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ABSTRACT

Prefabricated and pre-stressed reinforced concrete beams and girders are integral components of
many highway structures, including those built by rapid construction techniques. Concerns exist regarding
the development of cracks during curing, form removal, detensioning, transport, installation, and operation.
Non-destructive, Acoustic Emission (AE) sensing techniques have the potential for detecting and locating
cracking in prefabricated, pre-stressed concrete girders used as Prefabricated Bridge Elements and Systems
(PBES) used in rapid construction practices as part of a Quality Assurance/Quality Control (QA/QC)
program. AE sensing records transient elastic waves produced by the release of stored elastic energy
resulting in plastic deformations (i.e., crack nucleation and growth) with an array of point sensors. The AE
instrument system is relatively portable which can allow for it to be an option for both off-site fabrication
QA/QC as well as on-site field QA/QC. This report presents a multi-stage research initiative on AE
measurements of prefabricated and pre-stressed concrete beams used in highway bridge construction during
detensioning, craned removal from formwork and transport to bridge sites, along with supporting laboratory
tests and numerical analysis.

The project objectives are: 1. Identify suitable instruments to monitor pre-stressed and/or post-
tensioned concrete girders for cracking activity; 2. Design and develop a reusable instrumentation package;
3. Measure performance and condition of concrete girders during fabrication and transport; 4. Identify test
protocols and possible accept/fix/reject criteria for structural elements based on information from
monitoring system; and 5. Develop plans for reusing monitoring instruments on multiple bridge projects.
Presented are results from laboratory, full-scale girder fabrication, and transport monitoring, along with

recommendations for future testing procedures and quality assurance protocol development.
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CHAPTER 1
PROBLEM STATEMENT AND RESEARCH FOCUS

1.1 Introduction and Motivation

This research project addresses Quality Assurance/Quality Control (QA/QC) of prefabricated pre-
stressed concrete girders used as Prefabricated Bridge Elements and Systems (PBES) with attention paid to
monitoring and controlling cracking in the girders. Preventing and mitigating such problems early on may
be possible with the use of a properly designed reusable condition monitoring instrumentation system, when
combined with effective QA/QC practices. Solving these problems has significant implications for the
construction of highway structures in Vermont and nationwide.

PBES techniques make extensive use of manufacturing bridge components off site and shipping as
needed to accelerate bridge construction, including prefabricated pre-stressed concrete girders. Advantages
of these girders include strength and the ability to be lifted into place with a crane, thereby avoiding the
complexity of lateral slide in place maneuvers. The girders can come with wide top flanges and top side
studs to enable casting in place an integral concrete deck immediately following girder placement. Such
construction can quickly produce a strong integrated pre-stressed and reinforced deck-girder configuration.

During this process many problems could occur that may damage the concrete/beam at different
stages of manufacturing and construction process, including:

1) Rapid load transfers from pre-stress tendon cuts,

2) Cutting the tendons before the concrete fully sets,

3) Improper lifting of the beam for transport, shipping the component,

4) Placing it in its final position, and

5) Post installation cracking often due to misalignment poor materials or miscalculated dimensions.

A significant potential drawback to using prefabricated and pre-stressed concrete girders is
cracking. A recent report by Head et al. for the Maryland State Highway Administration found that many
prefabricated and pre-stressed concrete bridge girders suffered from cracking, with most of the cracks
appearing as diagonal cracks at the ends (Head et al., 2015). These cracks were deemed unlikely to be of
structural concern but were of sufficient concern to warrant further observation. Controlling camber during
fabrication and delivery were also important concerns. Camber is an important component to ensuring
timely placement of the girders on site. In terms of QA/QC a major issue was lack of automated inspection
processes to aid in streamlining paperwork and data management.

An example of notable concrete cracking in a PBES bridge has been recently observed in Vermont.

The bridge crossing Gold Creek on VT 100 near Moscow and Stowe has extensive cracking in the girders

10



and cast-in-place integral deck. The source of these cracks has not been firmly established. It is also not
certain if the cracks are stable or are still growing. While these cracks may not pose a serious structural

threat to the bridge, they do present aesthetic, serviceability and long-term maintenance concerns.

(© @
Figure 1.1: VT 100 Gold Creek Bridge near Moscow and Stowe with girder and deck cracks (a) bridge

side view, (b) deck with multiple cracks, (c) girder with cracks in the flanges near to the end, and (d)

some of the cracks repaired

The VT 100 Bridge along with the reports of cracking in similar girders in Maryland provides an
impetus for monitoring cracks in these girders as part of a QA/QC system to minimize and mitigate this
cracking problem. An ideal monitoring system would have the following traits: 1. Identify the occurrence,
location and severity of cracking — including non-visible subsurface cracks, 2. Provide test results in a
sufficiently timely and understandable format to enable accept/reject QA/QC decision, 3. applicable to
multiple types of beams, girders and bridges, 4. not damage the elements under test, 5. not disrupt the
construction process, 6. be of sufficiently mature technology that it is reliable and easy-to-use with turn-

key instruments, 7. operate over a fairly short test cycle, and 8. affordable.

11



Structural sensing and health monitoring technologies are widespread and encompass many types
of sensors (Huston, 2011). Acoustic emission (AE) monitoring appears to be the best technique for this
application. AEs are short-duration high-frequency elastic waves in solids caused by incipient micro-
fractures and other localized events detecting the strength, shape and timing of elastic waves emanating
from cracks as they form is the basis of the AE technique. Analysis of the signals can determine the location
and type of cracking, as well as the overall level of cracking, i.e. whether the cracks are stable or are
growing. When applied to concrete girders, the simplest signal processing measures the rate of AE events.
If the production rate is relatively low and steady or dropping, the amount of new crack generation is small.
If the AE rate is high or growing, then the cracks are growing. Concrete AE testing has encompassed:
Maturity level of concrete — as concrete cures it produces micro cracking which is detectable by AE. Once
the curing slows, the beam would be stable enough to move; Impact to concrete members as it is moved to
its final location — AE can detect and locate Impacts to the members; Continuous cracking; Reaction of
beams and components to loading; Wire break in pre-stressing; and Estimating load values using b-Values,
CALM Ratio (Landis and Baillon, 2012; Chen and He, 2001).

Advantages of AE monitoring are: 1. The sensors easily attach to the surface of the structure, are
removable and reusable (Figure 1.2); 2. AE can detect, locate and assess subsurface nonvisible cracks; 3.
The technology is mature with applications across a variety of structure types, including concrete; 4.
Software and data analysis procedures are available for a variety of conditions, including those specific to
concrete cracking; 5. AE-based codes, standards, test and continuous monitoring procedures (ASME,
RILEM, ASTM), have been in place since the 1980s (Huang and Nissen, 1997); and 6. Certain industries,
in particular pressure vessel manufacturing, use accept/reject criteria based on the level of AE signal
production. The pre-stressed character of pressure vessels and pre-stressed girders are similar enough to
lend credence to the possibility of developing similar accept/reject criteria for girders.

Disadvantages of AE testing are: 1. Data must be collected continuously, otherwise important AE
events may go undetected, including those occurring prior to instrument installation; 2. The standard setup
requires cables connecting AE sensors to the AE monitoring instrument. Running these cables along girders
without damage requires skill and some expense. An alternative is to use wireless data transmission and
incurring the associated increased costs and complexity; and 3. The monitoring instruments consume

modest amounts of power (~20 W).
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Figure 1.2: Acoustic emission sensor attached to a concrete girder (reference)

Relation to VTrans Strategic goal(s) and objective(s): This project tracks the confluence of PBES
QA/QC alignment with VTrans Strategic Goals 1, 2, 3 and 5 (VTrans, 2015) as follows:

* Goal 1: Provide a safe and resilient transportation system that supports the Vermont economy — PBES
QA/QC offers the possibility of rapidly upgrading bridges on a network level.
0 Reduce the number of major crashes - The reduced construction times reduces traffic restrictions
and redirections and the associated increased risk of crashes.
o Increase the resilience of the transportation network to floods and other extreme weather and events
- The use of longer span bridges with high-performance girders moves the piers further out of
stream beds and reduces the risk of scour, flanking and other flood-related damage. Increased

quality control reduces the potential for unexpected repairs throughout the lifetime of a bridge.

* Goal 2: Preserve, maintain and operate the transportation system in a cost effective and environmentally
responsible manner.

0 Maintain pavement, structures and other transportation system assets in a state of good repair —
Increased use of PBES in rapid bridge construction is a possible framework for rapidly upgrading
the bridges in VTrans’ inventory. Quality control during construction and monitoring efforts
holds out the possibility of significantly reducing maintenance costs throughout the lifetime of a
bridge structure.

o Implement an Asset Management System and integrate it with Planning and Programming — The
monitoring and quality control data collected during use of PBES in rapid bridge construction
may prove useful in an Asset Management System, especially if problem conditions are identified

and mitigated early on.
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0 Minimize the environmental impacts of the transportation system — Success with the use of high-
performance girders, as this project may enable, will allow for longer spans that remove piers and
abutments further away from river beds, thereby reducing the environmental impact of

construction and non-natural disruptions of flow during high-water events.

* Goal 3: Provide Vermonters energy efficient, travel options.
0 Minimize traveler delay — Quality control practices during use of PBES in rapid bridge construction
have the potential of operating the construction pace at a high speed while reducing the risk of

unexpected delays. This can reduce traveler delay during the construction cycles.

* Goal 5: Develop a workforce to meet the strategic needs of the Agency.

0 Retain and develop excellent and diverse employees — A key part of this project is to develop a
turnkey quality control monitoring system that can be used by VTrans personnel. Training and
gaining of experience in the use of this instrumentation will be part of the ongoing personnel skills
development underway for VTrans personnel engaged in the use of PBES in rapid bridge

construction.

Studied in this project are Northeast Extreme Tee (NEXT) beams and Northeast Bulb Tee (NEBT)
girders during specific prefabrication processes including; detensioning and craned lifting from form beds.
The evaluation of the efficacy of AE technology, as part of this study, begins with laboratory proof of
concept testing before moving on to field testing of the highly stressed end zone regions of pre-fabricated
and pre-stressed reinforced concrete NEXT beams and Bulb Tee girders. The end zone regions of the pre-
fabricated and pre-stressed reinforced concrete NEXT beams and Bulb Tee girders are the major region of
stress transfer from the pre-tensioning strands to the surrounding concrete, which is approximately 60 times
the pre-tensioning strand diameter, per 5.11.4.1 of AASHTO Bridge Design Specifications (PCINE-14-
ABC, 2014).

The current state of practice for pre-cast manufacturers, is to use empirical data and a trial and error
approach to reduce the development of end zone cracking while achieving the required girder load capacity,
with minimal specific guidance from codes and standards. This has led to a variety of end zone
reinforcement procedures for the reduction of end zone cracking, unique to each pre-cast manufacturer. In
addition to limited guidance on the prevention of end zone cracking there is also limited guidance on the
acceptance/rejection criteria for end zone cracks. Instead decisions to accept or reject a girder due to end

zone cracking are often subjective based on the experience and knowledge of the pre-cast manufacturers

14



and inspectors. A long-term goal of this line of research is to develop a set of accept/reject criteria based
on structural and serviceability considerations.

NEXT beams are widely used and have become a standard bridge construction element in the
northeastern United States. These double-tee beams provide for rapid PBES construction similar to box
and hollow-core beams but have the additional benefits of ease of inspection and no void space for water
to accumulate (Tuan et al., 2004; Okumus et al., 2016; Arancibia and Okumus, 2017; Ronaki et al., 2017).
NEXT beams also have an integral deck such that laying sections of NEXT beams together create a bridge
deck and girder system that only needs a foundation and surface finishing (PCINE-14-ABC, 2014).

The evolution of designs of NEBT girders is towards deeper and more slender sections to allow for
an increased number of pre-tensioning strands to induce larger amounts of pre-stress into the Bulb Tee
(Hasenkamp et al., 2008). This results in end zone cracking patterns similar to the NEXT beams. Although
small end zone cracking may not make the beam structurally deficient, it can cause durability issues by
allowing water and de-icing solutions to be in contact with the reinforcing steel or pre-tensioning strands,
leading to corrosion and eventually to structural deficiencies.

The three major types of characteristic end zone cracking appearing in NEXT beams and NEBT
girders include; horizontal web cracking, inclined web cracking, and Y cracking. Eccentric loading is a
common source of horizontal web cracking. Pre-tensioning strand distributions are typical sources of
inclined web cracking and Y cracking. Both horizontal and inclined web cracking are typically small
enough that they close under service loading. Y cracking does not normally close under service loading
and therefore has the greatest potential for durability issues (Okumus and Olivia, 2013). Figure 1.3 shows

examples of horizontal web cracks observed during this study.
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Figure 1.3: Recorded end zone cracking of bulb tee

The most common end zone cracking control method modifies the end zone reinforcing bar pattern.
Typical end zone reinforcing steel patterns were developed based on experimental data, linear analytical
studies, and finite element analysis and were mostly developed based on analyses of vertical flange cracking
(Okumus and Olivia, 2013). While current end zone reinforcement pattern practices have mostly eliminated
vertical flange cracking, the issues of horizontal, inclined and Y cracking of the web remain as challenges

that require further research.

1.2 Objectives

This project designs and implements a reusable instrumentation system for evaluating the condition
of structural elements during the use PBES in the construction of transportation structures in Vermont.
Quality control of the processes is an opportunity for improved final delivery of the product at reduced cost.
This project focuses on developing reusable instrumentation for monitoring pre-stressed concrete girders
during fabrication, transport, installation and initial traffic-bearing phases. The instrumentation should be
reusable for multiple bridge projects. Potential instruments include AE sensors to measure incipient

cracking, strain gages, accelerometers, tilt/orientation sensors, and 3-D imaging.

Objective 1. Identify suitable instruments to monitor pre-stressed and/or post-tensioned concrete girders for

cracking activity.
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Objective 2. Design and develop a reusable instrumentation package.

Objective 3. Measure performance and condition of concrete girders, specifically to measure the
performance of one concrete girder PBES/ABC bridge throughout fabrication and installation.

Objective 4. Identify test protocols and possible accept/fix/reject criteria for structural elements based on
information from monitoring system.

Objective 5. Work with VTrans to develop plans for reusing monitoring instruments on multiple bridge

projects.

1.3 Methodology

The proposed tasks align with the objectives.

Objective 1. Identify suitable instruments to monitor pre-stressed and/or post-tensioned concrete girders for

cracking activity.

Task 1. Select a suitable instrument configuration. The instruments must be capable of monitoring
cracking activity in prefabricated pre-stressed concrete girders during the following stages: 1. In the factory
following pre-stressing, 2. During transport, 3. During placement, and 4. Following placement, including
proof and traffic loading. Initial considerations have indicated that a portable and reusable AE monitoring
system supplemented with other sensors (acceleration, strain, temperature and/or tilt) continuously using
up to 8 AE sensors deployed along a bridge girder with a portable power supply that can run for 48 hours
is nominally the desired instrument configuration for this application. A consideration is to determine
whether it is better to use a completely reusable system or to use one with sensors permanently mounted on

the girders.

Objective 2. Design and develop a reusable instrumentation package.

Task 2. Design the instrumentation package. The plan is for the instrumentation to operate in a turnkey
manner and be reusable on multiple bridge girders. The instruments need to run continuously and require
portable power, such as with marine or lithium-polymer battery. The estimated power consumption is 20
W. The system configuration will likely be a wired-sensor version instead of wireless due to benefits of
simplicity and reduced cost. This instrument should accommodate taking measurements during these
stages: 1) Cutting of the pre-stressing tendons; 2) During lifting out of the formwork, storage on site, lifting
onto trucks and transport to the bridge site; 3) During lifting and assembly into the bridge structure; and 4)
17



During usage of the structure, including traffic loads.

Task 3. Acquire and assemble the instrumentation package. Acquire the equipment and supplies in a

timely manner.

Task 4. Verify performance of instrumentation package with preliminary laboratory tests. Conduct
modest scale laboratory tests at UVM to verify that the monitoring instruments work as designed, while

paying close attention to mounting details.

Objective 3. Measure performance and condition of concrete girders throughout PBES construction
processes. Measure performance and condition of concrete girders. The goal is to measure the performance
of one concrete girder PBES bridge throughout fabrication and installation, and in-service performance

following installation.

Task 5. Measure performance of girders during fabrication. The first step is to select a suitable PBES
construction process in Vermont. Use the monitoring instrumentation at girder fabrication site, especially
prior to pre-stress loading. This will likely be at a commercial facility and will require cooperation and

coordination with the fabricator and VTrans.

Task 6. Measure performance of girders during transport. Use the monitoring instrumentation to
measure girders during transport. This will likely involve a commercial contractor and will require

cooperation and coordination with the fabricator and VTrans.

Task 7. Measure performance of girders during placement. Use the monitoring instrumentation during
girder placement. This will likely be a commercial facility and will require cooperation and coordination

with the fabricator and VTrans.

Task 8. Measure performance of girders following installation. Use the monitoring instrumentation at
girder fabrication site. This will likely be a commercial facility and will require cooperation and

coordination with the fabricator and VTrans.

Objective 4. Identify test protocols and possible accept/fix/reject criteria for structural elements based on

information from monitoring system.
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Task 9. Synthesize literature on using acoustic emission monitoring as acceptance criteria in
structural elements. This involves examining the literature and standards on fiber reinforced polymer
pressure vessels, and similar structures that use AEs measurements as accept/reject QA/QC criteria during

fabrication.

Task 10. Combine state of the art techniques with data collected during AE monitoring to formulate
accept/reject criteria. Measurements collected during the tests in this project and combined with the

synthesis results of Task 9 will lead to proposed accept/reject criteria.

Objective 5. Work with VTrans to develop plans for reusing monitoring instruments on multiple bridge

projects.

Task 11. Plan for reuse of instruments. The goal is to reuse the instruments on other bridges. This
requires coordination and guidance of VTrans personnel that may use the instruments in these follow-on

tests. VTrans personnel will participate in the assessment of the technology for implementation purposes.

Task 12. Reporting. Preparation and submission of quarterly, draft final report, final report and

presentation of final results as required by programmatic guidelines.

Technology Transfer and Implementation Plan — A key goal of this research is to develop a
monitoring system for PBES construction QA/QC for use by VTrans personnel on multiple bridges
following the end of this project. Success requires: 1. The technology works and is suitable for VTrans
needs; 2. The system is turnkey in setup and data processing so that it is easy to use and does not require
extensive expertise and experience to operate; and 3. The system is reliable.

The plan for transferring this technology includes: 1. Use commercially-available off-the-shelf
components when available; 2. Include VTrans personnel in all key aspects of the project; 3. Develop a
user manual for use of the equipment, along with drawings, technical documentation, parts list and
recommendations for improving the system; 4. Provide training to VTrans personnel on the use of the
equipment; 5. Transfer the equipment to VTrans, if desired; 6. Provide guidance for future research and
design activities that use the collected data to improve design, fabrication and installation practices that

reduce cracking and improve the overall quality of the completed bridge structures.
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14 Organization of this Report

This report follows with Chapter 2 that presents a concise literature review on prefabricated and
pre-stressed, reinforced concrete Northeast Extreme Tee (NEXT) beams and Northeast Bulb Tee (NEBT)
girders, AE data collection techniques and methodologies, along with statistical and empirical methods for
AE event source locating, differentiation, and damage assessment.

Chapter 3 provides the rational for the selection of AE monitoring as a possible technique for
development as a quality control/quality assurance (QA/QC) procedure during the fabrication and transport
of pre-stressed, reinforced concrete beams and girders.

Chapter 4 presents the selected AE instruments and rationale for selections. The chapter also
presents pricing details for the selected equipment and recommendations from the manufacturer.
Additionally, Chapter 4 presents some initial and preliminary tests performed to verify the functionality of
the acoustical emission monitoring equipment.

Chapter 5 describes the multiple laboratory tests performed to verify the performance of the
acoustical emission development as a Quality Control/Quality Assurance (QA/QC) procedure during the
fabrication and transport of pre-stressed, reinforced concrete beams and girders as well as to develop a base
methodology and input parameters for future field testing on full-scale beams and girders.

Chapter 6 provides fabrication process observations, methodologies, data collected, and results of
field testing on full-scale pre-stressed, reinforced concrete Northeast Extreme Tee (NEXT) beams and
Northeast Bulb Tee (NEBT) girders. This chapter also describes some of the challenges with data collection
and correlations established between beam features and clustering of AE events.

Chapter 7 describes the transport process observations, methodologies, data collected, and results
of field testing on full-scale pre-stressed, reinforced concrete Northeast Bulb Tee (NEBT) girders from J.P.
Carrara and Sons, Inc. in Middlebury, VT to the I-91 bridge construction site located in Rockingham, VT.
This chapter also describes some of the challenges with data collection and correlations established between
travel conditions and AE event clustering as well as finite element stress modeling and AE event clustering.

Chapter 8 details current damage assessment techniques and procedures for reinforced concrete
and discusses their relevance to the unique loading scenarios of fabrication and transport testing. Due to
the general development of current damage assessment techniques with a cyclic loading regime; this chapter
describes possible alterations of existing damage assessment tools to work with the unique loading
conditions of fabrication and transport along with hypothesizes a new approach for damage assessment in
pre-stressed, reinforced concrete beams and girders.

Chapter 9 lists the capabilities of the acoustical emission monitoring equipment as proven during
this study and lists additional potential capabilities along with repeat testing scenarios that would provide

for a large enough data set for further development of the use of AE technology as a quality control/quality
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assurance (QA/QC) procedure during the fabrication and transport of pre-stressed, reinforced concrete
beams and girders.

Chapter 10 provides with overall conclusions and recommendations.
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CHAPTER 2
LITERATURE REVIEW

The foci of the literature review are pre-tensioned and post-tensioned reinforced concrete Northeast
Bulb Tee (NEBT) girders and Northeast Extreme Tee (NEXT) beams, end-zone cracking, an overview of
AE monitoring, AE sensor types, AE wave modes and propagation, AE source locating, AE source

differentiation, and AE damage assessment.

2.1 Pre-Tensioned and Post-Tensioned Reinforced Concrete

Concrete technologies date back to antiquity and continue to advance to this day. A significant
modern development is composite technologies with the introduction of reinforcing followed by pre-
stressing to accommodate the inherently weak strength of concrete. The first patent filing for pre-stressing
of concrete was in 1886 (NJIT, 2018). There are three main types of structural elements used in modern
construction; structural steel, reinforced concrete, and pre-stressed concrete. Figure 2.1 is a flow chart of

the varieties of structural materials and specifically the varieties of pre-stressed concrete.
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Material Types
[Reinforced Concrete Pre-stressed Structural Steel ]
Pre -Tensioning ] [Post—Tensioning ]
m w Bonded Unbonded
Tendons Tendons
_
y
) Bars Strands
Mono Multi
Stressing Stressing
J J
Y v
)\
Wires, Bars, Wires and
and Strands Strands

J

Figure 2.1: Structural material and pre-stressed concrete types flow chart (Steel Auto Industries, 2018)
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Pre-stressed concrete uses either a pre-tensioning and/or post-tensioning technique to induce compression
in the concrete element prior to service loading. The introduction of compressive stress prior to service
loading counteracts some tensile loading which allows for the pre-stressed concrete to carry more tensile
forces than non-pre-stressed concrete (Vejvoda, 2018). Figure 2.2 is a schematic of the typical process for

pre-tensioning and post-tensioning of concrete..

»J Pre-stressing strand

—
—_
1—\ Casting bed
(a)
»J Concrete
D —
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(b)
-
(©)
- — —
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Figure 2.2: Pre-tensioned and post-tensioned concrete (a) tensioning of the pre-stressing strands against
the end abutments, (b) casting of the reinforced concrete beam, (c) detensioning of the pre-tensioning
strands, and (d) post-tensioning of the reinforced concrete beam

Typically, the pre-tensioning and post-tensioning tendons are steel but may also be made of various
other materials such as nylon and fiberglass depending on the application. The pre-tensioning strands can
be sleeved to control the spatial distribution of the pre-stressing, or not sleeved. A typical loading
configuration uses hydraulic jacks pulling against a frame with bulkheads and deadman anchors to stretch
the cable without applying any load to the concrete, steel reinforcing or formwork. Placing the concrete
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into the formwork encapsulates the pre-tensioning strands. Setup and curing of the concrete bonds the
concrete to the pre-stressing strands. Once the concrete has cured to a sufficient compressive strength,
cutting the pre-tensioning strands compresses the structural concrete element by a transfer of the tension
through the shear developed on the outer surface of the strands.

Post-tensioning is an alternative method of pre-stressing concrete, often as a supplement to pre-
tensioning. Post-tensioning offers a wide variety of advantages. Perhaps most importantly is the
introduction of compressive force between individual structural elements to allow for continuity of longer

spans. Post-tensioning strands may be either unbonded or bonded as seen in Figure 2.3.

.
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(b) CORRUGATED SHEATH WITH GROUTED STRANDS
Figure 2.3: Post-tensioning strands (typical) (a) unbonded post-tensioning strand and (b) bonded post-
tensioning strand (Vejvoda, 2018)
Disadvantages of post-tensioning include the development of secondary moments when combined
with pre-tensioning. Post-tensioning has the potential for pre-stress loss due to friction, wedge set, elastic

shortening of concrete, concrete shrinkage, concrete creep, or steel relaxation (Vejvoda, 2018).

2.2 End-Zone Cracking
Although there are standard designs for Northeast Extreme Tee (NEXT) beams and Northeast Bulb

Tee (NEBT) girders, the designs continually evolve to meet project specific requirements that include
deeper and more slender sections with increased pre-stressing, which in some cases have been attributed to
an increase in frequency and magnitude of end zone cracks; most notably in NEBT girders (Hasenkamp et
al., 2008). The three most common types of end zone cracking in NEBT girders are; horizontal web

cracking, inclined web cracking, and Y cracking. The source of horizontal and inclined web cracking is
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typically eccentric loading or pre-tensioning strand distribution. A primary source of Y cracks is pre-
tensioning strand distribution. Horizontal and inclined web cracks often close during in-service loading.
Y cracks tend to not close and are of greater concern (Okumus and Olivia, 2013).

Current end zone cracking control methods for reinforcement bar pattern designs were developed
with respect to vertical flange cracking and have been largely effective as vertical flange cracking is now a
rare occurrence (Okumus and Olivia, 2013). These same reinforcement bar patterns, however, have not
been as effective in the reduction of horizontal web cracking, inclined web cracking, and Y cracking,
supported by observations made during this study. The only cracks observed during this study were

horizontal web cracks, Figure 2.3.

Figure 2.3: Horizontal end-zone web cracking of a Northeast Bulb Tee (NEBT) girder
2.3  Acoustic Emission Monitoring

2.3.1 Overview and History

AE sensing by ear has been used for thousands of years with potters as early as 6,500 B.C. listening
to for the audible “tings” of crack nucleation during the kiln firing stage of creating their ancient ceramics
(NDT Resource Center, 2018). These AE signals from the initiation of a crack coupling with the air create
the audible “tings” alerting the potter to a structural deficiency with their creation that could lead to its
rejection. Modern AE technology appeared in the early 1950°s with the completion of the “Results and
Conclusions from Measurements of Sound in Metallic Materials under Tensile Stress,” doctoral thesis of
Joseph Kaiser of the Technical University Munich (TUM) (Tensi, 2004).  Kaiser built equipment using

piezo-crystal microphones that relayed signals to an oscilloscope where they could be recorded and
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analyzed. Schofield coined the term “acoustic emission” in 1961 (Grosse and Ohtsu, 2008), The first known
practical application of AE technology was in 1964 with the testing and development of rocket motor
casings (Kaphle, 2012a). Although early research and uses of AE technology examined steel and aluminum
alloys (Tensi, 2004) it was not long until AE technology expanded to use with concrete and the U.S. Federal
Highway Administration (FHWA) started research on the use of AE in bridge strength testing.

An Acoustic Emission (AE) is a transient elastic wave produced by the release of stored elastic
energy resulting in plastic deformations, typically associated with damage. The release of stored elastic
energy or redistribution of stresses can be cause by a wide variety of sources such as loading, pressure
changes, temperature changes, or chemical reaction processes (NDT Resource Center, 2018). These AE
event sources can be as small as micro and nano-scale cracking to catastrophic failures of full-scale bridge
beams and girders. AE testing is nominally a non-destructive test (NDT) method. AE differs from many
other NDT test methods in that it requires the material being monitored to crack or have some sort of plastic
deformation. This arguably makes AE testing a destructive and not a non-destructive test procedure. AE
testing is also a passive technique that relies on a release of stored energy from the material instead of
introducing energy into the material such as with ultrasonic testing.

There are many modern and commercially available AE detection systems that can record AE wave
forms and record specific parameters related to the wave forms. These systems employ surface-mounted
sensors that detect the propagating acoustical emission and convert the analog signal to a digital signal.
Once in a digital format, it becomes convenient to filter signals with user identified inputs for setting
thresholds and for pre-amplification of acoustical signals, amplitude thresholds, event duration thresholds,
material wave mode velocities, etc. AE signals are typically weak. Some materials, including concrete,
quickly attenuate AE waves with distance from the source emission location. It is common to use multiple
amplifiers in a ganged configuration with a pre-amplifier and a main amplifier. Additional signal
conditioning reduces background noise with a band-pass filter using a nominal pass band of several kHz
to 1 MHz (Grosse and Ohtsu, 2008). Most civil infrastructure produces AE signals with an operating
frequency range of 100 kHz to 300 kHz which is an achievable range of modern AE test equipment (Kaphle,
2012b).

2.3.2 Acoustic Emission Sensors

Although there are a variety of non-contact AE sensors such as fiber optic and laser interferometers,
the optical AE sensors are limited in the physical area they are able to monitor as the distribution properties
of light create the need to focus the light to a small area. Most AE sensors that operate with a surface
contact configuration use the piezoelectric effect in lead zirconate titanate (PZT) for transduction. The

piezoelectric effect is a reversible process. At the macroscopic scale piezoelectricity appears as the creation
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of a voltage across a solid as it deforms and vice versa the piezoelectric substance will deform in response
to an applied voltage (Aysal, 2018). At the molecular scale piezoelectricity acts in anisotropic crystals in
which a crystal lattice deformation leads to the polarized movement of electric charge and vice versa. At
the micro to meso scales, sintering-type manufacturing processes cause PZT to take on a polycrystalline

structure with random polar orientations of the piezoelectricity as illustrated in Figure 2.4.
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Figure 2.4: Mono-crystals vs. Poly-crystals (Aysal, 2018)

Applying an electric field is applied to the PZT polycrystal at a suitably elevated temperature biases the
dipole molecules of the PZT line up to some extent as illustrated in Figure 2.5 (Aysal, 2018).

N

Random Dipole Polarization

Figure 2.5: Polarization of Ceramic Material to Generate Piezoelectric Effect (Aysal, 2018)

The polycrystalline approach enables the manufacture of PZT elements into various shapes and sizes to
achieve different vibration modes and range of operating frequencies. Figure 2.6 shows the different
piezoelectric responses to different loading scenarios with Figure 2.6.f being a common configuration for

use in AE testing.
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(d) C)

Figure 2.6: Piezoelectric effect under different circumstances (a) no stress or charge, (b) compression,
(c) tension, (d) applied voltage opposite polarity, (e) applied voltage same polarity, and (f) applied AC
signal (Aysal, 2018)

The surface mounted AE sensor experiences the vibration of the AE which excites and deforms the
piezoelectric element and produces a voltage. Specific to PZT elements; a 0.1% deformation generates a
measurable piezoelectric response, often in the microvolt range (J. Krautkrdmer et al., 1990).  Since the
mechanical deformations and piezoelectric transduction sensitivities are small, the initial analog signals
require multiple layers of amplification during transmission and digitization.  This overall process
eventually converts the analog AE signal to a digital signal for interpretation with the AE monitoring

equipment and displayed to the end user.
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Figure 2.7: Typical piezoelectric sensor schematic (Vallen, 2009)

There are two primary variants of piezoelectric sensor; resonant and broadband. The main difference is the

transfer of the AE signal to the piezoelectric element. In a resonant sensor, a small proof mass mechanically
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couples to the piezoelectric element through a flexible mount and vibrates freely around resonance in
response to the AE signal. A broadband sensor has a stiff support connected to the piezoelectric element
that directly applies deformations to the piezoelectric element. Each sensor has advantages and
disadvantages which can make for best use scenarios for each sensor type. As illustrated in Figure 2.7,
resonant sensors are more sensitive and better at detecting timing and event counts but can distort the
recorded AE signal since the AE signal is transferred from the solid to the proof mass and then to the
piezoelectric element. The broadband sensors are less sensitive but have a high-fidelity direct transduction
of the AE signal to the piezoelectric element. Since with a broadband sensor there is not a proof mass but
instead a stiff support the sensor can be used in reverse as described previously where the application of a

suitable oscillating voltage produces ultrasonic vibrations.
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Figure 2.8: Broadband (top) vs. resonant (bottom) sensitivity comparison (Grosse and Ohtsu, 2008)

2.3.3 Acoustic Emission Wave Modes and Propagation

The nucleation of a crack, crack growth, rubbing, loading, and other irreversible deformative
processes that emit an AE do so through multiple different wave modes. The three main wave modes
measures for AE monitoring include; longitudinal waves (body wave/P-wave), transverse waves (shear
wave/S-wave), and surface waves (Rayleigh wave). Longitudinal waves or P-waves are where particles
oscillate in the direction of the wave propagation. Transverse wave or S-waves are where particles oscillate
transverse to the direction of the wave propagation. P- and S-waves travel through bulk solids, with the P-

waves having the higher velocity. Surface waves travel along the surface of a solid. Surface waves can
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result from P- and S- waves interacting at a surface (Kaphle, 2012a). The typical earthquake has P-waves,
S-waves and surface waves, with the S-waves usually being the strongest and being the primary source of
damage.

The AE waveform released from the source location propagates in all directions in a pulse-like
manner. Anisotropy at the AE source can lead to a preferred directionality associated with the waveform.
The pulses can be very short in time duration such as is the case with microcracking which releases AE
signal pulses with durations lasting anywhere from a fraction of a microsecond to a few microseconds. The
signal eventually measured by the AE sensor is not the same as that from the AE source. Extracting
information for the measured signal requires additional signal conditioning, such as filtering, and post-
processing. The AE signal detected at the AE sensor is a combination of the initial AE signal, and reflected

and refracted signals, background signals, and the coupling of different signals at the same phase.

2.3.4 Acoustic Emission Source Locating

The pulse-like transmission of AE signals from crack nucleation, crack growth, and other events emanate
in all directions from the source point. Measuring the time of arrival (TOA) of a signal with an array of

point sensors enables locating the emission source through triangulation, Figure 2.9.
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Figure 2.9: AE signal triangulation schematic (a) crack nucleation and AE sensors, (b) acoustical
emission of transient elastic wave, and (c) AE source location by triangulation (Huston, 2010)

Locating an AE source with accuracy requires recording AE signals with microsecond precision. The
accuracy of the source location also depends on the wave propagation velocities of the solid. A concern
with concrete is the attenuative nature of the material in the range of 40 dB/meter and scatter of the AE
signal due to wave interaction with natural air voids or existing cracks. Nonhomogeneous wave speeds due
to reinforcing, differing states of cure and damage can all contribute to distorting the wave propagation and

confounding source location estimates.
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2.3.5 Acoustic Emission Source Differentiation

The AE signals carry additional information beyond TOA, largely in the detailed shape of the waveform.
Such information correlates to the details of the AE source and the path traveled. There are two main types
of AE source differentiation techniques (Kaphle, 2012b). The first is a feature-based analysis where an
analysis of the specific waveform extracts and records a set of features, also known as parameters,
describing the wave form. Typical features include amplitude, duration, counts-to-peak, and peak
frequency as illustrated in Figure 2.10. Others are available. Subsequent processing of waveform features

extracts information.
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Figure 2.10: Parametric analysis of typical measured waveform features

The second AE source differentiation method begins by recording entire AE waveforms for a more detailed
post-data collection analysis. Success requires sampling at a sufficiently high frequency to avoid Nyquist
and related under-sampling problems. This creates a far larger volume of data (Kaphle, 2012a). Two
primary emission types are burst and continuous, Figure 2.11. A burst emission is typically the result of
crack nucleation or growth with a characteristic short-duration burst of waveform wiggling. Continuous
emissions produce a steady stream of merged bursts that appear as stationary noise. The kinetic nature of
all solids produces a low-level of continuous emissions. Many macroscopic processes also produce
continuous emissions. Selecting the appropriate amplitude filter can pre-filter these non-interesting

continuous emissions prior to post-processing.
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Figure 2.11: Burstt emission (top) vs. continuous emission (bottom) (Grosse and Ohtsu, 2008)

Multi-sensor spatial filters provide additional capabilities, such as the identification and rejection of
anomalous situations, including simultaneous events, remote events outside the region of interest and
secondary reflections from surface boundaries and the rubbing of newly formed cracks (Kaphle, 2012b).
A study by ElBatanouney et al., 2014, used an amplitude and duration filter to eliminate AE events
not correlated to crack formation during a laboratory test of cyclically loading a reinforced concrete beam
to failure. Figure 2.12 shows how a careful choice of filter settings can reduce AE event location estimates
from a diffuse swath of points centered on the cracks, Figure 12.b, to a smaller set of points that provide a

superior alignment with the observed cracks, Figure 12.c.
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Figure 2.12: AE event amplitude and duration filtering for crack correlation (a) laboratory beam and AE
sensor array, (b) unfiltered AE event location, and (c) filter AE event locations correlated to observed
cracking (ElBatanouney et al., 2014)

2.3.6 Acoustic Emission Damage Assessment

Damage assessments and quantification typically account for the stress level at which AE events
occur, peaks in amplitude of AE events, number of AE events, spatial clustering of AE events, and rate of
accumulation of AE events (Arches, 2009). The technical literature contains multiple published damage
assessment techniques, with the majority looking at conventional non-pre-stressed reinforced concrete
Additionally, most of the available damage assessment methods use cyclical loading scenarios that lend
themselves to serve use monitoring of bridges that experience cyclical loading and unloading from traffic.
Some of the most common damage assessment techniques for reinforced concrete are:

1. Felicity ratio;
2. Parametric analysis;
3. Load-Calm ratio;
4. B-value analysis;

5. Frequency analysis.

These damage assessment techniques and quantification metrics all use data obtained from the recorded AE
waveform or parametric data representative of the AE waveform to relate the AE event with a crack event

or to relate the AE event to a severity of damage.
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2.3.7 Felicity Ratio

The basis of the Felicity ratio is the load history dependent Kaiser effect. The test protocol uses a
sequence of loading and unloading cycles with an amplitude that increases at each cycle. The Kaiser effect
is where no AE events occur until the load levels exceed the previous maximum loads. The Felicity effect
is the opposite case where AE events occur a load levels below the previous maximum loads. This indicates

the occurrence of damage.

Load at AE restart
Previously applied maximum load

Felicity Ratio =

A Felicity Ratio of 1 or greater indicates no damage, whereas, a Felicity Ratio of less than 1

indicates damage. The lower the Felicity ratio the greater severity of damage. Figure 2.13 illustrates the

( Felicity Effect /

| Kaiser Effect |

Felicity Ratio concept.

Acoustic Emission Activity

F, F, Load

Figure 2.13: Felicity effect and ratio illustration (typical) (Arches, 2009)

2.3.8 Parametric Analysis

A parametric analysis uses parameters determined from the AE event waveform and observed
damage features, such as cracking, to establish correlations between AE event parameters and damage. An
example is to plot the RA values (rise time/peak amplitude) versus the average frequency (kHz). AE events
above the y=1/10x boundary indicate tensile cracking, whereas, AE events below the y=1/10x boundary
indicate other types of cracking (Arches, 2009).
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2.3.9 Load-Calm Ratio

The Load-Calm ratio damage assessment technique plots the Load Ratio and Calm Ratio of a
loading-unloading cycle to classify the AE events as; minor damage, intermediate damage, or heavy
damage. The Load Ratio is the same as the Felicity ratio. The Calm Ratio is the ratio of AE activity during
the unloading process compared to the AE activity during the last loading cycle. Plotting the Load Ratio

versus the Calm Ratio can then indicate minor, intermediate, or heavy damage, Figure 2.14.

|
|
l .
Heavy | Intermediate
Damage | Damage
|
2
§ |
=l il —H-——_—————
5 I
@)
|
Intermediate | Minor
Damage : Damage
|
|
|

Load Ratio

Figure 2.14: Load-calm ratio illustration (typical) (Arches, 2009)

2.3.10 B-value Analysis
The b-value analysis is a statistical regression of the AE event peak amplitudes. The technique
requires a complete loading-unloading cycle for calculation. The basis of the b-value analysis is the seismic

Gutenberg-Richter formula:

logioN = a—b'(Agp)
B — value = 20b’
Where,
N = number of AE events with amplitude above Ags
Ags = AE signal amplitude (decibels)

a = empirical constant (background noise)
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b’ = empirical constant

An abrupt decrease of the calculated b-value indicates the occurrence of damage. This method is sensitive
to the attenuative nature of concrete. Appropriate

sensor array must be near to or encompass the area of damage. The sensor spacing must be close enough to

sensor placement is critical for accurate results. The

register AE events accurately, nominally a spacing of 2 m or less.

2.3.11 Frequency Analysis

The frequency analysis uses a flow chart, Table 2.1, to categorize concrete damage based on
frequency and energy of the AE event. This method is specific to reinforced concrete and has a high

potential to mis- categorize damage if the sensor placement is not close enough to read AE events accurately

before severe attenuation by the concrete.

Table 2.1: Frequency analysis flow chart (Arches, 2009)

AE

Source

Steel wire breaking or stress corrosion

High High energy '
cracking
frequency -
Low energy Steel corrosion
Medium High energy Concrete cracking
frequency Low energy Steel/concrete interface damage
Low Changes in nonlinear acoustic )
_ Structure damage under loading
frequency behavior of concrete
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CHAPTER 3
SELECTED INSTRUMENTS AND RATIONALE

3.1 Overview

The goal is to select an instrumentation package to measure the occurrence and location of
cracking in prefabricated and pre-stressed bridge girders during fabrication and during transport
to bridges sites. AE testing is the primary measurement technique. The method attaches sensors
onto the surface of the girder with adhesives, connects the sensors to the data acquisition unit with
coaxial cables and collects data continuously throughout the cycle. Figure 3.1 show a typical

sensor installation.

Figure 3.1: Acoustic emission sensor attached to a concrete girder (Figure courtesy Mistras

Group)

3.2  Acoustic Emission Sensing

AEs are short-duration high-frequency elastic waves that propagate in solids following micro-
fractures and other localized events. In many situations the elastic waves propagate with sufficient strength
for detection at remote locations. Analysis of the detected signals can determine the location, type, and

overall level of cracking, including whether the cracks are stable or are growing. A simple, but effective,
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technique measures the rate of AE events. If the AE production rate is relatively low and steady, or
dropping, the amount of new crack generation is small. If the AE production rate is high or growing, then
the cracks are growing. More sophisticated processing estimates the locations of the sources of the AE
waves, and identifies the types of events that created the wave.

Advantages of AE monitoring are: 1. The sensors attach to the surface of the structure, are
removable and reusable; 2. AE can detect, locate and assess subsurface nonvisible cracks. The technology
is mature with applications across a variety of material and structure types, including concrete. Software
and data analysis procedures are available for a variety of conditions, including those specific to concrete
cracking. 3. Certain industries, in particular pressure vessel manufacturing, use accept/reject criteria based
on the level of AE signal production. The in-plane-stressed character of pressure vessels and that of pre-
stressed girders are similar enough to lend credence to the possibility of eventually developing similar
accept/reject criteria for pre-stressed girders.

Disadvantages of AE testing are: 1. Data must be collected continuously otherwise important events
may go undetected; 2. The standard setup requires cables to connect the sensors to the data acquisition
instrument. Running these cables along girders without damage requires skill and some expense. A
wireless alternative is possible but increases costs and complexity; and 3. The monitoring instruments
consume moderate amounts of power (~20 W), which can be a concern for off-grid continuous battery-

powered monitoring.

33 Methodology

Instrument configuration: Initial considerations indicated that a portable and reusable AE
monitoring system supplemented with other sensors (acceleration, strain, temperature and/or tilt) with a
portable battery power supply that can run for 48 hours continuously using up to 8 AE sensors deployed

along a bridge girder is a preferred configuration.

Phase 1 — Measure AEs during curing and formwork stripping —The presence of formwork on
the bottom and sides of the girder will likely lead to placement of the sensors in an array on top of the
girders. AE data will be collected continuously throughout the cure cycle. It is anticipated that the amount

of AE activity will be small during curing but will pick up during formwork stripping operations.

Phase 2 — Measure AEs during pre-stress release by cutting tendons — Measure AE activity during
tendon release and immediately afterwards. The release transfers the forces that held the tendons in tension

from and external frame onto the concrete. This may be the source of a large level of AE activity. If the

38



formwork has been stripped prior to tendon release, a preference is to reposition the sensor array into a

configuration to better capture AE events, such as around the tendon clusters near to the end of the girder.

Phase 3 — Measure AEs during transport — (Optional) Measure AE activity during transport of
the girder from the fabrication facility to the bridge site. Considerations include positioning the array and

data acquisition system to minimize the possibility of damage and providing portable power.
Additional consideration — Use of tendons as waveguides — Steel tendons can be excellent

waveguides for carrying AEs from remote sources throughout the girder. There may be advantages to

attaching the AE sensors to one or more tendons during testing.
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CHAPTER 4
DETAILED DESIGN OF INSTRUMENT PACKAGE

4.1  Overview

The plan is to measure AEs on concrete girders in the factory, during transport, during installation
and for a short period following installation. The following is a listing of the proposed AE monitoring
system, justification and description of the parts, drawings of the system, potentially useful add-on options,
a description of the difference between what was originally proposed and what is now recommended, and

quotes from the vendors.

4.2 Planned Parts List

The key components of the planned AE monitoring system appear in Table 4.1. The total cost is
$22,997.
Table 4.1: Planned parts list

Item No Description Vendor Unit Cost Quantity Total Cost
1 SHIII-8, Smart Remote Monitoring, 8-channel Sensor Highway Ill Mistras $13,372 1 $13,372
2 AE-WIN 2D-LOC, FULL PLANAR, 2 DIMENSION LOCATION Mistras $1,369 1 $1,369
3 Low Power, Preamplified Sensor, 60kHz, with 26 dB gain, AST, coate Mistras $628.00 8 $5,024
4 Signal Cable, RG58 SMA-BNC 30 Meters Mistras $124.00 8 $992
5 AE WIN 3D-LOC, 3 DIMENSIONAL LOCATION SOFTWARE OPT Mistras $1,369 1 $1,369
6 ASUS T102HA-D4-GR Transformer Mini 10.1-Inch 2 in 1 Touchscreen Amazon $391.90 1 $392
7 12v 100AH Deep Cycle AGM Battery Amazon $159.49 2 $319
8 12V Battery Charger Amazon $27.55 1 $28
9 Power Center Amazon $57.58 1 $58

10 Battery Inverter Cable Set Amazon $8.87 1 $9
11 Auto Battery Disconnect Knife Blade Switch Amazon $20.99 2 S42
12 8-Gauge Maxi Fuse Holder Amazon $5.95 4 S24

Total $22,997

4.3 Details on Parts List and Justification

Part 1

Description: Mistras SHIII-8, Smart Remote Monitoring, 8-channel Sensor Highway III system is
a full, stand-Alone AE system for unattended monitoring in outdoor environments. System Includes;
Outdoor weatherproof case (18" x 12" x 6"), one 8-channel AE board, 8 single-ended parametric inputs,
remote reboot, Windows 7 Operating system, AEwin installed and licensed for 8 channels, Ethernet
connectivity to a factory network or Internet, 110/220VAC or 9 - 28 VDC power at 15 watts. Unit
price is $13,372, a quantity of 1 and total cost of $13,372

Justification: This is base unit for AE monitoring. It can collect and distribute up to 8-channels of

AE data, along with up to 8 other channels. It is designed for use outdoors in field testing. The vendor
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(Mistras) has other systems, but this one is the simplest and most cost-effective of the options for the
planned tests. Previous experience with laboratory-based AE systems from Mistras lends confidence in the

selection of this type of system for the planned testing.

Part 2

Description: Mistras pn# 9380-7003-2, AE-WIN 2D-LOC, full planar, 2 dimension location. Unit
price is $1,369, a quantity of 1 and total cost of $1,369.

Justification: AE-WIN is the basic Windows-based operating software for the Mistras AE systems.

It is capable of manipulating and processing AE signals. It enables event location on 2D planar surfaces.

Part3

Description: Mistras pn# R6IC LP-AST, Low Power, Preamplified Sensor, 60kHz, with 26 dB
gain, AST, coated for outdoor use, Smeter coaxial RG-58 A/U cable, and connector. Unit price is $628, a
quantity of 8 and total cost of $5,024.

Justification: These are the AE sensors. This model is ruggedized for outdoor use. The total of 8

sensors should provide an adequate coverage of the girder for event detection and location.

Part 4

Description: Mistras PN# 1234-4002-30, 1234-SMA/BNC-30, Signal Cable, RG58 SMA-BNC 30
Meters. Unit price is $124, a quantity of 8 and total cost of $992.

Justification: These are the signal cables for the sensors in Part 3. They are needed to transmit the

analog signals from the sensors back to the digitizer on the SHIII-S8.

Part5

Description: Mistras pn# 9380-7003-9, AE WIN 3D-LOC, 3 dimensional location software option.
Unit price is $1,369, a quantity of 1 and total cost of $1,369.

Justification: This is a software add-on to AE-WIN that enables location of events in 3-dimensional

structures — an item of importance for girder testing.

Part 6

Description: ASUS T102HA-D4-GR Transformer Mini 10.1-Inch 2 in 1 Touchscreen Laptop (Intel
Quad-Core, 128GB EMMC, Grey, pen and keyboard included) by Asus. Unit price is $391.99, a quantity
of 1 and total cost of $391.99
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Justification: This is a mini laptop computer. It is used to configure and operate the SHIII-8, along

with storing data. It is intended to leave this computer on-site inside the SHIII-8 box.

Part7

Description: Universal UB121000-45978 12v 100AH Deep Cycle AGM Battery 12V 24V
48V (Black) by Universal Power Group Unit price is 2 $159.49 a quantity of 1 and total cost of $318.98

Justification: This is a deep draw rechargeable sealed lead-acid battery that will provide power to
the SHIII-8. The duration between charges is estimated to be between 4 and 7 days. Two are selected so

that it is possible to do a quick swap in the field.

Part 8
Description: Battery Tender 021-0123 Battery Tender Junior 12V Battery Charger by Battery
Tender Unit price is 1 $27.55, a quantity of 1 and total cost of $27.55

Justification: This is a charger for the batteries in Part 8.

Part9

Description: MinnKota Trolling Motor Power Center Unit price is $57.58, a quantity of 1 and total
cost of $57.58

Justification: This is a case that surrounds the battery in Part 7 and provides some control over

function.

Part 10

Description: EPAuto 20-Inch Battery Inverter Cable Set. Unit price is $8.87, a quantity of 1 and
total cost of $8.87

Justification: This is a set of cables that connects the battery to the SHIII-S.

Part 11

Description: Auto Battery Disconnect Knife Blade Switch Top Post Top Terminal Car Battery Cut
Off Shut Off. Unit price is $20.99 a quantity of 1 and total cost of $41.98

Justification: This is a set of switches for connecting and disconnecting the lines to the battery in

Part 7.

Part 12
Description: 8-Gauge Maxi Fuse Holder Unit price is $5.95, a quantity of 1 and total cost of $23.80.
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Justification: These are fuses for insertion into the electric power lines of the system and may

prevent damage from electrical shorts and excessive current draws.

4.4  Drawings of the Systems

Figure 4.1 shows the cross section of a pair of typical bulb tee girders. The actual girder to be
instrumented remains to be determined. This will also affect mounting details. Figure 4.2 shows the AE
system on top of a girder. Figure 4.3 shows how an array of AE sensors would detect an incipient crack.

Precise timing combined with triangulation methods produce the location estimate.
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Figure 4.1 Typical Bulb Tee cross-section shapes for use in pre-stressed concrete girders (MoDOT,
2018)
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Sensor Highway™

Marine Battery 1l (SH-111) is an
. Acoustic Emission
With power (AE) monitoring

system /
case and -y
outlets

Battery
charger /
tender

Figure 4.2 Main components of acoustic emission monitoring system sitting on top of a generic Bulb Tee

girder

Sensor Highway™ il

(SH-III) is an Acoustic
Emission (AE)

monitoring system

Marine Battery
With power case and
outlets

Battery charger
tender

Laptop USB Charg

Figure 4.3 Acoustic emission system on top of girder with array configured to sense the elastic waves

produced by an incipient crack
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4.5 Potentially Useful Add-On Options

Option 1:

Description: Cellular Wireless Modem assembly, Wireless 3G modem with remote CPU reset
capability. Hardware only. Needs a separate cellular contract provided by customer (For U.S. and Verizon
service only). Includes Main Unit, DIN Rail mount, antenna, cable and install. Unit price is $2,5006, a
quantity of 1 and total cost of $2,506. A cellular plan is also needed

Comment: This may be the most useful of the optional add-ons. It will allow for remote access of

the system while it is collecting data. It was not included in the original proposal.

Option 2:

Description: Mistras BaseStation Battery Backup, Outdoor BaseStation Battery Backup option
installed into system. Up to 20 minutes operation. Unit price is $595, a quantity of 1 and total cost of $595.

Comment: This will provide an electrical backup in case of power loss. It may be useful in some

cases for critical monitoring applications.

Option 3:

Description: OLM web site,Creation of an "On Line Monitoring" website, with server located at
Mistras for posting a private, secure, website so that the customer can log in and see the status and activity
on the structure, in terms of tables and graphs with selectable parameters such as Hits and events distribution
and other parameters versus time or per channel. The website is typically updated every hour. Contact
the factory for custom web site needs and quotes. Unit price is $2,950, a quantity of 1 and total cost of
$2,950.

Comment: This may be useful if the testing moves to mostly remote site monitoring, rather than

the more hands-on fabrication, transport and installation cases.

4.6  Difference from Original Proposed Plan

Table 4.1 lists the equipment items for the AE test system as originally proposed in September
2015. The primary difference is the sensors, Items 2 and 3, in Table 4.1. The original set of sensors, listing
for $3,248, was the non-ruggedized version. The new set of sensors, listing for $5,024, is ruggedized with

water resistant coating for outdoor use.
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4.7

Table 4.1: Equipment selection in the original proposal

Item

Description

Qty

Unit Price

Total

SHIII-8, Smart Remote
Monitoring, 8-channel
Sensor Highway |1l system

13,372

13,372

PK6l, Low Power Sensor,
60 kHz with Integral Preamp
and SMA Connector for
Sensor Highway

406

3,248

1234-SMA/BNC-30, Signal
Cable, RG58 SMA-BNC 30
Meters

124

992

4

AE-WIN 2D-LOC, FULL
PLANAR, 2 DIMENSION
LOCATION

1,369

1,369

5

DIMENSIONAL LOCATION
SOFTWARE OPT

1,369

1,369

Total

$20,350

Vendor Quotes
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@ MmisTRAS

PRODUCTS & SYSTEMS DIVISION 9 e T dos S e ISRt

Wi, mistrasgroup.com

L.-5. January 26, 2017

Dryver Huston

Uniwversity of Vermont

E: dryver hustonEuvm.edu Re: Sensor Highway lll SEM Quotation
Quote & SH-15565 Revision B

Dear Mr. Huston:

The Sensor Highway™ NI (SH-I) is an Acoustic Emission [AE) monitoring system with up to 32 high-speed channels and 16
standard parametric input channels (expandable to over 100). The system is designed for unattended and remote monitoring
use in structural health, process and condition monitoring applications. It is rated for outdoor use and comes equipped in a
rugged weatherproof MEMA 4 enclosure.

The key feature of the SH-III System is its highly flexible sensor fusion interface for input and processing. using a variety of
sensors. The system is able to accept AE sensors (using the standard “phantom-power” coaxial connection for powering
external preamplifiers), and various other sensors with current/voltage outputs.

This interface is accomplished through the use of standard industrial, DIMN Rail Mounted Signal Conditioning Modules, with
options for ICP Accelerometers, Proximity Probes, Tachometers, Pressure Transducers, Load Cells, Thermocouples,
Environmental Sensars, Strain Gauges, Wireless Sensors and more.

The §H-III has several interfaces available for data communication and remote contral. The principal interface is the built-in
Ethernst 10/100/1000 BT port. Other available interfaces include: cellular modem and WiFi

Acoustic Emission

Cracks
: Caorrosion

Designed to:
+  Monitor effectiveness of repairs/retrofits
+  Monitor pre-existing/known active

Fatigue defects
: Other . Monitor “hidden areas” where visual
*»  inspection is difficult or impossible

P.“m;:::“ * Monitor high stressed areas showing

Waather Remote Wireless flaw-like activity

Vibkration Monitoring +  Wire break monitoring on suspension

Flber Optic cable and cable stay bridges

e Sensor Highway Il R

The §H-III-SRM System performs all the tasks of data collection, full signal processing (including location determination,
clustering capabilities), analysis and alarming for standalone, surveillance monitoring, 24 hours a day, all within the SHI-5BM
unit. This extra capability is achieved by incorporating a more powerful, industrial temperature range CPU inzide the unit,
running Windows XP and AEwin™ with all its features and capabilities. It is capable of making complex, on-line asset integrity
decisions while interfacing to the user, the internet or to 2 contral room.

Basic, built-in features common to all Sensor Highway™ Systems include:
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« Data Acquisition: Full AE feature and waveform data acquisition to a data file, with ability to be downloaded through
Ethernet connection

«  Status and Trending Capabilities: Ability to generate timed 5TA files for individual and web based system status reporting
and trending

»  AE System Set-up and Control: Client program to remotely setup the systemn, generating a layout (set-up) file that can be
uploaded to the Sensor Highway™ I

+« Data File Upload and Download: Available through an FTP server with an M5 Windows™ Explorer interface for transferring
files

«  Alarm Capability: Built-in alarms, based on Hit/Event activity or feature based (location or cluster based is available on the
SHI-5RM)

« Communications: Ethernet networking built-in for walk-up, plug-in operation and remote Ethernet/Internet
communications

»  AE Software Analysis Compatibilities: Fully compatible with AEwin™ for SH-111 (AEwin™5H). Remote user must have
AEwin™5H installed on analysis workstation to analyze AE data files downloaded from the SH-11I

The 5H-II is a standalone, remote AE system capable of operating our high performance real time AEwin™ software. In
addition to its basic capabilities, the SH-III has the following advanced capabilities:

+«  Omn-line data collection and signal processing

«  Communication of alarm and status information over the internet

«  Ability to handle many different types of source location in real time

«  Clustering of location data and ability to alarm on clusters/cluster rate

«  Comprehensive alarm detection capability

. Remote Internet communications over the Ethermet and WiFi,
cellular
or telephone modem for remote monitoring and control

»  Web based remote monitoring application (RMA) to summarize
state

« of one or more Sensor Highway™ 11l units

REIC LP-AST Sensor with weather resistant coating.
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Battery for monitoring is not included. It can be supplied by the University.

Itern

001

L

an3

Q0

ok

Q06

Model & Description

pn# 558, 5HII-8, 3mart Remate Manitaring, 8-channe! Sensor Highway 1l
system is a full, stand-Alene AE system for unattended monitaring in outdoor
environments. System Includes; Outdoor weatherproof case (18" x 12° x 67), one 8-
channel AE board, 8 single-ended parametric inputs, remote reboot, Windows 7

Operating system, AEwin installed and licensed for & channels, Ethernet

connactivity to a factory network ar Internet, 110/220VAC or @ - 28 VDC power at

15 watts

Eh BRO0- 71 T0-setup, OLM web site Creation of an "0n Line Manrtaring” website,
with server located at Mistras for posting a private, secure, website so that the

customer can lag in and see the status and activity on the structure, in terms

af

tables and graphs with selectable parameters such as Hits and events distribution

and cther parameters versus time or per channel.  The website is typically

updated every hour. Contact the factory for custom web site needs and quotes.

pnd# 2380-5035, Cellular Wireless Madem assembly, Wirless 3G modem wath

remate CPL reset capability, Hardware only, Meeds a separate cellular contract
provided by customer (For LS, and Verizon service anly), Includes Main Unit, DIN

Kail mount, antenna, cable and install,

pn# 3380-7003-2, AE-WIN 20-L0C FULL FLANAR, 2 DIMENSION LOCATION

pn# REIC LP-AST, Low Fower, Freamplified Sensor, 60kHz, with 26 dB gain, AST,
coated for cutdoor use, Smeter coaxial RG-58A/U cable, and connectar (specify

BMC, BMCR, SMB, SMER, or Pigtall on the arder).d connector BNCR,

FiNg 1238-A002-30, 1224-30MABNC-30, Signal Cable, RG5E 5MA-BNT 30 Meters
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TOTAL

Q1Y Unit Price Total Price
1 1337200 $13.372.00
r

1 §2,950.00 $2,950000
1 52,506.00 $2,506.00
1 $1,363.00 $1,369.00
& SE28.00 $5,024.00
3 §124.00 $592.00

82621300

Plus Sakes Tax [Whare Applicable) & Shipping



Iterm ik &2 Description

Software Options for Sersor Highwery

o |prEfSEE0- TR AF WIN3DLOG, 3 DIVERNEICHAL LOCATION
SOFTWERE OFT

o PP 9580-UCE- 1) AE-VIN-SPHERE-LOC, Spherical locabon option for
Aewin

g |Pre S5E0-E-29 70 AE-WUIN-LOGinin-Suite, Full location suite induding
200G, 30-10C and SPHERE-LOC software
pret S5E0- A5G AE-WIN-Supervisar-Mode, Supenisorn/Operator mode

e | provides a pessword protected supensor mode for setting up ABwin and an
operator mode for camying out AE tests without the allity to change ABwin
settings

(06 | D S0 TG AE-WIN 32 GROUPS, ENHANCENENT TO 32 LOCATION
RO

o0 PP B0 TB4. AE-VIN-Sruat-Thresthold, Corputer generated
adaptive AE threshold control

O07 | gt 0380 7008-39. ABinin-Irtersity, Intersity Andlysis modide

g | Pre S5E0-0E- 5, ABinin-LicersecHReplay-USB, Repiay only ABwin
Licerse with all licensed options (Requires proof of edsting ABwin licerse
and optors) and USE licerse key, for use on multiple aralysis conmputers

(g e 95805045 BaseStation Battery Badagp , Cutdoor BaseStation Battery
Badap option installed into system. Up to 20 minutes operation
pret Véather Stafiony Veather Station Solid State \Weather Station for Lse
in SHHII Cata Callector or SHHI Srart Remote: provides over 20 weather
related paranreters for direct input into ABwin software and parametrics

uy Sunge Protector for Weather station, highly recommended fo prevent
bumout fromilightening strike
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ary|  Unit Price

$1360.00
$1,72000

$343200

551600

51740
200

42500

S55R00

$600600

$1.30600

Total Price

$1.36800
5172000

343200

$51600

$461.00

$17400
#3200

500500

$1,30500



Vilidity:
Payment Terms:

Tax Terms

Deelivery:
FOB:

Ship Viag:
Origin:
Minimum Qrder
Place an Order:

50 Days
Net 30 days upon approval by Accounting. We also eccept credit cards, (WISA, MasterCard
& American Express) NOTE: there will be o 3% processing fee levied on total of arder when using g credit
card for orders of $5000.00 or over.
Mistras Group, Inc. is now adding all applicable sales tax, on equipment orders seld, on our invoices.
Your local state, city or county tax will automatically be charged unless a tax exempt or re-sale certificate
has been submitted
45-60 Days ARD
Princeton Junction, MJ, Buyer understands that he/she is responsible for shipment, inswrance
and any damages coused by shipping, from the FOB Shipping Point.
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P 609-468-5737

E: terrytamutusi@mistrasgroup.com
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Mistras shipped the Sensor Highway III AE test system to UVM on May 26, 2017. Upon arrival,
personnel at UVM unpacked the boxes, checked items against the packing list (attached) and proceeded to
conduct tests in the laboratory to verify the operational condition and capabilities of the equipment. The
equipment performed in a satisfactory manner and seemed to be in good working order. The following is
a summary of the test results.

1. Equipment — The Sensor Highway 111, Figure 4.4, fits primarily in a steel electrical box, with
cables extending to the transducers, controlling computer and power supply, Figure 4.4. This system can

operate and collect data from 8 AE sensors and other voltage-type transducers.

(b)
Figure 4.4: Sensor Highway III instrument box (a) lid closed and (b) lid open

2. Initial Tests and Transducer Mounting — The initial tests assessed the ability to measure AE
signals produced on concrete slabs in the laboratory. Two standard nondestructive methods of exciting the
structure are a pencil lead break and impact from a dropped steel ball. The testing indicated that the dropped
ball provided more consistent data for the slabs tested. The initial method of a attaching the transducers to
the concrete slab was to use a heavy silicone vacuum grease. This grease is remarkably sticky, but
nonetheless did not provide a consistent and robust attachment to the concrete, largely due to the porous
and rough nature of the surface. A workaround is to first attach small steel plates to the concrete with and
adhesive and then to attach the transducer to the steel plate with vacuum grease, Figure 4.5. The testing
examined four different commercially available adhesives. Three of the adhesives were single-part

construction adhesives with an advertised capability of bonding metal to concrete. The fourth was a two-
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part 5-minute cure epoxy. All four adhesives provided a strong grip. However, the two-part epoxy was the

(b)

Figure 4.5: Small concrete slab with adhesive-bonded steel plates and 4 acoustic emission transducers

vacuum-grease attached to the steel plates
1. Steel Ball Drop Event Counting and Triangulation Tests — A series of tests evaluated the
capability of the AE test equipment to detect and locate dynamic mechanical events. The tests
used a 7/16 in. diameter steel ball dropped from a height of about 18 in. as the excitation source.
The system logs hits as individual dynamic events. The system was consistently capable of
detecting hits with the dropped steel ball using default settings. Determining the impact
location required adjusting the transducer event threshold settings to obtain relatively

consistent location information for the impacts, as shown in Figure 4.6 and Figure 4.7.
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(b)

Figure 4.6: Small concrete slab: (a) with steel ball, (b) with mapping of transducers (green dots), steel

ball and sample location estimates (red dots)
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Figure 4.7: Medium-sized concrete slab (a) with steel ball, (b) with mapping of transducers (green dots)
and estimated ball impact locations (red dots)

4. Concrete Crush Test — The next series of tests examined the capability of the system to detect
and locate damage to the concrete as it occurs. The first set of damage tests crushed the surface of a small
concrete slab by pressing a steel ball into the surface. A large C-clamp with a missing articulated ball-foot
and exposed ball provided the crushing action by turning the screw. Tight turning using a large wrench for
leverage produced sufficient damage to be detected and located by the system. The estimated location of

the damage with the AE system was reasonable, but did show some scatter, Figure 4.8.

.
[Ho07 < 1> Uonisog 3 54 uansad

(b)

Figure 4.8: C-clamp crush test: (a) setup, (b) detection and estimated location of damage site
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5. Concrete slab fracture — This damage test applied a 3-point bending load to a small concrete
slab, using a screw-driven adjustable length wood clamp. The slab contained no reinforcing and broke
suddenly. This is a failure mode that should not occur often in transportation structures with conventional
reinforcing, but nonetheless provided some useful data, including the detection of precursor microcracking

before the major cracking, Figure 4.9.
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Figure 4.9: Fracture test of small concrete slab: (a) broken slab, (b) test results with transducer location

(green dots) and estimated damage location (red dots)
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CHAPTER 5
ACOUSTIC EMISSION DATA COLLECTION AND RESULTS: LABORATORY TESTS

5.1 Overview

Laboratory testing helped to establish and adapt system setup input parameters for the field tests
including: wave speed velocities, sensor array layouts, and amplification filters. Pull-out and three-point
bending tests demonstrated the capability of AE sensing to detect cracks. Data from three-point bending
tests provided the means to associate and correlate observed cracks and stress zones to AE event locations.
The pull-out and three-point bending (flexure) tests followed the work of ElBatanouny, et al. (2014), but
differed with smaller scale beams and the introduction of defects to control the failure locations are unique.

For pull-out tests the 5-inch x 5-inch x 12-inch (127 mm x127 mm x 305 mm) laboratory test beams
used fast-setting QUIKRETE® and contained a single no. 4 reinforcing bar in the center of the beam, necked
down off center from 0.5-inch (12.5 mm) diameter to 0.25-inch (6.25 mm) diameter to control the point of
failure. The eight sensor arrays for the test beam employed a 3-D spatial array (Figure 5.1). Silicone
vacuum grease secured the sensors to the concrete beam for the relatively short duration of the laboratory
tests. A load frame applied center-span force to the beams with displacement control at a rate of 0.03 in/sec
(0.762 mm/sec) until failure.

For the three-point bending tests the 5-inch x 5-inch x 24-inch (127 mm x127 mm x 610 mm)
laboratory test beams used fast-setting QUIKRETE® and contained two no. 4 reinforcing bars spaced
roughly 1.5-inches (38 mm) from the bottom and adjacent side and were necked down in the center from
0.5-inch (12.5 mm) diameter to 0.25-inch (6.25 mm) diameter to control the point of failure. The 8-sensor
arrays for the test beams were either a 2-D planar array (Figure 5.2) or 3-D spatial array (Figure 5.4).
Silicone vacuum grease secured the sensors to the concrete beam for the relatively short duration of the
laboratory tests. A load frame applied center-span force to the beams with displacement control at a rate of
0.03 in/sec (0.762 mm/sec) until failure.

5.1.1 Laboratory Test Methodology

This section describes the methods for laboratory AE data collection using relatively small
reinforced concrete beam specimens under pull-out and three-point bending to assess the efficacy of AE
sensing in detecting cracks. This study employed a Mistras AEwin™ Sensor Highway III monitoring
system, associated AEwin™ processing software, and an eight PK6I sensor array per manufacturers’
recommendations and ASTM standards (ASTM E1316-18a, 2018; ASTM E3100-17, 2017; Physical
Acoustics, 2018; Worley Il et al., 2018). The PK6I sensor is a medium-frequency, resonant AE sensor with
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an integral, ultra-low noise, low-power, filtered 26 dB preamplifier, which can drive signals through 200

meters of cable and operates at 60 kHz frequency (Physical Acoustics, 2018).

5.1.1.1 AE Instrumentation Input Parameters and Collection

Mistras AEwin™ Sensor Highway IIT monitoring system and associated AEwin™ processing

software allows for user-defined inputs to refine the collected AE events. The acquisition setup parameters,

as listed in Table 5.1, followed that specified by the manufacturer. Pencil lead break tests in controlled

laboratory specimens confirmed the validity of these parameters (Sause, 2011).

Table 5.1: Mistras AEwin™ Sensor Highway III Input Parameters

Parameter Value Units
Threshold 60 decibel (dB)
Pre-amplifier Gain 26 decibel (dB)

Lower Bounds 20 kilohertz (kHz)
Analog Filter

Upper Bounds 400 kilohertz (kHz)

Lower Bounds 20 kilohertz (kHz)
Digital Filter

Upper Bounds 200 kilohertz (kHz)

Peak Definition Time (PDT) 200 microsecond (us)

Hit Definition Time (HDT) 800 microsecond (us)
Timing Parameters

Hit Lockout Time (HLT) 1,000 microsecond (us)

Maximum Hit Duration (MDT) 1,000 millisecond (ms)
Longitudinal Wave Velocity 13,083 | feet per second (ft/sec)
Transverse Wave Velocity 7,833 feet per second (ft/sec)
Surface Wave Velocity 7,250 | feet per second (ft/sec)

If the user-defined minimum sensor hits occur within the specified time duration parameters then

the AEwin™ software collects fifteen features of the AE waveform signals including: 1) amplitude, 2)

duration, 3) energy, 4) counts, 5) rise time, 6) peak frequency, 7) frequency centroid, 8) absolute energy,

9) signal strength, 10) initial frequency, 11) reverberation frequency, 12) counts-to-peak, 13) average signal

level, 14) root mean square (RMS), and 15) average frequency.

5.1.2 Pull-out Test Data Collection

The pull-out test recorded ninety AE events. The concentration of AE events was around the

observed cracking as seen in Figure 5.1. 48 of the 90 events led to anomalous location estimates with the

estimated location appearing underneath one of the eight sensors. The recorded AE events, excluding the
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on-sensor events, generally concentrated around the observed cracking. As mentioned earlier, the AE
sensor connections to the beam were secured into prefabricated metal armored boxes made from hollow
square stock and then attached to the beam simulate with 5-minute epoxy. Subsequent laboratory testing
attempted to resolve the anomalous location behavior with a different sensor mount such as removing the
metal boxes and use of different couplants (i.e. epoxy vs. silicone vacuum grease). The metal boxes cut
from hollow stock may not fit truly flush to the sensor which would allow for a possible air gap between
the sensor wear plate and steel box. This air gap could create for some disturbance or throw errors in the
source location that could result in the AE event being located directly at the sensor. It should be noted that
the investigators later learned that the underlying triangulation algorithm is prone to this anomaly when

using rectangular arrays of sensors. A staggered triangular grid geometry tends to avoid these anomalies.

Load

O AF Sensor (topview)
u AE Sensor (sideview)
Crack (frontside)

Note: For clanty AE sensors and
cracks are not shown to scale.

305

Load

(a) (b)

Figure 5.1: Laboratory pull-out test of reinforced concrete beam with 3-D sensor array. (a) Photograph

of 3-D sensor array prior to testing, (b) Schematic of 3-D sensor array including AE event locations,

sensors, and observed cracks

5.1.3 Three-point Bending Test Data Collection

This section describes data collected from relatively small laboratory reinforced concrete beam

specimens under three-point bending to evaluate the performance of AE sensing in detecting cracks.
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5.1.3.1 2-D Sensor Array

The laboratory three-point bending test employing the 2-D planar sensor array recorded a total of
142 AE events when loaded to failure (Figure 5.2). Observed cracking took place in the middle of the
beam, nearly in line with the point of loading. The recorded AE event locations were generally within 2
inches (50 mm) from the observed cracks. Recorded AE events with locations outside of this region may
be due to other effects and events. Possibilities include internal cracking, anomalous under-sensor location

estimates and guiding of the elastic waves by the crack surfaces.

Load

] ' /— AE Sensor

(b)
Figure 5.2: Laboratory three-point bending test of reinforced concrete beam with 2-D sensor array. (a)
Photograph of 2-D sensor array at the completion of testing, (b) Schematic of 2-D sensor array including

AE event locations, sensors, and observed cracks

Categorization of the observed AE events based on location produced three groupings; 1) AE event
on or near an observed crack, 2) AE event not on or near an observed crack, and 3) AE event directly at an
AE sensor location. Analyzing the 15 waveform features collected from each AE signal. by the AEwin™
Sensor Highway III, provided a comparison of the three groups. Although a clear determination of the AE
event features from the observed cracks was not identified immediately, of note is the linear distribution
when plotting AE event amplitudes with respect to duration, Figure 5.3. A simple explanation of the linear
relation may be that the larger events have longer durations, with the linear relation between the logarithm

of the amplitude (dB) and duration explained by amplitude-dependent dissipative processes.
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Figure 5.3: AE event duration vs. amplitude categorized by proximity to observed cracks

5.1.3.2 3-D Sensor Array

The laboratory three-point bending to failure test with the 3-D sensor array recorded a total of 111
AE events, Figure 5.4. The cracking took place on the left side of the beam, largely as shear cracking. No
cracks appeared on the right side of the test beam. The location of the recorded AE events was almost

entirely on the left side of the beam, coinciding with where all the cracks occurred.

Load

AE Sensor

(b)
Figure 5.4: Laboratory three-point bending 3-D sensor array. (a) Photograph of 3-D sensor array at the

completion of testing, (b) Schematic of 3-D sensor array including AE event locations, sensors, and

observed cracks

These tests indicated a strong correlation between observed cracks and recorded AE event

locations. The 2-D planar sensor array configuration showed greater accuracy in locating surface cracks.
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A possible reason for the discrepancy between the 2-D and 3-D sensor arrays stems from the differences in
the AE event source-locating algorithms. The 2-D source-locating algorithm relies on surface wave speeds
determined from pencil lead break tests. The 3-D source locating algorithm utilizes longitudinal, transverse,
and surface wave velocities, with the speeds estimated from correlations with published values (Lee et al,
2016).

5.2 Summary of Conclusions

5.2.1 Conclusions and Future Work

Laboratory experiments on relatively small reinforced concrete beam specimens under pull-out
and three-point bending yielded proof of concept and guidance on data acquisition setup parameters for

field testing. These include:

1. Appropriate amplitude and duration filters to remove background noise;
Verification of wave mode velocities through pencil lead break tests;

Verification of correlation between AE events and observed cracks; and

hall

Selection of appropriate sensor array.

Laboratory pull-out and three-point bending (flexure) testing yielded correlations between AE
events and cracking and indicated that a 2-D planar sensor array was more accurate in AE event source
location than a 3-D sensor array. One possibility for the difference in accuracy is the use of measured
wave speed velocity used in the 2-D location algorithm versus the empirical relationship estimates of
wave speed velocities used in the 3-D sensor array. Another possibility is the nature of the underlying

algorithm and potential distortions from wave-speed inhomogeneities.
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CHAPTER 6
ACOUSTIC EMISSION DATA COLLECTION AND RESULTS: FABRICATION

6.1 Overview

This chapter describes AE measurements of pre-fabricated and pre-stressed reinforced concrete
Northeast Extreme Tee (NEXT) beams and Bulb Tee’s during specific prefabrication processes including;

detensioning and craned lifting from form beds.

6.2 NEXT Beam Testing

Moving the AE testing from the laboratory to full-sized pre-stressed and prefabricated concrete
girders began with scouting observations of detensioning and crane movement operations. The
observations indicated that it would be advantageous to have an untethered instrument package. This
prompted modifications to the instrumentation to include a portable power supply and wireless remote
network connection, which allow for untethered operations. The next step recorded the AE events of a
NEXT beam during the detensioning processes and craned removal of the beam from the formwork deck
and placement on wood blocks for additional finishing steps, curing and storage. The sensing configuration
arranged eight AE sensors in a 2-D array on the top deck of the NEXT beam off-center towards one end of
the deck, which had a skew of approximately 14 degrees. The placement of the sensor array was along
lines running parallel and square to the sides of the beam. The intent of the sensor layout was to capture the
AE events that may result from the release of energy and load transfer during the torch cutting of the steel
tensioning strands within the NEXT beam. Steel armor boxes and 5-minute epoxy attached the sensors to
the topside of the beam. The formwork geometry prevented attaching the sensors to the side of the beam
and using 3-D estimates of event locations. Instead, the estimation of event locations used a 2-D plate
model of the beam.

The instrumentation recorded 38 AE events during the detensioning process as illustrated in Figure
6.1. The torch cutting of pre-stressing strands was synchronized to cut wires from the same strand
simultaneously on each side of the NEXT beam in a gradual process that sequentially releases the entire
tension within that strand and transferring the load into the beam. The strand cut sequence followed a pattern
that alternated sides of the beam cross section in an effort to balance the load transfers, in a manner similar
to the pattern used to tighten wheel lug nuts. The loading exerted on the beam by strand cutting was less
dynamic than originally anticipated, primarily due to the slow cutting of individual wire within the strands
releasing only a relatively small amount of energy per cut. The recorded AE events tended to occur closer
to the end of the NEXT beam with multiple events stacked onto one another and occurring along the

underlying integral girder containing the tensioning strands.
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Figure 6.1: NEXT beam field testing of detensioning with 38 recorded events (a) field testing equipment
setup, (b) torch cutting of pre-tensioning strands, (c) plan view of AE events on NEXT beam, (d) section
view of NEXT beam, and (e) profile view of NEXT beam

The craned removal of the NEXT beam from the form bed produced twenty recorded AE events,
Figure 6.2. Upon completion of detensioning, overhead tracked gantry cranes lifted the beams from the

form decks. The lifting and movement processes stress the beam as it breaks loose from the form deck and
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changes the vertical support to only four load points, two pairs of points at approximately quarter spans.
Immediately after hoisting out of the form deck, the beam appeared to camber from an initially flat profile
over roughly one minute, presumably due to tension stresses exerted by the embedded steel in the lower
sections of the girder and the release of the geometric constraints imposed by the form deck. Cambering
along with change of gravity load paths during hoisting may create areas of concentrated stress/strain. This
is a period of interest for AE event monitoring, as cracking may occur.

AE event data collection during the detensioning and craned form removal of the NEXT beam were
the first full-scale field data collection performed with the equipment and corresponding software. The
results were 1) The instrumentation successfully recorded AE events, 2) the equipment alterations for
wireless connectivity and portable power supply were successful, and 3) event locations loosely correlated
with the integral girders during the detensioning process where the pre-tensioning strands were being cut,
and. The collected AE data show that many AE events occurred during the craned removal of the NEXT
beam from the formwork deck. It should be noted that the sensor placement near to one end of the girder
was not ideal for AE event sensing during craned movements since it is likely that the maximum strains

will occur midspan.
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and (d) profile view of NEXT

Figure 6.2: NEXT beam field testing of craned form removal with 20 recorded events (a) crane lifting,

(b) plan view of AE events on NEXT beam, (c) section view of NEXT beam,

beam
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6.3 Northeast Bulb Tee Girder Testing

Additional fabrication facility field site investigations recorded AE events from the webs of two
Bulb Tee girders during the detensioning processes, craned form removal, and end bulkhead removal.

The first sensor configuration placed eight sensors in a 3-D array, four sensors on each side of the
web of the Bulb Tee, within the end zone transfer depth, estimated as 60 times the diameter of the pre-
tensioning strands or 36-inches (914 mm) per 5.11.4.1 of AASHTO Bridge Design Specifications (PCINE-
14-ABC, 2014). The intent of the sensor array placement was to focus AE data collection in an area
predicted to have the greatest stress/strain transfer during loading from the release of the pre-tensioning
strands by cutting with a torch. Metal armor boxes and 5-minute epoxy secured the sensors to the Bulb Tee
girder. The data acquisition unit operated in an untethered wireless configuration. Estimation of AE event
locations used a simplified model that included only the web of the Bulb Tee girder. The end zone of the
Bulb Tee girder had three empty post tensioning tubes running roughly in the middle of the girder, each
approximately 4-inches (100 mm) in diameter. End zone reinforcement pattern details include; six no. 5
rebar in the top flange running the length of the beam, fourteen no. 5 rebar in the web running the length of
the beam, and four no. 6 and six no. 4 rebar in the bottom flange running the length of the beam. The end
zones also had four stirrups in the end 11-inches (275 mm) of the Bulb Tee along with an additional seven
no. 6 rebar spaced at 3-inches (75 mm) running perpendicular the Bulb Tee in both the top and bottom
flanges behind the stirrups.

The detensioning process produced 466 recorded AE events, Figure 6.3. The detensioning process
followed a synchronized single wire cutting of strands on both ends of the girder in an effort to distribute
evenly the load transfer. The recorded AE events tended to occur within the end zone transfer depth. The
AE event locations were dense in the area of the pre-tensioning strands in the web and less dense in areas
furthest from the pre-tensioning strands. There were also noticeable conglomerates of events located
directly at the sensor locations on the surface of the Bulb Tee. Visual observations detected and documented
end zone cracking immediately after the completion of the detensioning process, Figure 6.3. End zone

cracks ranged in length from 5-inches to 20-inches (127 mm to 508 mm).
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Figure 6.3: Bulb Tee beam 3D sensor array field testing of detensioning with 466 recorded events (a) AE
equipment setup, (b) gantry crane connection to Bulb Tee, (c) section view of Bulb Tee beam, and (d)
profile view of Bulb Tee beam

Event amplitude provides a means of further discrimination and possible interpretation. Figure
6.4 shows event amplitudes of Figure 6.3 with the dots color and size coded according to event

amplitude. The amplitude plot of AE events shows a weak clustering pattern of AE events with high

amplitudes (red: 90dB-100dB).
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Figure 6.4: Bulb Tee beam 3D sensor array field testing of detensioning with 466 recorded events — AE

measurements plotted by amplitude

Upon completion of detensioning, overhead tracked gantry cranes lifted the beams from the form

decks and placed them roughly 50 feet (15 meters) away for storage and inspection. This process changes

the geometric shape constraints on the beam and alters the internal load paths as it breaks loose from the

form deck and rests on the two load point pairs of the gantry crane. Similar to the NEXT beam, the Bulb

Tee beam appeared to camber slowly over about a minute due to the highly tensioned embedded steel.

The cambering process has the potential for creating areas of concentrated stress/strain leading to cracking.

The instruments recorded only 12 AE events during the craned onsite relocation from form to

storage/inspection area. Again, if any cracking occurred, it was most likely near the center which would not
be captured with the sensor array located near to the ends of the beam.

Bulkhead removal produced 383 AE events. The bulkhead is the end of the formwork that serves

the dual purposes of containing the uncured cement as well as providing patterned openings for the

reinforcing bar and pre-tensioning strands to pass through to the deadman anchors on either end of the Bulb

Tee. Following movement of the beam to the storage/inspection location, a manual process using prybars
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and hammers removes the bulkhead. Although bulkhead removal created many AE events, they were
likely the result of hammering and prying. The cracks observed from detensioning did not grow during
bulkhead removal.

The second sensor configuration placed eight sensors in a 2-D array, with all eight sensors located
on one side of the web of the Bulb Tee, within the end zone transfer depth, estimated as 60 times the
diameter of the pre-tensioning strands or 36-inches (914 mm) per 5.11.4.1 of AASHTO Bridge Design
Specifications (PCINE-14-ABC, 2014). The intent of the sensor placement pattern was twofold; 1) to focus
AE data collection in an area predicted to have the greatest stress/strain transfer during loading from the
release of the torch cut pre-tensioning strands, and 2) to use an equilateral triangular grid that helps to
optimize the performance of the triangulation algorithm and minimize on-sensor location anomalies
(ASTM 3100-17, 2017). The sensor coupling method and end zone reinforcement were the same as in the
first sensor configuration.

The detensioning process produced 960 recorded AE events, as illustrated in Figure 6.5. The
detensioning process was similar to that of the first Bulb Tee 3-D sensor array test. ThisBulb Tee differed
from the previous one in that it was a hammerhead (haunched) section with a deep bottom flange that
increased in depth at midspan to meet a pier cap. The hammerhead sections used a different layout of
reinforcement as well as pre-tensioning strand layout as depicted in Figure 6.5. The recorded AE events
tended to occur within the end zone transfer depth and were concentrated towards the interior ends of the
observed end zone cracking. The 2-D planar sensor array that formed a pattern of near-equilateral triangles
showed a noticeable reduction in the conglomerates of events located directly at the sensor locations on the
surface of the Bulb Tee as was observed with the first 3-D sensor array. Visual observations detected and
documented end zone cracking immediately after the completion of the detensioning process as seen in

Figure 6.5.a. End zone cracks ranged in length from 5-inches to 17-inches (127 mm to 432 mm).
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Figure 6.5: Hammerhead Bulb Tee girder 2D sensor array field testing of detensioning with 960
recorded events (a) AE equipment/sensor setup, (b) observed horizontal web crack, (c) section view of
Bulb Tee beam, and (d) profile view of Bulb Tee girder
Figure 6.6 shows the same recorded AE events in Figure 6.5 were also plotted by amplitude
coded by dot size and color. The amplitude plot of AE events shows a weak clustering pattern between
AE events of different amplitudes. There there does not appear to be a clustering of AE events with

similar frequency ranges.
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Figure 6.6: Bulb Tee beam 2D sensor array field testing of detensioning with 960 recorded events — AE
measurements plotted by amplitude

Upon completion of detensioning, overhead tracked gantry cranes lifted the beams from the form

decks and placed them roughly 50 feet (15 meters) away for storage and inspection. This process changes

the geometric shape constraints on the beam and alters the internal load paths as it breaks loose from the

form deck to rest on the two load point pairs of the gantry crane. Cambering may create areas of

concentrated stress/strain leading to cracking. The instruments recorded only 16 AE events during the

craned onsite relocation from form to storage/inspection area. Again, if any cracking occurred, it was most

likely near the center which would not be captured with the sensor array located near to the ends of the

beam. Observations of the hammerhead girder found little, if any, camber to occur when lifting the girder
out of the form bed.

During this test bulkhead removal data were not collected due to timing limitations between

detensioning and removal of the bulkhead.
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6.4 Summary of Conclusions

6.4.1 Conclusions and Future Work

This chapter reports on results that demonstrate the viability of AE sensing in detecting and locating
cracks in prefabricated pre-stressed concrete girders. AE field data collected from the Bulb Tee showed
more recorded AE events during the torch cutting of pre-tensioning strands than for a similar process on
the NEXT beam. This could be due to Bulb Tee having a thin web with three hollow post-tensioning tubes
and dense packing of pre-stressing strands guiding the AE waves and reducing attenuation within the Bulb
Tee girder. A key observation made during the detensioning processes was the appearance of horizontal
cracks in the web of the Bulb Tee girder. The crack lengths ranged between 5-inches and 20-inches (127
mm and 508 mm) with vertical spacing between cracks ranging from 1.4-inches to 32-inches (35 mm to

813 mm), Table 6.1.

Table 6.1: Quantification of AE Events Versus Number of Observed Cracks During Detensioning and

Craned Movement
# of observed AE # of observed AE events
Beam type events during during craned form removal  # of observed cracks
detensioning (crack lengths)
NEXT beam 38 20 0
Straight bulb tee 466 12 7 (5 inches-20 inches)
Haunched bulb tee 960 16 6 (5 inches-17 inches)

The observed end zone cracking occurred both within and outside of the region directly covered by the AE
sensor array for the Bulb Tee girders beams and AE event location distributions indicate differences in
between in the 3-D and 2-D sensor arrays.

AE event data collected from multiple fabrication processes including the detensioning of pre-
tensioning strands embedded in NEXT beams and Bulb Tee’s identified internal AE events indicative of
crack nucleation. AE events recorded above the 60-dB amplitude pre-filter determined through laboratory
testing may be indicative of internal cracking and provide an approximate estimate of crack location.
Additionally, the AE monitoring determined which fabrication process is responsible for the most AE
events, which could point to the critical fabrication processes responsible for crack nucleation. This is
highlighted by the Bulb Tee beam field data that showed far more AE events occurred during the
detensioning of the Bulb Tee than during the craned removal from its form bed.

Additional future work for this project includes AE source discrimination and data collection

during transportation, installation, and service of full-scale NEXT beams and Bulb Tee girders.
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CHAPTER 7
ACOUSTIC EMISSION DATA COLLECTION AND RESULTS: TRANSPORT

7.1 Overview

This chapter describes a series of acoustic emission (AE) measurements taken on prefabricated and
pre-stressed concrete bridge girders during transport from the fabrication facility to the bridge site. The
girders were New England Bulb Tee (NEBT) girders; fabricated at J.P. Carrara and Sons, Inc. in
Middlebury, VT; and transported 160 miles (258 kilometers) to a bridge under construction in Rockingham,
VT (Rockingham IM 091-1(66)). The testing began with visual observations of the transport process,
followed by measurements on three girders — two straight and one hammerhead (haunch), running from
June 14 to June 26, 2018. The measurement instruments consisted of an 8-channel array of AE transducers
attached to the girders and connected to a central data acquisition unit strapped to the top of the girders and
controlled via wireless telemetry by an operator in a chase vehicle. The data acquisition was largely
successful. A preliminary analysis of the results indicates that the hammerhead girder produced
significantly more AE events than the straight girders and transport maneuvers that tended to flex the girders
by a differential change in elevation produced more events than traversing potholes. The girder movements

did not produce any visible damage.

7.2 Pilot Transport AE Data Collection

7.2.1 Objective and Scope

The first transportation tests were a series of pilot tests to evaluate system configuration and
operation. These pilot tests used two vehicles in a lead vehicle — chase vehicle configuration. The lead
vehicle contained the AE test equipment a and small reinforced concrete block that simulated a large girder.
The chase vehicle transported an operator with the system controller and a wireless connection to the lead
vehicle. The tests ran on and around the UVM campus grounds. The goals of the tests were: 1) To evaluate
potential equipment modifications and system configurations required for transport testing; and 2) To

evaluate the connectivity range of the wireless router during transport.

7.2.2 Highway Sensor III Input Parameters

Mistras AEwin™ Sensor Highway III monitoring system and associated AEwin™ processing
software allows for user-defined inputs to refine the collected AE events. The acquisition setup parameters,

as listed in Table 7.1, followed specifications suggested by the manufacturer. Pencil lead break tests in
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controlled laboratory specimens confirmed the validity of these parameters (Sause, 2011). Table 1 lists the

input parameters.

Table 7.1: Mistras AEwin™ Sensor Highway III Input Parameters

Parameter Value Units
Threshold 60 decibel (dB)
Pre-amplifier Gain 26 decibel (dB)

Lower Bounds 20 kilohertz (kHz)
Analog Filter

Upper Bounds 400 kilohertz (kHz)

Lower Bounds 20 kilohertz (kHz)
Digital Filter

Upper Bounds 200 kilohertz (kHz)

Peak Definition Time (PDT) 200 microsecond (is)

Hit Definition Time (HDT) 800 microsecond (is)
Timing Parameters

Hit Lockout Time (HLT) 1,000 microsecond (is)

Maximum Hit Duration (MDT) 1,000 millisecond (ms)
Longitudinal Wave Velocity 13,083 | feet per second (ft/sec)
Transverse Wave Velocity 7,833 feet per second (ft/sec)
Surface Wave Velocity 7,250 | feet per second (ft/sec)

If the user-defined minimum sensor hits occur within the specified time duration parameters then
the AEwin™ software collects fifteen features of the AE waveform signals including: 1) amplitude, 2)
duration, 3) energy, 4) counts, 5) rise time, 6) peak frequency, 7) frequency centroid, 8) absolute energy,
9) signal strength, 10) initial frequency, 11) reverberation frequency, 12) counts-to-peak, 13) average signal

level, 14) root mean square (RMS), and 15) average frequency.

7.2.3 Equipment Layout

The sensor configuration was with eight AE sensors in a 2-D array on the top surface of the concrete
block of about 16.5-inch x 9.75-inch x 5.5-inch (419 mm x 248 mm x 140 mm), Figure 7.1. The sensors
pattern formed a grid of near equilateral triangles. The mounting arrangement secured the sensors into
prefabricated steel U-shaped brackets with 5-minute epoxy secured the brackets to the concrete block,
Figure 7.2. Custom electronic alterations to the equipment provided standalone power with a UPS remote
power manager and remote monitoring with a wireless network connection. Additionally, a remote-
controlled electromechanical vibrator was secured to the concrete block with an adhesive tape, Figure 7.3.

The purpose of the vibrator was to induce AE events during testing.
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Figure 7.3 Pilot AE tran&port configuration showing concrete, electromechanical vibrator and

transducer array, in bed of pickup truck

7.2.4 Data Collection Process Observations

The overall results of the pilot test were positive. Road vibrations induced AE events in the small-
scale concrete block. A tailing vehicle with a laptop computer serving as a remote controller followed the
truck on a test drive to determine the range of connectivity of the wireless router and receiver from the lead
to tailing vehicle with the wireless router. The tail vehicle stopped, and the transport truck continued until
connectivity was lost. The measured viable telemetry distance was 645 feet (197 meters). From the pilot
transport test, it was clear that the portable power source needed to be changed from the available UPS to
batteries for increased power duration, and that the remote telemetry configuration was capable of providing

real-time updates of AE activity and for remote control of the test instruments during transport testing.

7.3 Northeast Bulb Tee Transport Observation

7.3.1 Objective and Scope

Field work started with a visit to J.P. Carrara & Sons, Inc. (Carrara) precast concrete plant located
at 2464 Case Street, Middlebury, VT (Site), on June 14, 2018 to observe the loading and transport of NEBT
girders from the plant to the drop location for the IM 091-1(66) I-91 bridge construction site in Rockingham,
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VT. The intent was to identify opportunities and constraints for AE data collection during transport.
Personnel from the University of Vermont, College of Engineering and Mathematical Sciences (UVM
CEMS), (R. Worley and M. Pereira) observed transport of an NEBT during transport from Carrara’s to the
drop location, 160 miles (258 kilometers) away, in Rockingham, VT. Figure 7.4 shows the route, which
followed the main highway (US 7) from Middlebury to Burlington, and then the interstate roads (I-189, I-
89 and [-91) from Burlington to Rockingham.
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7.3.2 Transport Process Observations

Transport of the NEBT girders is typically a 2-day process. The first day is at the fabrication
facility and is for loading the girders onto the truck with gantry cranes. The second day begins at the
fabrication facility, followed by transport to the bridge site and then unloading at the bridge site. The truck
used for transport was a jeep and dolly rig that allowed for independent steering of the rear dolly by a
trailing chase vehicle that follows during transport. Fabrication drawings include details for placement of
the NEBT girder on the jeep and dolly. A system of chains, rachets, and steel bars secures the NEBT girder
to the jeep and dolly.

On the second day, departure from Carrara’s starts between 3:00am and 4:00am. The number of
girders transported per day ranges between 1 and 3 with 15-minute gaps between departures of each beam
to allow for traffic flow between each convoy. The convoy for each girder consists of a lead oversized
vehicle escort, a lead police escort, the tractor with beam on a jeep, the rear steering vehicle (dolly), and
finally a rear police escort. Each load requires a permit and must abide by local restrictions as well as state
restrictions for times and conditions at which oversized loads are allowed to travel. Travel was not
permitted during rain, fog, or on wet roads. Additionally, travel was not permitted between 7:00am and
8:00am as well as between 12:00pm and 1:00pm. If no issues arise during transport the travel from
Carrara’s in Middlebury to the drop site in Rockingham, VT takes approximately 4-hours for a hammerhead
NEBT girder and approximately 3.5-hours for a straight section NEBT girder. Once at the drop site, the
tractors detach from the loads and reattach to the empty jeep and dolly from the previous day’s load, to be
brought back to Carrara’ for loading.

Observations of the transport indicated that there were multiple factors of concern for usage and
placement of the AEwin™ Sensor Highway III and associated sensors. These factors were: 1) safely
securing equipment; 2) clearance constraints from overhead powerlines; 3) exposing the equipment to
weather; 4) maintaining wireless connectivity to the AEwin™ Sensor Highway III; 5. safety during

placement and removal of the AEwin™ Sensor Highway III and associated sensors.

7.3.3 System Modifications

The observation of the girder transport identified a set of issues that required modification to both
the equipment and attachment procedures. An outdoor-rated steel case houses the AEwin™ Sensor
Highway III data acquisition system. Two 12V motorcycle batteries connected in parallel provided power
to the AEwin™ Sensor Highway III and wireless router through modified electrical bus connections.
Gorilla tape secured the wireless router to the AEwin™ Sensor Highway III steel housing. The placement
of the steel housing was directly on the top of the NEBT girder in a gap between exposed deck attachment
rebars. 2-inch (50 mm) wide heavy duty rachet straps looped all the way around the NEBT girder secured
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the assembly in place. Overnight rain protection consisted of placing a waterproof back pack cover over
the AEwin™ Sensor Highway III with wireless router and covering the AEwin™ Sensor Highway 111 and
batteries with a tarp. The height of the placement required an extension ladder.

Attaching the AE sensors to the girder was a multistep procedure: 1.Secured U-shaped brackets to
the beam with quick-setting epoxy, followed by a 5 to 10-minute curing cycle. 2. Applied high-vacuum
silicone grease to the sensor wear plates. 3. Place the sensors in U-shape brackets and secure using the set

screw. 4. Secure excess cable lengths to the exposed rebar with zip ties the top of the beam.

7.4 Straight Northeast Bulb Tee End Zone Data Collection (Transport Test 1)

7.4.1 Objective and Scope

The first NEBT transport test (TT1) collected AE data on the end zone of a straight NEBT girder.
The sensor layout geometry matched that of the second NEBT detensioning girder test with a triangular
grid placed at the end of the girder on one side of the web.  Personnel from UVM CEMS, (R. Worley)
collected the data from the NEBT girder during transport from the Carrara precast concrete plant in
Middlebury, VT on June 22, 2018. Data were collected with a Mistras AEwin™ Sensor Highway III system
and analyzed using the corresponding AEwin™ processing software. The AE data included the timing,
waveform shape features, and triangulated location estimates of AE events. The AE data collection was

continuous from the Carrara precast concrete plant in Middlebury, VT to the drop site at Rockingham, VT.

7.4.2 Equipment Layout

The placement of the AEwin™ Sensor Highway I1I was directly on the top of the NEBT girder, as
described in Section 4.3. The sensor arrangement was eight AE transducers in a 2-dimensional array in the
end zone (the end zone transfer depth is estimated as 60 times the diameter of the pre-tensioning strands or
36-inches per 5.11.4.1 of AASHTO Bridge Design Specifications) of the vertical web section of the NEBT
girder. Since this particular girder was slated for placement on the outside of the deck, care was taken to
place the transducers on an inward-facing side. This placement reduced the visibility of any residual stains
left by the epoxy used for attaching the AE transducers. The selection of the sensor array configuration
was to match that used previously in tests at the fabrication facility during detensioning and craned lifting.
U-shaped brackets with set screws secured the sensors to the beam, as described in Section 4.3. Placing a
tarp and waterproof back pack cover protected the equipment from rain. The equipment and covers
remained in place overnight.

The first step the following morning was to remove the tarp and waterproof back pack covers and

then to power on the equipment. The next step verifies connectivity and performance with a tap test. Upon
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successful completion of the morning tests, an operator rode in the rear steer vehicle to stay close enough

to the AE monitoring equipment and take notes during the transport test.

7.4.3 Representative Data Collection

AE event monitoring of the end zone of a straight section of a NEBT proceeded over the course of
roughly 160 miles (258 kilometers) in transport from the fabrication location to the installation location.
The number of recorded AE events totaled 673. Figure 7.5 shows the spatial distribution. The AE events
tended to occur in the upper half of the web section of the NEBT. Figure 7.6 shows the recorded AE events
from Figure 7.5 plotted by amplitude, with a coding by dot size and color. The amplitude plot of AE events
show a weak clustering pattern between AE events of different amplitudes but there appears to be small
pockets of low amplitude AE event clusters near the top of the beam. Travel along a secondary highway
(US 7) from Middlebury, VT to Burlington, VT produced events at a higher rate than along the interstate
(I-89 and I-91) from Burlington, VT to Rockingham, VT, Figure 7.4. An examination of the NEBT girder

following transport found no new cracks and no new growth of the existing cracks.
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Figure 7.6: Transport Test 1 — AE measurements plotted by amplitude of the end zone vertical web of a
straight NEBT during transport with 673 recorded AE events.
AE event data collection during transport included the time history of data collection. The AE
event time histories were then plotted (Figure 7.7) in 5-minute intervals with respect to three different
conditions; secondary/highway, interstate, or stopped. The AE event time histories for TT1 indicate a

greater level of AE event occurrences when on secondary/highway roadways compared to AE event

data collection on the interstate. Additionally, no AE events were collected during stops. The

decreasing trend in the number of AE events with time could be representative of a breaking in period,

i.e. the Kaiser effect, where AEs only occur when exceeding if the maximum previously experienced

stress.
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Figure 7.7: AE event density during transport testing of end zone region of straight NEBT, with a total
event count of 623

7.4.4 Data Collection Process Observations

The AE event data collected during Transport Test 1 (TT1) had a sparse and diffuse distribution of
locations as spaced on the vertical web. Observations by the data acquisition operator riding in the chase
vehicle noted that the recorded AE events occurred mostly during vehicle maneuvers that tended to flex the
girder, such as when cresting a hill, bottoming in a valley, and during tight turns or turns with abrupt
movements. AE events did not appear to occur when hitting a pothole in the road or driving over a rumble
strip. This suggests that the recorded AE events recorded may be largely due to a release of internal energy
and not due external energy injected into the girder by roadway conditions.

Finite element modeling of the stresses in the girder may lead to a better understanding of the source
of these recorded AE events. The modeling used the ANSYS R18.2 academic version. The finite element
model (FEM) was a quasi-static model and used quarter beam symmetry to reduce the number of nodes and
elements and associated computational effort. The material properties were standard values for concrete
properties in the ANSYS database. Application of an equivalent shearing force accounted for the pre-
stressing load from the pre-tensioning strands. Additionally, to model for bouncing and deflections of the
beam during transport, the model was assessed with a gravity load of 1g down and 1g up. The finite element
models in Figure 7.8 and Figure 7.9 show a relatively even stress distribution at the end zone which

corresponds to the relatively evenly dispersed AE events recorded at the end zone during transport.
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Figure 7.8: FEM quarter straight NEBT stress distribution with 1g down, left side corresponds to mid-
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Figure 7.9: FEM quarter straight NEBT stress distribution with 1g up, left side corresponds to mid-span

and right side corresponds to the end zone

7.5 Straight Northeast Bulb Tee Mid-Span Data Collection (Transport Test 2)

7.5.1 Objective and Scope

This was the second transport test (TT2). The girder was a straight NEBT. The AE data collection
zone was the vertical web of the girder at midspan. Personnel from UVM CEMS, (R. Worley) collected
data from an NEBT girder during transport from the Carrara precast concrete plant in Middlebury, VT on
June 25, 2018. An Mistras AEwin™ Sensor Highway I1I data acquisition system collected and stored the

data. Subsequent processing used AEwin™ software. The AE data included the timing, waveform shape
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features, and triangulated location estimates of AE events. AE data collection proceeded continuously from

the Carrara precast concrete plant in Middlebury, VT to the drop site at Rockingham, VT.

7.5.2 Equipment Layout

The placement of the AEwin™ Sensor Highway III system was directly on the top of the NEBT
girder, as described in Section 4.3. The sensor arrangement placed eight AE transducers in a 2-dimensional
triangular grid array in the mid-span of the vertical web section of the NEBT girder. U-shaped brackets
with set screws secured the sensors to the beam. Placing a tarp and waterproof back pack cover protected
the equipment from rain. The equipment and covers remained in place overnight.

The first step the following morning was to remove the tarp and waterproof back pack covers and
then to power on the equipment. The next step verified connectivity and performance with a tap test. Upon
completion of the morning final test and setup, an operator rode in the rear steer vehicle to stay close enough

to the AE monitoring equipment and take notes during the transport test.

7.5.3 Representative Data Collection

The sensor configuration of the second transport test was a 2-D planar triangular grid array placed
mid-span of the straight section NEBT, Figure 7.10. The number of recorded AE events totaled 2,628.
The recorded AE events tended to occur in the upper half of the web section of the NEBT. Travel along a
secondary highway (US 7) from Middlebury to Burlington produced events at a slightly higher rate than
along the interstate (I-89 and I-91) from Burlington to Rockingham, Figure 7.4. Visual observation found

that no new cracks formed and the existing cracks did not grow during transport.
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Figure 7.11 shows the recorded events of Figure 7.10 plotted by amplitude coded as dot size
and color. The amplitude plot of AE events show a clustering of medium medium-high amplitude AE
events (yellow: 80dB — 89dB) in the upper right portion of the NEBT girder with a high concentration
of low amplitude (blue: 60dB — 69dB) and medium-low amplitude AE events (green: 70dB — 79dB)
AE events are concentrated in the upper third of the NEBT girder. High amplitude AE events (red:
90dB - 99dB) are infrequent and not clustered, but diffuse, in location.
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Figure 7.11: Transport Test 2 — AE measurements plotted by amplitude of the end zone vertical web of a
straight NEBT during transport with 2,628 recorded AE events.
The AE event time histories collected during TT2 and plotted in Figure 7.12, indicate a greater
level of event occurrences when on secondary/highway roadways than on the interstate. Additionally,
no AE events were collected during stops. Although there still is a decreasing trend in the number of

AE events with time; this decreasing trend is less distinct than identified in TT1.

95



250 Secondary/Highway
|

f 1 Inspection Stop
200

Interstate
150

100

' |
I I I Curfew Stop
0 = —M-_ V¥ I I___I Il_l__l I = l III Il
0 5h

ours, 25 minutes

Recorded AE Events (#)

Time (5-minute Bin Widths)
Figure 7.12: AE event density during transport testing of middle zone region of straight NEBT, with a

total event count of 2,628

7.5.4 Data Collection Process Observations

AE field transport data collected from the middle zone of a straight NEBT section were densely-
spaced and concentrated in the upper region of the beam. The events occurred mostly during flexure-
inducing vehicle maneuvers, such as when cresting a hill, bottoming in a valley, and during tight turns or
turns with abrupt movements. Hitting a pothole in the road or driving over a rumble strip did not induce
many AE events. This suggests that the recorded AE events may be due to internal energy release and not
the injection of external energy from roadway conditions.

A finite element model using ANSY'S R18.2 academic version calculated the stress distribution in
the girder with the goal of determining if regions high stress correspond to the locations of AE events. The
finite element model (FEM) was quasi-static and used quarter beam symmetry to reduce the number of
nodes and elements and associated computational effort. The model used the same standard concrete
material properties as for Transport Test 1 and approximated the action of the pre-stressing strands as a
shearing force. Additionally, to model for bouncing and deflections of the beam during transport, the model
was assessed with a gravity load of 1g down and 1g up. The finite element model results shown in Figure
7.13 and Figure 7.14 indicate stress distributions commensurate with the recorded AE event distributions.
Further confirmation comes from an examination of the shear and moment diagram for the beam during
transport and nominal in-service loading, Figure 7.15 and 7.16. The FEM shows a compression at the
bottom of the beam moving toward tension at the top of the beam which corresponds to the recorded AE
events being in the upper regions on the middle zone of the straight NEBT during transport. This stress

distribution with the top of the beam in tension and the bottom of the beam in compression is due to a
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vertically asymmetric distribution of pre-stressing strands, with more strands in the bulb at the bottom. This

distribution of pre-stressing gives the beam a slight camber.
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Figure 7.13: FEM quarter straight NEBT stress distribution with 1g down, left side corresponds to mid-

span and right side corresponds to the end zone
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Figure 7.14: FEM quarter straight NEBT stress distribution with 1g up, left side corresponds to
mid-span and right side corresponds to the end zone
The shear and bending moment diagrams of the straight span NEBT girders during transport
as illustrated in Figure 7.15, are similar to the shear and bending moment diagrams of the straight span

NEBT girders during in-service loading as illustrated in Figure 7.16.
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Figure 7.15: Straight span NEBT shear and bending moment diagrams during transport

The locations that are in opposite loading between in-service loading and transport are at the

end zones. This may be indicative of the end zone AE event patterns during transport.
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Figure 7.16: Straight span NEBT shear and bending moment diagrams during in-service loading

Hammerhead Northeast Bulb Tee Mid-Span Data Collection (Transport Test 3)

7.6.1 Objective and Scope

This was the third transport test (TT3). The girder was a hammerhead (haunch) NEBT. The AE

data collection zone was the vertical web of the girder at midspan. Personnel from UVM CEMS, (R.

Worley) collected the data from a the NEBT girder during transport from the Carrara precast concrete plant
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in Middlebury, VT on June 26, 2018. A Mistras AEwin™ Sensor Highway III data acquisition system
collected the data for analysis with the corresponding AEwin™ processing software. The AE data included
the timing, waveform shape features and triangulated location estimates of AE events. The AE data were
collected continuously from the Carrara precast concrete plant in Middlebury, VT to the drop site at

Rockingham, VT.

7.6.2 Equipment Layout

The placement of the AEwin™ Sensor Highway III system was directly on the top of the NEBT
girder, as described in Section 4.3. The sensor arrangement placed eight AE transducers in a 2-dimensional
array in the mid-span of the vertical web section of the NEBT girder. U-shaped brackets with set screws
secured the sensors to the beam. Placing a tarp and waterproof back pack cover protected the equipment
from rain. The equipment and covers remained in place overnight.

The first step the following morning was to remove the tarp and waterproof back pack covers and
then to power on the equipment. The next step verified connectivity and performance with a tap test. Upon
successful completion of the morning tests and final setup, an operator rode in the rear steer vehicle to stay

close enough to the AE monitoring equipment and take notes during the transport test.

7.6.3 Representative Data Collection

The sensing configuration for the third transport test used a 2-D planar triangular sensor array
placed on the vertical web of the mid-span of a hammerhead NEBT girder (Figure 7.17). During transport,
the truck supports the girder at both ends, approximately in a simple support configuration. Following
installation on the bridge, the support conditions change to a fixed cantilever support mid-span on a column
and free at the ends.

The monitoring of the middle region of a hammerhead NEBT ran over the course of roughly 160
miles (258 kilometers) in transport from the fabrication location to the installation location. The number
of recorded AE events totaled 91,723. The recorded AE events tended to occur in the lower two thirds of
the web section of the NEBT modeled. Travel along a secondary highway (US 7) from Middlebury to
Burlington produced events at a slightly higher rate than along the interstate (I-89 and I-91) from Burlington
to Rockingham, Figure 7.4. A visual observation of the girder found no new cracks or growth of existing

cracks during transport.
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Figure 7.17: Transport Test 3 — AE measurements of the mid-span vertical web of a hammerhead NEBT
during transport with 91,723 recorded AE events. (a) Photograph of girder on truck with 2-D sensor
array and equipment set-up, (b) Mid-span cross-section of tested NEBT, (c) Profile view of NEBT
including AE event locations and sensors. Note that the post-tensioning strand ducts are at a higher
location in the mid-span cross sections of (b) and (c) than at the end zone as shown emerging from the
end of the section face in (a).
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The recorded AE events are depicted in Figure 7.17 were also plotted by amplitude as shown
in Figure 7.18. The amplitude plot of AE events shows a high concentration of low amplitude (blue:
60dB — 69dB), medium-low amplitude (green: 70dB — 79dB), and medium-high amplitude AE events
(yellow: 80dB — 89dB) AE events in the “belly” of the NEBT girder with high amplitude (red: 90dB —
99dB) AE events being limited in quantity and diffuse.
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Figure 7.18: Transport Test 3 — AE measurements plotted by amplitude of the end zone vertical web of a
straight NEBT during transport with 91,723 recorded AE events.

The AE event time histories collected during TT3 and plotted in Figure 7.19, indicate a greater
level of AE event occurrences when on the interstate than on the secondary/highway roadways. This
is the opposite of what was observed during TT1 and TT2. This could be due to the difference in
geometries, stress distributions, and loading between the straight NEBT sections and hammerhead

NEBT sections. Additionally, during stops no AE events appeared.
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Figure 7.19: AE event density during transport testing of middle zone region of hammerhead NEBT, with
a total event count of 91,723

7.6.4 Data Collection Process Observations

AE field transport data were collected from the middle zone of a hammerhead NEBT. AE event
data collected from the middle zone of the hammer head NEBT were abundant and concentrated in the low
region or “belly” of the beam. It was noted during transport that the occurrence of AE events was similar
to that of Transport Test 1 and 2. The events occurred mostly during flexure-inducing vehicle maneuvers,
such as when cresting a hill, bottoming in a valley, and during tight turns or turns with abrupt movements.
Hitting a pothole in the road or driving over a rumble strip did not induce many AE events. This suggests
that the recorded AE events may be due to internal energy release and not the injection of external energy
from roadway conditions.

A finite element model using ANSYS R18.2 academic version calculated the stress distribution in
the girder with the goal of determining if regions high stress correspond to the locations of AE events. The
finite element model (FEM) was quasi-static and used quarter beam symmetry to reduce the number of
nodes and elements and associated computational effort. The model used the same standard concrete
material properties as for Transport Test 1 and approximated the action of the pre-stressing strands as a
shearing force. Additionally, to model for bouncing and deflections of the beam during transport, the model
used with a gravity load of 1g down and 1g up. The finite element models shown in Figures 7.20 and 7.21
indicate stress distributions commensurate with the recorded AE event distributions. Further confirmation
comes from an examination of the shear and moment diagrams, Figure 7.22 and 7.23. The FEM shows a
compression at the top of the beam moving toward tension at the bottom of the beam which corresponds to

the recorded AE events being in the lower regions on the middle zone of the hammerhead NEBT during
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transport. This stress distribution with the top of the beam in compression and the bottom of the beam in
tension is due to the mass of the “belly” of the hammerhead NEBT overpowering the pre-stress that would
otherwise make the beam camber. This reflects the design of the hammerhead NEBT as it will sit on a pier
cap supported at the middle, essentially reversing the moment distribution. Only during craning and

transport does the hammerhead NEBT experience this type of loading and stress distribution.
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Figure 7.20: FEM quarter hammerhead NEBT stress distribution with 1g down, left side corresponds to

mid-span and right side corresponds to the end zone
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Figure 7.21: FEM quarter hammerhead NEBT stress distribution with 1g up, left side corresponds to

mid-span and right side corresponds to the end zone

The shears and bending moments of the hammerhead span NEBT girders during transport as

illustrated in Figure 7.22, are largely opposite to the shears and bending moments during in-service
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loading as illustrated in Figure 7.23. This makes the transport process for the hammerhead span NEBT
girders of particular interest because the hammerhead NEBT girders experience a unique stress pattern

that is the opposite of the intended in-service design.

Shear Diagram

Bending Moment Diagram

Figure 7.22: Hammerhead span NEBT shear and bending moment diagrams during transport
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Figure 7.23: Hammerhead span NEBT shear and bending moment diagrams during in-service loading
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7.7

7.7.1

Summary of Conclusions

Conclusions and Future Work

This chapter presents AE measurements during transport of full-scale Northeast Bulb Tee (NEBT)

girders. The results indicate that AE sensing is a potential practical QA/QC process for PBES elements.

The tests confirm the ability to collect AE data on prefabricated girders during transport. While there were

no notable occurrences of damage or other QA/QC issues observed during transport, the recorded AE event

distributions from the girder correspond to regions predicted by finite element modeling and simple

shear/moment analysis to experience elevated stress levels. These results open the possibility for using the

AE transport data to identify cracking and related damage that occurs during transport.

7.7.2

Northeast Bulb Tee Field Testing
Field testing during transport of full-scale Northeast Bulb Tee (NEBT) girders produced the

following findings:

1.
2.

The AE test equipment required modest levels of custom modification for the transport tests.

The test equipment performed flawlessly during the tests and did not sustain any visible or notable
damage.

Differences in AE event patterns were observed between end zone and middle zone regions along
with between straight sections and hammerhead sections, Table 7.1.

Large quantities of AE events were recorded without correlation to observed cracks during
transport.

Finite element modeling indicates areas of high stress corresponding to areas of dense AE event
locations.

Additional data sets are required for statistical clustering and logistical regressions to define an AE

event feature signature of cracks from other AE event source types.

Table 7.1: Quantification of AE Events Versus Girder Type and Sensor Array Location During NEBT

Detensioning and Craned Movement

Sensor array # of observed AE events
Girder type location during transport Damage Observed
Straight Bulb Tee End span 623 None
Straight Bulb Tee Mid span 2,628 None
Haunched Bulb Tee Mid span 91,723 None

105



Field tests on NEBT’s provided an abundance of AE event data during critical stages of the
fabrication and transportation processes. AE event data appeared both when cracking was observed and
when cracking was not observed. A finite element stress analysis identified regions of high stress that
corresponded to regions of high AE event activity. No cracking or other damage appeared at these locations
Continued work on AE event source discrimination to identify the feature signatures related to cracking,
regions of high stress, or otherwise requires additional data sets. This work has set the foundation for

understanding when cracks tend to occur, where the key areas to concentrate sensors are, and what

processes are of the highest stress to the NEBT’s prior to service.

106



CHAPTER 8

PROPOSED METHODOLOGY FOR QUALITY ASSURANCE/QUALITY CONTROL
ACCEPT AND REJECT CRITERIA

8.1 Potential Use of Existing Damage Assessment Methods

8.1.1 Background

The basis for most of the currently-available methods for damage assessment of reinforced concrete
is to collect and analyze of experimental data sets from tests using cyclic loading, often in an increasing
pattern up to failure. In this vein, the Felicity ratio and Load-Calm ratios assess damage by examining AE
activity in increasing loading-unloading cycles. Exceptions to the requirement for cyclic loading
experiments are event counting and frequency analysis. An additional issue is the need for large data sets
due to the inherent experimental scatter that characterizes most concrete fracture studies.

The fabrication and transport processes for Northeast Extreme Tee (NEXT) beams and Northeast
Bulb Tee (NEBT) girders include; detensioning, craned form removal, and transport. These processes are
single loading events (detensioning and craned form removal) or random/variable loading events
(transport). The resulting data do not readily fit into a cyclic load testing framework. These differences in
loading require modifying current damage assessment methods for use as a QA/QC procedure for the
fabrication and transport events studied as part of this project. Due a reliance on cyclic loading, damage
assessments based on Felicity ratios and Load-Calm ratios are not directly applicable to these cases. Event-
counting, parametric analysis, b-value analysis, and frequency analysis have better potential for adaptation

for use in single loading events or inconsistent/variable loading.

8.1.2 Adapted Parametric Feature Analysis

A feature-based analysis extracts and then records a set of features from each AE event waveform.
The features include but are not limited to amplitude, duration, counts-to-peak, and peak frequency. Ina
cyclic load-unloading regime, the correlation between RA values (risetime/peak amplitude) and the average
frequency (kHz) are established damage indicators. Single event threshold values have yet to be established.
It is hypothesized from the analysis of AE data during laboratory and field testing thus far that the use of
statistical methods such as logistical analyses or multivariate analyses can establish feature threshold
identifiers that would allow for the classification of a single AE event by damage or no damage and what
was the source of the AE event. To establish this feature analysis for “fingerprinting” of recorded AE
events requires a larger AE data set than what has been established as part of this study. A large AE data
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set of repeated testing is needed in conjunction with damage observations to establish not only the feature
identifiers of different AE sources and levels of damage but also to establish reliability and typical variance

for the prescribed AE event fingerprint.

8.1.3 B-value and Frequency Analysis

The b-value and frequency analyses were both developed as damage assessment tools but provide
two very different interpretations of damage. The b-value analysis provides an assessment of the severity
of damage while the frequency analysis provides a source of damage. Although the b-value analysis is a
statistical regression of the AE event peak amplitudes and can be calculated for the loading cycle only or a
complete loading-unloading cycle, it is hypothesized that if a large enough historical b-value data set
calculated from loading events was established, that lower and upper bounds for acceptable b-values could
be established to assess the severity of damage. Once the damage severity is established from the b-value
analysis the frequency analysis can be implemented to determine the source of damage. The frequency
analysis flow chart as currently established will need revision to describe damage sources that are specific
to damage modes possible during fabrication and transport processes for Northeast Extreme Tee (NEXT)
beams and Northeast Bulb Tee (NEBT) girders. Similar to the parametric analysis, lower bounds for b-
values and verification of the frequency analysis flow chart, along with the suitably small variance requires
a large AE data set of repeated tests is needed in conjunction with damage observations to establishing the

upper and lower bounds.

8.1.4 Potential AE Damage Assessment Methods

Spatial representations of AE data collected during both laboratory and field testing yielded AE
event locations that tended to cluster in areas of high stress or cracking and were diffuse in areas where no
damage was observed. A correlation is hypothesized to be made between the number of concentrated AE
events to an acceptable level of damage similar to the ASTM standard for AE testing of composite fuel
tanks. AE technology has been proven to reliably detect material failure of composite fuel tanks and as
such is an acceptable QA/QC technology for industry practice (ASTM E2191/E2191M-16). The use of AE
sensing as a QA/QC procedure in composite fuel tanks is a measure of cumulative recorded AE events over
a prescribed amplitude threshold during a pressure test where the tank pressure incrementally increased
with specific holding times between each pressure increase. If the number of recorded events exceeds a
threshold, then the part is either slated for further examination (10,000 events) or rejected (50,000 events).
Although only the detensioning process mirrors step loading, the same principle of increased AE activity
as an indicator of stress and damage could applied to many loading scenarios. Similar to the parametric
and b-value/frequency analyses, a large AE data set of repeated testing is needed in conjunction with
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damage observations to establish an AE event density threshold to determine if the beam should be accepted
or rejected but also to establish reliability and typical variance for the proposed AE event density method

along with the variance of strength of the material being tested.

8.2 Proposed Multi-Step Procedure

A systematic future work effort would be multistep; 1. Conduct realistic laboratory tests of beams
with embedded defects so that they experience early and controlled damage and failure; 2. Identify the AE
signatures of these failures; 3. Modify AE technique to improve sensitivity and selectivity of damage
recognition; 4. Repeat these tests in small pilot study to determine the experimental scatter of detection
versus damage; 5. Analyze pilot test data to determine the statistical power of the technique and estimate
the number of tests needed to establish validity of tests; 6. Conduct sufficient number of repeat tests to
identify sensitivity and selectivity in the form of Receiver Operating Characteristic (ROC) curves; 7.
Identify field conditions prone to damage that is of concern and estimate the rate and severity of occurrence.
This may be end zone cracking, delaminations, debonding, etc. 8. Combine information from the above
steps to conduct a longitudinal study with sufficient number of repeats to obtain sufficient statistical power
to justify setting an accept/reject threshold based on AE readings. Future work would be to conduct an
appropriately-sized laboratory testing regimen over an extended period on a single type of commonly
produced beam or girder to build a large AE database for all processes that are associated with cracking or
high strain events. Once a sufficient AE database is established with visual observations of damage,
conditions, and element performs; the three potential AE damage assessment techniques can be
implemented and compared to determine the effectiveness for use as accept/reject criterion.

Potential laboratory tests include; 1. Prestressed beam with diffuse cracking, 2. Beam with excess

prestress that induces end cracking, 3. Beam with a crack prone mix. Summary of Conclusions

8.3 Conclusions and Future Work

This study focuses on the development of accept/reject criteria for full-scale prefabricated and pre-
stressed, reinforced concrete Northeast Extreme Tee (NEXT) beams and Northeast Bulb Tee (NEBT)
girders based on Acoustical Emission (AE) monitoring as a Quality Assurance/Quality Control (QA/QC)
procedure during the detensioning, craned form removal, and transport processes. Although there are many
published damage assessment techniques for reinforced concrete, these techniques are based on cyclic
loading and are not compatible with loading conditions observed during the fabrication and transport of the
NEXT and NEBT beams. Loading of the full-scale prefabricated and pre-stressed, reinforced concrete

NEXT beams and NEBT girders is either a single near-instantaneous event or a variable self-weight loading
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event. Of the five common reinforced concrete damage assessment techniques (felicity ratio; parametric
analysis; load-calm ratio; b-value analysis; frequency analysis) only the parametric, b-value, and frequency
analyses were determined to be adaptable to the field loading conditions experienced by the NEXT and
NEBT beams during fabrication and transport.

Of existing AE data damage assessment techniques, there is one with potential for use in the loading
scenarios observed in this project and two with potential for use in conjunction with one another.
Additionally, from AE data collected and analyzed as part of this study a third damage assessment technique
is hypothesized. The three potential damage assessment methods are;

1. The use of a parametric analysis using AE event waveform features to develop algorithms relating
the unique features to observed damage types and severities;

2. To build a database of b-value’s (using the published b-value damage assessment technique) for
specific beams and processes. The database would indicate the upper and lower bounds for a
typical b-value and therefore establish the upper and lower limits for accepting/rejecting the beam.
Additionally, the frequency analysis would then be used to identify the AE source or damage type
that lead to the rejection of the beam;

3. Based on AE data collected and analyses from laboratory and field testing, AE events tended to
have dense clustered near the location of observed. It is hypothesized a damage assessment could
be performed based on AE event clustering density. The frequency analysis would then be used to

identify the AE source or damage type.

In the case with all three of the potential accept/reject damage assessment techniques, large AE
data sets are needed for each beam type, reinforcement pattern, pre-tensioning strand pattern, and concrete
mixture. Data sets need to include instances of varying observed damage from no damage to major damage
in order to establish the lower and upper limits of acceptable AE emissions. It is not possible to establish
accept/reject criteria based on the current AE event database; however, the current database has presented
a new and unique possibility for damage assessment as well as validated the efficacy of AE technology as
a potential Quality Assurance/Quality Control (QA/QC) procedure in locating the sources of AE events

associated with cracking or high strain events.

Of existing AE data damage assessment techniques, at least four have potential utility in the loading
scenarios as observed in this project:

1. Event counting — If the number of recorded events above a preset amplitude threshold
exceed the number specified for that loading period, the part is set aside for closer examination, or reject.
In situations where the loading is not cyclic, but stationary random, it may be possible to extend this

technique to a Load-Calm ratio method based on whether the number of events increases or decreases as
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the loading continues. Increasing event counts would correspond to increasing damage. Decreasing event
counts would correspond to the part initially undergoing a break-in period with high event counts, followed
by a minimal damage under the same loading condition.

2. The use of a parametric analysis using AE event waveform features to develop algorithms
relating the unique features to observed damage types and severities.

3. To build a database of b-value’s (using the published b-value damage assessment
technique) for specific beams and processes. The database would indicate the upper and lower bounds for
a typical b-value and therefore establish the upper and lower limits for accepting/rejecting the beam.
Additionally, the frequency analysis would then be used to identify the AE source or damage type that lead
to the rejection of the beam.

4. Based on AE data collected and analyses from laboratory and field testing, AE events
tended to have dense clustered near the location of observed. It is hypothesized a damage assessment could
be performed based on AE event clustering density. Once damage established the frequency analysis would
then be used to identify the AE source or damage type.

In the case with all four of the potential accept/reject damage assessment techniques, large AE data
sets are needed for each beam type, reinforcement pattern, pre-tensioning strand pattern, and concrete
mixture. Data sets need to include instances of varying observed damage from no damage to major damage
in order to establish the lower and upper limits of acceptable AE emissions. It is not possible to establish
accept/reject criterion based on the currently limited AE event database; however, the current database has
presented a framework for damage assessment as well as validated the efficacy of AE technology as a
potential Quality Assurance/Quality Control (QA/QC) procedure in locating the sources of AE events

associated with cracking or high strain events.
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CHAPTER 9

ACOUSTIC EMISSION MONITORING EQUIPMENT REUSE AND FUTURE
DEVELOPMENT RECOMMENDATIONS

9.1 Overview

This chapter describes the functionality and reusability of the acoustic emission (AE) monitoring
equipment for future VTrans relevant research and structural assessments. The use of the equipment to
date has primarily been to research the potential for AE measurements as part of a Quality
Assurance/Quality Control (QA/QC) procedures for precast pretensioned concrete girders used in bridges.
Proposed future work includes additional laboratory testing, fabrication processes monitoring, transport
monitoring, construction site beam placement monitoring and long-term service use monitoring. These
continued and additional AE data collection scenarios are recommended to provide larger data sets for
developing future QA/QC standards and to complete AE monitoring during the complete life cycle of a
full-scale prefabricated and pre-stressed, reinforced concrete; 1) fabrication, 2) transport/construction, 3)

service use.

9.1.1 Current AE Monitoring Equipment

The AE monitoring equipment used in this study was an 8-Channel Mistras AEwin™ Sensor
Highway Il monitoring system, associated AEwin™ processing software, and an eight PK6I sensor array.
The design and configuration of this measurement system is for field testing of civil infrastructure. The
setup and selection followed the manufacturers’ recommendations and ASTM standards (ASTM E1316-
18a, 2018; ASTM E3100-17, 2016; Physical Acoustics, 2018). The PK6I sensor is a medium-frequency,
resonant AE sensor with an integral, ultra-low noise, low-power, filtered 26 dB preamplifier, which can
drive up to 200 meters of cable and operates at a resonant frequency of 60 kHz frequency (Physical
Acoustics, 2018). The Mistras AEwin™ Sensor Highway III monitoring system can expand up to 32 high
speed AE and over 100 slower speed channels with supplemental transducer. A NEMA-4 enclosure houses
the AEwin™ Sensor Highway III, allowing for outdoor use. The system has wireless (WiFi) and Ethernet
10/100/1000 BT communications interfaces. An AE monitoring schematic along with an image of the
Mistras AEwin™ Sensor Highway III appear in Figures 9.1 and 9.2. Table 9.1 lists the specific equipment

items acquired as part of the Mistras AEwin™ Sensor Highway III system.
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Figure 9.1: AE monitoring process schematic (Physical Acoustics, 2018)

Figure 9.2: Mistras AEwin™ Sensor Highway III (Physical Acoustics, 2018)

Table 9.1: Mistras AEwin™ Sensor Highway III System Parts

Item

Model and Description

Quantity

PN# SHIII-8, SHIII-8, Smart Remote Monitoring, 8-channel Sensor Highway III
system is a full, stand-Alone AE system for unattended monitoring in outdoor
environments. System Includes; Outdoor weatherproof case (18" x 12" x 6"), one 8-
channel AE board, 8 single-ended parametric inputs, remote reboot, Windows 7

Operating system, AEwin installed and licensed for 8 channels, Ethernet

1
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connectivity to a factory network or Internet, 110/220VAC or 9 - 28 VDC power at

15 watts.

2 PN# PK61-5015, PK6I, Low Power Sensor, 60 kHz with Integral Preamp and SMA 8
Connector for Sensor Highway

3 PN# 1234-4002-30, 1234-SMA/BNC-30, Signal Cable, RG58 SMA-BNC 30 8
Meters

4 PN# 9380-7003-2, AE-WIN 2D-LOC, FULL PLANAR, 2 DIMENSION 1
LOCATION

5 PN# 9380-7003-9, AE WIN 3D-LOC, 3 DIMENSIONAL LOCATION 1

SOFTWARE OPT

Mistras AEwin™ Sensor Highway III monitoring system and associated AEwin™ processing

software allows for user-defined inputs to refine the collected AE events. The acquisition setup parameters,

as listed in Table 1, followed that specified by the manufacturer. Pencil lead break tests in controlled

laboratory specimens confirmed the validity of these parameters (Sause, 2011). These input parameters are

found in Table 9.2.
Table 9.2: Mistras AEwin™ Sensor Highway III Input Parameters
Parameter Value Units
Threshold 60 decibel (dB)
Pre-amplifier Gain 26 decibel (dB)
Lower Bounds 20 kilohertz (kHz)
Analog Filter
Upper Bounds 400 kilohertz (kHz)
Lower Bounds 20 kilohertz (kHz)
Digital Filter
Upper Bounds 200 kilohertz (kHz)
Peak Definition Time (PDT) 200 microsecond (1s)
Hit Definition Time (HDT) 800 microsecond (us)
Timing Parameters
Hit Lockout Time (HLT) 1,000 microsecond (s)
Maximum Hit Duration (MDT) 1,000 millisecond (ms)
Longitudinal Wave Velocity 13,083 feet per second (ft/sec)
Transverse Wave Velocity 7,833 feet per second (ft/sec)
Surface Wave Velocity 7,250 feet per second (ft/sec)
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If the user-defined minimum sensor hits occur within the specified time duration parameters then
the AEwin™ software processes the waveforms to extract and record fifteen features of the AE waveform
signals including: 1) amplitude, 2) duration, 3) energy, 4) counts, 5) rise time, 6) peak frequency, 7)
frequency centroid, 8) absolute energy, 9) signal strength, 10) initial frequency, 11) reverberation
frequency, 12) counts-to-peak, 13) average signal level, 14) root mean square (RMS), and 15) average

frequency.
9.2  Demonstrated AE Test Capabilities

9.2.1 Laboratory Testing

This section describes a series of laboratory tests performed to verify the efficacy of the AE
monitoring equipment to be used for crack detecting in reinforced concrete with the intent to apply
laboratory observations and methodologies to future full-scale filed tests. This section also provides
observations of the performance of the current Mistras AEwin™ Sensor Highway III monitoring system

and recommendations for system alterations/modifications for future laboratory AE data collection.

9.2.2 AE Event Locating

Alternative strategies for event location using non-parametric machine learning algorithms were
investigated. Currently, the Mistras AEwin™ locating algorithm assumes a homogeneous specimen, where
the wave speed is constant; that exists a linear path across the material between the source and the
piezoelectric sensor; and that the first AE signal is due to the p-wave. Such model leads to the solution of
anonlinear system of equations with the Nelder-Mead simplex optimization algorithm (Physical Acoustics,
2018). However, the presence of large aggregates, reinforcing rebars, and tubes in the concrete part break
these assumptions, as they may lead to scattering, or a linear path between the source and the receiver may
not exist. Furthermore, geometrical nonlinearities will break the assumption of a direct linear path. The
wave travel speed varies depending on the wave type and is not known with accuracy for each specimen a
priori.

To circumvent such limitations, inspired on successful applications on composite materials (Baxter
et al., 2007), a locating strategy based on difference of time of arrival mapping, or AT-mapping, coupled
with a nonlinear regression method called Gaussian Process (GP) is being investigated. The AT-mapping
process consists of mapping the difference in time of arrivals between each couple of sensors by performing
a pencil-lead break test over a predetermined grid (Hensman et al., 2010). When a part has been mapped,

then, when in service, any given set of time of arrivals will lead to possible source regions in each AT-map.
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By superposing these possible regions, the event source location can be determined. Notice that this method
does not require any material properties or part geometry knowledge and could prove more accurate and
robust for NEXT beam applications. Interpolation fills in the points that are out of the grid using GPs, a
non-parametric machine learning algorithm. Furthermore, we introduce a weighting on the AT-maps based
on the underlying uncertainty given by the GP and on the wave maximum amplitude at each sensor. Points
of the map where variance is high get penalized. Maps are balanced based on the received amplitude at
each sensor.

The experimental setup consists of 4 resonant (150kHz) AE sensors, with pre-amp set to 40 dB.
The goal of this first experiment was to benchmark the AT-map with the currently used locating algorithm.
A concrete block of 0.41x0.25x0.14 m was fabricated, and 62 points have been mapped on its face, with
another 4 points taken for performance evaluation, as shown in Figure 9.3. At each point, 10 pencil-lead
break tests were performed, and the average value was taken for both the AT-mapping and the Nelder-Mead

simplex algorithm calculation.
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Figure 9.3: Concrete block face with 62 grid points (yellow) and 4 test points (magenta)

The mapped ATs and the corresponding GP interpolation are shown in Figure 9.4 to 9.8 show the

true event location (green), the AEWin™ system location (red) and the AT-map location (magenta).
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Figure 9.4: Experimental AT-map at the grid points (left) and interpolated values (right) given by the GP
This scenario satifies the AEWin™ algorithm assumptions. Both perform well. New concrete
specimen that include rebar and PVC pipes have been fabricated, but experiments are still ongoing. Under

such scenario, the AT-map approach is expected to be superior to the current locating system.
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Figure 9.5: Test point A, the true location and the AT-map location are superposed
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Figure 9.6: Test point B, in this case the AEWin system performed better
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Figure 9.7: Test point C, both methods show similar performance
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Figure 9.8: Test point D, both methods show similar performance

9.2.3 Pull-Out AE Monitoring

AE monitoring of laboratory pull-out tests were performed in a controlled laboratory environment
with limited spatial and time constraints. Observations of AE data collection from pull-out tests performed
with a Tinius Olsen static tension material testing machine indicated that the unmodified Mistras AEwin™
Sensor Highway III monitoring system with wired broadband AE sensors was adequate for these tests. The
orientation of the AE sensor placement and dislodging of AE sensors at rupture showed potential to damage
the AE sensors by impacting the tension test machine or by being hit from dislodged concrete. A
mechanism to maintain connection between the AE sensor wear-plates and the concrete as well as to protect
the AE sensors from damage was needed. To assist with these concerns, two types of metal armor/fastening
devices were fabricated. The first metal armor/fastener was made from cut sections of square hollow stock
large enough for the AE sensor to be inserted into. A hole drilled and tapped on one side allowed for the
installation of a set screw to hold the AE sensor in place. Epoxy adhesive attached the metal armor/fasteners
to the concrete surface. This design succeeded in both protecting the AE sensors during testing and
maintained contact to the concrete surface. However, concerns that the metal between AE sensor wear
plate and the concrete surface could distort the AE signals prompted a new approach; U-shaped brackets
with two ears on each side to epoxy to the concrete surface were fabricated from metal sheet stock. Again,
these U-shaped brackets had a hole drilled and tapped for a set screw to pressure the AE sensor against the

concrete surface.
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Figure 9.3: Laboratory acoustical emission pull-out testing

9.2.4 Three-Point Bending AE Monitoring

Observations of AE data collection from three-point bending tests performed using a Tinius Olsen
static tension material testing machine indicated that the unmodified Mistras AEwin™ Sensor Highway 111
monitoring system with wired broadband AE sensors was adequate for these tests. Additionally, unlike the
pull-out tests, the three-point bending tests were control loaded creating a less violent failure and therefore
sensor protection was not required for these tests. The duration of tests was short enough that the sensors

were simply adhered to the concrete surface with high vacuum grease.

(b)

Figure 9.4: Laboratory acoustical emission three-point bending (flexure) tests (a) 2-D sensor array and

(b) 3-D sensor array
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9.2.5 Void Detection

An array of AE sensors can locate a source by triangulating the time of arrival of waves. Voids in
the solid will distort the waves. This opens up the possibility of inverse tomographic methods for
determining void size and location by measuring the waves as they arrive from known sources, Figure 9.5.a.
Voids also affect the frequency of standing acoustic waves, typically by reducing the wavelengths and

increasing the frequencies — an affect readily measured by active acoustic methods, Figure 9.5.b.
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Figure 9.5: Effects of voids on acoustic waves (a) distortion of propagation and (b) alteration of

frequency of standing waves

Proof-of-concept tests determined if in-house AE test equipment could detect voids, using a small
reinforced concrete beam (30 x 5 x 5 in®) with internal voids created with a plastic bottle and Styrofoam
inserts, 9.6.a. Frequency sweeps using AE transducers with one operated as an active source and the other
operating as a receiver appear as the setup in 9.6.b, data from solid beam 9.6.c and data from section with
void 9.6.d. The section with the void sustains a high-frequency standing wave as suggested in 9.5.b. 9.7.a
shows the same beam undergoing ground penetrating radar (GPR) tests. The GPR B-scan traces indicate
the likely location of a void. A conclusion from this test is that AE and GPR testing can detect this relatively
large void. It should be noted that in this case, the GPR does not have to penetrate through a dense mesh

of reinforcing, as is common in prestressed girders and is commonly a challenge for GPR imaging.
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Figure 9.6: Active acoustic detection of voids in laboratory beam: (a) Formwork and void inserts prior to

fabrication, (b) Acoustic transducer setup, (c) Frequency content of standing waves in solid section, (d)

Frequency content of standing waves in section with void — note addition of high frequency waves at

approx. 400 kHz.
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Figure 9.7: Ground penetrating radar test of beam in 9.6: (a) Test setup and (b) B-scan showing possible

void

9.3  Field Testing

9.3.1 Detensioning AE Monitoring

AE monitoring field tests of NEXT beams and NEBT girders during detensioning were performed
on Site and were bound by multiple constrained including time, spatial, access, and distance. As to not
disturb or slow the fabrication processes; it was paramount to deploy the Mistras AEwin™ Sensor Highway
IIT monitoring system, collect data, and remove the system without disturbing or delaying any fabrication

processes. This required four alterations to the existing system:
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1. Portable power supply — Used an Uninterruptible Power Supply (UPS) to allow for
untethered and portable power to the Mistras AEwin™ Sensor Highway III.

2. Wireless remote access to the Mistras AEwin™ Sensor Highway III — Used an external wireless
router to allow for remote connection to a laptop so that AE monitoring personnel were
able to stay a safe distance away from fabrication activities while live streaming the data
collection.

3. AE sensor protection/fasteners — Used the metal armor/fasteners fabricated as part of previous
laboratory testing.

4. Physical protection of the entire system — Placed the entire unit and wireless router inside a

pelican case for additional protection of the AE monitoring equipment.

Figure 9.8 shows the equipment on top of a NEXT beam in the Carrara fabrication plant, along
with the detensioning operation. Figure 9.9 shows the equipment in place and testing of the end of a

Northeast Bulb Tee girder.

e :
i

(b)
Figure 9.8: NEXT beam field testing of detensioning (a) field testing equipment setup, (b) torch cutting of

pre-tensioning strands
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(a) (b)
Figure 9.9: Northeast Bulb Tee girder field testing of detensioning (a) AE equipment/sensor setup, (b)

observed horizontal web crack

9.3.2 Craned Form Removal AE Monitoring

AE monitoring filed tests of NEXT beams and NEBT girders during craned form removal collected
data on site. The operating conditions and constraints were the same as the detensioning process with the
addition of an increased telemetry distance when lifting and craning the beam from the form bed to the
finishing area. Equipment modifications described in the above Section 3.2.1 Detensioning AE Monitoring
were adequate to power the monitoring system, maintain connectivity during data collection, and protect

the AE sensors during craned removal from the form bed, Figure 9.10 and 9.11.
= ¥

Figure 9.10: NEXT beam field testing of craned form removal
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(a) (b)
Figure 9.11: Northeast Bulb Tee beam field testing of detensioning (a) AE equipment setup, (b) gantry

crane connection to Northeast Bulb Tee

9.3.3 Transport AE Monitoring

The NEBT girders were the only ones evaluated with measurements during transport. Some factors
of concern were:
Safely securing equipment;
Clearance constraints from overhead powerlines;
Exposing the equipment to weather;

Maintaining wireless connectivity to the AEwin™ Sensor Highway III;

.

Safety during placement and removal of the AEwin™ Sensor Highway III and associated

SENnsors.

Modifications to both the equipment and attachment procedure mitigated these concerns. The
AEwin™ Sensor Highway III which is in an outdoor rated metal housing, was placed directly on the top of
the NEBT girder between deck rebar. Gorilla tape secured the wireless router to the outside of the AEwin™
Sensor Highway III. Additional modifications to the AEwin™ Sensor Highway III and wireless router
were to receive power from two motorcycle batteries connected in parallel. The placement of this assembly
was on top of the NEBT girder using an extension ladder and secured to the NEBT girder with 2-inch wide
heavy duty rachet straps looped all the way around the NEBT girder, Figure 9.12. U-shaped brackets with
set screws secured the sensors to the beam by: 1. Adhering the U-shaped brackets to the beam with quick
setting epoxy and allowing adequate time to harden; 2. Applying high vacuum silicone grease to the sensor
wear plates; 3. Placing the sensors in the U-shape brackets and secured with a set screw. Zip ties secured

excess cable lengths to the exposed rebar on the top of the beam. Placing a waterproof back pack cover
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over the AEwin™ Sensor Highway III with wireless router and a tarp over the AEwin™ Sensor Highway

IIT and batteries protected the instruments from rain.

(b) (c)

(d)

Figure 9.12: Northeast Bulb Tee beam transport testing (a) straight section end zone testing, (b) straight

section middle zone testing, (c) AE transport equipment set-up, and (d) hammerhead section middle zone

testing
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9.4 Reuse and Future Work

9.4.1 Objective and Scope

The purpose of this section is to explore options of reuse of the AE monitoring equipment for future
work in AE monitoring and data collection with respect to laboratory testing on relatively small reinforced
concrete beams and in the field on full-scale prefabricated and pre-stressed, reinforced concrete Northeast
extreme tee (NEXT) beams and Northeast Bulb Tee (NEBT) girders. Proposed future work includes
additional laboratory testing, fabrication processes monitoring, and transport monitoring as well as the
introduction for AE monitoring during beam placement and long-term service use monitoring. These
continued and additional AE data collection scenarios are recommended to provide larger data sets for
developing future QA/QC standards and to complete AE monitoring during the complete life cycle of a
full-scale prefabricated and pre-stressed, reinforced concrete; 1) fabrication, 2) transport/construction, 3)

service use.

9.4.2 Additional Data Collection Recommendations

This section provides detailed recommendations for additional AE monitoring and newly proposed

AE monitoring.

9.4.3 Additional Laboratory AE Data Collection

Much of the focus of previous research on AE monitoring of reinforced concrete is centered around
cyclic loading. Because of this, many of the statistical interpretation and damage assessment algorithms
have been developed to require AE data from cycles of loading and unloading over time or with increasing
load. Since most of the fabrication processes are single loading event cases, the cracking/damage
assessment algorithms currently published are not valid. To develop these algorithms additional laboratory

AE data collection would focus on:

1. Creating laboratory scale reinforced concrete beams that mimic full-scale beams in both geometry
and reinforcement patterns;

2. Performing cycling loading-unloading to establish parametric AE event waveform criteria for
cracking and damage based current published methods;

3. Collect parametric AE event waveform data during loading to failure of the laboratory beams in
manners simulating field fabrication processes (i.e. compression testing, three-point flexure testing,

and pull-out testing);
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4. Establish correlations between parametric AE event data collected in items 2 and 3 to develop

cracking/damage algorithms for single loading event cases.

The above laboratory testing would require, for each simulated beam type, a minimum of three
cyclic loading tests to establish base line criteria, three sets of three-point flexure tests using a 2D sensor
array, three sets of three-point flexure tests using a 3D sensor array, three sets of compression tests using a

3D sensor array, and three sets of pull-out tests using a 3D sensor array.

94.4 Additional Fabrication AE Data Collection

AE data collection during fabrication of full-scale prefabricated and pre-stressed, reinforced
concrete Northeast Extreme Tee (NEXT) beams and Northeast Bulb Tee (NEBT) girders focused on
detensioning and craned removal from the formwork. The AE data collected during fabrication lacks
replication since each successive data collection event changed various aspects as the AE collection team
honed the methodology. At a minimum three replicate tests on each beam type should be performed. In
addition, three replicate tests during the craned removal from the formwork with the AE sensor array is

moved from the end-zone region to the middle region of the beams would fill-in the database.

Upon competition of these additional tests, AE data collects would then be analyses for comparison
to algorithms developed from additional laboratory testing described in Section 5.2.1 Additional Laboratory
AE Data Collection.

9.4.5 Additional Transport AE Data Collection

Current AE data collection during transport is limited to Northeast Bulb Tee (NEBT) girders and
one test each of the end zone of a straight span beam, middle zone of a straight span beam, and middle zone
of a hammerhead beam. This limited data set was due to timing constraints of beam transport for the
Rockingham 1-91 bridge construction project. Only three data collection events were possible and rather
than repeat data collection, it was decided to collect different data sets in areas that would experience
different stress distributions and magnitudes. It would be of interest to complete two additional replicate
tests of the three already perform AE data collections during transport next construction season when the
southbound bridge is constructed. Similarly, this would allow for a minimum of three AE data sets during
transport for each of the beam regions tested; allowing for the development of algorithms to assess

cracking/damage of beams during transport.

129



9.4.6 AE Monitoring During Beam Placement

AE monitoring during beam placement was not performed during this project due to time
constraints and needed coordination with the contractor. The Rockingham I-91 bridge construction project
included the craned placement of NEBT girders from the staging area into to place on the abutments/bents.
Since the placement of the NEBT’s used a crane, there were safety concerns and coordination issues to
disconnect and retrieve the AE monitoring equipment and sensors after placement. Ideally, the AE
monitoring equipment would stay in-place from transport testing and would allow for consistency in AE

data collection between transport AE data collection and placement AE data collection.

9.4.7 Long-Term Service Use AE Monitoring

AE monitoring of long-term service use was not performed during previous AE testing due to
project scope, limited data storage space, and the need for a continuous power supply. AE monitoring of
long-term service use would require additional AE channels to incorporate more AE sensors to provide a
larger study area. Long-term service use monitoring would also require either cloud access for data storage
or a larger hard drive for AE data storage. Additionally, either a cabled power source or solar power source
would be required along with a battery back-up to provide continuous, uninterrupted AE data collection.
Long-term monitoring at an exterior girder, interior girder, middle span, and end span would be

recommended for data collection to cover all regions of the bridge.
9.5 Summary of Conclusions and Equipment Modifications

9.5.1 Conclusions and Recommendations

This report focused on the effectiveness of the AE monitoring equipment used as part of a study into
the efficacy of AE sensing as a potential Quality Assurance/Quality Control (QA/QC) procedure in locating
the sources of AE events during laboratory testing on relatively small reinforced concrete beams and in the
field on full-scale prefabricated and pre-stressed, reinforced concrete Northeast extreme tee (NEXT) beams
and Northeast Bulb Tee (NEBT) girders during detensioning, craned form removal, and transport processes.
Laboratory and field tests each presented unique challenges and constrains for the space, deployment,
timing, and collection of AE event data which required modifications to the Mistras AEwin™ Sensor

Highway III monitoring system. These alterations included:

1. Portable power supply (7-hour minimum supply life);

2. Wireless router for remote connection to the Mistras AEwin™ Sensor Highway III;
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3. Metal AE sensor armor/fasteners

Although these modifications allowed for the completion of laboratory and field tests for this study,
further improvements and modifications for future testing could: increase resolution, increase monitoring
areas, speed deployment and breakdown, reduce the physical efforts of deployment, and increase uniformity

between deployments. These improvements and modifications with a total cost of about $11,000 include;

1. Quick connect portable and rechargeable power supply (7-hour minimum supply life);
Integrated long range wireless router housed in the NEMA-4 rated enclosure;

Remote wireless AE sensors;

il

Additional AE sensors (additional 24 sensors to fill the current 32 channel capacity);

Additionally, the time allotted, project scope, and fabrication schedules left a large amount of additional
testing to be desired. These tests include additional detensioning, craned removal from formwork, and
transport monitoring as well as the introduction for AE monitoring during beam placement and long-term

service use monitoring.
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CHAPTER 10

CONCLUSIONS AND FUTURE RECOMMENDATIONS

This project has a variety of goals that were achieved through a mapped path of project objectives;
designed to test the efficacy of AE sensing technologies use as a Quality Assurance/Quality Control
(QA/QC) procedure for the fabrication and transport of pre-fabricated and pre-stressed, reinforced concrete
beams and girders. Conclusions indicate that AE sensing may be practical QA/QC process for PBES
elements as there is observational correlation to observed cracks and AE event locations as well as the AE
instrumentation being portable and deployable enough to collect data during both the fabrication and
transportation processes. The tests conducted in this study largely validate the methodology and procedures
for data collection., However, the development specific accept/reject criteria for use as a QA/QC procedure

requires additional data collection.

10.1 Conclusions from AE Laboratory Testing

Laboratory experiments on relatively small reinforced concrete beam specimens under pull-out
and three-point bending yielded proof of concept and guidance on data acquisition setup parameters for

field testing. These include:

1. Appropriate amplitude and duration filters to remove background noise;
Verification of wave mode velocities through pencil lead break tests;

Verification of correlation between AE events and observed cracks; and

bl

Selection of appropriate sensor array.

Laboratory pull-out and three-point bending (flexure) testing yielded correlations between AE
events and cracking and indicated that a 2-D planar sensor array was more accurate in AE event source
location than a 3-D sensor array. One possibility for the difference in accuracy is the use of measured
wave speed velocity used in the 2-D location algorithm versus the empirical relationship estimates of

wave speed velocities used in the 3-D sensor array.

10.2 Conclusions from AE Fabrication Testing

This chapter demonstrates the viability of AE sensing in detecting and locating cracks in
prefabricated pre-stressed concrete girders used as PBES in ABC, which could potentially be used as a
QA/QC technique. AE field data collected from the Bulb Tee showed more recorded AE events during the
torch cutting of pre-tensioning strands than for the same process on the NEXT beam. This could be due to

the thin web and dense packing of pre-stressing strands guiding the AE waves and reducing attenuation
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within the Bulb Tee girder. A key observation made during the detensioning processes was the appearance
of horizontal cracks in the web of the Bulb Tee girder. The crack lengths ranged between 127 mm and 508

mm with vertical spacing between cracks ranging from 35 mm to 813 mm, as quantified in Table 1.

Table 10.1: Quantification of AE Events Versus Number of Observed Cracks

# of observed AE # of observed AE events
Beam type events during during craned form removal ~ # of observed cracks
detensioning (crack lengths)
NEXT beam 38 20 0
Straight bulb tee 466 12 7 (127mm-508mm)
Haunched bulb tee 960 16 6 (127mm-432mm)

The observed end zone cracking occurred both within and outside of the region directly covered by the AE
sensor array for the Bulb Tee girders beams and AE event location distributions indicate differences
between the 3-D and 2-D sensor arrays.

AE event data collected from multiple fabrication processes including the detensioning of pre-
tensioning strands embedded in NEXT beams and Bulb Tee’s yielded internal AE events indicative of crack
nucleation. AE events recorded above the 60-dB amplitude pre-filter determined through laboratory testing
may be indicative of internal cracking and provide an approximation of crack location. Additionally, the
AE monitoring determined which fabrication process is responsible for the most AE events, which could
point to the critical fabrication processes responsible for crack nucleation. A is highlight is the Bulb Tee
beam field data that showed far more AE events occurred during the detensioning of the Bulb Tee than
during the craned removal from its form bed.

Although, AE technology has been proven to reliably detect material failure of composite materials
such as composite fuel tanks and as such is an acceptable QA/QC technology for industry practice (ASTM
E2191/E2191M-16, 2016), it is not yet a proven technique for use with pre-tensioned, pre-cast concrete as
an acceptable QA/QC technology for industry practice. Additionally, future work includes AE source
discrimination and data collection during transportation, installation, and service of full-scale NEXT beams

and Bulb Tee girders.

10.3 Conclusions from AE Transport Testing
Field testing during transport of full-scale Northeast Bulb Tee (NEBT) girders produced the
following findings:
1. The AE test equipment required modest levels of custom modification for the transport tests.
2. The test equipment performed flawlessly during the tests and did not sustain any visible or notable

damage.
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3. Differences in AE event patterns were observed between end zone and middle zone regions along
with between straight sections and hammerhead sections.

4. Large quantities of AE events were recorded without correlation to observed cracks during
transport.

5. Finite element modeling indicates areas of high stress corresponding to areas of dense AE event
locations.

6. Additional data sets are required for statistical clustering and logistical regressions to define an AE

event feature signature of cracks from other AE event source types.

Field tests on NEBT’s provided an abundance of AE event data during critical stages of the
fabrication and transportation processes. AE event data were collected when cracking was observed and
when cracking was not observed. Through the use of a finite element model it was concluded that AE
events tend to occur in areas of high stress and the presence of AE events does not necessarily indicate the
occurrence of cracking. Continued work on AE event source discrimination to identify the feature
signatures related to cracking, regions of high stress, or otherwise is still an ongoing process and requires
additional data sets; however, this work has set the foundation for understanding when cracks tend to occur,

where the key areas to concentrate sensors are, and what processes are of the highest stress to the

NEBT’s prior to service.

10.4 Conclusions for Proposed Accept and Reject Criteria

This study focuses on the development of accept/reject criteria for full-scale prefabricated and pre-
stressed, reinforced concrete Northeast Extreme Tee (NEXT) beams and Northeast Bulb Tee (NEBT)
girders based on Acoustical Emission (AE) monitoring as a Quality Assurance/Quality Control (QA/QC)
procedure during the detensioning, craned form removal, and transport processes. Although there are many
published damage assessment techniques for reinforced concrete, these techniques are based on cyclic
loading and are not compatible with loading conditions observed during the fabrication and transport of the
NEXT and NEBT beams. Loading of the full-scale prefabricated and pre-stressed, reinforced concrete
NEXT beams and NEBT girders is either a single near-instantaneous event or a variable self-weight loading
event. Of the five common reinforced concrete damage assessment techniques (felicity ratio; parametric
analysis; load-calm ratio; b-value analysis; frequency analysis) only the parametric, b-value, and frequency
analyses were determined to be adaptable to the field loading conditions experienced by the NEXT and
NEBT beams during fabrication and transport.

The three potential damage assessment methods are;
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1. The use of a parametric analysis using AE event waveform features to develop algorithms relating
the unique features to observed damage types and severities;

2. To build a database of b-value’s (using the published b-value damage assessment technique) for
specific beams and processes. The database would indicate the upper and lower bounds for a
typical b-value and therefore establish the upper and lower limits for accepting/rejecting the beam.
Additionally, the frequency analysis would then be used to identify the AE source or damage type
that lead to the rejection of the beam;

3. Based on AE data collected and analyses from laboratory and field testing, AE events tended to
have dense clustered near the location of observed. It is hypothesized a damage assessment could
be performed based on AE event clustering density. Once damage established the frequency

analysis would then be used to identify the AE source or damage type.

In the case with all three of the potential accept/reject damage assessment techniques, large AE
data sets are needed for each beam type, reinforcement pattern, pre-tensioning strand pattern, and concrete
mixture. Data sets need to include instances of varying observed damage from no damage to major damage
in order to establish the lower and upper limits of acceptable AE emissions. It is not possible to establish
accept/reject criterion based on the currently limited AE event database; however, the current database has
presented a new and unique possibility for damage assessment as well as validated the efficacy of AE
technology as a potential Quality Assurance/Quality Control (QA/QC) procedure in locating the sources of
AE events associated with cracking or high strain events.

Future work would be to conduct a large laboratory testing regimen over an extended period of
time on a single type of commonly produced beam or girder to build a large AE database for all processes
that are associated with cracking or high strain events. Once a large AE database is established with visual
observations of damage, conditions, and element performs; the three potential AE damage assessment
techniques can be implemented and compared to determine the effectiveness for use as accept/reject

criterion.

10.5 Conclusions for AE Monitoring Equipment Reuse and Future Development

Laboratory and field tests each presented unique challenges and constraints for the space, deployment,
timing, and collection of AE event data which required modifications to the Mistras AEwin™ Sensor

Highway III monitoring system. These alterations included:

1. Portable power supply (7-hour minimum supply life);
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2. Wireless router for remote connection to the Mistras AEwin™ Sensor Highway II1;

3. Metal AE sensor armor/fasteners

Although these modifications allowed for the completion of laboratory and field tests for this study,
further improvements and modifications are warranted for future testing to: increase resolution, increase
monitoring areas, speed deployment and breakdown, reduce the physical efforts of deployment, and

increase uniformity between deployments. These improvements and modifications include;

1. Quick connect portable and rechargeable power supply (7-hour minimum supply life);
Integrated long range wireless router housed in the NEMA-4 rated enclosure;

Remote wireless AE sensors;

S

Additional AE sensors (additional 24 sensors to fill the current 32 channel capacity);

Items 1 and 2 can be easily purchased and retrofitted to the current Mistras AEwin™ Sensor Highway
I1I monitoring system. Item 3 is not yet a product offered by the current Mistras AEwin™ Sensor Highway
III manufacturer, but the technology does exist through different providers. Item 4 can be purchased
through the manufacturer of the Mistras AEwin™ Sensor Highway III monitoring system. The price for
an addition 24 AE sensors identical to the current eight sensor array is $406 per sensor totaling $9,744 for

24 sensors, based on a 2016 quotation.

Additionally, the time allotted, project scope, and fabrication schedules left a large amount of additional
testing to be desired. These tests include additional detensioning, craned removal from formwork, and
transport monitoring as well as the introduction for AE monitoring during beam placement and long-term

service use monitoring.
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