconstrained images. 

Artificial neural network (ANN) classifier is a fully connected multi-layer perceptron (MLP) that 
models the skin likelihood in Extended Color Space (ECS), e.g. concatenating [RGB, HSV, YCbCr], 
which experimentally was determined to be optimal for the task. The size of the hidden layer was set 
experimentally to 15. Its training involves the error back-propagation learning strategy, which 
converges to a certain accuracy optimum, having learning rate α = 0.02 and momentum β = 0.08. Its 
generalization power to modeling of the unknown skin tone distribution is higher compared to the 
histogram based approach, however it requires a much longer training time. 

Several metrics from information retrieval were considered: 
Precision = TP / (TP+FP), Recall = TP / (TN+FN),  
Fscore = 2×Precision×Recal / (Precision + Recall), Accuracy = (TP+TN) / (TP+TN+FP+FN) 

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative. 
 

skin tone mapper recall precision F-score accuracy 
HIST [RGB] 0.93 0.92 0.93 0.86 
HIST [HSV] 0.94 0.93 0.93 0.88 
HIST [Lab] 0.89 0.94 0.92 0.84 
ANN [RGB,HSV,YCbCr] 0.94 0.90 0.92 0.91 

Table 1: skin mapper Bayesian (HIST) and artificial neural net (ANN) accuracy results in various color spaces 

As shown in Table 1, both Bayesian (HIST) and the artificial neural net (ANN) based skin detectors 
performed comparably well with respect to recall, precision and F-score, but ANN-based mapper 
showed a greater accuracy, hence claiming a greater generalization power. 

2.2 Facial landmark detection 

     
(a) (b) (c) (d) (e) 

Figure 2: (a) incorrect baseline, (b) skin map, (c) CNN heat-map, (d) landmarks, and (e) corrected detection 

Facial landmarks detection is another important component of face localization. We employ the 
convolutional neural net (CNN)  approach [14] and complement it with our own landmark verification 
stage based on encoder-decoder ANN. The color landmark mapping algorithm handles unconstrained 
images mapping eyes, nose and mouth blobs based on the features it learned from a collection of 
standard data-sets [15], [16]. The landmarks are derived from the heat maps by their major peaks 
through non-maxima suppression and adaptive threshold.  Figure 2 shows that (a) our baseline 
detector mistakes nose for a mouth, then (b) our robust skin mapper narrows down the detection area, 

 

 

(c) our CNN heat maps correctly overlay the landmarks, (d) landmarks are correctly localized, and (e) 
shows the corrected output. In all sub-figures we use red for mouth, green for nose, blue for eyes. 

 
Figure 3: encoder/decoder artificial neural network assembly for landmarks verification 

Our ANN-based landmark detector has a two sub-stages. The first network automatically extracts the 
significant features from an image patch, and the second network classifies the encoded feature vector 
into landmark/non-landmark, as shown in Figure 3. The advantages of this approach are: i) instead of 
guessing on statistical or structural features of an image patch, we use a basic encoder network [17] to 
learn the prominent features automatically by minimizing the image decoding error; ii) data 
dimensionality is considerably reduced; and iii) a complex decision mechanism based on statistical 
learning solves the landmarks verification problem for the source image region. 

2.3 Robust face detection 
The proposed face detection module is an ensemble of three agents working together: gray-scale face 
detector[11] complimented by the described color-aware skin mapper and the landmark detector. 
 

method recall precision F-score 
Viola-Jones 0.67 0.88 0.76 
Android 0.48 0.91 0.63 
Luxand FaceSDK 0.74 0.87 0.81 
FaceFinder (ours) 0.80 0.85 0.82 
Table 2: face detection accuracy of different systems on FDDB benchmark 

Our skin mapping module (run in parallel with the base Viola-Jones detector) helps diminish the non-
skin regions reducing false alarms, while enhancing the large skin blobs thereby recovering missing 
face candidates. The color enhanced large skin blobs are then run through the color-based landmark 
detector, which helps identify them as face candidates that can be rectified by their eye lines and re-
inspected by another instance the base face localizer for new possible faces not found originally by the 
gray-scale face detector. As Table 2 reveals, our FaceFinder’s accuracy is on par with or better than 
the leading commercial and open-source face detectors we tested. 
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color in (c), with P(c|s) and P(c|n) given by normalized histograms (a) and (b), P(s)=|skin|/|all|, and 
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skin tone mapper recall precision F-score accuracy 
HIST [RGB] 0.93 0.92 0.93 0.86 
HIST [HSV] 0.94 0.93 0.93 0.88 
HIST [Lab] 0.89 0.94 0.92 0.84 
ANN [RGB,HSV,YCbCr] 0.94 0.90 0.92 0.91 

Table 1: skin mapper Bayesian (HIST) and artificial neural net (ANN) accuracy results in various color spaces 

As shown in Table 1, both Bayesian (HIST) and the artificial neural net (ANN) based skin detectors 
performed comparably well with respect to recall, precision and F-score, but ANN-based mapper 
showed a greater accuracy, hence claiming a greater generalization power. 

2.2 Facial landmark detection 

     
(a) (b) (c) (d) (e) 

Figure 2: (a) incorrect baseline, (b) skin map, (c) CNN heat-map, (d) landmarks, and (e) corrected detection 

Facial landmarks detection is another important component of face localization. We employ the 
convolutional neural net (CNN)  approach [14] and complement it with our own landmark verification 
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detector mistakes nose for a mouth, then (b) our robust skin mapper narrows down the detection area, 

 

 

(c) our CNN heat maps correctly overlay the landmarks, (d) landmarks are correctly localized, and (e) 
shows the corrected output. In all sub-figures we use red for mouth, green for nose, blue for eyes. 

 
Figure 3: encoder/decoder artificial neural network assembly for landmarks verification 

Our ANN-based landmark detector has a two sub-stages. The first network automatically extracts the 
significant features from an image patch, and the second network classifies the encoded feature vector 
into landmark/non-landmark, as shown in Figure 3. The advantages of this approach are: i) instead of 
guessing on statistical or structural features of an image patch, we use a basic encoder network [17] to 
learn the prominent features automatically by minimizing the image decoding error; ii) data 
dimensionality is considerably reduced; and iii) a complex decision mechanism based on statistical 
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method recall precision F-score 
Viola-Jones 0.67 0.88 0.76 
Android 0.48 0.91 0.63 
Luxand FaceSDK 0.74 0.87 0.81 
FaceFinder (ours) 0.80 0.85 0.82 
Table 2: face detection accuracy of different systems on FDDB benchmark 

Our skin mapping module (run in parallel with the base Viola-Jones detector) helps diminish the non-
skin regions reducing false alarms, while enhancing the large skin blobs thereby recovering missing 
face candidates. The color enhanced large skin blobs are then run through the color-based landmark 
detector, which helps identify them as face candidates that can be rectified by their eye lines and re-
inspected by another instance the base face localizer for new possible faces not found originally by the 
gray-scale face detector. As Table 2 reveals, our FaceFinder’s accuracy is on par with or better than 
the leading commercial and open-source face detectors we tested. 
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3 Single image per person (SIPP) face matching 
Inspired by the human ability to match faces by a single visual sample, our SIPP approach disallows 
multiple samples per person, and uses a combination of key-spot [18]–[20] along with the holistic 
[21], [22] descriptors to ensure the overall face matching accuracy, emphasizing each descriptor's 
strengths, weighting them according to their individual accuracy on the available benchmark data-sets 
[15], [23], [24], and combining their distance functions in a generalized geometric mean [10]. 
 
dataset CalTech [23] ColorFERET [15] IndianFacesDB [24] 
top-n FaceSDK FaceMatch FaceSDK FaceMatch FaceSDK FaceMatch 

1 0.98 0.98 0.74 0.88 0.69 0.79 
3 0.99 0.98 0.75 0.89 0.73 0.85 
5 0.99 0.99 0.76 0.90 0.76 0.87 

Table 3: Luxand FaceSDK vs. our FaceMatch hit rate accuracy in top-n queries on standard benchmark datasets 

On the relatively easy CalTech faces set, accuracy figures of both contenders are high. On the more 
challenging NIST ColorFERET benchmark, FaceSDK clearly yields to FaceMatch. The accuracy on 
even more challenging IndianFacesDB dataset is noticeably lower for both competitors probably due 
to some extreme head pose variations, but FaceMatch still outperforms FaceSDK. 

4 Conclusion 
Face is arguably the most important object to human visual system to handle, hence our amazing 
abilities to detect and recognize them often from a single sight. Inspired by this (often taken for 
granted) visual functionality typical of many primates, we proposed a computational approach to face 
localization and matching that uses existing well performing components (as hard-wired abilities) 
optimizing them for the given data (emulating real-world experience), and keeping them open for 
change as needed (thus emulating adaptation). 

Our face detection method relies on pre-trained baseline grayscale algorithm that is improved by 
our color-aware skin tone and landmark detection modules that are invariant to affine transformations. 
Some of them do require training, which sometimes can be done on-line, e.g. for conditional 
histograms. Our biologically inspired ANN-based classifiers are intuitive and computationally light, 
performing in near-real time. Our SIPP approach in FaceMatch allowed us to avoid expensive data 
labeling and training, yet we attain the accuracy and speed on dynamically changing web-scale 
datasets that is on par with or better than the existing commercial systems. 

Our future R&D may involve building more modules with on-line learning capabilities including 
human in the loop. We plan to experiment with mobile devices (autonomously moving, wearable or 
hand-held) that allow gaining real-world experience and communication with humans on the go. 
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