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ABSTRACT

Alzheimer’s disease (AD) is characterized by the deposition of Beta-Amyloid 

(AP) peptide plaques in the brain. Ap peptides are generated by the sequential cleavage 

of the Amyloid Precursor Protein (APP). The AP42 cleavage product is the most 

neurotoxic form. Previous studies in our lab have uncovered a novel rapid lysosomal 

APP trafficking pathway that bypasses the early and late endosomal compartments. We 

set out to characterize this transport pathway using APP constructs with an N-terminal 

HA-tag, allowing us to label APP at the cell surface with a fluorescently labeled 

antibody. SN56 cells and mouse cortical neurons were also co-transfected with 

fluorescently-tagged compartment marker proteins and a panel of endocytosis regulatory 

proteins bearing dominant negative and constitutively activating mutations. Rapid APP 

internalization to lysosomes is stimulated by antibody binding and is increased when 

Arfl activity was inhibited, but decreased when Arfó activity was inhibited. In addition, 

disruption of either Arfó or Arfl was able to significantly reduce Ap42 secretion into the 

media. Our findings suggest that rapid APP transport to lysosomes is regulated by Arfó 

and is an important, and potentially targetable, mechanism that regulates A(342 

production, while Arfl regulates secretion of Ap42 into the media.

Keywords: Alzheimer’s disease, APP, Ap42, Ap40, Arfó, Arfl, macropinocytosis, 

lysosomes, intracellular trafficking
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CHAPTER 1: INTRODUCTION

1.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is 

characterized by the deposition of senile beta-amyloid (AP) plaques in the brain. It 

affects 10% of the population over the age of 65 and roughly 50% of the population over 

85 (Herbert 1995). Currently, it is estimated that nearly 500,000 Canadians suffer from 

AD and that this number will drastically rise to more than 1 million by 2038 (Smetanin 

2009). However, what is most concerning to our society and health care system is the 

increasing cost of caring for patients with AD in the future. The Alzheimer’s Society of 

Canada projects that the current cost of care, estimated at $15 billion per year, will 

sharply rise to $158 billion by 2038 (Smetanin 2009).

AP peptides are produced from the sequential cleavage of the amyloid precursor 

protein (APP). The first cleavage is at a P site by p-secretase (BACE1) within the 

extracellular domain to release the large APP extracellular domain (Figure 1). This 

leaves behind the 10 kDa C99 carboxyl terminal stub. Alternatively, APP can be 

processed through the non-amyloidogenic pathway where it is cleaved within its AP 

domain by a-secretase, thereby preventing AP production by shortening the resultant Ap 

peptide (Strooper 2000, Esch 1990). The C-terminal stub is then cleaved at a variable y- 

cleavage site within the transmembrane domain by the presenilin component of the y- 

secretase complex (Thinakaran 2008), releasing the 38-43 amino acid Ap peptide and the 

APP intracellular domain (AICD). This final cleavage step is important because it
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Figure 1. APP cleavage events to yield Afi. Amyloid domain of APP is highlighted in 
red. BACE, the functional component of P-secretase, cleaves APP at the P-cleavage site 
(blue triangle) in the extracellular domain. The remaining C99 C-terminal is then cleaved 
by the Presenilin component of y-secretase at the y-cleavage site (green triangle) to 
release the AP peptide from the remaining C-terminal stub. Due to the variable nature of 
y-cleavage, the AP peptide can range between 38-43 amino acids in size. The 42 amino 
acid form (AP42) is the most neurotoxic.



3

regulates the total amount of A|3 produced as well as the relative amount of toxic A(342 to 

other Ap species. Nearly 90% of all processed Ap is secreted as the 40-amino acid form 

(AP40), whereas the 42-amino acid form (AP42) comprises less than 10%.

The leading model of AD is referred to as the Amyloid Cascade Hypothesis 

(Hardy and Selkoe 2002) and suggests a strong relationship between the initiation and 

progression of AD to the APP and Ap proteins. Simply put, this model states that AD 

pathology first begins with events that result in a significant increase in Ap42/Ap40 ratio. 

Imbalances between Ap production and clearance leading to this rise can occur through 

either the inheritance of Familial AD (FAD) mutations in APP or presenilin (PS1 or 

PS2), which can cause an increase in Ap42 production, or through a gradual failure in AP 

clearance mechanisms (Hardy and Selkoe 2002). Despite their linkage to devastating 

early onset AD, FAD mutations represent less than 1% of all AD cases. Factors that 

enhance the release of Ap monomers increase the likelihood that soluble AP oligomers 

will assemble (Walsh 2007). These soluble oligomers initially have subtle effects on 

neuronal synapses. Eventually long term potentiation becomes impaired, causing 

synapse remodeling and ultimately, synapse loss. Neuronal homeostasis mechanisms 

then become severely altered, culminating in cell death and the onset of irreversible 

dementia (Hardy and Selkoe 2002).

1.2 Amyloid Precursor Protein (APP)

APP is a member of a small gene family which also includes APLP1 (amyloid 

precursor-like protein) and APLP2 in humans. It is a type I membrane protein with a



4

large extracellular domain and a relatively short cytoplasmic domain. The APP gene in 

humans is located on chromosome 21 (Hardy and Selkoe 2002). Multiple isoforms of 

APP arise through alternative splicing of its 19 exons, with different isoforms of different 

sizes being expressed in specific tissues. The most common isoforms are APP695, the 

neuronal form, and APP770 and APP751, which are both expressed ubiquitously. APP is 

the only member of the APP-related genes to contain an Ap domain.

1.2.1 Physiological Functions of APP

Several physiological processes have been attributed to APP, but its actual role in 

mammalian physiology remains largely unknown. In a study by Saito et al (1989), 

fibroblasts that were depleted of APP showed signs of growth retardation. However, this 

effect was restored with the application of exogenous APP molecules. A later study 

identified that the active RERMS pentapeptide domain in the APP extracellular region 

was responsible for linking APP to fibroblast growth (Ninomiya 1993). The apparent 

autocrine and paracrine functions of APP’s extracellular domain in regulating cellular 

growth were also shown to be present in neurons as well, where infusion of either the 

RERMS domain or exogenous APP molecules was able to improve the memory retention 

and synaptic density in animals (Meziane 1998, Roch 1994). Studies have also strongly 

suggested that APP functions to induce neuronal maturation and neurite outgrowth (Hung 

1992) as well as helping to regulate the differentiation of neuronal stem cells into the 

astrocytic lineage (Kwak 2006).
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The AICD has been shown to function similarly to the intracellular domain of 

Notch (NICD), a protein crucial to developmental processes due to its role in controlling 

cell fate decisions. Both APP and Notch are known substrates of y-secretase, and 

therefore, can undergo y-cleavage (Kimberley 2001). Due to the striking similarities of 

their cleavage paths, it is suggested that APP may also function as a receptor, as is the 

case with Notch. In fact, AICD is stabilized by the binding of the adaptor protein Fe65 in 

a manner similar to the association of NICD to CSL (CBF1, Suppressor of Hairless and 

Lag-1). Once associated to one another, the AICD-Fe65 complex translocates into the 

nucleus, where it is believed to affect gene transcription in the same way that the NICD- 

CSL complex does. Interestingly, it was reported that while in the nucleus, AICD can 

regulate the transcription of APP (von Rotz 2004). Additionally, it has been reported that 

AICD is involved in the regulation of a number of cellular processes, such as calcium and 

ATP levels within a cell (Hamid 2007).

1.2.2 Intracellular APP trafficking

Intracellular APP trafficking is crucial to the regulation of its processing into A(3. 

APP transits first from the endoplasmic reticulum (ER), where it is synthesized, to the 

Golgi apparatus, where it is post-translationally modified (Figure 2). These include 

tyrosine sulfonation, N- and O-glycosylations, as well as ectodomain and cytoplasmic 

phosphorylation (Thinakaran 2008). Following modification, mature APP is presented at 

the cell surface where it is quickly endocytosed to the early endosome as a result of its 

YENPTY internalization motif near the C-terminus (Thinakaran 2008). This domain 

serves as a binding site for multiple cytosolic adaptors that contain a phosphotyrosine-
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binding domain, such as Fe65, Mintl-3, JNK and Dabl, which allow APP to transduce 

signals in the nucleus or throughout the cytoplasm (Hill 2003, Pietrzik 2004). It is 

believed that the internalization of APP into the enclosed compartments of the 

endosomal/lysosomal system allows it to interact with the secretase complexes that are 

responsible for its processing into Ap (Haass 1992, Koo 1994, Yamazaki 1996).

1.2.3 APP mutations and Alzheimer’s disease

Thus far, more than 32 mutations in APP have been identified that have been 

directly linked to no less than 89 familial cases of AD 

(http://www.molgen.ua.ac.be/ADMutations). Some of these mutations, such as the 

Swedish mutation located near the P-cleavage site, can significantly increase the amount 

of Ap produced by increasing the rate of P-cleavage by up to 10-fold (Mullan 1992). 

Other mutations located around the y-cleavage site (ie. the London mutation) cause a 

preferential increase in y-cleavage, thereby increasing the production of AP42 relative to 

Ap40 (Eckman 1997). However, even simply increasing the expression of APP, resulting 

from duplication of the APP gene, has been linked to early onset AD due to the resulting 

increase in Ap42 production. This has been demonstrated in Down’s syndrome patients 

who routinely develop AD symptoms and pathology in their 40’s, due to gene duplication 

of chromosome 21 (Walsh 2007). Some families with AD have also shown to only have 

duplication of the APP gene and not the entire chromosome, further supporting the role 

of APP in AD pathology.

http://www.molgen.ua.ac.be/ADMutations
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Figure 2. Known APP trafficking pathways. APP is first synthesized in the endoplasmic 
reticulum (ER), after which it is trafficked to the Golgi apparatus for post-translational 
modification and maturation. APP is then presented at the cell surface before being 
reintemalized to the early endosome. It was believed that APP was processed into A0 in 
the early endosome before being excreted to the extracellular space. Remaining cleavage 
APP fragments would then be transported to the lysosome for further degradation. 
Recent studies suggest that APP processing could potentially be occurring in lysosomes. 
We have uncovered a novel trafficking pathway that bypasses early and late endosomes 
and traffics APP directly to the lysosome from the cell surface (red arrow).
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1.3 Beta-Amyloid (AP)

1.3.1 Physiological Functions of Ap

AP is a 4 kDa peptide that is released following the y-cleavage of APP. Ap was 

initially thought to be an abnormal processing product restricted to the brain tissue of 

aging or demented patients. However, studies showed that Ap is normally present in the 

serum, CSF and bodily fluids of various species (Seubert 1992) and that it is normally 

secreted, albeit at significantly lower concentrations, into the conditioning media of 

cultured cells (Haass 1992). This prompted researchers to explore what other 

physiological roles Ap might have in healthy individuals. Studies have shown that low 

levels of Ap can increase hippocampal long-term potentiation, thus enhancing memory 

(Puzzo 2008). In addition, picomolar concentrations of Ap were found to rescue 

neuronal cell death induced by the pharmacological inhibition of both P- and y-secretases 

(Plant 2003). Despite these apparent benefits, studies also show that increases in the 

relative levels of Ap42 enhance its ability to self-associate into neurotoxic soluble 

oligomers. Studies in animal models demonstrated that the presence of soluble AP 

oligomers decreases the number of synapses, thereby impairing learning performance 

(Shankar 2008, Cleary 2005). These oligomers have also been shown to bind directly to 

synapses containing NMDA receptors, effectively destroying the ability of the synapse to 

transduce signals to neighbouring neurons (Lacor 2007, Shankar 2007). Additionally, it 

has been suggested that Ap can impair long term potentiation due to its ability to bind 

with prion protein (PrP) (Lauren 2009, Gimbel 2010). Despite these conflicting reports
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on the apparent benefits and neurotoxicities associated with Ap, we still do not fully 

understand the purpose of Ap or its primary roles in mammalian physiology.

1.3.2 Ap and its link to Alzheimer’s disease

In accordance with the Amyloid Cascade Hypothesis, there are several lines of 

evidence that support the hypothesis that Ap is responsible for the onset of AD. First was 

the localization of the APP gene to chromosome 21, where researchers saw that patients 

with Down syndrome present AD-like neuropathology (Ellis 1974). Increased APP 

expression increases the prevalence of Ap in the body, thereby linking Ap to the AD-like 

behaviour of Down’s syndrome patients. Second, exposure of synthetic Ap peptides to 

hippocampal and cortical neurons demonstrated marked neurotoxicity (Pike 1991, 

Busciglio 1992, Lambert 1998, Hartley 1999). Third, mutations in the regions 

immediately flanking or directly within the Ap domain of APP can affect Ap production 

and/or aggregation and can lead to early onset AD (Levy 1990, Goate 1991). Fourth, 

early onset AD has also been shown to develop as a result of mutations in PS1/PS2, 

which increase the ratio of AP42/AP40 (Kumar-Singh 2006, Bentahir 2006). Finally, 

transgenic mice with human APP and PS mutations show significant increases in 

extracellular Ap and develop neuropathology and behaviour similar to AD patients 

(Hsiao 1998, Ashe 2005).

Ap has been widely considered to be central to the initiation of AD (Hardy and 

Selkoe 2002). It is the primary component of amyloid oligomers (Gamblin 2003, Mark 

1997) as well as the primary component of insoluble fibrils that deposit in plaques in the
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brain. Due to the variable nature of y-cleavage, Ap species can range from 38-43 amino 

acids in length. Of these species, A042 has been shown to be the most neurotoxic due to 

its ability to aggregate into oligomers (Kim 2005). Consequently, the majority of 

Familial AD mutations often result in preferential processing of APP into A(342 over 

other A(3 species (Cai 1993, Citron 1992, Haass 1994, Wolfe 2007). This would cause a 

shift in the AP42/AP40 ratio, with an increase in relative Ap42 concentrations having 

been suggested to play a role in the initiation of AD (Selkoe 2007). Studies have shown 

that mice that overproduce AP42, but not AP40, develop dense plaques of insoluble AP 

that are the hallmarks of AD (McGowan 2005). As mentioned previously, AD-causing 

mutations can either affect APP directly, such as the case in London and Swedish 

mutations, or its processing machinery, such as mutations in the presenilin component of 

y-secretase. Mutations in presenilin cause a preferential increase to the ratio of Ap42 

production to Ap40 and make up the largest known group of FAD mutations, with 177 

and 14 mutations described in PS1 and PS2 respectively 

(http://www.molgen.ua.ac.be/ADMutations). Taken together, these findings strongly 

suggest a link between AP and the onset of AD.

1.4 Endosomal-Lysosomal System

1.4.1 Endosomes

Many studies point towards a link between the trafficking of APP to the 

endosomal-lysosomal system and the production of Ap. This section will provide an 

overview of the two main components of this system, endosomes and lysosomes, as well

http://www.molgen.ua.ac.be/ADMutations
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as a discussion of their roles in the Amyloid Hypothesis. Endosomes are intracellular 

membrane-bound compartments where endocytosed and recycled materials are contained 

prior to entering the lysosomes. Endosomes play a key role in the sorting and subsequent 

trafficking of endocytosed materials. The two major classes of endosomes are the early 

and late endosomes. Endosomal activity and trafficking is highly regulated by the Rab 

membrane proteins, with specific Rabs appearing on specialized compartments. 

Classically, early endosomes were described to have membranes enriched with Rab5, 

whereas late endosomal membranes are enriched with Rabs 7 and 9. More recently, an 

electron microscope study by Mari et al (2007) was able to improve the resolution 

between the two major classes by combining morphological, kinetic and molecular 

criteria. They define early endosomes as compartments being accessible to internalized 

transferrin (Tf), whereas late endosomes are endocytic compartments with relatively 

insignificant amounts of Tf (Mari 2007).

The sorting function of endosomes was first described by Geuze et al in 1983, 

where gold particles of two different sizes were used to follow the internalization of a 

ligand, asialoglycoprotein (ASGP), and its receptor (ASGP-R). Once endocytosed, 

ASGP dissociates from its receptor is targeted to the lysosomes, whereas its receptor is 

quickly recycled back to the plasma membrane. Their novel immunogold labeling 

protocol demonstrated that after endocytosis, there is an essential protein sorting event 

that occurs. They called these compartments where the ligand was dissociated from its 

receptor the ‘compartment of uncoupling receptor and ligand’, or CURL. Through 

subsequent studies it was realized that the CURL was actually the early endosomes.
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Studies have shown that in receptor-mediated endocytosis, internalized ligands dissociate 

from their respective receptors due to the moderately acidic pH of the early endosome 

lumen (~6.3-6.8) (Jovic 2010). Some proteins, such as low density lipoprotein and 

ASGP, are targeted to late endosomes/lysosomes for degradation while their receptors are 

recycled back to the cell surface (Dautry-Varsat 1983). Following sorting, endocytosed 

proteins are either recycled back to the plasma membrane through attached tubular 

extensions of the early endosome, or are targeted to the late endosome/lysosomal stages 

through vesicular compartments for additional processing or degradation (Geuze 1983, 

Mellman 1996).

Several studies have suggested a link between APP trafficking to early endosomes 

and the development of AD (Cossec 2010, Sapirstein 1994, Ferreira 1993). Since APP 

has been known to be rapidly endocytosed after being trafficked to the plasma membrane, 

researchers suggested that early endosomes, being the first compartment where 

internalized proteins are known to accumulate and to be sorted, were the key site of Ap 

production (Vetrivel 2006, Selkoe 1996, Perez 1999). Additionally, the localization of 

BACE and presenilin to endocytic compartments further support the idea that endosomes 

could provide an appropriate environment for APP cleavage into Ap (Walter 2001, Wang 

2004). Finally, the secretion of Ap cleavage fragments into the extracellular space 

suggested that Ap was being produced at the plasma membrane or within compartments 

that are known to be in communication with the extracellular space, such as endosomes 

(Vitrivel 2006, Strooper 2000, Koo 1994).
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1.4.2 Lysosomes

Lysosomes were first described when the labs of Christian de Duve and Albert 

Claude conducted studies to observe the action of insulin on the liver by measuring acid 

phosphatase activity (de Duve 1955). They observed that fractions obtained through 

gentle extraction protocols showed very little acid phosphatase activity when compared 

to fractions obtained through crude extraction protocols or in samples from fractions that 

had been stored a few days prior to assaying. They conducted similar enzyme activity 

assays on four other hydrolytic enzymes with acidic pH optimum. This led them to 

conclude these acidic proteases were housed within a separate, low pH compartment that 

was encased by a membrane. From these findings, de Duve et al (1955) first introduced 

the term ‘lysosome’ to describe this newly discovered digestive body.

Further evidence surfaced when Straus et al (1954) described intracellular 

compartments in the cells of the proximal tubules of kidneys that contained both 

reabsorbed material and acid phosphatase activity. These findings were the first 

described link between the digestive function of lysosomes and the endocytic uptake of 

extracellular materials. From here was bom the classical concept of lysosomes being a 

membrane-bound compartment where the endocytosed materials are digested by enzymes 

in a highly acidic environment.

In addition to receiving extracellular material from endocytosis, lysosomes also 

receive intracellular material through autophagy (Dunn 1990). By regulating the 

degradation of a myriad of proteins, lysosomes play a critical role in cellular homeostasis.
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Furthermore, different classes of cells can utilize lysosomes as secretory vesicles, which 

include the release of blood clotting agents, skin pigmentation or pulmonary surfactant 

(Jaiswal 2002, Stinchcombe 1999, Andrews 2000). The ruffled border of osteoclast cells 

responsible for bone resorption is a key docking site for lysosomes whereby enzymes 

involved in digesting bone matrix are secreted to the cell’s exterior (Toyomura 2003). In 

addition, lysosomes are the major component responsible in repairing physical damage to 

the plasma membrane by fusing the lysosomal membrane with the cell surface (Reddy 

2001). Because of their importance and roles in a number of cellular mechanisms, 

defects in lysosomal function have become increasingly implicated in a number of human 

diseases, including AD (Li 2008, LeBlanc 1999, Haass 1992, Nixon 2005). It has now 

been suggested that AD shares similarities with other lysosomal storage diseases, with 

lysosomal dysfunction being the root cause of its progression (Nixon 2007).

1.4.3 Lysosomes, Ap and Alzheimer’s Disease

Emerging evidence from the past 20 years suggests that the lysosome may play an 

important role in AP production and aggregation (LeBlanc 1999, Pasternak 2004, Haass 

1992, Nixon 2005). Studies have shown that AP production is significantly reduced 

when endosomes and lysosomes are de-acidified or when endocytosis is disrupted 

(Ehehalt 2003, Koo 1994, Knops 1995, Schrader-Fischer 1996). It has been suggested 

that the four components of the APP-processing y-secretase complex (presenilin, Aphl, 

Nicastrin, and Pen-2) work optimally at low pH and are highly enriched in lysosomal 

fractions (Pasternak 2003).
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Another line of evidences which suggest a principal role of lysosomes in the 

pathology of AD paints them as the key site in the nucléation of Ap fibrils commonly 

found in plaques. The combination of the lysosomal pH of 4.5, as well as the presence of 

lysosomal gangliosides (Su 2001, Yanagisawa 1995, McLaurin 1996, Soreghan 1994), 

comprised of carbohydrates of complex lipids, has been shown to mediate fibril 

nucléation (Glabe 2001, Yang 1999). Additionally, it was shown that the formation of 

Ap fibrils can disrupt lipid membranes (McLaurin 199, Yip 2001) and that the 

culmination of such events can lead to destruction of neuronal synapses as well as 

lysosomal rupture (Takahashi 2002, Ji 2002), resulting in cell death (Yang 1998). Taken 

together, these findings suggest that lysosomes may play a principal role in Ap 

production and regulation by providing the optimal working environment for APP’s 

processing complexes.

Although these APP cleavage events have been extensively studied for more than 

25 years, the subcellular compartments responsible for Ap generation remain contentious. 

This presents a significant roadblock to the development of effective AD treatments. By 

understanding how APP is endocytosed and trafficked throughout the cell, we can begin 

to have a better understanding of how APP is processed and what additional functions it 

may have in mammalian physiology. It may be the case that by targeting the proteins 

which control the endocytosis of APP to these possible sites of Ap production and fibril 

nucléation, we may pave the road to the development of novel therapeutic strategies 

against AD.
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There are a multitude of pathways with which cells can internalize cargo. 

Additionally, each cell type is capable of employing a unique combination of endocytosis 

mechanisms that best suits their physiological roles. Endocytosis pathways are regulated 

by signaling and motor proteins, which are often used to describe them. However, due to 

the nature of these proteins participating in more than one signaling mechanism, it is 

difficult to neatly classify the many pathways of endocytosis into distinct categories. The 

broadest distinction that can be made regarding different modes of endocytosis is the 

volume of material being internalized. Macroscale endocytosis refers to the 

internalization of material greater than 200 nm in diameter, whereas the mechanism 

whereby materials being internalized on a scale smaller than 200 nm is termed microscale 

endocytosis (Kumari 2010). Microscale endocytic pathways can be classified based upon 

the relative size and shapes of their endocytosing compartments, as well as their 

dependency on specific coating proteins, such as clathrin, and vesicular scission motor 

proteins, such as dynamin. See Figure 3 for a diagram summarizing different 

mechanisms of endocytosis based on their associated protein regulators.

1.5.1 Microscale Endocytosis

1.5.1.1 Coat proteins: Clathrin and Caveolin

Perhaps the best understood mechanism of coat-protein mediated endocytosis is 

the clathrin-mediated pathway. Clathrin was initially discovered in a study whereby yolk 

proteins were being taken up by mosquito oocytes (Pearse 1976, Roth 1964). Clathrin is

1.5 Endocytosis
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Figure 3. Mechanisms o f endocytosis. Different mechanisms of endocytosis organized 
according to their dependence on key regulatory proteins. These mechanisms are broadly 
classified upon their dependence on the coating protein clathrin and the scission-directing 
GTPase dynamin. Highlighted in red under each major mechanism of clathrin- 
independent endocytosis are their associated regulatory GTPases and kinases.
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capable of coating vesicles between 100-200 nm in diameter. Clathrin functionally 

assembles into a trimer of heterodimers that proceeds to form a lattice-like structure 

around invaginating vesicles (Kirchhausen 2000). Adaptor proteins link specific cargo to 

the clathrin coat, thus mediating their uptake. Approximately 150 cargo proteins have 

been directly linked to clathrin-mediated endocytosis (Kumari 2010). It was once 

believed that clathrin-mediated endocytosis was a cargo-induced process. However, it is 

now known that clathrin-coated vesicles assemble spontaneously at the plasma membrane 

and become stabilized with the binding of cargo proteins. Following cargo protein 

recruitment into clathrin-coated pits, the dimpled deformation is then pinched off from 

the cell surface into vesicles by a large GTPase protein called dynamin (Praefcke 2004). 

Dynamin is a scission regulating motor protein that is also involved in a large number of 

other endocytic mechanisms. Immediately following scission from the plasma 

membrane, vesicles containing internalized proteins fuse into early endosomes, where 

cargo can either be recycled back to the cell surface via Rab4 or Rab 11-regulated 

recycling endosomes or be sorted and trafficked to late endosomes and finally to 

lysosomes by Rab9 and LAMP1 respectively (Doherty 2009). Internalization of proteins 

to early endosomes usually occurs within 10 minutes, whereas transport of internalized 

proteins to late endosomes generally occurs after 30 minutes. Proteins finally reach the 

lysosomes around 45 to 60 minutes, where they become degraded by proteases.

Another major coat protein-mediated pathway involves the protein caveolin, 

which are integral in the formation and coating of membrane invaginations called 

caveolae. Caveolins function by binding directly to membrane cholesterol at the cell
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surface. There are 3 types of caveolin. Caveolins-1 and -2 are involved in caveolar 

endocytosis in non-muscular cells while caveolin-3 is only found in muscle cells (Chadda 

2007). Studies have shown that not all cells are capable of caveolar endocytosis, 

suggesting that certain tissues specialize in utilizing caveolae. Interestingly, 

overexpressing caveolins in cells that traditionally do not express them can induce the 

formation of caveolae (Fra 1995). Due to its dependence upon cholesterol, loss of 

membrane cholesterol leads to the disassembly of caveolar complexes (Chadda 2007).

Caveolar endocytosis has been implicated in the internalization of a number of 

different ligands ranging from albumin protein to cholera and tetanus toxins to viruses, 

such as SV40 (Herreros 2001, Shogomori 2001, Pelkmans 2002). In most of these cases, 

studies have identified the ligand’s corresponding receptor in the caveolar pits. However, 

it remains unclear as to how the ligands are recruited to their receptors. Studies have yet 

to explain how caveolar endocytosis is endogenously regulated in the cells that express 

caveolins, such as whether caveolar endocytosis occurs constitutively or if it becomes 

greatly up-regulated in response to specific triggers, such as ligand binding or 

intracellular signaling. In addition to mediating the formation of caveolae, novel findings 

have shown that caveolin-1 is involved in the regulation of Cdc42 activity during 

trafficking events at the cell membrane (Nevins 2006).
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Dynamin is a large GTPase motor that is responsible for the scission of endocytic 

vesicles from the plasma membrane. As a result, dynamin has been implicated in many 

fission processes in eukaryotic cells (van der Bliek 1993, Koenig 1989). In mammals, 

there are three dynamin genes, each with multiple splice variants. Dynamin-1 is 

restricted to neuronal cells while Dynamin-3 expression is restricted to the brain, lung 

and testis. In contrast, Dynamin-2 is ubiquitously expressed in almost all tissues (Kumari 

2010).

1.5.1.2 Dynamin

Dynamin was originally identified as a microtubule-binding homolog of the 

Drosophila shibire gene (Shpetner 1989). Further investigations using over expression of 

dominant negative mutants of dynamin were able to block receptor-mediated endocytosis 

(Lee 1999). Additional evidence for dynamin’s role in endocytosis mechanisms surfaced 

when dynamin was found to be localized to clathrin coated pits at the plasma membrane. 

It appears as though dynamin is recruited to these invaginating pits at the plasma 

membrane by binding to proteins that have an N-BAR (N-terminal Bin-Amphiphysin- 

Rvs) domain, such as amphiphysin. The N-BAR domain allows these proteins to bind 

directly to dynamin (Slepnev 2000). At a molecular level, dynamin contains a GTPase 

effector domain (GED) that has been shown to be crucial to its ability to interact with the 

GTPase domain of neighbouring dynamin molecules. This allows for the oligomerization 

and the simultaneous activation of dynamin molecules in close proximity to one another 

(Takei 2005). Dynamins also contain a C-terminal proline/arginine-rich domain (PRD) 

that has been found to interact with a variety of specialized protein domains, including
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proteins containing the SH3 domain. The large variety of dynamin-binding partners 

enables it to recruit many different proteins during coated vesicle formation.

Mechanistically, it has been hypothesized that dynamin functions as a 

mechanoenzyme during the scission of budding vesicles. Direct evidence of this type of 

behaviour was seen during in vitro studies which demonstrated that dynamin-coated lipid 

tubules were twisting in response to the addition of exogenous GTP (Roux 2006). It is 

this tension and torsional strain that occurs at the neck of a budding vesicle that leads to 

its scission from the plasma membrane. Two subsequent studies demonstrated that the 

polymerization and depolymerization of dynamin is the cause of these torsional changes 

at the plasma membrane (Pucadyil 2008, Bashkirov 2008).

In addition to being integral to clathrin-mediated endocytosis pathways, dynamin 

has also been implicated in a number of clathrin-independent mechanisms, which include 

caveolar endocytosis as well as a class of phagocytosis (Kolpak 2009). Other examples 

of clathrin-independent dynamin-dependent endocytosis include RhoA-dependent IL-2 

receptor endocytosis (Lamaze 2001) as well as a particular APP endocytosis pathway in 

primary neurons (Saavedra 2007). Although dynamin appears to play an important role 

in vesicle formation during endocytosis, there are also a number of pathways that work 

independently from clathrin or dynamin, such as macropinocytosis and micropinocytosis.
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The CLIC/GEEC (clathrin-independent carriers/ GPI-AP enriched early 

endosomal compartments) pathway is one of the many clathrin-independent, dynamin

independent endocytosis pathways that also relies upon the reorganization of actin at the 

plasma membrane. It was first described when scientists observed the rapid and 

dynamin-independent endocytosis of glycosylphosphatidylinositol-anchored proteins 

(GPI-APs) into endocytic structures. These were aptly named GEECs. The formation of 

GEECs was hypothesized to be the result of the fusion of uncoated tubulovesicular 

CLICs that are derived directly from the cell surface (Kirkham 2005). Although it is 

known that CLICs are selectively enriched in GPI-APs, how these lipoproteins are sorted 

into this mechanism of endocytosis remains unclear. It has been suggested that the size 

of the extracellular domain of GPI-APs may play a role in dictating their sorting 

(Bhagatji 2009).

One of the key features of the CLIC/GEEC pathway is its dependence upon actin 

reorganization machinery (Chadda 2007). Polymerization of actin at the plasma 

membrane is regulated by the cycling of the Rho family GTPase Cdc42. Cdc42 cycling 

is, in turn, regulated upstream by Arfl, whereby Arfl activation recruits ARHGAP10, a 

protein that contains a Rho-GAP domain, which plays a crucial role in initiating Cdc42 

GTPase activity (Kumari 2008). Maintenance of Cdc42 cycling is important to the 

function of the CLIC/GEEC pathway, as locking Cdc42 in either its GTP or GDP bound 

state inhibited endocytosis. Another protein that was also found to regulate Cdc42

1.5.2 CLIC/GEEC pathway
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cycling is GRAF1, which also contains a Rho-GAP domain, but works independently of 

Arfl activation (Kumari 2008).

1.5.3 Macroscale Endocytosis

1.5.3.1 Phagocytosis

Phagocytosis is one of two principle types of macroscale endocytosis 

mechanisms. It is defined as the stepwise uptake of large foreign particles by 

encirclement with cell membrane projections. Phagocytosis is usually receptor-triggered 

by recognition of the target particle (Bianco 1975). The resulting compartment is then 

called a phagosome. Phagocytosis is a specific mechanism of internalization that certain 

specialized cells can utilize, such as phagocytes and leukocytes (Kumari 2010). There 

are two well-described types of phagocytic entry. The first is FcR receptor mediated 

engulfment of immunoglobulin G-opsonized particles (FcR-mediated phagocytosis) and 

is dependent upon the activities of Racl and Cdc42 (Allen 1996). The second is 

complement receptor CR3-mediated encirclement of C3bi-coated particles (CR3- 

mediated phagocytosis) and is specifically dependent upon the activity of RhoA (Caron 

1998). Interestingly, studies have shown that FcR-mediated phagocytosis requires 

recruitment of Arfl and Arfó, GTPases important in regulating actin-remodeling 

signaling pathways, during phagocytic cup formation (Beemiller 2006). Once formed, 

the phagosome will undergo gradual acidification in order to degrade its contents.
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Macropinocytosis is a highly regulated, yet evolutionary ancient mechanism. 

Macropinocytosis is a type of macroscale endocytosis whereby large amounts of 

extracellular fluid is engulfed by cells through the extension, envelopment and closure of 

lamellopodia. Macropinosomes are characteristically large intracellular vesicles that can 

range in size from 0.2 pm to 10 pm in diameter (Swanson 2008). However, the size of 

macropinosomes has been found to be independent from the size of its enclosed cargo. 

The formation of these large vesicles can occur either spontaneously or as a result of 

stimulation from the presence of specific triggers, such as pathogens, phorbol esters or 

growth factors (Kerr 2009).

One of the key defining characteristics of macroscale endocytosis is its reliance 

upon actin polymerization machinery which allows membrane ruffles or extensions to 

protrude out from the cellular membrane to engulf large fluid volumes. More 

importantly, however, is the reliance of macropinocytosis on the regulatory proteins of 

actin polymerization, such as those of the Arf and Rho families of small GTPases (Nobes 

2000) as well as proteins involved in regulating vesicle scission, such as CtBPl (C- 

terminal Binding Protein 1)/BARS (Liberali 2008). These proteins will be discussed in 

greater detail below. A major link between macropinocytosis and Arfó comes from a 

study whereby macropinocytosis was induced by the overexpression of EFA6 , a guanine 

nucleotide exchange factor (GEF) that activates endogenous Arfó (Brown 2001). The 

increased Arfó activity resulted in activation of phosphatidylinositol-4-phosphate 5- 

kinase (PIP5K), increasing phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the

1.5.3.2 Macropinocytosis
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cytosol. PIP2 is a lipid-based secondary messenger that is involved in several trafficking 

and actin polymerization pathways. During macropinosome maturation, PIP2 is lost from 

the invaginating membrane and Rab5 is recruited. Locking Arfó in the constitutively 

active form prevented recycling of macropinosomes back to the cell surface, thus causing 

them to become trapped within the cell (Brown 2001). In a separate study, Arfó was also 

shown to affect macropinocytosis through its activation of PAK1, which then initiates the 

Rac GTPase signaling cascade (Dharmasardhane 2000).

1.6 Regulatory Proteins Implicated in Macropinocytosis

1.6.1 ADP-ribosylation factors (ARFs)

The ARF family of proteins is a subgroup of the Ras superfamily of small 

GTPases. They were initially described to function as co-factors for cholera toxin- 

catalyzed ADP-ribosylation of the a-subunit of heterotrimeric G proteins, but have now 

been recognized to play important roles in regulating cell motility and membrane 

trafficking pathways.

There are six known types of mammalian ARF proteins that can be classified 

under 3 classes (Kahn 2006). Class I includes Arfs 1, 2 and 3 which are involved in 

regulating the assembly of coat complexes onto budding vesicles of the secretory 

pathway (Bonifacino 2004). Class II includes Arfs 4 and 5, who are suggested to function
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in early Golgi transport (Claude 1999, Takatsu 2002). Finally, Class III is comprised 

only of Arfó, which has been implicated in endosomal-membrane trafficking and actin 

mobilization (D’Souza-Schorey 1995, Peters 1995). ARF proteins are ubiquitously 

expressed in all mammalian cells and show a high degree of conserved amino acid 

sequences. The unique intracellular distribution of each ARF protein as well as the 

different molecules they interact with is essential in the determination of their cellular 

functions (Kahn 2006).

ARFs function similarly to other GTPases by cycling between their active GTP- 

bound and inactive GDP-bound molecular states (D’Souza-Schorey 2006). The 

hydrolysis of bound GTP, mediated by GTPase-activating proteins (GÁPs), results in the 

release of inorganic phosphate and the energy needed for signal transduction, thereby 

inactivating the GTPase protein. On the other hand, guanine nucleotide-exchange factors 

(GEFs) are responsible for exchanging GDP with GTP on inactive GTPases in order to 

restore them to their active, GTP-bound states. All ARFs are myristoylated at the second 

Gly residue at the N-terminus, which tethers ARFs to the cell membrane (Donaldson 

2011). The cycling of GDP to GTP causes a conformational change in the switch region 

of ARFs, the domain that allows ARF effectors to bind. Between the switch regions, a 

loop of P-sheet is forced away from the GTP binding site during GTP binding. This 

causes the N-terminus to displace from its protective hydrophobic pocket, thus promoting 

its insertion into the lipid bilayer of compartmental membranes (Gillingham 2007).
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1.6.1.1 Arfl

Arf 1 is a cytosolic GTPase with a molecular mass of 21 kDa. When activated, it 

becomes recruited to the membrane of the Golgi apparatus where it has been shown to be 

able to modulate its structure. Arfl does so through its ability to regulate PIP2 levels, 

which can then stimulate the assembly of spectrin and the actin cytoskeleton on the Golgi 

apparatus membranes. Additionally, Arfl has been found to regulate clathrin-coated 

vesicle budding from the trans-Golgi network (TGN) and endosomal membranes through 

its ability to recruit the adaptor protein complexes (AP-1, AP-3 and AP-4) (reviewed in 

D’Souza-Schorey 2006) The actions of these adaptor proteins have also been linked to 

PIP2 signaling. Other studies also report that Arfl participates in a number of 

intracellular trafficking pathways. In particular, Arfl has been known to play roles in 

several secretion pathways (Fensome 1996, Jones 1999, Zakharenko 1999) as well as in 

membrane insertion events required for phagocytosis (Braun 2007). Studies have now 

shown that activated Arfl can also participate in endocytosis at the cell surface (Kumari 

2008). However, the full scale of A rfl’s involvement in various signaling pathways is 

still under detailed exploration. Some studies have pointed towards Arf6  as an upstream 

regulator of Arfl activity through its interaction with the Arf-GEF, ARNO (Kumari 2008, 

Chadda 2007).

1.6.1.2 Arf6

Arfó primarily resides at the plasma membrane where it can be activated or 

inactivated by its many regulatory proteins. It has also been implicated in clathrin- 

dependent and -independent internalization, actin recycling and remodeling and the



28

generation of macropinosomes (D’Souza-Schorey 2006, Jaworski 2007, Brown 2001). 

Unlike other Arfs, Arfó is unique in that it is the only Arf to have the ability to co

localize with PIP5K in vivo. This unique characteristic has helped define its role in 

multiple signaling pathways because of the primary role of PIP5K in the generation of 

PIP2, a major signaling molecule involved in actin re-arrangements and membrane traffic. 

Arfó can also regulate PIP5K activity through a parallel pathway where it binds to and 

activates phospholipase D (PLD), an enzyme important in the hydrolysis of 

phosphatidylcholine to produce phosphatidic acid (PA). PA has been shown to be 

important in the regulation of stimulated membrane ruffling as well as PIP5K activity. A 

model was proposed whereby activation of ARF6  leads to the activation of both PLD and 

PIP5K. Activation of PLD increases PA production, which then activates PIP5K. The 

activation of PIP5K also causes an increase in PIP2, which feeds back to further activate 

PLD. Changes in the amount of PA and PIP2 in the membrane can help to drive both 

clathrin-dependent and clathrin-independent endocytosis mechanisms (Ameson 1999, 

Brown 2001). Additionally, there have been studies that suggest Arfó can activate the 

Arf-GEF ARNO, which could then proceed to activate Arfl-Cdc42 endocytosis 

mechanisms. Taken together, Arfó appears to be a major player in the regulation of a 

number of endocytosis and membrane trafficking mechanisms. Of particular interest is 

the characteristic that the active conformations of Arfl and Arfó are very similar. This 

suggests that both Arfl and Arfó could interact with the same downstream effectors and 

could have roles reminiscent of each other in similar pathways, despite the fact that Arfó 

is localized to the cell membrane and Arfl is localized to the Golgi apparatus.
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A study by Kang et al (2009) showed that the clathrin-independent endocytosis of 

prion protein in neuroblastoma cells was found to be regulated by Arfó activity. Prion 

protein has been compared to amyloid on a number of levels, and studies have shown that 

both appear to traffic along similar pathways (Abdulla 2001). It could be possible that 

Arfó could mediate amyloid trafficking as it does with prion protein.

1.6.2 Ral

Ral belongs to the Ras super family of small GTPases, whose members function 

as molecular switches in several signal transduction pathways. Many of the cellular 

processes regulated by Ral in mammalian cells include regulating membrane transport, 

apoptosis, cell proliferation as well as oncogenesis. The position of Ral at the junction of 

several unique pathways makes it a key player in the regulation of cell signaling and 

homeostasis processes. It has been shown that Ral can play key roles in vesicle sorting 

pathways (Bielinski 1993), neurosecretion (Polzin 2002), endocytosis and the regulation 

of cellular morphology, gene expression and proliferation (Feig 2003).

Ral has been shown to bind to PLD, which is a well known regulator of a number 

of exocytosis and endocytosis mechanisms, such as macropinocytosis (Lu 2000). It is 

well established that Ral can bind to PLD1 and that the Ral-PLD complex can bind either 

Arfl or Arfó (van Dam 2006). To our knowledge, Ral-mediated activation of PLD is 

most likely mediated by Arfó, due to the fact that inactivated Arfó inhibits epidermal 

growth factor (EGF)-induced PLD activity. In addition, treatment with primary alcohols,
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such as 1-butanol, is able to disrupt epidermal growth factor receptor (EGFR) 

endocytosis by inhibiting PLD activity.

1.6.3 Ras

The Ras superfamily of signaling proteins encompasses a number of small 

signaling GTPases, including the Rho and Arf subfamilies. There are three main 

isoforms of Ras: H-Ras, N-Ras and K-Ras (Donaldson 2009). These isoforms differ in 

the amino acid sequences of their carboxy terminal tails as well as in their lipid 

modifications, which is important in dictating their subcellular localizations and 

activities. Apart from being localized to the plasma membrane, Ras proteins also localize 

to the Golgi apparatus, mitochondria as well as endosomes. Ras proteins are involved in 

the regulation of many cell processes that range from cell proliferation and differentiation 

to endocytosis, apoptosis and cell survival.

The H-Ras isoform has been implicated in initiating macropinocytosis. 

Activation of H-Ras via EGF stimulation induced membrane ruffling and 

macropinocytosis in HeLa and COS7 cells. This mechanism shares several similarities to 

Arf6 -initiated macropinocytosis, whereby GTPase activation causes increases in cellular 

PIP2 levels, resulting in macropinosome invagination. Following macropinosome 

maturation, PIP2 is lost and Rab5 early endosóme membrane protein is recruited. As with 

Arfó initiated macropinocytosis, expression of constitutively active H-Ras causes 

macropinosomes to be trapped within the cell. H-Ras initiated macropinocytosis differs
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from the Arfó pathway primarily in that the H-Ras effector Akt is recruited to the 

macropinosomes (Porat 2008).

1.6.4 Rho family of GTPases (Rac and Rho)

The Rho family of GTPases is a large family of small 21 kDa GTP-dependent 

signaling proteins that play important roles in intracellular actin dynamics, cellular 

proliferation, apoptosis, endocytosis and membrane trafficking. It is a subfamily of the 

Ras super family of signaling proteins. All of the members of the Rho family, like other 

GTPases, act as molecular switches. The two most studied members of this family are 

Racl and RhoA.

1.6.4.1 Rac

The Rac subfamily of the Rho GTPases is comprised of four members that share 

great similarities in protein sequences: Racl, Rac2, Rac3 and RhoG (Boureux 2007). 

The Rac proteins are important in regulating actin polymerization in most cells and have 

been implicated in the stimulation of lamellipodium extension, membrane ruffling, 

phagocytosis as well as cell motility and polarization. Despite the strong sequence 

similarities between the Rac members, there is a significant difference in their expression 

patterns throughout the human body. Racl, the most studied member, is ubiquitously 

expressed, whereas Rac2 and Rac3 are restricted to cells of haematopoietic and neuronal 

origins, respectively (Didsbury 1989, Bolis 2003, Shirsat 1990). Most of the studies 

regarding Rac proteins involve expression of dominant negative isoforms in various cell
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lines in order to observe their impact on actin reorganization. In studies involving 

neurons, it was found that dominant negative Racl inhibited neurite outgrowth and 

axonal guidance (Chen 2007). In macrophages, Racl appears to be important in the 

polymerization of actin in FcR-mediated phagocytosis (Underhill 2002). Its role in actin 

reorganization dynamics may implicate it in other mechanisms of clathrin- and dynamin

independent endocytosis, such as macropinocytosis and phagocytosis.

1.6.4.2 Rho

There are three highly homologous isoforms of Rho: RhoA, RhoB and RhoC. 

Studies have shown that they play a major role in the control of endosomal trafficking 

pathways as well as in cancer progression and metastasis. RhoB, in particular, has been 

shown to localize to endocytic vesicles and regulates their trafficking (Ellis 2000, Ridley 

2006). RhoA has been implicated in the clathrin-independent internalization of the P- 

chain of the interleukin-2 receptor (IL-2R-P), whereby its uptake is mediated by sorting 

to detergent-resistant lipid rafts (Lamaze 2001). Dominant negative inhibition of clathrin 

polymerization or adaptor protein 180 recruitment was unable to affect the uptake of IL- 

2R-p. It was shown that only dominant negative inhibition of dynamin and RhoA were 

able to affect IL-2R-p endocytosis (Ellis 2000).

1.6.5 CtBPl/BARS

CtBPl-BARS is the short splice variant of the C-terminal Binding Protein 1 

(CtBPl) gene and was first identified as a 50-kDa protein based on its ADP ribosylation 

in the presence of the brefeldin A toxin (Spano 1999). It belongs to a family of dual
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function proteins that has been shown to be involved in both gene transcription signaling 

pathways as well as membrane fission mechanisms. Its function as an alternative to 

dynamin-dependent scission machinery has been implicated in the fission of 

macropinosomes in epidermal growth factor-mediated macropinocytosis (Liberali 2008). 

CtBPl-BARS is activated by PAK1 (p21 activated kinase) during macropinocytosis in 

fibroblasts (Dharmawardhane 2000). In a study by Haga et al (2009), CtBPl-BARS was 

shown to be an important activator of phospholipase D1 and regulator of 

macropinocytosis in COS7 cells. It is unknown whether there is a direct mechanism 

linking CtBPl/BARS to its targets or if it plays more of a regulatory role through 

complex protein signaling pathways.

1.6.6 Phospholipase D (PLD)

PLD is lipid modifying enzyme responsible for the hydrolysis of 

phosphatidylcholine (PC) into phosphatidic acid (PA) and free choline. It is expressed in 

many different organisms ranging from viruses and bacteria to plants and animals. In 

mammals, PLD activity has been found to be present in most cell types with the 

exception of lymphocytes and leukocytes. There exist two main types of PLD: PLD1 and 

PLD2.

The catalytic activity of PLD enzymes is attributed to its two HKD motifs, 

defined by the key amino acids histidine (H), lysine (K) and aspartic acid (D). Point 

mutations in this motif disrupt PLD activity (Sung 1997). In addition to the HKD motif, 

PLDs also have a conserved phox sequence (PX), plekstrin domain (PH) and a PIP2
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binding site (Sciorra 2002, Sugars 2002). The PX domain was found to bind specifically 

with phosphatidylinosotiol phosphate lipid signaling molecules, preferably to 

phosphatidylinositol triphosphate (PIP3) (Stahelin 2004). The PH domain was suggested 

to be important in the localization of PLD, particularly with lipid rafts during its recovery 

from the plasma membrane. PIP2 binding to PLD has been suggested to be important in 

its activation and subsequent translocation from its inactivated pool to its activated 

intracellular locations. Although the current findings regarding PLD1 and PLD2 

localizations remain contentious, it is has been widely suggested that PLD1 is localized to 

the Golgi apparatus, early and late endosomes as well as lysosomes whereas PLD2 is 

localized at the plasma membrane when stimulated (Jenkins 2005).

Mammalian PLD activity is highly regulated by a multitude of intracellular 

signaling proteins and factors. These include phosphoinositides, PKC, ARF and the Rho 

family of small GTPases. Phosphoinositides are a group of lipids that are related by their 

common base molecule phosphatidylinositol (PI). PI can become phosphorylated to 

increasing levels to yield PIP, PIP2 and PIP3, all of which play important roles in a 

number of signaling pathways. It has been found that PLD1 and PLD2 activity can be 

regulated by the binding of Pis to regulatory sequences. Along similar lines, PLD 

activity has also been found to be associated with PKC activation (McDermott 2004). 

PKC dependent regulation of PLD activity has been shown to involve the direction 

phosphorylation of PLD along its N-terminus. ARF GTPases have been implicated in the 

activation of PLD1 and PLD2. Studies have shown that ARFs can directly interact with 

PLD1 but might require the use of accessory factors to indirectly regulate PLD2-
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mediated pathways (Hammond 1995, Sung 1999). The strongest evidence of ARF- 

regulated PLD activity has been identified in the transport of intracellular vesicles. 

Finally, members of the Rho GTPase family, which includes RhoA, Cdc42 and Racl, 

have been shown to activate PLD in a number of cell types (Singer 1995, Bowman 1993). 

Studies have found that these GTPases directly interact with PLD in the presence of 

GTPyS.

1.7 Rationale and Aims

Our lab has previously demonstrated that APP and the y-secretase complex are 

enriched in highly purified lysosomes (Pasternak 2003). More recently, we have 

uncovered a novel pathway whereby wild-type APP is rapidly and selectively 

internalized from the cell surface directly to lysosomes, bypassing the early and late 

endosomal stages of endocytosis (Lorenzen 2010). Interestingly, APP bearing either the 

Swedish or London mutations is excluded from this sorting pathway. The rapid 

dynamics of this pathway and the presence of y-secretase in the lysosome suggest a rapid 

trafficking mechanism that may play a role in the production of A[3 from APP. In this 

project, we set out to determine what molecular mechanisms are responsible for 

regulating the rapid delivery of APP to lysosomes, the potential site for A[3 generation.

Imaging results from our previous study suggested that APP is internalized in a 

manner not characteristic of classical clathrin-dependent endocytosis, with micron-sized 

vesicles being formed at the cell surface that are quickly directed to fuse with
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neighbouring lysosomes. Based on these observations, we suspect that neuronal cells are 

utilizing a mechanism reminiscent of macropinocytosis in order to accomplish this task. 

Therefore, I hypothesize that APP is transported to the lysosome by 

macropinocytosis and that regulators of macropinocytosis control intracellular APP 

trafficking and Ap production. The two principal objectives of this project are as 

follows: 1) To characterize the molecular mechanisms that regulate rapid APP 

internalization to lysosomes in neuronal cells. 2) To determine if lysosomal transport of 

APP can control Ap production and/or secretion.
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CHAPTER 2: MATERIALS AND METHODS

2.1 Antibodies and Reagents

Anti-HA antibody was purchased from Roche Applied Science. Anti-Arf6  

antibody was purchased from Sigma. Anti-Arfl antibody was purchased from Epitomics. 

SN56 cells were obtained from Dr. Jane Rylett. Mouse cortical neurons were obtained 

from Dr. Sean Cregan. Fluorescently-labeled secondary antibodies and Zenon 

AlexaFluor 633 donkey anti-mouse were purchased from Invitrogen. Dulbecco’s 

modified Eagle’s medium, fetal bovine serum, Hank’s balanced salt solution (HBSS), 

penicillin (P), streptomycin (S), trypsin and neurobasal media were all purchased from 

Gibco.

2.2 Neurons

Cortical neurons were dissected from fetal mice and kept in neurobasal media for 

7 days prior to transfection. On the day of transfection, neurons were transfected with 

APP-CFP and LAMP1-BFP using Lipofectamine 2000. Two days following 

transfection, neurons were surface labeled with AlexaFluor-633 Zenon-labeled anti-HA 

antibodies on ice for 30 minutes. Neurons were then either fixed at 0 min or allowed to 

internalize at 37°C for 15 minutes, after which they were fixed in 4% paraformaldehyde 

(PFA) for 15 minutes. Fixed cells were then imaged using confocal microscopy. 

Neuronal cultures were stained with NeuN to ensure that 75% of the cultures were

composed of neurons.
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2.3 DNA Constructs

The pAPP construct was generated by Peiter Anbourgh. A previous study in our 

lab demonstrated that this pAPP construct traffics and behaves in the exact same way as 

full-length wild-type APP (Lorenzen 2010). A cDNA encoding APP 750- YFP was a 

generous gift of Dr. Bradley Hyman. The signal sequence was cloned (including N- 

terminal 17 amino acid signal sequence of APP as well as the L-E residues required for 

signal peptide cleavage (Lichtenthaler 1999) and a 3’ haemagglutinin (HA) tag was 

added by PCR using the primers 5’GCTAGCATGCTGCCCGGTTTG3’ and 

5 ’ ACGCGTAGCGTAATCTGGAAC ATCGTATGGGTACTCC AGCGCCCGA3 ’.

These primers also add an 5’Nhel cleavage site and a 3’Mlul site. A shortened APP 

construct was generated which included the C-terminal 112 amino acids (12 amino acids 

upstream of the P-cleavage site) of and adding a 5’-FlAsH tag (using an optimed FlAsH 

sequence (Martin 2005) was amplified using the primers 3’ACGCGTTTCCTGAAC 

TGCTGCCCCGGCTGCTGCATGGAGCCC5’, 3’ATCAAGACGGAGGAGATCT 

CTG5’. These primers also add a 3’Mlul restriction site and 5’Sal 1 site. These 2 products 

were then ligated into pEYFP-Nl or pECFP-Nl vectors (Clontech). Similar constructs 

have been demonstrated to undergo both beta- and gamma-cleavage (Grimm 2008). We 

have previously demonstrated that this construct has the same intracellular distribution 

and lysosomal trafficking of full length APP (Lorenzen 2010).

Expression constructs for regulatory proteins bearing dominant negative 

mutations are Dyn-K44A-CFP, GFP-Arf6-T27N and GFP-Arf6-Q61L (Julie Donaldson), 

GFP-CTBP1/BARS-S147A (Alberto Luini), GFP-PLD2-K758R (Michael Frohman),
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YFP-Arfl-T23N (Jean Gruenberg). YFP-Racl-T17N, YFP-RhoA-T19N, YFP-Ras- 

S17N, YFP- RalA-S28N were generous gifts from Dr. Stephen Ferguson. LAMP1-YFP 

was a generous gift from Dr. Walter Mothes and recloned to use mRFP.

2.4 Cell Culture and Transfection

SN56 neuroblastoma cells were used as a cell model for this study due to the 

cholinergic phenotype they expressed once differentiated. Since cholinergic neurons of 

the forebrain have been shown to be affected in AD, we felt that the SN56 cell line would 

best reflect the cellular physiology of the neurons affected in AD patients.

SN56 cholinergic neuroblastoma cells were grown in Dulbecco's modified Eagle’s 

medium (DMEM), respectively supplemented with 5% (v/v) and 10% (v/v) heat 

inactivated fetal bovine serum (FBS) (Gibco), and 100 pg/ml penicillin/streptomycin 

(Gibco). Cells were kept in culture in 75 cnr flasks (Falcon) and were split every 4 days. 

Cells were seeded at a density of 3 x 105 cells/35-mm dish (Falcon) one day prior to 

being transfected. Cells were then transiently transfected using Lipofectamine 2000 

following manufacturer’s instructions (Fermentas) in serum free media. Transfection 

efficiencies averaged 65% in most experiments. Following a 24 hr incubation period, 

cells were differentiated before imaging by the addition of ImM dibutyryl cyclic AMP 

(dbcAMP; Sigma) to serum free medium (Hammond 1986, Pedersen 1996, Le 1997). All 

cells were kept in an incubator at 37°C in a humidified atmosphere containing 5% CO2.
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2.5 Confocal Microscopy

Imaging was performed on a Zeiss LSM-510 META laser scanning microscope 

using a Zeiss 63X 1.4 numerical aperture oil immersion lens. The optical section 

thickness was typically 1 micron. EGFP and YFP fluorescence was visualized using a 

488 nm excitation laser and a 500-530-nm emission filter set. mRFP fluorescence was 

imaged using a 543 nm excitation laser and BP 565-615 filter set. ECFP fluorescence was 

imaged using 458 nm laser excitation source and a BP 475-525 filter set. AlexaFluor 633 

fluorescence was imaged using 633 nm excitation laser, and a LP 650 filter.

2.6 Cell Surface Labeling

Anti-HA antibody was labeled with AlexaFluor 633 using a Zenon labeling kit 

(Invitrogen) according to the manufacturer’s instructions. For fixed time-course studies, 

a freshly prepared conjugate was incubated with cells in DMEM on ice for 30 minutes. 

The conjugate was removed and the cells were washed twice in pre-warmed HBSS. 

Following the wash, warm HBSS was added and the cells were incubated at 37°C for the 

times indicated prior to fixation with 4% paraformaldehyde. Cells that were selected for 

this study showed strong expression of both the APP and compartment marker constructs 

in addition to normal morphology. Fixed time course experiments were repeated 3 times 

for each dominant negative construct/treatment, with 1 0  cells sampled at each time point. 

See Figure 4A for schematic.

For live cell imaging, the anti-HA antibody was labeled with AlexaFluor 633 

using a Zenon labeling kit according to the manufacturer’s instructions. Cells were
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Figure 4. Surface labeling (A) APP constructs were labeled at the cell surface with either 
Zenon 633 secondary conjugated to anti-HA primary antibodies against the HA-epitope 
or FlAsH biarsenical fluorescein against the tetracysteine sequence, both of which were 
engineered onto our APP constructs. After surface labeling on ice, surface labeled APP 
was then allowed to internalize for 15 minutes to either LAMPl-mRFP labeled 
lysosomes or Rab5-RFP labeled early endosomes. Confocal images were then taken and 
colocalization was measured using Imaris analysis software. Dominant negative mutants 
were also cotransfected into SN56 cells to study their effect on intracellular APP 
trafficking. (B) Schematic of our PAPP construct. An HA epitope as well as a 
tetracysteine sequence (4C) to bind FlAsH dyes was engineered on the N-terminal. 
Either CFP or YFP was added to the C-terminal. P-, a-, and y- denote the respective 
secretase cleavage sites. Transmembrane domain of APP is denoted by the grey region.
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removed from the incubator and washed twice with warm HBSS. The conjugate was 

incubated with cells in HBSS for 15 minutes at room temperature. Conjugate was 

removed and the cells were washed twice in warm HBSS before being immediately 

imaged in HBSS at 37°C on a BC200 microscope stage warmer with a Bionomic BC100 

controller (20/20 technologies). Images were taken using a Zeiss 510 META laser 

scanning confocal microscope at 2  ffames/minute in 512 x 512 resolution.

2.7 FlAsH Biarsenical Fluorescein Labeling

Methods were adapted from Taguchi et al (2009). To prepare 400ul of labeling 

medium (good for 4 confocal dishes with 100 pi labeling media per dish), 8 ul of 70uM 

FlAsH reagent (Invitrogen), 8 ul of 50mM 1,2-ethanedithiol (EDT) (Sigma) and 4ul of 

2M DL-Dithiothreitol (DTT) (Sigma) were combined in 380ul of HBSS and incubated in 

the dark at room temperature for 10 minutes. Following incubation, labeling media was 

kept on ice until ready to be used. SN56 cells that were plated on confocal dishes were 

kept on ice for 30 minutes prior to labeling. Incubation media was aspirated and the 

plates were washed 2x with ice cold HBSS. Each confocal dish was treated with lOOul of 

labeling media on ice for 3 minutes in the dark. After labeling, cells were washed 2x 

with room temperature 250uM EDT in HBSS to remove any excess FlAsH. The final 

wash was done with warm HBSS and the cells were allowed to internalize at 37°C for 15 

minutes. Following internalization, cells were fixed for 15 minutes in 4% PFA. PFA 

was removed and the fixed cells were washed 3x in room temperature PBS and imaged 

on an LSM510 confocal microscope (Carl Zeiss). For FlAsH and anti-HA combination 

labeling, following treatment with Lumio labeling media, cells were treated with lOOul
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Alexaflour-633 Zenon-tagged anti-HA antibodies at a 1:100 concentration for 30 

minutes. After labeling with Zenon, cells were washed 2x in warm HBSS and allowed to 

internalize for 15 minutes. See figure 4A for schematic.

2.8 Ap42 and Ap40 ELISA

For each individual experiment, 250,000 SN56 cells were plated into each well of 

a 12-well plate and kept in 1 ml of pre-transfection media (+FBS; -P/S) overnight after 

splitting. Cells were then transfected with PAPP-CFP and one of ArflDN, ArfóDN or 

Arf6 CA mutant constructs in triplicate for each experimental run. Cells were incubated 

for 3 days following transfection and kept in 500 pi of incubation media (-FBS; +P/S). 

500 pi of media was collected and assayed using an ultrasensitive Ap42 or Ap40 ELISA 

kit (Invitrogen) according to the manufacturer’s instructions. This experiment was 

repeated 3 times and the data normalized against the control. Data was plotted and 

analyzed using Graphpad Prism 5.0 software.

2.9 Arf6-Arfl siRNA

SN56 cells were split as described in cell culturing subsection. Stealth siRNA 

was purchased from Invitrogen with the following sequences: Arfó 

(AUAAUGCGGUGCAGCUCCUGGCGGG) (adapted from Bach et al. 2010 for use in 

mouse) and Arfl (GGGAAUAUCUUUGCAAACCUCUUCA). Cells were transfected 

with 300 pmol of Arfó siRNA and 500 pmol of Arfl siRNA according to Invitrogen 

Lipofectamine 2000 transfection protocols. Cell lysates were collected 3 days after
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transfection and assayed by western blotting with a 1:1000 concentration of Anti-Arfl 

(Epitomics) and Arfó antibodies (Sigma).

For colocalization studies, cells were transfected with (3APP-CFP, LAMPl-mRFP 

and either 300pmol of Arfó siRNA or 500pmol of Arfl siRNA or a combination of both. 

Cells were differentiated 1 day following transfection and were then surface labeled with 

AlexaFluor-633 Zenon-labeled anti-HA antibodies as described above and allowed to 

internalize at 37°C for 15 minutes. Cells were then imaged using confocal microscopy 

and the percent colocalization of the brightest 2% of pixels from the APP and LAMP1 

channels was measured. Measurements were compared to control cells that were surface 

labeled in the same way.

2.10 Protein Extraction and Western Blotting

SN56 cells (1.5 x 106) were plated on 60mm dishes (Nunclon) and transfected 

with the appropriate DNA constructs/siRNA transcripts. Following 3 days of incubation, 

cells were washed in cold PBS and lysed with 250ul NP40 lysis buffer (20mM Tris pH 

8.0, 137mM NaCl, 10% glycerol, 1% IGEPAL/NP40, 3x milliQ water) for 5 minutes at 

4C. Cells were then harvested using a cell scraper into 1.5ml Eppendorf tubes and 

centrifuged at 14,000 rpm for 15 minutes at 4°C to remove insoluble material. Protein 

quantification of supernatant was done using a Pierce BCA protein assay kit.

Polyacrylamide gels were made from Biorad reagents. The 12% resolving gel 

(5.1ml milliQ water, 6 ml acrylamide, 3.75ml 1.5M Tris-HCl, 150ul 10% SDS) solution
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was mixed with 150ul 10% APS (ammonium persulfate) and 6 ul of TEMED 

(tetramethylethylenediamine) before being and allowed to set. MilliQ ultrapure water 

was used to smooth out the top of the resolving gel. The 5% stacking gel (3.5ml milliQ 

water, 1ml acrylamide, 1.5ml 0.5M Tris-HCl, 60ul 10% SDS) was then mixed with 60ul 

10% APS and 6 ul of TEMED before being poured on top of the resolving gel and 

allowed to set with a well-comb inserted. 25ug of samples were aliquoted out and mixed 

with 4x sample buffer (5ml glycerol, 6.25ml 0.5M Tris-HCl, lg SDS, 2ml 0.5% 

bromophenol blue; pre-incubation preparation: 475ul 4x sample buffer with 25ul (3- 

mercaptoethanol) in a 3:1 ratio of sample to buffer and heated at 60°C for 20 minutes. 

While samples were denaturing, 10X electrode running buffer (30.3g tris base, 144g 

glycine, lOg SDS, 1000ml milliQ water) was diluted to IX and poured into the assembled 

gel apparatus (Biorad). Samples were then loaded with one lane loaded with SeeBlue® 

Plus2 prestained standard ladder (Invitrogen) and the gel was run at 110V for 1.5 hrs.

When the running front had reached the bottom of the gel, the apparatus was 

disassembled and the gel removed and placed in IX transfer buffer (25ml 10X transfer 

buffer, 50ml methanol, 175ml milliQ water) diluted from 10X stock (30.3g Tris, 144g 

glycine, 1000ml milliQ water). Two pieces of filter paper and a PVDF (polyvinylidene 

fluoride) membrane, activated in 100% methanol for 5 minutes, were also allowed to 

soak in IX transfer buffer for 15 minutes. A semidry transfer sandwich was then 

assembled by placing the PVDF membrane and gel between two pieces of filter paper. 

Semidry transfer apparatus (Thermo) was assembled and run at 15V for 1 hr. Following 

transfer, PVDF membrane was blocked for 1 hr in 5% skim milk solution (2.5g skim
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milk powder, 50ml 0.05% TBS-T) made in 0.05% TBS-T (10X TBS, 1ml Tween-20, 

1000ml milliQ water). 10X TBS was made from 24.2g Tris, 80g NaCl, 800ml milliQ 

water, adjusted to pH 7.6 with HC1, then volume brought up to 1000ml.

Arfl (1:1000), Arf6  (1:1000) or a-tubulin (1:10,000) antibodies (Sigma) were 

added and incubated overnight at 4°C with rocking. Membranes were then washed for 5 

minutes 3 times in TBS-T. Secondary antibodies (anti-mouse, anti-rabbit HRP) were 

diluted in 5% milk solution and incubated with the membrane for Ihr at room 

temperature with rocking. Membranes were washed again for 5 minutes 3 times in TBS- 

T. Following washes, 1ml each of chemiluminescence solution A (05ml 0.1M Tris pH 

8.5, 22ul 90mM coumaric acid in DMSO (dimethyl sulfoxide), 50ul 250mM 3- 

aminopthalhydrazide in DMSO) and B (5ml 0.1M Tris pH 8.5, 3ul 30% H2O2) were 

mixed and incubated on the membrane for 1 minute. Membrane was stored in plastic 

wrap and exposed to x-ray film in a dark room. X-ray films were then developed and the 

bands were quantified using ImageJ analysis software.

2.11 Data Quantification and Analysis

Colocalization analysis was performed on confocal optical sections using Imaris 

7.0.0 with Imaris Colocalization module (Bitplane) running on an Apple Mac Pro to 

examine the colocalization of the brightest 2 % of pixels in each channel of interest, often 

between HA-tagged APP and Lampl-mRJFP or Rab5-RFP. This allows us to set a 

threshold for colocalization in an unbiased manner using the intrinsic properties of the
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image, eliminating confounding problems caused by variations in cell-to-cell expression 

and image brightness/exposure thus allowing direct comparison between experiments. 

Graphing and statistical analysis was performed using Prism GraphPad 5.01 using one

way ANOVA with Tukey post-test with a 95% confidence.
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CHAPTER 3: RESULTS

3.1 Live cell imaging of SN56 cells shows rapid endocytosis of surface labeled APP 

to LAMP1 positive lysosomes

To examine APP distribution in neuronal cells, we adopted the SN56 cell line. 

These cells are a hybrid cell line generated by fusing dissociated embryonic mouse septal 

neurons with N18TG2 neuroblastoma cells. SN56 cells possess neuronal morphology 

and cholinergic phenotype when differentiated and express APP (Hammond et al., 1986; 

Pedersen et ah, 1996; Le et ah, 1997). The construct used here was described in a 

previous publication in which we first demonstrated rapid internalization of APP from the 

cell surface to the lysosome in fixed cell time courses (Lorenzen 2010). This construct 

has the same trafficking pattern as a full length APP construct, and has the same 

distribution as immunostained APP in SN56 cells and cultured mouse neurons. To better 

understand this phenomenon, we performed live cell imaging of lysosomal internalization 

of APP in neuronal SN56 cells. Cells were transfected with HA-(3APP-CFP (green 

channel) and LAMP1-RFP (red channel), surface labeled with anti-HA antibodies 

conjugated with AlexaFluor 633 Zenon fluorescent secondary antibodies on ice for 30 

minutes, and imaged while the surface label was internalized at 37°C (Fig. 5). To 

highlight the colocalized fluorescent signal and to quantify colocalization (in subsequent 

images) we used Imaris 64x 7.0.0 software (Bitplane) to create a colocalization channel 

by setting thresholds in each channel (in this case, the brightest 2 % of pixels) in order to 

identify colocalized pixels which were then set to white. This technique allows for the 

unbiased (observer independent) settings of thresholds that is relatively independent of
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imaging parameters (image brightness, exposure, transfection level) and is discussed 

more fully in our previous work (Lorenzen 2010) as well as in studies by Hutcheon et al 

(2000, 2004) and Holmes et al (2006). An example of this method demonstrating the 

colocalization of PAPP-CFP and LAMPl-mRFP is shown in Fig. 5A.

Figure 5B shows an internalization time course of surface labeled HA-PAPP-CFP 

and LAMPl-mRFP overlayed with the colocalized pixels set to white. These images 

show that some internalized APP is already colocalized with lysosomes at the earliest 

time points -  the amount of time taken to place cells on the microscope stage and focus 

them. This process appears to begin with APP internalizing rapidly into very large 

vesicles. These vesicles then fuse with LAMP1 positive compartments resulting in the 

strong co-localization between HA-PAPP and LAMPl-mRFP. These vesicle fusion 

events are highlighted by white arrows in Fig. 5B, where large green vesicles containing 

surface-labeled APP fuse with red LAMP 1-labeled lysosomes within minutes. These 

findings reaffirm previous studies showing APP is rapidly transported to lysosomes from 

the cell surface.

3.2 Mouse cortical neurons show rapid APP internalization and co-localization to 

LAMP1.

In order to confirm that this transport occurs in neurons and not just in 

immortalized cell lines, we prepared mixed cortical cultures from F14 mice. Cortical 

cells were transfected with HA-PAPP-YFP and LAMP1-BFP 4 days prior to the 

internalization assay. Cells were labeled on ice with Zenon AlexaFluor 633-labeled anti

HA antibodies for 30 minutes and then either fixed immediately or allowed to internalize
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Figure 5. Live cell APP internalization to lysosomes in SN56 cells (A) SN56 Cells were 
transfected with HA-PAPP-CFP (green channel) and Lamp 1-mRFP (red channel) and 
imaged by confocal microscopy. Colocalization was quantified by selecting the brightest 
2% of green (right of yellow line) and red (above red line) channel pixels. Colocalized 
pixels are shown in white in the far right panel. (B) Live cell time course indicates that 
APP internalization begins immediately. Surface labeled APP becomes highly 
colocalized with LAMP1 by 16 minutes. White arrows indicate large APP containing 
vesicles budding from the cell surface and LAMP1 compartments in the process of 
fusing. Scale bar = 5 pm.
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Figure 6. Rapid transport o f APP to the lysosome in mouse cortical neurons. (A) Mouse 
cortical neurons transfected with APP-CFP and LAMPl-mRFP. Cells were surface 
labeled with Zenon-633 anti-HA antibodies and fixed following 0 or 15 minutes of 
internalization at 37 C. Colocalization of APP with LAMP1 is highlighted in white. 
Panels show a representative slice of the z-stack. Scale bar = 5 pm. (B) Percent 
colocalization of the brightest 2% of pixels between APP and LAMP1 channels. * 
denotes significant difference (p<0.05) 10 cells imaged in each of 3 separate experiments 
(n = 3, 30 cells total). Error bars represent the standard error of the mean (SEM).
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at 37°C for 15 minutes before being fixed in 4% PFA. To demonstrate that the HA-APP 

had been internalized to lysosomes, we generated Z-stacks and performed 3D 

reconstruction of these cells. Representative images are shown in Fig. 6A. Analysis of 

cortical neuron Z-stacks revealed that there was a significant increase in internalized APP 

colocalizing with LAMP1 after 15 minutes of internalization (26.8% ± 3.1) when 

compared to the 0 minute control (4.0% ± 1.2) (p<0.05) (Fig. 6B). 10 cells were assayed 

in each of 3 separate experiments for each time point (n=3, 30 cells total per time point). 

Data shown as Mean percent colocalization ± SEM.

3.3 Internalization of APP into Lysosomes is enhanced by cell surface antibody 

binding and/or cross-linking.

In order to determine if the internalization of APP is driven by antibody-induced 

crosslinking, as demonstrated by Schneider et al (2008), we examined the internalization 

of HA-pAPP-CFP labeled with a biarsenical-fluorescein reagent (FlAsH, sold as Lumio, 

Invitrogen) (Gaietta 2002). This reagent binds directly to an optimized tetracysteine 

sequence (Martin 2005) incorporated into the HA-PAPP-CFP constructs, next to the HA 

epitope tag (Fig. 4) and is too small to crosslink APP proteins. SN56 cells were 

transfected with HA-PAPP-CFP and either Rab5-RFP or LAMPl-mRFP to mark early 

endosomes and lysosomes respectively. Cells were then surface labeled with the FlAsH 

reagent on ice for 3 minutes using the protocol published by Taguchi et al (2009). Cells 

were then allowed to internalize APP either with or without an additional antibody 

binding step with Zenon 633-labeled anti-HA antibody at 1:100 concentration for 30 

minutes on ice. Fig. 7A shows that at time 0, FlAsH labeling appears as a ring on the cell
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surface with no internalization. When allowed to internalize in the absence of anti-HA 

antibody, there was robust transport of FlAsH-labeled pAPP-CFP to Rab5-labeled early 

endosomes while there was only modest colocalization of FlAsH-labeled PAPP-CFP with 

lysosomes. In contrast, in the presence of 1:100 Zenon 633-labeled anti-HA antibody 

surface labeling, FlAsH-labeled PAPP-CFP is rapidly transported to the lysosome (Fig. 

7B).

We examined the internalization of these labels in at least 3 independent experiments 

quantifying at least 10 cells. Colocalization was quantified using Imaris and expressed as 

Mean ± SEM. When cells were fixed on ice at time 0, there was almost no colocalization 

of FlAsH-labeled PAPP-CFP with compartment markers. In the absence of anti-HA 

antibody, there is robust colocalization of APP to Rab5-labeled early endosomes (43.7% 

± 3.7) at 15 minutes, whereas only 7.6% ± 2.1 of FlAsH signal was colocalized with 

LAMP1 after the same amount of time. When FlAsH-labeled cells were treated with 

1:100 anti-HA antibodies, the amount of APP translocating to the lysosome rose to 

22.4% ± 1.9, tripling the amount of APP trafficked to lysosomes (Fig. 1C). These results 

were statistically significant (p < 0.05). This data demonstrates that in the absence of 

antibodies, APP is internalized primarily to early endosomes (Fig. 1C). While rapid 

lysosomal trafficking of cell surface APP does happen at rest, it is markedly stimulated 

by antibody binding of APP, presumably due to clustering or crosslinking, (n = 3).
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Figure 7. Lumio FlAsH-labeled APP internalization to lysosomes in SN56 cells (A) 
Colocalization of FlAsH biarsenical fluorescein-labeled APP (green) with LAMP1 and 
Rab5 (red) with no antibody present (B) Colocalization of FlAsH biarsenical fluorescein- 
labeled APP with LAMP1 with 1:100 anti-HA antibody (C) Percent colocalization of 
APP with LAMP1 and Rab5 at 0 and 15 minutes in SN56 cells. Cell surface APP was 
labeled using FlAsH biarsenical fluorescein reagent (’Lumio’, Invitrogen) and were 
allowed to internalize for 15 minutes to LAMP1 and Rab5 compartments. 1:100 
concentration of Zenon-labeled anti-HA antibody was used in addition to FlAsH labeling 
for ‘with antibody’ treatment group. *, ** denotes significant differences (p<0.05). Scale 
bar = 5 pm. 10 cells imaged in each of 3 separate experiments (n = 3, 30 cells total). 
Error bars represent the standard error of the mean.
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3.4 Rapid APP trafficking to lysosomes is reduced by dominant negative mutations 

in Arfó.

Because APP was being rapidly internalized to unexpectedly large compartments 

that did not have the appearance of normal clathrin-coated vesicles, we hypothesized that 

APP was being internalized by a clathrin-independent pathway reminiscent of 

macropinocytosis and might be regulated by similar mechanisms. To test this hypothesis, 

we examined some of the proposed regulatory proteins implicated in macropinocytosis. 

To do this, SN56 cells were co-transfected with HA-|3APP-CFP, a compartment marker 

tagged with mRFP (either LAMP1 for lysosomes or Rab5 for early endosomes), and a 

fluorescently-tagged trafficking regulator protein (fused to either GFP or YFP). These 

included dynamin, Racl, RalA, Ras, RhoA, CtBPl-Bars, PLD2, Arfó, and Arfl. Cells 

were surface-labeled with Zenon-labeled anti-HA antibodies, allowed to internalize for 

15 minutes, fixed, and imaged using confocal microscopy. Cells co-transfected with APP 

and dominant negative regulatory proteins were identified by visualizing the 

fluorescently-tagged proteins through a confocal microscope. Representative images are 

shown in Fig. 8. The co-localization of the brightest 2% of pixels of Zenon-633 labeled 

HA-APP and LAMP1 was quantified in at least 10 representative cells per experiment 

across at least 3 experiments for each mutant type. Data are shown as Mean percent 

colocalization ± SEM. APP co-localization with lysosomes in cells transfected with 

dominant negative forms of these proteins were 34.6% ± 2.8 (Racl-T17N-DN), 35.5% ±

2.2 (RalA-S28N-DN), 30.6% ± 2.2 (Rasl-DN), 30.4% ± 3.5 (RhoA-T19N-DN), 35.9% ±

2.6 (CtBP 1 -Bars-S 147A-DN), 38.8% ± 2.2 (PLD2-DN), 22.2% ± 2.2 (Arf6-T27N-DN)

and 45.8% ± 2.3 (Arfl-T31N-DN), 28.1% ± 3.6 (dynamin-K44A-DN). These results
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were then compared to the percent colocalization of APP with LAMP1 in control cells 

(35.7% ± 2.1), which were not transfected with any additional dominant negative 

mutants. When we performed a one-way ANOVA followed by a Tukey post-test in order 

to determine that of all the proteins screened, only Arf6-T27N-DN significantly reduced 

APP colocalization with LAMP1 (p<0.05). On the other hand, Arfl-T31N-DN 

significantly increased this colocalization (p<0.05) (Fig. 8B). These results indicate that 

Arfl and Arfó appear to have an effect on APP trafficking to lysosomes.

3.5 Rapid APP internalization to LAMP1 vesicles is dynamin independent and 

regulated by Arfó whereas APP internalization to Rab5 vesicles requires dynamin 

activity and is unaffected by Arfó.

We investigated the role of Arfó and Arfl in lysosomal internalization. Arfó has 

been implicated in a number of novel internalization pathways that work independently 

of clathrin, dynamin or other coating and scission proteins. Arfl has been linked 

primarily to the intracellular trafficking of post-Golgi and lysosomal vesicles to the cell 

surface as well as in the regulation of the clathrin-independent CLIC/GEEC 

internalization mechanism (Jones 1999, Kumari 2008). To elucidate the role of Arfó or 

Arfl on APP lysosomal transport, SN56 cells were co-transfected with LAMPl-mRFP or 

Rab5-RFP, HA-PAPP-CFP and fluorescently-tagged versions of dominant-negative 

mutants of Arfl and Arfó (Fig. 8) and the constitutively active mutant of Arfó (Fig. 9). 

We also compared this internalization with the effects of dominant negative dynamin, 

whose activity is required for the endocytosis of cell surface proteins to early endosomes. 

Interestingly, cells transfected with the dominant negative mutant of Arfl showed a



8A
Control

RhoA-T19N
DN

CtBP1/BARS
-S147ADN

PLD2 
-K758R DN

Rac1-T17N
DN

RalA-S28N
DN

Ras1-S17N
DN

Arf1-T31N
DN

Arf6-T27N
DN



58

8B

Figure 8. Effect o f  dominant negative mutants on APP internalization to lysosomes in 
SN56 cells (A) Colocalization of HA-labeled APP (green) with LAMP1 (red) in SN56 
cells transfected with fluorescent protein- tagged dominant negative mutants of GTPases 
(yellow). The colocalized image shows the green and red channel merged, with the 
colocalization of the brightest 2% of pixels overlayed in white. Scale bar = 5 pm. (B) 
Quantification of APP colocalization with LAMP1 at 15 minutes in SN56 cells. Cells 
were transfected with APP-CFP, LAMPl-mRFP and GFP/YFP tagged dominant negative 
mutants of various regulators of endocytosis. Arf6-DN significantly reduced 
colocalization with LAMP1. Arfl-DN significantly increased APP colocalization with 
LAMP1. * denotes significant difference between treatment and control (p<0.05). Each 
bar represents the mean of a least 10 cells imaged in each of 3 separate experiments per 
dominant negative mutant. Error bars represent the standard error of the mean.
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Figure 9. Effect o f Dominant Negative Arfl, Arfó and Dynamin on APP internalization to 
lysosomes (A) Colocalization of HA-labeled APP with LAMP1 in SN56 cells. Scale bars 
= 5 pm. (B) Percent colocalization of APP with LAMP1 at 15 minutes in SN56 cells 
transfected with APP-CFP, LAMP1-RFP and either dominant negative dynamin (K44A) 
or constitutively active Arfó (Q67L). Neither dominant negative dynamin nor 
constitutively active Arfó was able to significantly affect APP colocalization with 
LAMP1. * denotes statistically significant difference from control (p<0.05). 10 cells 
imaged in each of 3 separate experiments (n = 3, 30 cells total). Error bars represent the 
standard error of the mean.
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significant increase in APP co-localization to LAMP1 to 45.8% ± 2.3 (p < 0.05). 

DynK44A-DN reduced APP transport slightly to the lysosome to 28.1% ± 3.6, but this 

was not statistically significant. The constitutively active form of Arf6 was able to 

slightly increase APP co-localization with LAMPl-mRFP (39.7% ± 1.7), but this too was 

not statistically significant. (n=3)

We then investigated the effects of these mutants on the internalization of APP to 

early endosomes marked with Rab5-RFP (Fig. 10A). In these experiments DynK44A- 

DN significantly reduced transport of APP to the early endosóme from 32.7% ± 1.8 to 

12.7% ± 2.4 (Fig. 10B) (p<0.05). The internalization of APP to the early endosóme was 

unaffected at 36.4% ± 2.5 and 34.3% ± 3.0 for the Arf6DN and ArflDN mutants 

respectively (Fig. 10B). This agrees with the literature by showing that, in addition to 

the novel rapid lysosomal internalization pathway, which we find to be a dynamin

independent mechanism regulated by Arf6 while APP is internalized to early endosomes 

in a dynamin-dependent manner, (n = 3)

To demonstrate the functional effect of Arf6DN on APP internalization, we 

performed live cell imaging on cells transfected with HA-PAPP-CFP, LAMPl-mRFP, 

and Arf6DN. Cells were labeled with Zenon-labeled anti-HA antibody on ice for 30 

minutes and then transferred to a heated microscope stage. In these experiments, APP 

appears to collect in large structures that remain at the cell surface and do not fuse with 

LAMPl-mRFP labeled lysosomes (Fig. 11). These findings demonstrate that APP is 

internalized to two distinct pathways: one that is endosome-directed and dependent upon
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Figure 10. APP internalization to early endosomes (A) Colocalization of HA-labeled 
APP with Rab5 at 15 minutes in SN56 cells transfected with dominant negative mutants 
of Arfó, Arfl and dynamin. Scale bar = 5 (am. (B) Percent colocalization of APP with 
Rab5 at 15 minutes. * denotes significant difference between treatment and control 
(p<0.05). Statistics are derived from imaging at least 10 cells imaged in each of 3 
separate experiments. Error bars represent the standard error of the mean.
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Figure 11. Live cell imaging o f SN56 cell transfected with LAMPl-mRFP (red), HA- 
fAPP-CFP (green) and GFP-Arf6-T27N-DN (channel not shown). Cells transfected with 
Arf6-T27N-DN do not rapidly internalize APP to LAMP1 labeled lysosomes. Instead, 
APP remains clustered at the cell surface after 16 minutes of permitted internalization, a 
ring of cell surface APP remains clearly visible, which is in stark contrast to control cells 
(Figure 5B) where almost all APP has been internalized from the surface by the same 
time point. Colocalized pixels are shown in white. Scale bar = 5 pm.
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Dynamin activity and another that is lysosome-direct and is dependent upon Arfó 

activity, (n = 3)

3.6 SiRNA knockdown of Arfl and Arf6 agrees with the effects of dominant 

negative mutants and demonstrates that Arfó is dominant over Arfl in regulating 

rapid APP internalization to lysosomes.

We wanted to confirm the effects of the dominant negative Arfl and Arfó mutants 

using siRNAs and determine, if possible, which is the upstream regulator in the 

trafficking of APP to lysosomes. To study this, we co-transfected SN56 cells with HA- 

(3APP-CFP, LAMPl-mRFP and siRNAs against Arfl and Arfó proteins. As shown by 

western blotting, siRNA concentrations at 300 pmol and 500 pmol reduced the amount of 

Arfó and Arfl proteins by 50% and 52% respectively (Fig. 12B). Representative images 

of siRNA-treated APP internalization studies are presented in Fig. 12A. Internalization 

was quantified in at least 10 representative cells in at least 3 independent experiments 

expressed as mean ± SEM. In these studies, the Arfó siRNA significantly reduced APP 

colocalization with LAMP1 from 35.7% ± 2.1 (control) to 25.8% ± 2.2, while the Arfl 

siRNA significantly increased APP colocalization to 43.6% ± 2.2 (Fig. 12C) (p<0.05). 

These results agree with those observed in cells transfected with dominant negative 

mutants of Arfl and Arfó. When combined, the Arfó and Arfl siRNAs together reduced 

APP internalization to 20.9% ± 2.8. This demonstrates that Arfó is dominant in the 

trafficking and delivery of APP to the lysosome from the cell surface than Arfl (Fig.

12C).
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Figure 12. SiRNA knockdown o f Arfl and Arfó on APP internalization (A) 
Colocalization of APP with LAMP1 at 15 minutes in SN56 cells transfected with siRNAs 
against Arfó and Arfl. Cells transfected with both siRNAs show reduced APP 
colocalization with LAMP1 and a ring of labeled APP at the cell surface. Scale bar = 5 
pm (B) Effective siRNA concentrations were determined through western blotting and 
bands were quantified using ImageJ by normalizing against a-tubulin loading controls, 
n = 3 (C) Percent colocalization of HA-labeled APP with LAMP1 at 15 minutes in SN56 
cells (n = 3, 30 cells total). When both Arfó and Arfl were targeted by siRNAs, there 
was a significant reduction in APP colocalization with LAMP1, suggesting that Arfó 
plays a more important role in APP internalization to LAMP1 than Arfl does. * denotes 
statistically significant differences with control groups (p<0.05). Error bars represent the 
standard error of the mean.
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3.7 Cells transfected with dominant negative Arfl and Arf6 show significantly 

decreased secretion of Ap42 into the culture media.

Having shown that both Arfl and Arf6 can affect the colocalization of APP to the 

lysosome, we wanted to understand the effects of these mutants on APP processing into 

Ap. Cells were transfected with dominant negative mutants of Arfl and Arf6 or 

constitutively active mutant of Arf6 along with HA-pAPP-CFP. The media were 

collected following 3 days of incubation and were analyzed using an ultrasensitive AP42 

ELISA (Invitrogen). Each experiment was performed in triplicate, and the data shown 

represent the Mean ± SEM of 3 independent experiments. Cells transfected with 

dominant negative Arfl and Arf6 showed significant decreases in Ap42 production to 

48.0% ± 4.5 and 70.0% ± 6.9, respectively when normalized to the controls (control = 

100%) (Fig. 13, p < 0.05). In contrast, the Arf6 constitutively active mutation had no 

significant effect (96.0% ± 6.1). (n = 3)

3.8 Cells transfected with dominant negative Arfl show significantly decreased 

secretion of Ap40 into the culture media.

Several studies have highlighted the importance of the Ap42:Ap40 ratio in the 

initiation and progression of Alzheimer’s pathology (Selkoe 2007, Hardy and Selkoe 

2002, Gorman 2008). Seeing as how both Arf6 and Arfl mutants were able to elicit a 

significant decrease in AP42 production, we wanted to determine if they could also affect 

the production and secretion of AP40. SN56 cells were transfected with dominant 

negative mutants of Arfl and Arf6 or constitutively active Arf6 along with HA-pAPP- 

CFP and allowed to incubate for 3 days before collecting the media for analysis using an
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A(340 ELISA kit (Invitrogen). Each experiment was performed in triplicate, and the data 

shown represent the Mean ± SEM of 3 independent experiments. Surprisingly, only cells 

transfected with dominant negative Arfl showed significant decreases in Ap40 (40.0% ± 

9.4) when normalized to controls (control = 100%). Neither the dominant negative 

(82.5% ± 5.4) or constitutively active (83.3% ± 5.4) mutants of Arf6 had any significant 

effect on the secretion of AP40 into the media (Fig. 14). These findings suggest that Arf6 

primarily regulates Ap42 production and secretion whereas Arfl regulates the secretion 

of the APP cleavage products AP40 and Ap42.
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Mutants

Figure 13. Afi42 secretion in SN56 cells. 250,000 cells were plated in 12-well plates and 
transfected with wt-APP, either alone or with the construct shown. Cells were incubated 
for 3 days following transfection and the media was collected and assayed using an Ap42 
ELISA kit (Invitrogen). Both Arfl and Arfó dominant negatives significantly reduced 
Ap42 secretion into the media, with Arfl reducing to a greater extent. * denotes 
significant difference from the control (p <0.05). Three wells were assayed per treatment 
in each of 3 separate experimental replicates (n = 3). Error bars represent the standard 
error of the mean.
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Figure 14. A¡340 secretion in SN56 cells. 250,000 cells were plated in 12-well plates and 
transfected with wt-APP along with the construct shown. Cells were incubated for 3 days 
following transfection and the media was collected and assayed using an Ap40 ELISA kit 
(Invitrogen). Three wells were assayed per treatment in each of 3 separate experimental 
replicates. Error bars represent the standard error of the mean. Only dominant negative 
Arfl was able to significantly reduce A|340 secretion into the media. Neither 
constitutively active nor dominant negative Arfó had any significant effect on Ap40 
secretion. * denotes significant difference from control (p <0.05).
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CHAPTER 4: DISCUSSION

Previous studies in our laboratory suggested that lysosomes may play a significant 

role in APP processing and that APP is transported by a novel rapid trafficking pathway 

directly from the cell surface to the lysosome (Lorenzen 2010). The purpose of this study 

was to identify the mechanism responsible for this pathway and to determine whether it 

has any effect on A|3 production. We approached this problem by fluorescently labeling 

cell surface APP and then following its internalization to fluorescently labeled 

intracellular compartments in SN56 neuroblastoma cells. We showed that APP is rapidly 

transported to the lysosome from the cell surface and that it could be stimulated by the 

binding of antibodies against APP. We screened a panel of dominant negative regulators 

of macropinocytosis for their effect on APP trafficking and Ap production. Of these 

proteins, only Arf6 appeared to decrease APP transport to lysosomes. We then showed 

that Arf6 can regulate Ap42 production but not Ap40, thereby providing more evidence 

supporting our suggested model of lysosomes being responsible for Ap42 generation. 

Looking into possible downstream targets of Arf6, we found that a possible candidate, 

Arfl, appeared to increase APP colocalization to lysosomes and may be important in 

regulating Ap42 and Ap40 secretion.

4.1 Mechanisms of APP Internalization

Several previous studies have demonstrated strong evidence for APP being 

internalized through a clathrin and dynamin dependent pathway into early endosomes 

(Cossec 2010, Sapirstein 1994, Ferreira 1993). As a result, it was widely believed that
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early endosomes were primarily responsible for APP processing into Ap. In this study, 

we show that in addition to being trafficked to early endosomes, APP is also trafficking 

from the cell surface directly to lysosomes at a very high rate through a pathway that 

bypasses endosomes entirely.

In light of these findings and those from previous studies, we suggest a model 

whereby APP participates in multiple trafficking pathways that allow it to be delivered to 

different amyloidogenic processing centers within the cell. One of these internalization 

pathways appears to be dependent upon both clathrin and dynamin activity. According to 

this pathway, cargo internalized from the cell surface via clathrin-coated pits are 

trafficked to the early endosomes, before being sorted and targeted to late endosomes and 

lysosomes for further sorting, processing or degradation (Doherty 2009). This pathway 

was inhibited by over expression of dominant negative dynamin-K44A as predicted. 

Other authors have provided evidence for lipid raft based internalization, suggesting 

another possible internalization pathway for APP (Schneider 2008).

Our observations suggest a third possible pathway for APP internalization. Live 

cell internalization studies revealed that direct lysosomal trafficking of APP occurs in 

vesicles that appear too large to be typical clathrin-dependent endocytic vesicles. Of the 

known endocytic pathways, only phagocytosis and macropinocytosis use very large 

(0.2pm - 10pm) compartments (Swanson 2008, Kerr 2009, Kumari 2010). Phagocytosis 

is responsible for the engulfment of large particles by receptor-activated membrane 

extensions which adhere directly to the surface of the particle (Swanson 2008, Kumari
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2010). On the other hand, macropinocytosis results from the extension of membrane 

processes to engulf large volumes of extracellular fluid without the requirement of an 

extracellular article (Swanson 2008, Kerr 2009, Kumari 2010). Macropinocytosis is 

usually simulated by the binding a ligand onto cell surface receptor (typically growth 

factor receptors), but can occur constitutively (Sallusto 1995, Kerr 2009). 

Macropinosomes have also been previously described to preferentially fuse with 

lysosomes rather than endosomes (Hewlett 1994). Although often thought of as a 

function of immune cells, macropinocytosis has been reported in neuronal cells, where it 

acts as a high volume membrane retrieval system for growth cone extension/collapse and 

maintenance (Bonanomi 2008, Kabayama 2009). Our observation of APP transport to 

the lysosome appears consistent with macropinocytosis.

4.2 Intracellular APP trafficking is regulated by Arfó and Arfl

Our observations suggest that a mechanism reminiscent of macropinocytosis 

could be responsible for regulating the rapid internalization of APP to lysosomes. This 

led us to investigate a number of small GTPases that have been found to regulate 

clathrin- and dynamin-independent mechanisms of endocytosis. From our screening of a 

panel of possible candidates, we found strong evidence suggesting that rapid APP 

trafficking to lysosomes is sensitive to Arfó and Arfl activity.

Arfó has been implicated in a wide variety of cellular functions including clathrin- 

dependent and independent internalization, endosomal sorting and recycling, actin 

remodeling (D'Souza-Schorey 2006, Jaworski 2007) and the generation of
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macropinosomes (Brown 2001). Arfó has also been associated with clathrin-independent 

endocytosis of major histocompatability complex (MHC class 1) M2 muscarinic 

acetylcholine receptors, pi integrins (D'Souza-Schorey 2006, Jaworski 2007), and the 

prion protein (Kang 2009). To our knowledge, there is only one other report 

documenting a relationship between Arfó and Ap production (Sannerud 2011). In this 

study in HeLa cells, BACE was found to internalize into clathrin-independent 

compartments that eventually fused with APP-containing endosomes to accomplish P- 

cleavage. The trafficking of BACE was reduced by constitutively active Arf6-Q67L 

along with production of total Ap, while the Arf6-T27N bearing a dominant negative 

mutation increased Ap secretion. These results are in direct contrast to ours, in that we 

found Arf6-Q67L did not affect the levels of either AP40 or Ap42, whereas Arf6-T27N 

was only able to reduce levels Ap42. It is not clear why these studies differ, but 

macropinocytosis fulfills many cell type-specific functions, and it is likely that Arfó 

might function differently in neuronal cells than in HeLa cells.

Arfó is an interesting protein because it may act through a large number of 

potential downstream effectors, which may provide a number of potential therapeutic 

targets that can be exploited to interfere with AP generation and secretion. For example, 

Arfó is known to regulate the production of PIP2, a lipid cofactor that has been shown to 

be able to interact with actin-remodeling regulatory proteins, such as PLD, as a secondary 

messenger. A study by Brown et al (2001) highlights the ability of Arfó to regulate 

macropinosome formation through PIP2. Oliveira et al (2010) suggested that 

phospholipase D2 could be involved in the progression and pathogenesis of Alzheimer’s
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disease in the presence of Ap. PLD has also been implicated in the trafficking and APP 

processing function of presenilinl, the functional component of the y-secretase complex 

(Liu 2009, Cai 2006). Additionally, Arf GTPases can interact with PLD1 and PLD2 with 

the help of accessory proteins (Hammond 1995, Sung 1999). All of these studies suggest 

a possible link between Arf GTPases, PLD, PIP2 and APP trafficking. However, studies 

in our SN56 cell model with dominant negative PLD2 did not show any significant effect 

on the rapid trafficking of APP to lysosomes. Our proposed future studies will examine 

the potential roles of PLD 1 and PIP2 in APP trafficking.

Arfl, in contrast to Arfó, is thought to primarily regulate trafficking vesicles from 

the Golgi apparatus to the cell surface and internal compartments. It has been suggested 

to play a role along with Arfó in other types of dynamin-independent internalization 

mechanisms, but is not generally thought to function in macropinocytosis (Beemiller 

2006, Kumari 2008, Kumari 2010). In addition, Arfl is known to play a role in secretion 

(Zakharenko 1999, Fensome 1996, Jones 1999) and in membrane insertion into the 

plasma membrane so that phagocytosis can occur (Braun 2007). Because of its global 

effects on trafficking out of the Golgi apparatus, it is not surprising that Arfl would 

reduce all forms of Ap secretion by directly reducing the amount of APP leaving the 

Golgi apparatus. Our experiments demonstrating the decrease in AP42 and AP40 levels 

coupled with the apparent increase in trafficking of APP to the lysosome resulting from 

the inhibition of Arfl activity suggests that Arfl is preventing exit of APP/Ap from the 

lysosome by inhibiting membrane trafficking or secretion.
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A study by Jones et al (1999) showed that Arfl could regulate lysosomal 

secretions in neutrophils through its ability to activate PLD. Several other studies have 

suggested a link between lysosomal and Golgi secretion pathways to the activation of 

Arfl, PLD and the regulation of PIP2 production. A study by Zakharenko (1999) showed 

that neurotransmitter secretion along an axon is sensitive to Arfl activity, thereby 

highlighting a possible role of Arfl in regulating the trafficking of secretory vesicles to 

the plasma membrane in neuronal cells. Corroborating the results of Jones et al (1999), a 

previous study by Fensome et al (1996) showed that increasing either Arfl or 

phosphatidylinositol transfer protein (PITP) activity in HL60 neutrophils was able to 

restore lysosomal secretion, suggesting a role for both proteins in the regulation of 

lysosomal secretion. Both Arfl and PITP have been linked to PIP2 synthesis (Jones 

1999). The convergence of both Arfó and Arfl signaling pathways on the production and 

function of PIP2 makes PIP2 a very appealing target for future research as a possible 

regulator of APP trafficking and Ap production.

4.3 The Importance of the functions of APP and Ap

In this study, we show that there are a number of possible ways in which APP can 

be internalized into the cell for processing. It is interesting to speculate as to why 

neuronal cells have developed multiple mechanisms to ensure robust APP processing. 

Despite its obvious neurotoxic potential, several studies have suggested that APP and Ap 

are essential to healthy neuronal physiology (Puzzo 2008). Haass et al (1992) 

demonstrated that Ap is endogenously produced in primary neuronal cultures. 

Furthermore, it was shown that Ap producing cells were morphologically normal and that
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A(3 production is a normal physiological process. Their findings are consistent with the 

fact that Ap can be found in the cerebrospinal fluid and plasma of normal healthy humans 

(Seubert 1992), suggesting that Ap is produced throughout the body. A study by Plant et 

al (2003) demonstrated that inhibition of either y- or P-secretase activity, and thereby 

inhibition of Ap production, was toxic to neuronal cells. In addition, they show that 

neuronal toxicity also resulted when Ap was bound and neutralized by anti-AP 

antibodies. Studies have shown that exogenous application of Ap fragments of various 

lengths was not only able to rescue neurons from cell death (Plant 2003), but was also 

able to help promote neurite outgrowth and the development of hippocampal long-term 

potentiation (Puzzo 2008). A study by Gralle et al (2009) suggested that the shedding of 

the sAPPa ectodomain is essential to neuroprotection due to its ability to disrupt naturally 

occurring APP dimers. They also suggest that APP could act as an important surface 

receptor for signal transduction pathways. Certainly, the consensus of these studies 

suggests that APP must have an essential role in the regulation and maintenance of 

normal cellular physiology. On the other hand, the newfound physiological importance 

of APP and Ap in healthy individuals may make developing an AP-depleting strategy 

against Alzheimer’s disease rather difficult.

4.4 Initiation of Rapid APP Internalization to Lysosomes

In order to assess the effect of the antibodies used to label APP, we devised an 

experiment based on FlAsH labeling APP with a small biarsenical-fluorescein reagent 

that would be too small to crosslink cell surface proteins. In the absence of anti-HA 

antibody, APP transport to the lysosome still occurred, but APP appeared to move
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preferentially to the early endosome. In contrast, antibody binding markedly stimulated 

APP transport to the lysosome. Several other reports have also found that binding of 

APP by an antibody at the cell surface triggers endocytosis. This has been suggested to 

result from APP cross-linking (Ehehalt 2003, Schneider 2008). Interestingly, these 

papers focused on lipid rafts and made use of APP bearing the Swedish mutation, which 

we have found to not be able to transit directly to the lysosome (Lorenzen 2010). This 

implies that these authors may have been examining yet another APP internalization 

pathway that may be specifically linked to FAD related mutations. In agreement with our 

studies, APP crosslinking/binding by an antibody has reported to stimulate intracellular 

kinases and increase Ap42 (but not Ap40) secretion (Sondag and Combs 2006). Another 

potential mechanism is that antibody binding could stabilize APP dimers, which has also 

been proposed to increase Ap42 production (Munter 2007, Gorman 2008, Gralle 2009, 

Richter 2010). In their studies, Munter and Richter demonstrated that AP42 levels were 

increased when APP homodimerized at the cell surface via its series of GxxxG 

dimerization motifs. Consequently, disruption of these homodimers with chemical 

compounds (Richter 2010) or even with sAPPa (Gralle 2009) was neuroprotective in that 

it was able to significantly reduce Ap42 production. These results support the idea that 

APP can respond to the binding of a ligand at the cell surface, and may function as a cell 

surface receptor whose stimulation could preferentially stabilize APP homodimers, 

resulting in increased AP42 production.
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4.5 Effects on Ap40 and Ap42 Production and Secretion

Having shown that dominant negative mutations in both Arfl and Arfó were able 

to have a significant effect on APP delivery to the lysosomes, we asked whether these 

changes in APP trafficking could have a significant effect on the production and secretion 

of AP42 and AP40. AP42 is the most neurotoxic of the Ap species in that it is able to 

form amyloid fibrils much more easily than Ap40 (Selkoe 2007, Hardy and Selkoe 2002, 

Gorman 2008). A study by Murray et al (2009) demonstrated through mass spectrometry 

that Ap40 has neuroprotective properties in that it is able to inhibit Ap42 oligomerization 

into amyloid fibrils. Ap ELISA analysis of the media of cells transfected with either 

dominant negative mutations of Arfl or Arfó revealed that disruption of Arfl activity 

was able to significantly decrease secretion of both AP42 and Ap40, whereas the 

dominant negative Arfó only showed significant decreases in levels of Ap42. The 

importance of these results is three-fold. Firstly, it demonstrates that this rapid Arfó- 

regulated APP trafficking pathway to the lysosome primarily controls AP42 production 

and not AP40. By targeting the pathway that regulates the production and secretion of 

the neurotoxic Ap42 species, it may become possible to specifically reduce its production 

in order to slow down or even reverse the pathology of Alzheimer’s disease. Secondly, 

because endosomal trafficking was not affected by Arfó mutants, these results show that 

APP is being processed to Ap42 in the lysosome. Lastly, because Arfl appeared to 

increase APP trafficking to the lysosome, our results provide evidence that support 

A rfl’s role in lysosome/endosome secretion pathways.
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4.5.1 Importance of Lysosomes in APP Processing

The production of A[342 in lysosomes has broad implications for Alzheimer’s 

disease pathogenesis as the lysosome may be an initial site where the seeding of insoluble 

Ap occurs (Pasternak 2004, LaFerla 2007, Tam 2011). A(342 fibrilogenesis is known to 

be nucleated by both lysosomal gangliosides and the acidic lysosomal pH of 4.5 

(Yanagisawa 1995, McLaurin, 1996, Inouye 2000, Su 2001, Waschuk 2001). These 

developing aggregates have been shown to disrupt the structures of neurons and synapses 

(Takahashi 2002) or cause lysosomal rupture leading to cell death (Yang 1998, Ji 2002). 

The intracellular accumulation of A(342 has been demonstrated in transgenic mice 

(Takahashi 2004, Knobloch 2007, Oakley 2006, Oddo 2006, Yan 2009, Billings 2005) 

and human neuropathological material where it appears in lysosomes before the 

appearance of plaques (LaFerla 1997, Gouras 2000, Gyure 2001, D'Andrea 2002, Cataldo 

2004). The large amounts of active lysosomal enzymes in amyloid plaques also suggests 

that these extracellular deposits of amyloid originated in lysosomes (Cataldo 1990, 

Cataldo 1991, Cataldo 1994, Mach 2002).

4.5.2 Current and Future Therapeutic Strategies for Alzheimer’s Disease

Several studies suggest that an equilibrium exists so that amyloid production and 

clearance are balanced so as to maintain healthy neuronal physiology; whilst preventing 

neurotoxic Ap42 oligomers from aggregating (Hardy and Selkoe 2002). However, when 

the average individual ages (assuming they do not harbor a FAD mutation), the 

equilibrium may become offset due to either an increase in AP42 production or a failure 

in the body’s capacity to efficiently clear Ap as it is being made (Selkoe 2002). In
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accordance with the amyloid cascade hypothesis, conditions which cause a surplus of 

Ap42 to be produced result in an increased potential for neurotoxic Ap oligomers to form 

(Hardy and Selkoe 2002). Current strategies for treating Alzheimer’s disease are 

primarily concerned with inhibiting Ap production or to increase its clearance, y- 

secretase inhibitors disrupt amyloid production by preventing Ap release resulting from 

y-cleavage. However, as demonstrated by Plant et al (2003), the targeting of y-secretase 

can elicit neurotoxic effects due to its influence on the processing of other essential y- 

secretase substrates, such as Notch (Strooper 2003), and therefore limiting the practical 

usage of this strategy. Another strategy is to promote alpha cleavage, thereby inhibiting 

amyloid release by increasing the production of the shorter, more soluble APPa cleavage 

fragment. One promising approach is to increase clearance of soluble Ap oligomers and 

insoluble plaque deposits from the intercellular space by targeting them with anti-AP 

antibodies that enable microglia to facilitate is removal (Bard 2000, Wilcock 2003).

Our findings suggest that Arfó and Arfl, or their downstream signaling proteins, 

could potentially be key therapeutic targets for the treatment of Alzheimer’s disease in 

the near future. Instead of completely halting the production of AP, we could reduce the 

rate at which AP42 is produced. We could accomplish this by interfering with the key 

APP trafficking pathway that controls the rate at which APP arrives to the lysosomes for 

specific processing into AP42. This would allow clearance mechanisms to stay on par 

with amyloid production, thereby preventing progression of AD, all the while ensuring 

the beneficial effects associated with maintaining low, physiologically acceptable levels 

of Ap. In agreement with this strategy, studies in mice have shown that when amyloid



80

clearance overtakes excessive Aß production, there was a complete reversal in 

Alzheimer’s pathology when Aß concentrations returned to endogenously acceptable 

levels (Schenk 1999, Hartman 2005, Spires-Jones 2009).

4.6 Conclusions

This study provides evidence for an important mechanism that regulates the 

production and secretion of AP42 in neuronal cells. Previous studies in our lab first 

revealed a completely novel trafficking pathway that delivered APP from the cell surface 

directly to the lysosome. Upon further investigation, we demonstrated that this rapid 

APP trafficking mechanism works independently from the early endosome-directed 

clathrin and dynamin-dependent endocytosis pathway. We also demonstrate that this 

rapid trafficking pathway occurs endogenously in mouse primary cortical neurons. Our 

observations highlight the possible role of Arfó in regulating this rapid trafficking 

pathway. Disruption of Arfó activity was able to significantly decrease secretion of the 

more neurotoxic Ap42 species, but not Ap40. We also provide evidence suggesting a 

role for Arfl in regulating the secretion of Ap. Finally, we provide evidence which 

suggests that the rapid internalization of APP to lysosomes is inducible through the 

application of high antibody concentrations during surface labeling. We suggest a model 

whereby factors that increase APP clustering at the cell surface causes the preferential 

transport of APP to the lysosome through an Arfó regulated mechanism. This may be 

responsible for the production of a significant proportion of the total amount of Ap42. 

Alternatively, unclustered APP could be sorted to the early endosomes through a
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dynamin-dependent mechanism, where APP could be preferentially cleaved into the 

Ap40 form over Ap42. Secretion of either AP40/42 could be specifically regulated by 

Arfl or one of its many downstream signaling partners (Fig. 15). This work reinforces 

the idea that APP might function as a receptor for as-of-yet undefined ligands, and 

provides further support for the idea of the lysosome as key a source of Ap42. Future 

studies will examine the role of downstream effectors of Arfó on Ap production. We 

hope these enlightening findings will enable us to better understand the dynamics and 

mechanics of APP trafficking and Ap production. Exploring this mechanism in greater 

detail may uncover a promising therapeutic target to be used in the treatment of 

Alzheimer’s disease.
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APP clustering

Figure 15. Proposed model o f APP trafficking and processing. Clustering of APP 
induces its sorting into the Arf6-regulated rapid internalization pathway to the lysosome. 
Rapid delivery to lysosomes may preferentially cause APP to be processed into A042. 
Alternatively, APP can be internalized through a dynamin-dependent pathway to early 
endosomes where it could be preferentially processed into Ap40 over Ap42. Secretion of 
APP cleavage products is regulated by Arfl, since inhibition of Arfl activity locks APP 
and Ap in endosomes and lysosomes. EE = early endosome. LE = late endosome. L = 
lysosome. Red bars = APP.
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