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O R I G I N A L A R T I C L E
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Abstract
The developmental trajectory of the primate brain varies substantially with aging across subjects. However, this ubiquitous
variability between individuals in brain structure is difficult to quantify and has thus essentially been ignored. Based on a
large-scale structural magnetic resonance imaging dataset acquired from 162 cynomolgus macaques, we create a
species-specific 3D template atlas of the macaque brain, and deploy normative modeling to characterize individual
variations of cortical thickness (CT) and regional gray matter volume (GMV). We observed an overall decrease in total GMV
and mean CT, and an increase in white matter volume from juvenile to early adult. Specifically, CT and regional GMV were
greater in prefrontal and temporal cortices relative to early unimodal areas. Age-dependent trajectories of thickness and
volume for each cortical region revealed an increase in the medial temporal lobe, and decreases in all other regions. A low
percentage of highly individualized deviations of CT and GMV were identified (0.0021%, 0.0043%, respectively, P < 0.05, false
discovery rate [FDR]-corrected). Our approach provides a natural framework to parse individual neuroanatomical
differences for use as a reference standard in macaque brain research, potentially enabling inferences regarding the degree
to which behavioral or symptomatic variables map onto brain structure in future disease studies.

Key words: normative model, individual differences, brain atlas, cortical thickness, cynomolgus macaque
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Introduction
Nonhuman primates have been widely employed to model a
variety of neurological and psychiatric conditions in humans
thanks to their phylogenetic, social behavioral, and central ner-
vous system developmental proximity (Capitanio and Emborg
2008). Recent progress in gene editing methods and stem cell
technology, coupled with successes in germline transmission of
transgenes and cloning techniques in macaque monkeys (Yang
et al. 2008; Sasaki et al. 2009; Liu et al. 2016; Chen et al. 2017;
Liu et al. 2019; Qiu et al. 2019), has raised tantalizing hopes
and expectations in boosting our understanding of physiological
functions that are unique to primates and developing treat-
ments for human diseases (Belmonte Juan Carlos et al. 2015;
Jennings et al. 2016; Zhan et al. 2020). Despite these advances
and forthcoming potential, however, the massive adoption of
primate disease models seems unlikely to be imminent, con-
sidering that the first report of transgenic monkeys was nearly
2 decades ago (Chan et al. 2001). In addition to foreseeable
challenges, including long generation time of primate species,
long-term stable investment, and the paucity of resources for
expert and fast knowledge, the experimental creation of trans-
genic primates usually produces a relatively limited number of
subjects, which poses a new challenge for the research paradigm
of group comparison. A small sample size accompanied by non-
trivial individual variability and poor statistical power severely
jeopardizes accurate interpretation of the results obtained from
case-control designs that neglect interindividual differences and
focus on group differences. This strategy essentially describes
a group-averaged patient and hence refrains from mapping the
heterogeneous disease phenotype at the level of the individual
(Foulkes and Blakemore 2018; Seghier and Price 2018), even
though case-control designs have overwhelmingly dominated
basic and clinical research settings thus far. Therefore, charac-
terizing individual structural and functional variations in the
primate brain becomes an important prerequisite to integrally
investigate monkey models of human diseases, which lays the
foundation for establishing a new framework toward precision
medicine.

The normative model has recently emerged as a promising
pathway toward understanding the biological variation of brain
disorders in humans (Wolfers et al. 2018; Zabihi et al. 2018;
Wolfers et al. 2019), allowing for the detection and mapping
of both structural and functional abnormalities individually.
Unlike the case-control design which assumes that patient and
control groups are distinct entities, the normative model can
be understood as a statistical analysis that characterizes demo-
graphic or behavioral variables to a quantitative brain readout.
Similar to the growth chart used in pediatric medicine, in which
a child’s height is compared with the normative distribution for
height at a particular age, a normative model of the monkey
brain can be utilized to quantify neuroanatomical heterogeneity
within the population distribution of macaque monkeys so that
deviations can be reliably evaluated. In doing so, a large healthy
sample for whom high-quality data are available is required
because an alteration in an individual monkey is considered
an extreme value within this distribution. To date, there exists
a very limited number of studies based on a large number of
participants (McLaren et al. 2009; Frey et al. 2011; Rohlfing et al.
2012; Seidlitz et al. 2018) so that no such normative model of
macaque monkeys including rhesus and cynomolgus macaques
is available.

In this study, we described a high-resolution magnetic reso-
nance imaging (MRI) dataset from a large cohort of cynomolgus
macaques and constructed a new population-based in vivo brain
template for cynomolgus macaques using a validated template-
creation process (Avants et al. 2010; Seidlitz et al. 2018). Mean-
while, we created tissue probability maps and regional label
maps based on the D99 parcellation scheme (Reveley et al.
2017). In addition, we provided a 3D printed template as an
example application for guiding stereotactic operations. As an
independent validation, we compared the anatomical details
of selected sections of the MRI atlas with histological maps.
With this relatively large healthy population, we applied a nor-
mative modeling approach to estimate the age-related trajec-
tory of brain structure and to predict thickness and volume
variations for individuals. Thus, we statistically quantify and
cross-validate deviations in individual cynomolgus monkeys
that parse interindividual heterogeneity within the present pop-
ulation ranging from juveniles to young adults.

Materials and Methods
Animal Preparation

Nonhuman primate data were acquired through separate stud-
ies covered by animal research protocols approved by relevant
Institutional Animal Care and Use committees. A total of 162
cynomolgus macaques (Macaca fascicularis) underwent MR scan-
ning at the Institute of Neuroscience (n = 29) and Kunming Insti-
tute of Zoology (n = 133), Chinese Academy of Sciences. These
monkeys were juveniles, adolescents, and young adults with age
ranging between 2 and 9 years at the time of data acquisition
(3.5 ± 1.8 years, 72 females and 90 males).

A complete description of experimental details can be found
in our previous studies (Wang et al. 2013; Lv et al. 2016; Zhang
et al. 2019; Cai et al. 2020) and is briefly summarized here.
Before each MRI scanning session, anesthesia of the animals was
inducted with an intramuscular injection of ketamine (10 mg/kg)
and atropine sulfate (0.05 mg/kg) and maintained with the low-
est possible concentration of isoflurane (ranged 0.8–1.5%). Local
anesthetic (5% lidocaine cream) was applied around the ears to
block peripheral nerve stimulation. The anesthetized animals
were placed in a custom-built MRI-compatible stereotaxic frame
before being inserted into the center of the scanner bore. For
monkeys scanned at the Kunming Institute of Zoology, anesthe-
sia was maintained with pentobarbital sodium (10–16 mg/kg).

MRI Acquisition

MRI data from the Institute of Neuroscience were acquired
on a Siemens Tim Trio 3T scanner (Erlangen, Germany)
running with an enhanced gradient coil insert (AC88; 80 mT/m
maximum gradient strength, 800 mT/m/s maximum slew rate).
A custom-made 8-channel phased-array transceiver coil was
used. High-resolution T1-weighted anatomical images were
acquired using an MPRAGE sequence (TR = 2300 ms; TE = 3 ms;
inversion time = 1000 ms; flip angle = 9◦; acquisition voxel
size = 0.5 × 0.5 × 0.5 mm3). Five to 7 whole-brain anatomical
volumes were acquired and subsequently averaged for high
signal-to-noise ratio. MRI data from the Kunming Institute of
Zoology were acquired on a United Imaging UMR 790 3T scanner
(Shanghai, China) using a 12-channel knee coil. High-resolution
T1-weighted anatomical images were recorded with the same
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setting as the data acquired at the Institute of Neuroscience.
Five to 7 sets of whole-brain images were acquired.

SMI-32 Immunohistofluorescence and Microscopy

To validate anatomical details shown in the present MRI-based
brain template, we conducted a histological analysis of 1 adult
male monkey brain (7 kg). The animal was deeply anesthetized
with an overdose of ketamine (30 mg/kg) and perfused tran-
scardially with cold 0.9% NaCl (pH = 7.4), followed by cold 4%
paraformaldehyde in 0.01 M phosphate buffered saline (PBS).
The removed brain was postfixed for 3 days in the same fixative
solution and dehydrated sequentially in 15% and 30% sucrose
for over 1 week. Coronal and tangential brain slices (50 μm) were
sectioned with a freezing microtome (Leica CM1950, Germany).

The primary antibody used for immunohistofluorescence
was anti-SMI-32 antibody (1:200, cat# 801701, Biolegend), which
was used to visualize neuronal cell bodies, dendrites, and
thick axons. Slices were incubated in a blocking solution (PBS,
5% BSA, and 0.3% Triton X-100) at room temperature for 2 h
and then incubated overnight with primary antibody (PBS, 3%
BSA, and 0.3% Triton X-100) at 4◦C. After triple washes in PBS,
secondary antibodies were applied for 3 h at room temperature
(Secondary antibody, Goat anti-Mouse IgG, Alexa Fluor 594 [1:
500], cat# A11032, Thermo Fisher Scientific). Images of slices
were acquired on a high throughput microscope (Olympus
VS120, Olympus, Japan) with a U Plan Super Apo ×10 objective
(N.A. = 0.4) at a resolution of 0.65 μm/pixel.

Template Creation

The main steps for the template creation process including tis-
sue segmentation and surface generation are shown in Figure 1.
For each animal, the first acquired T1-weighted image was
selected as a reference and the remaining images from that
animal were aligned to it and then averaged to obtain the
motion-corrected images using FMRIB’s Linear Image Registra-
tion Tool in FMRIB Software Library (FSL) (http://www.fmrib.o
x.ac.uk/fsl/) (Jenkinson et al. 2002) (Fig. 1A). We applied inten-
sity bias correction for field inhomogeneity to each motion-
corrected image using CMTK’s (http://nitrc.org/projects/cmtk/)
mrbias tool (Likar et al. 2001) (Fig. 1A). All images were then
resampled from 0.5 to 0.25 mm isotropic resolution, aligned to
1 monkey using a rigid-body transformation, and averaged to
form the initial target image (Fig. 1B). Whole-head images were
used to prevent the introduction of any artificial brain-skull
boundaries and ultimately provide a more accurate template.
In order to create an optimal population-averaged template
that is unbiased toward any specific individual and does not
require user input, we used a symmetric group-wise normal-
ization template building algorithm provided by ANTs software
(http://stnava.github.io/ANTs/) (Avants et al. 2010; Avants et al.
2011; Love et al. 2016; Seidlitz et al. 2018) (Fig. 1B). The final
template was at 0.25 mm isotropic resolution. The whole-head
template was skull-stripped combining automated (FSL Brain
Extraction Tool [BET]) and manual skull-stripping methods to
obtain the brain-only template (Fig. 1B). The origin (x = 0, y = 0,
z = 0 mm) of the template was set at the center of the anterior
commissure, with the center of the posterior commissure lying
on the same axial plane as the anterior commissure (z = 0 plane)
(Fig. S1). The longitudinal fissure was aligned in the midsagittal
plane (x = 0 plane). Images are stored in “RAS” orientation, where
x-coordinates increase from left to right direction, y-coordinates

increase from posterior to anterior direction, and z-coordinates
from inferior to superior. In order to label this cynomolgus tem-
plate, we warped the D99 template brain (Saleem and Logothetis
2006; Reveley et al. 2017) to the current template space using
a symmetric normalization (SyN) algorithm (Avants et al. 2008)
in ANTs, then applied the diffeomorphic transformation to the
digital parcellation map (Fig. 1B).

Tissue probability maps represent the probability that a voxel
belongs to a given tissue class, either gray matter (GM), white
matter (WM), or cerebrospinal fluid (CSF). Brain masks were
created using BET tool in FSL, then manually edited to obtain
improved skull-stripped brains. For each animal, its bias-field
corrected and manually skull-stripped T1-weighted image was
segmented into 3 tissue compartments (CSF; GM; WM) using
FMRIB’s Automated Segmentation Tool within FSL (Zhang et al.
2001). The segmentation maps were then projected to the cur-
rent template space using the SyN algorithm and then aver-
aged to obtain the final maps (Fig. 1C). In addition, the tissue
probability map of GM of each animal was used to calculate
the regional GM volume (GMV). Each GM map was registered
to the current template space and then modulated to preserve
the regional volumetric information of GM within a voxel. This
was done by multiplying the intensity value of each voxel in
the segmented images by the Jacobian determinants (nonlinear
components only) that were derived from the spatial registra-
tion process. Afterwards, images were smoothed with a 2-mm
isotropic Gaussian kernel.

The template GM and WM surfaces were generated from the
corresponding GM and WM segmentation maps (thresholded
and manually edited) using AFNI’s IsoSurface program (https://a
fni.nimh.nih.gov/afni/) (Cox 1996) and viewed within SUMA
software packages (https://afni.nimh.nih.gov/suma/) (Saad and
Reynolds 2012) (Fig. 1D). The GM surface was converted to
a Standard Tessellation Language file, which is compatible
with many software controllers for 3D printers using 3D
slicer (https://www.slicer.org/) (Fedorov et al. 2012). Here we
3D-printed the GM surface of the template using A9 3D
printer (JG AURORA; http://www.jgew3d.com/). To assess the
morphological variability across all monkeys, we calculate
the mean positional difference (MPD) image (Frey et al. 2011;
Calabrese et al. 2015; Seidlitz et al. 2018) by averaging the mean
diffeomorphic warp vector fields outputted during the template
creation process. The MPD represents the average distance that
each voxel from each monkey brain had to be warped in order
to match corresponding locations in the average brain.

Cortical Thickness Estimation

The CT of each subject was estimated using the diffeomorphic
registration-based cortical thickness (DiReCT) method imple-
mented in ANTs (Das et al. 2009), which exploits tissue proba-
bilistic maps to identify a maximum likelihood correspondence
between the WM surface and the outer GM surface. DiReCT
is a reliable volume-based technique for estimating voxel-
and regional-wise thickness information, which yields similar
results to using surface-based algorithms (Tustison et al. 2014).

Age Trajectory of Normative Structural Variations

The tissue volumes of GM, WM, and CSF (corrected for individual
brain size) were calculated from the corresponding partial vol-
ume maps. The total brain volume was calculated by summing
up these 3 partial volume maps in the native space. The mean
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Figure 1. Pipeline of the cynomolgus monkey template creation. (A) Preprocessing. T1-weighted images of the brain were collected from 162 cynomolgus monkeys. A

set of 5–7 MRI volumes were obtained from each subject. All images were aligned and subject to motion correction, intensity bias correction before being averaged
within 1 subject. (B) Template creation. A symmetric group-wise normalization template building algorithm was applied to the preprocessed images to obtain the
whole-head template. The whole-head template was then skull-stripped manually to obtain the brain-only template. The D99 digital parcellation was warped to the
current template space for cortical labeling. (C) Generating tissue probability maps. The skull-stripped T1-weighted images were segmented, reformatted, and averaged

to obtain tissue probability maps. (D) Surface generation. The segmented GM and WM masks and the reformatted parcellations of the label map were used to create
the surface files. 3D-printed GM surface is also presented. (E) Cortical thickness. Cortical thickness of the present template was calculated for next-step analysis.

CT of the whole brain was estimated by averaging the voxel-wise
CT across the brain. We then developed a normative model by
training a Gaussian process regression (GPR) (Rasmussen and
Williams 2006) on our cynomolgus macaque cohort aged 2–
8 years (one 9-year-old monkey was excluded from this analysis)
and used age as a covariate to predict brain measures (Marquand
et al. 2016; Wolfers et al. 2018). Briefly, GPR is a Bayesian nonpara-
metric interpolation method that yields coherent measures of
predictive confidence in addition to point estimates (Rasmussen
and Williams 2006). This normative model can be used to predict
CT or volume and associated predictive uncertainty for each
subject. The contours of predictive uncertainty can then be used
to model centiles of variation within the cohort. The effect of sex
on brain structure was regressed out of the input data. Further-
more, we conducted a leave-one-out cross-validation (LOOCV)
procedure for the training process to make predictions for that
unseen individual. The performance on unseen data samples
was assessed using Pearson’s correlation between the measured
and predicted values of biological measures (P < 0.05, false dis-
covery rate [FDR]-corrected) and the normalized mean squared
error (NMSE). The NMSE was defined as the mean squared error
divided by the variance in the response variables (Marquand
et al. 2016; Scheinost et al. 2019). The relationships between
different structural measures were explored using Pearson’s
correlation analysis (P < 0.05, FDR-corrected).

For each subject, the mean CT and GMV of each cortical brain
region were extracted from the normalized voxel-based CT map

and GMV map and mapped onto the surface. The cortical label
was adopted from the D99 parcellation map which defined 146
cortical regions for each hemisphere. We constructed normative
models of CT and regional GMV for each brain region using GPR,
which was further used to predict the unseen data samples
by LOOCV (P < 0.05, FDR-corrected). We then partitioned the
cortex into developmental modules consisting of brain regions
that showed synchronized maturational change according to the
annual rate of thickness or volume change. Six developmen-
tal modules were identified: monotonically linear decrease/in-
crease, monotonically nonlinear decrease/increase, and non-
monotonic net decrease/increase.

Estimating Regional Deviations for Each Subject

Using the normative modeling approach, each subject can be
placed within the normative range, thus allowing for the char-
acterization of differences between individuals in relation to the
healthy range. Individual differences in CT and GMV at each
brain region were evaluated by adopting a region-specific Z-
score (Marquand et al. 2016; Wolfers et al. 2018), which was
defined as the measured structure of each cortical region in
each subject minus the prediction divided by the square root
of the pooled variance (the predicted variance and the variance
estimated from the population distribution). This provides a
statistical estimate of how much individuals deviate from the
healthy regime at each region. For each subject, a subject-level
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Z-score map was derived which quantifies the deviations of
structure across the whole brain. A statistical threshold for indi-
vidual deviation maps was determined at |Z| > 3.3 (i.e., P < 0.001),
and hence extreme deviations from the normative model were
defined correspondingly. At the single subject level, the FDR was
applied for correction of multiple comparisons and a corrected
threshold P < 0.05 was considered to be statistically significant.

To estimate the regional deviation for each subject, all
extreme deviations were combined into a score which rep-
resented the percentage of extremely deviated regions for
each subject, expressed relative to the total number of regions
([the number of deviating regions/the total number of cortical
regions] × 100% for each individual). To measure the extent
of deviations spatially, we created individualized maps and
calculated the region-wise overlap among subjects. To construct
a subject-level atypicality score, we estimated a summary
score for each participant capturing the individual’s largest
deviation from the typical pattern using extreme value statistics
(Marquand et al. 2016; Zabihi et al. 2018). We employed extreme
value statistics to summarize the degree of abnormality by
estimating a maximum deviation (mean of 1% top Z-scores) for
each subject and fitted an extreme value distribution to these
deviations to make probabilistic subject-level inferences.

Results
The Cynomolgus Macaque Template

Examples of axial slices from the present cynomolgus macaque
template are shown in Figure 2A, together with the tissue prob-
ability maps and the tissue segmentation for GM, WM, and
CSF (Fig. 2B–E), the parcellation label map (Fig. 2F), the corti-
cal thickness map (Fig. 2G), the MPD map (Fig. 2H). Note that
structures located in the center of the brain displayed the least
amount of displacement across subjects and structures located
in orbital and ventrolateral prefrontal cortex, temporal pole,
and portions of occipital cortex had relatively larger displace-
ment (Fig. 2H). As a validation for the MRI-based brain template,
Figure 3 shows a cynomolgus macaque brain that underwent
histological staining for SMI-32. Both Figure 3A (a coronal slice
of MRI template) and Figure 3B (histological image) clearly delin-
eate some thalamic subnulcei (e.g., ventrolateral nucleus and
medial dorsal nucleus), subthalamus (e.g., subthalamic nucleus
and zona incerta), red nucleus, and components of the basal
ganglia (e.g., caudate and putamen, globus pallidus). The GM and
WM surface maps of both hemispheres that were reconstructed
from the manually edited tissue classification masks are shown
in Figure 4A and B. These surface maps were painted with the
D99 labels (Fig. 4C) and photographed after 3D printing (Fig. 4D).
The present cynomolgus macaque template is available both at
a secure server of the Laboratory of Brain Imaging, Institute of
Neuroscience and at the PRIMatE Data Exchange (Milham et al.
2018). http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html.

Age Trajectory of Normative Structural Variations

We observed that the mean CT of the whole brain and the
total GMV decreased nonlinearly and monotonically within
the present age range, whereas WM volume (WMV) increased
throughout the juvenile and adolescence periods and then
declined at early adulthood (Fig. 5A). The total brain volume
increased gradually with age. Notable correlations were found
between measured and predicted values in CT, GMV and

WMV (P < 0.0001, r = 0.83, 0.83, 0.75, NMSE = 0.45, 0.48, 0.63,
respectively), but not for total brain volume (P = 0.071, r = 0.23,
NMSE = 1.03). CT exhibited a significant positive correlation
with total GMV (P < 0.0001, r = 0.87), a significant negative
correlation with total WMV (P < 0.0001, r = −0.64), but no
apparent association with total brain volume (P = 0.095, r = −0.13,
Fig. S2). Additionally, total brain volume showed significant
correlations with total WMV (P < 0.0001, r = 0.41) and total
GMV (P < 0.0001, r = −0.31). There was a significant negative
correlation between total GMV and total WMV (P < 0.0001,
r = −0.83).

The mean CT and regional GMV of each brain region are
shown on the brain template (Fig. 5B). Both exhibited a remark-
ably heterogeneous pattern. For instance, the somatosensory,
occipital, and cingulate cortices had smaller thickness relative to
other regions throughout the developmental stage, whereas the
medial frontal, and other prefrontal cortices, and temporal pole
had larger thickness (Fig. 5B). Similarly, greater regional GMV
was found in the prefrontal and temporal cortices relative to
the somatosensory, occipital, and cingulate cortices (Fig. 5B). In
typical development, communities of cortical areas with simi-
lar growth trajectories of CT and regional GMV are discernible
across the brain (Figs. 6A and S3–S6). As for CT, 6 developmental
modules were derived, including modules of monotonically lin-
ear decrease/increase (cyan/orange color), monotonically non-
linear decrease/increase (blue/red color), and nonmonotonic net
decrease/increase (green/pink color); but as for regional GMV, 5
modules were derived, with no module of monotonically lin-
ear increase was found (orange color). Growth trajectories of
CT and regional GMV in brain regions located in the medial
temporal cortex (including parahippocampal, entorhinal, and
perirhinal cortices) increased with advancing age (modules with
warm color). For most cortical regions, the growth trajectories
of CT and regional GMV decreased over the observed age range
(Figs. 6A and S3–S6). Figure 6B shows the region-wise normative
models of CT and regional GMV change for each module, includ-
ing 14c (area 14c), entorhinal cortex, caudal limiting division,
entorhinal cortex, olfactory division, agranular frontal area F3,
supplementary motor area, rostral superior temporal gyrus, area
TF of the parahippocampal cortex. Normative models of CT and
regional GMV changes of all cortical regions are shown (Figs. S3–
S6). Accuracy of the normative model for predicting thickness
and volume was mapped on the cortical surface both in terms of
correlation and NMSE (Fig. S7). Brain regions with no significant
correlation between measured and predicted values and high
NMSE (>1) are shown in Tables S1–S2.

Individual Deviations Estimated from
the Normative Model

We estimated regional deviations from the normative models
of CT and regional GMV for each subject, respectively. The
overall percentage of deviating regions was extremely low in this
healthy cohort (For CT, uncorrected mean score, 0.011%, |Z| > 3.3,
P < 0.001; FDR-corrected mean score, 0.0021%, |Z| > 4, P < 0.05; For
GM, uncorrected mean score, 0.013%, |Z| > 3.3, P < 0.001; FDR-
corrected mean score, 0.0043%, |Z| > 4, P < 0.05, Fig. 7A). Six indi-
viduals had a total of 5 deviations in CT (cold color), including
8 Bd (area 8B, dorsal subdivision), 8Bm (area 8B, medial subdivi-
sion), 24b (area 24b in the anterior cingulate cortex), 31 (area 31 in
the posterior cingulate cortex), TGvg (ventral granular part of the
temporal pole), and 6 deviations in GMV (warm color), including
8 Bd, 8Bm, 9d (area 9, dorsal subdivision), 10mr (area 10 m), 10mc
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Figure 2. The cynomolgus monkey template. Axial slices showing the brain template (A) and tissue probability maps for GM, WM, and CSF (B–D) and tissue segmentation
(GM, red; WM, blue; CSF, green) (E). Nonlinear alignment was applied to the D99 digital anatomical atlas to propagate labels into the present template (F). Cortical
thickness map is overlaid on the T1 template (G). Deformation vector fields were calculated for all the monkey brains and averaged to form the MPD image (H). The
color scale represents the level of displacement. Warm color indicates larger voxel displacement. Note that structures located in the center of the brain display the

least amount of displacement.
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Figure 3. Comparison between the MRI template and the corresponding histological map. A coronal slice with delineated subcortical areas in the MRI volume (A) and

corresponding histological section (B). A histological map was generated from the SMI-32 stained section. Note that the labeled subregions, thalamic nuclei, and other
subcortical structures, such as subthalamic nucleus, zona incerta, and red nucleus are evident in the current MRI template. The anatomical labeling of sulci is depicted
on the brain surface. Arsp, arcuate sulcus spur; cs, central sulcus; iar, inferior arcuate sulcus; lf, lateral fissure; lus, lunate sulcus; ps, principal sulcus; sar, superior
arcuate sulcus; sts, superior temporal sulcus.

(area 10c), CM (caudomedial, belt region of the auditory cortex),
3 of which survived FDR correction (area 31, 8 Bd, 8Bm, marked
with asterisk in Fig. 7A). Virtually all deviations of CT or GMV
were unique and highly individualized for different subjects,
with no overlap (Figs. 7B). Figure 7C shows the distribution of
the most extreme deviations in CT and GMV (mean of 1% of the
top absolute deviations for each subject) from their normative
models for individual monkeys, respectively.

Discussion
A population-Based Brain Atlas
for Cynomolgus Macaque

We present a large-population MRI atlas of the cynomolgus
macaque brain, derived from 162 high-resolution, T1-weighted
structural scans of cynomolgus monkeys ranging from 2 to
9 years old. The template comprises both whole-head and
brain-only unbiased template images, tissue probability maps,
a deformation map, as well as cortical surfaces with 3D printed
examples, and brain parcellation (label) maps (Figs. 2–4). As
compared with the histological maps revealed by SMI-32
immunohistofluorescence (Fig. 3), fine neuroanatomical details
are well demonstrated in the present MRI template. This atlas
provides a common anatomical space and coordinate system for
the cynomolgus monkey for conducting voxel-based analyses,
segmenting brain tissues, delineating specific brain locations,
and visualizing data collected across days, animals, and labora-
tories, which can be used with existing packages such as Sta-
tistical Parametric Mapping (SPM; https://www.fil.ion.ucl.ac.uk/

spm/) and FSL. Moreover, it can help to improve the registration
accuracy of individual subjects to the present template and to
accurately locate brain areas when making an experimental
plan for electrophysiological penetration, anatomical tracer
injection or surgical lesions.

There are currently a number of rhesus macaque atlases
available, either based on a single animal, e.g., the 3D digital D99
template (Reveley et al. 2017) and the F99 atlas (Van Essen 2004),
or multiple subjects, e.g., the 112RM-SL (McLaren et al. 2009), the
INIA19 (Rohlfing et al. 2012), the MNI institute (Frey et al. 2011)
and the NMT template (Seidlitz et al. 2018). Differences, although
subtle, in the brain structures of different macaque species have
been reported (Van Der Gucht et al. 2006; McLaren et al. 2009); for
instance, cynomolgus and rhesus macaques exhibit differences
in skull shape (Frey et al. 2011), global brain volume (McLaren
et al. 2009), and sulcal patterns (Van Der Gucht et al. 2006).
Evidence from human imaging studies suggests that the accu-
racy of volumetric image registration benefits significantly from
using spatial normalization to templates that closely match the
average of the population under study (Shen et al. 2007). Thus, it
is expected that future nonhuman primate studies would bene-
fit from species-specific brain atlases given non-negligible inter-
species variability. Meanwhile, single-subject templates reflect
the idiosyncratic anatomy of an individual, rather than the
species as a whole (Reveley et al. 2017; Seidlitz et al. 2018),
whereas the population-averaged atlas preserves features that
are typical of the population’s brain anatomy to accommodate
cross-subject variability, substantially minimize artifacts, and
improve signal-to-noise. Hence the creation of a population-
averaged atlas does not bias the registration procedure toward
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Figure 4. Cortical surfaces and 3D printing. GM and WM surfaces were reconstructed from segmentations of the template (A–B). These surface maps were painted with
D99 labels (C) and photographed after 3D printing (D).

the shape of any 1 subject, instead resulting in better alignment
across many individuals (Woods 1996) and facilitating further
quantitative analysis.

Age-Related Effects on Brain Structure
in Cynomolgus Macaque

Different structural components of the brain (GM, WM volume,
and CT) have markedly distinct developmental trajectories dur-
ing the early years of life in primate species, which is critically

important for understanding their mechanistic roles in both
normal and diseased conditions. Both longitudinal and cross-
sectional structural MRI studies in humans have shown that the
total GMV (Lebel and Beaulieu 2011; Mills et al. 2016) and mean
CT (Tamnes et al. 2017; Walhovd et al. 2017) appear to decline
throughout adolescence and young adulthood, even though the
ages of peak global GMV and mean CT are different. The total
WMV, on the other hand, followed a more stable growth with
increasing age, as is compatible with previous findings in human
studies (Giedd et al. 1999; Lebel and Beaulieu 2011; Mills et al.
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Figure 5. Age trajectories and spatial distribution of cortical volume and thickness. (A) Both the total GMV and mean CT show monotonic decreasing trajectories from

age 2 to 8 years, whereas the total WMV presents an inverted U-shape increasing trajectory throughout the juvenile and adolescence periods followed by a decline in
early adulthood (NMSE = 0.45, 0.48, 0.63, respectively; Pearson’s correlation, P < 0.0001, r = 0.83, 0.83, 0.75, respectively, P < 0.05, FDR-corrected). The total brain volume
exhibits a modest, gradual increase trend (NMSE = 1.03; Pearson’s correlation, P = 0.071, r = 0.23, P < 0.05, FDR-corrected). Shaded bands indicate 95% prediction intervals.

(B) Spatial distribution of CT and regional GMV across the whole brain at different ages. CT and regional GMV show overall decreases within this age range. The temporal
pole, medial frontal and other prefrontal cortices have greater thickness and regional GMV than the sensory, visual, and limbic cortices at all developmental stages.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/31/1/341/5897060 by guest on 06 July 2021



350 Cerebral Cortex, 2021, Vol. 31, No. 1

Figure 6. Developmental modules of synchronized thickness and volume change. (A) Modules composed of regions with similar maturational trajectories for CT and
regional GMV during the juvenile period, adolescence, and early adulthood. Six normative developmental modules are identified by the annual rate of thickness or
volume change: monotonically linear decrease/increase (cyan/orange), monotonically nonlinear decrease/increase (blue/red), and nonmonotonic net decrease/increase

(green/pink). Growth trajectories of CT and regional GMV decrease linearly and nonlinearly with advancing age in most cortical regions, except that the medial temporal
cortex (including parahippocampal, entorhinal, and perirhinal cortices), increase over time. (B) Typical regional-wise normative models of CT and regional GMV changes
are shown for each module, including 14c (area 14c), ECL (entorhinal cortex, caudal limiting division), EO (entorhinal cortex, olfactory division), F3_SMA (agranular
frontal area F3, supplementary motor area), STGr (rostral superior temporal gyrus), TF (area TF of the parahippocampal cortex). The module of monotonically linear

increase (orange color) was not found in the developmental trajectory of GMV (Fig. S6). Brain regions with no significant correlation between measured and predicted
values and high NMSE are shown in Figure S7 and Tables S1, S2. Color-coded shaded areas indicate 95% prediction intervals. L, left; R, right.

2016). In rhesus macaques, prior longitudinal MRI studies have
found that the GMV decreased on average (Liu et al. 2015; Ball
and Seal 2019) and WMV increased (Malkova et al. 2006; Liu et al.
2015; Ball and Seal 2019) during late infancy and the juvenile
period. Longitudinal studies in the marmoset found that GMV
increased before puberty and declined into adulthood (Sawiak
et al. 2018). With the present normative analysis, we observed
that the brain development of the cynomolgus macaque par-
allels that of humans and rhesus macaques by exhibiting a
decrease in total GMV and mean CT, and an increase in total
WMV throughout the juvenile period and adolescence (Fig. 5A).

Moreover, the developmental trajectories of CT and regional
GMV changes in this cohort showed region-specific variations

over the entire cortex (Figs. 5 and 6 and S3–S6), consistent with
previous reports in both rhesus macaque and humans studies
(Mueller et al. 2013; Xu et al. 2019). Because the structural data
before the juvenile period were not included here, the current
analysis did not examine the onset of declines (peak volume or
thickness). In addition, CT and GMV of the cynomolgus monkeys
exhibited region-specific variations, whereby high-order multi-
modal association areas (prefrontal and temporal cortices) had
greater CT and regional GMV than the unimodal sensory, visual,
and limbic areas (Fig. 5B). These patterns closely followed the
patterns in myelin maps (T1/T2 maps) (Glasser and Van Essen
2011) and surface area expansion in human postnatal develop-
ment and primate evolution (Hill et al. 2010). This supports the
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Figure 7. Individual deviations from the normative model. (A) Subject-level Z-score maps showing brain regions that deviate from the normative model in CT (blue

color) and regional GMV (red color) (color: |Z| > 3.3, P < 0.001, uncorrected; black star: |Z| > 4, P < 0.05, FDR-corrected). The deviating regions in these subjects were
different and widespread in prefrontal, temporal, and cingulate cortices, including 8 Bd (area 8B, dorsal subdivision), 8Bm (area 8B, medial subdivision), 9d (area 9,
dorsal subdivision), 10mr (area 10 m), 10mc (area 10c), 24b (area 24b in the anterior cingulate cortex), 31 (area 31 in the posterior cingulate cortex), CM, TGvg. The CT
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prior hypothesis that the primary and early unimodal areas are
more heavily myelinated and less expanded than multimodal
association areas (Hill et al. 2010; Glasser and Van Essen 2011).
The developmental patterns of CT and GMV observed here may
reflect neuronal regressive events, such as pruning and the
elimination of connections, whereas a gradual increase in WMV
until approximately young adulthood has been suggested as an
indication of ongoing myelination of axons by oligodendrocytes
which facilitate neuronal conduction and communication.

Nevertheless, the developmental patterns of the total WMV,
GMV, and mean CT changes were found to be highly correlated
(Fig. S2). The strong negative correlation between WM and GM
changes could result from different physiological processes such
as axonal wiring in WM and pruning in GM (Stepanyants et al.
2002), similarly reported in a cross-sectional rhesus macaque
study (Shi et al. 2013). Meantime, WM myelination and expan-
sion is likely to cause a physical outward shift of the GM–WM
boundary, thereby leading to decreases in both GMV and CT
(Raznahan et al. 2011; Gennatas et al. 2017). We found that CT
was significantly negatively correlated with WMV in the present
cynomolgus population, which is in line with the observation in
chimpanzees who had greater WMV but thinner CT (Hopkins
and Avants 2013).

It is worth mentioning that increases in CT and GMV in
subregions located in the medial temporal lobe system (shown
by the inverted U-shaped or monotonic increasing age trajec-
tories) are exhibited throughout adolescence and into early
adulthood (Fig. 6, S4 and S6), which is potentially related to
memory consolidation processes. The medial temporal lobe
including the hippocampus and adjacent entorhinal, perirhinal,
and parahippocampal cortices, is essential for establishing and
maintain long-term memory for facts and events (declarative
memory), and ultimately, through a process of consolidation,
becomes independent of long-term memory (Squire and Zola–
Morgan 1991; Squire et al. 2004; Eichenbaum et al. 2007; van
Strien et al. 2009; Ranganath and Ritchey 2012). Adolescence
is a crucial phase in biological and psychosocial maturation
and involves large-scale reconfigurations of brain anatomy (Paus
et al. 2008). Because memory function improves rapidly from
childhood through adolescence into early adulthood (Ofen and
Shing 2013), we speculate that structural changes of the medial
temporal lobe might occur during this period. For example, the
functionally defined scene-selective posterior parahippocam-
pal gyrus (Epstein and Kanwisher 1998) was found to grow
in size from childhood through adulthood, which was corre-
lated with improved recognition memory for scenes (Golarai
et al. 2007). Gogtay et al. 2004 showed that human GM develop-
ment appeared to follow a functional maturation sequence from
childhood into young adulthood, which started with the primary
sensorimotor cortices along with frontal and occipital poles, and
ended at the temporal cortex (including the medial part of the
inferior temporal lobe). The CT development we found in the
monkey cohort is also consistent with the study of Raznahan
et al. 2011, in which CT of medial temporal cortices continues to
increase with age.

Individual Deviations Estimated from
the Normative Model
We found that individuals in the present healthy population,
on average, did not deviate substantially from the normative
model, in which we were able to identify an extremely low
percentage of deviating regions in individuals, whereas there
was no overlap between these deviating regions or subjects
(Fig. 7). This uniformity (most subjects were within the nor-
mative model) and heterogeneity (deviations were unique and
highly individualized for different subjects) is characteristic of
both human and nonhuman primates, which is increasingly
important for understanding the heterogeneity of brain struc-
ture within typical populations (Feczko et al. 2019). An attractive
feature of such population-based normative models is their
potential use in evaluating individuals under diseased condi-
tions, which is complementary to the conventional case-control
analysis (Wolfers et al. 2018; Zabihi et al. 2018; Wolfers et al.
2019). For example, to study a disease monkey model with a
limited number of subjects, the “null” hypothesis could be that
the diseased ones would follow a similar age-related trajectory
of brain structure to the typically-developing subjects, which
allows a statistical evaluation of brain structural abnormality for
each individual monkey. The current results can be used as a
gold standard similar to child growth charts, which may aid in
relaxing the restrictions of sample size in nonhuman primate
research.

There are several practical limitations to this study that
should be taken into account when interpreting the present
findings. Although the sample size (n = 162) was sufficiently
large relative to most prior nonhuman primate studies, the
developmental trajectories reported here (ranging from 2 to
8 years old) may be susceptible to biases due to cross-sectional
design and nonuniform sample distribution. Nevertheless, we
built our normative model based on Bayesian statistics, which is
a principled method for handling uncertainty and hence auto-
matically makes more conservative inferences when the sample
size is limited. Future investigation with larger sample size and
multicenter data sharing/validation would increase statistical
power and robustness. Another limit is that the present norma-
tive model was formulated on basis of the cross-sectional data.
Previous longitudinal studies of brain development in macaques
provide invaluable translational insights into the pathological
changes during human brain development (Malkova et al. 2006;
Shi et al. 2016; Young et al. 2017; Kim et al. 2020). Moreover,
the early developmental period of macaque monkeys from birth
to late infancy was not included in the current study, which
is critical for understanding the complete developmental curve
(Malkova et al. 2006; Knickmeyer et al. 2010; Liu et al. 2015;
Scott et al. 2016; Kim et al. 2020). These issues certainly war-
rant future investigation. The last limit is the use of the D99
parcellation scheme (a template of rhesus macaques), despite
the lack of alternatives. Subtle differences in the brain structures
of different macaque species have been reported, such as slight
differences exhibited in skull shape (Frey et al. 2011) and sulcal
patterns (Van Der Gucht et al. 2006) between cynomolgus and

of right area 31, and left TGvg and the GMV of right CM have greater values than would be predicted by the normative model and the CT of left 8Bm, 8 Bd, 24b and the

GMV of right 8 Bd, 8Bm, 10mr, 10mc, and left 9d have reduced values relative to ones predicted by the normative model. (B) Region overlap of individual deviations in
the monkey cohort. There was no overlap of deviating brain regions between any 2 subjects. The color bar represents the number of deviating subjects. (C) Extreme
value histogram and extreme value distribution of CT and volume.
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rhesus macaques. Future experiments using vortex-based neu-
roanatomical analysis would be an option to minimize the effect
of using different parcellation templates.

In conclusion, we constructed a new, population-based MRI
atlas of the cynomolgus macaque and then established a nor-
mative modeling approach to characterize age-dependent indi-
vidual variations in cortical thickness and volume. This method
allows us to showcase the typical age-related trajectories of
the cynomolgus monkeys and advance current understanding
of inherent heterogeneity in the macaque monkey population,
which may further aid in quantitatively describing extreme
variations under disease conditions.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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