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Abstract 

Procedural problem solving is an important skill in most technical domains, like programming, 

but many students reach problem solving impasses and flounder. In most formal learning 

environments, instructors help students to overcome problem solving impasses by scaffolding 

initial problem solving. Relying on this type of personalized interaction, however, limits the 

scale of formal instruction in technical domains, or it limits the efficacy of learning environments 

without it, like many scalable online learning environments. The present experimental study 

explored whether learners’ self-explanations of worked examples could be used to provide 

personalized but non-adaptive scaffolding during initial problem solving to improve later 

performance. Participants who received their own self-explanations as scaffolding for practice 

problems performed better on a later problem-solving test than participants who did not receive 

scaffolding or who received expert’s explanations as scaffolding. These instructional materials 

were not adaptive, making them easy to distribute at scale, but the use of the learner’s own 

explanations as scaffolding made them effective.  

Keywords: scaffolding; problem solving; distance education and telelearning; post-secondary 

education; programming and programming languages; teaching/learning strategies  
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Scaffolding Problem Solving with Learners’ Own Self Explanations of Subgoals 

Digital technology in face-to-face and online learning makes higher and lifelong 

education more accessible than ever before. Technology-supported face-to-face courses can 

include more students, and online learning provides access and flexibility that accommodates 

learners who live far from a university or work during the day. This accessibility is valuable as 

technical skills update more frequently and the number of people seeking technical skills 

increases. While many of these learning environments have great potential and enrollment 

(Smyth, Bossu, & Stagg, 2016), they have not been the drivers of education equality that 

providers had hoped (Downes, 2013; Littlejohn, Falconer, & Mcgill, 2008). Only a small 

percentage of students who already have effective learning and self-regulation strategies succeed 

without the personalized instructional support that is typical of smaller face-to-face courses 

(García Espinosa, Tenorio Sepúlveda, & Ramírez Montoya, 2015; Kizilcec, Pérez-Sanagustín, & 

Maldonado, 2017; Rohs & Ganz, 2015). Providing personalized instructional support while 

requiring fewer instructor resources, particularly to support learning technical skills and help 

student overcome problem solving impasses, is a large and active field of study (e.g., Aleven & 

Koedinger, 2002; Conati & VanLehn, 2000; VanLehn, 2011). 

This study explores a method to support students while they complete computer 

programming problems independently. We expanded upon an instructional intervention that 

Margulieux and Catrambone (2019) found to help independent learners engage in beneficial 

learning strategies and self-regulation. Margulieux and Catrambone explored methods for 

promoting constructive learning through self-explanation of computer programming worked 

examples to help learners who did not have access to help from an instructor or peers to process 

new knowledge and connect it with prior knowledge. In the present study, we explored whether 
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learners' self-explanations of worked examples can be used as effective scaffolds for initial 

problem solving to ultimately improve later problem-solving performance. If learners can self-

explain examples and use those self-explanations to scaffold their initial problem solving 

attempts, then we can design learning environments to embrace constructivist learning 

principles, adapt for each learner's level of knowledge, and improve learning while requiring 

fewer instructional resources per student (Littlejohn et al., 2008).  

1.1 Scaffolding Problem Solving 

Scaffolding is a technique for bridging the gap between a learner’s current skill set and 

desired skill set by providing guidance to learners from knowledgeable sources, such as 

instructors and instructional designers (Kim & Hannafin, 2011). Scaffolding is a fundamental 

component of constructivism-based pedagogies (Pea, 2004). Constructivism theorizes that 

people build knowledge by constructing it for themselves through integrating new information 

into existing knowledge structures, rather than by being told what to know (Vygotsky, 1978; 

Wood, Bruner, & Ross, 1976). Learners who have limited prior knowledge, however, will need 

instructional support to build knowledge and reduce floundering (Hmelo-Silver, Duncan, & 

Chinn, 2007; Schmidt, Loyens, van Gog, & Paas, 2007). Much of current research on 

constructivist-based learning environments is devoted to exploring the appropriate types and 

amounts of guidance, including scaffolding, to support learning (Tobias & Duffy, 2009). 

Scaffolding can be used in a variety of methods and in a variety of domains, ranging from 

giving a learner hints about the next step of solving a problem to leading a learner to recognize 

conceptual errors that have caused misconceptions (Pea, 2004). For this reason, scaffolding has 

many definitions, even when referring only to scaffolding in problem solving (Kim & Hannafin, 

2011; Pea, 2004; Vygotsky, 1978; Wood, Bruner, & Ross, 1976). For the present study, we focus 
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on conceptual scaffolding that adds more structure to problem solving than unscaffolded problem 

solving, in which the learner receives a problem without guidance about how to solve it (Hill & 

Hannafin, 2001). In particular, we used fixed scaffolding, which is pre-determined and does not 

adapt based on the learner’s knowledge or performance (Azevedo, Moos, Greene, Winters, & 

Cromley, 2008; also called hard scaffolds; Saye & Brush, 2002).  

Our scaffolding structured learners’ initial problem-solving attempts by providing 

information about the pieces of the problem that they needed to solve to achieve a correct 

solution (see Figure 1). This scaffolding is reminiscent of the problem completion effect in 

learners who have more guidance during initial problem solving are better able to solve novel 

problems later (Sweller, 2010). The problem completion effect is based on cognitive load theory, 

which states that cognitive load (i.e., demand on learners’ mental resources) has three sources:  

1. information that is intrinsic to the task (e.g., the procedure to solve a problem),  

2. extraneous information that is a byproduct of instruction (e.g., details that are specific 

to a problem but not necessary to conceptually understand the procedure),  

3. and learning strategies to organize and retain germane information (e.g., developing 

schemas or connecting to prior knowledge).  

The problem completion effect works by narrowing the problem-solving space, and, thus, 

reducing the amount of task information that the learner must process and leaving more cognitive 

resources for employing learning strategies (Sweller, 2010). 

 Scaffolding work typically explores scaffolding provided by humans, such as instructors 

or tutors, but recent studies have focused on providing scaffolding through technology (Delen et 

al., 2014; Kim & Hannafin, 2011). Humans can naturally provide adaptive scaffolding based on 

an evolving understanding of the learner’s knowledge and progress (Azevedo, 2005). In adaptive 
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scaffolding, input from learners helps scaffolders to adjust their instruction to match the learner's 

knowledge level (Yelland & Masters, 2007). This adaptive interaction between the scaffolder 

and learner makes creating technology that provides adaptive scaffolding difficult because it 

requires that the scaffolding system interpret the learner's knowledge such as through a cognitive 

model in an intelligent tutoring system (Aleven & Koedinger, 2002; Conati & VanLehn, 2000; 

VanLehn, 2011), and determine which pre-programmed option to give the user through a logic 

tree.  

Incorporating adaptive scaffolding in large-scale problem-solving instruction is typically 

impractical, at least for the near future (Czerniewicz, Deacon, & Walji, 2018; Ossiannilsson, 

Williams, Camilleri, & Brown, 2015). The sophisticated system architecture and logic trees that 

enable adaptive scaffolding from technology are too technical and time-intensive to develop for 

varied uses and problem-solving procedures. Fixed scaffolding, however, is relatively easy to 

provide because it gives all learners the same scaffolds and, therefore, does not involve logic or 

developing probability-based models of students’ knowledge. In some cases, fixed scaffolding 

can provide some of the same performance and self-regulation benefits as adaptive scaffolding 

(Azevedo et al., 2008; Delen et al., 2014). The issue with fixed scaffolding is that it is always the 

same, regardless of the learner’s knowledge, and based on an expert’s perspective of the correct 

way to solve a problem, regardless of the learner’s perspective and prior experiences (Yelland & 

Masters, 2007).  

In the present study, we explore a method for providing scaffolding to learners that is 

fixed, and, therefore, practical to distribute at scale, but that is also based on the learner's 

knowledge and prior experiences. Before attempting to solve problems, we asked learners to 

self-explain a worked example of the problem-solving process, meaning that they constructed 
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explanations for why particular steps of the worked example were taken to reach the solution. 

We guided their self-explanations through a framework called subgoal learning, described in the 

next section. To scaffold learners’ initial problem-solving attempts, we used a fixed structure 

(see Figure 1) to match learners’ self-explanations to the problems. We compared this type of 

scaffolding to scaffolding with explanations by experts and unscaffolded problems.  

We expected that scaffolding initial problem solving with learners’ self-explanations 

would be more effective than scaffolding with experts’ explanations because, though the 

scaffolding structure is fixed, the information in self-explained scaffolds would be more relevant 

to learners’ understanding of the problem solution than an explanation by experts. This learner-

centered scaffolding aligns with the theory of constructivism because the instructions reflect 

learners’ own knowledge and explanations. Furthermore, using learners’ explanations as 

scaffolding theoretically uses their cognitive resources more effectively in two ways. First, it 

reduces the amount of extra information that learners must process because the scaffolding 

includes learners’ own thoughts rather than an instructor’s explanation that must be interpreted 

by the learner. Second, it prompts learners to reflect on their explanations by applying them to 

new problems. The potential pitfalls of this approach stem from learners creating ineffective or 

inaccurate self-explanations; therefore, subgoal learning was used to support self-explanation. 

1.2 Subgoal Learning through Self-Explanation 

Subgoal learning is a framework used in procedural domains, like statistics and computer 

science, to help learners deconstruct problem solving procedures into subgoals (e.g., 

Catrambone, 1998; Margulieux & Catrambone, 2016). Subgoals are structural parts of a 

problem-solving procedure, in which the overall goal is to solve the problem. All procedures, 

except the most basic, can be deconstructed into subgoals. For instance, in Figure 2, the overall 
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goal is to create an app in App Inventor. To do that, one would follow a series of steps. Each of 

those steps serves a sub-purpose, such as creating a component for the app or setting the 

properties of a component. Creating a component and setting properties are subgoals of the 

procedure to create an app. Highlighting the subgoals of a procedure helps learners to look past 

the contextual details of examples that cause extraneous cognitive load and focus on the 

structural components that are intrinsic to learning the problem solving process, improving 

learner retention and transfer to novel problems (Atkinson, Catrambone, & Merrill, 2003; 

Catrambone, 1998; Margulieux, Catrambone, & Guzdial, 2016).  

Subgoal learning has primarily been promoted using subgoal labels (Catrambone, 1998; 

Margulieux et al., 2016; Margulieux & Catrambone, 2019). Subgoal labels are short, context-

independent explanations that describe the purpose of a subgoal. In Figure 2, “Create 

Component” and “Set Properties” are subgoal labels that can be applied to any subgoal, 

regardless of context, that serves their function. Subgoal labels are typically used in worked 

examples to convey the purpose of a group of steps to the learner (e.g., Catrambone, 1998; 

Margulieux et al., 2016). Subgoal labeled worked examples have improved novel problem 

solving without increasing learners’ time spent studying instructions or solving problems 

(Margulieux & Catrambone, 2016; Margulieux et al., 2016). Prior research has suggested that 

subgoal labeled worked examples improve problem solving performance by helping learners to 

decontextualize examples, chunk information, and organize information (Atkinson, Derry, 

Renkl, & Wortham, 2000; Catrambone, 1995, 1996, 1998).  

The drawback of subgoal labeled worked examples, however, is that they provide 

explanations to learners, making the subgoal learning process passive and dictated by experts 

rather than by learners. To align subgoal learning with the theory of constructivism and promote 
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constructive learning, Margulieux and Catrambone (2019) supported subgoal learning through 

self-explanation of subgoals. Constructive learning, as defined by Chi (2009), requires that 

learners construct knowledge for themselves beyond the information provided for them via 

instruction. One method of constructive learning is self-explanation, in which learners use prior 

knowledge and logic to expand upon the instructions provided to them. For example, when 

learners self-explain the purpose behind the steps of a worked example, they are adding to the 

information provided in a worked example. Self-explanation can be more effective than 

instructor explanations because learners are integrating new knowledge with their prior 

knowledge (Wylie & Chi, 2014). 

Margulieux and Catrambone (2019) compared passive subgoal learning (i.e., providing 

subgoal labels constructed by experts in worked examples) to constructive subgoal learning (i.e., 

asking learners to construct their own subgoal labels for worked examples).  They provided 

different levels of support to learners who were constructing their own subgoal labels. Some 

participants received fixed hints, which were not adaptive to the learner, about the subgoals’ 

purposes; some participants received fixed feedback, which was the expert-constructed subgoal 

labels, on the subgoal labels that they constructed; and some participants received worked 

examples already chunked into subgoals. The fixed supports that Margulieux and Catrambone 

used are compatible with the present study’s paradigm of designing for problem solving 

instruction that can easily scale.  

Out of Margulieux and Catrambone’s (2019) constructive subgoal learning conditions, 

they found that participants who received worked examples that were already chunked into 

subgoals performed best when they received either hints (on subgoal labels to create) or 

feedback (on the subgoal labels that they created). Participants who received both hints and 
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feedback performed worse than those that received only one form of support. Based on 

qualitative analysis of students’ constructed labels, Margulieux and Catrambone argued that 

learners who received hints constructed high quality self-explanations, and that when this group 

received feedback in the form of expert-constructed labels, the learners misinterpreted the 

expert-constructed labels as the "correct" labels. Therefore, the learners disregarded the labels 

that they had constructed to adopt the expert-constructed labels, undoing all benefits of 

constructively learning the subgoals. Margulieux and Catrambone further argued that learners 

who did not receive hints constructed lower quality self-explanations and, thus, the feedback was 

beneficial to them because they used the expert labels to correct their own. 

The present study expands upon this work by exploring whether the problem solving 

performance of the two best performing interventions from Margulieux and Catrambone (2019) -

- 1) hints during subgoal label formation or 2) feedback (i.e., experts’ explanations) on subgoal 

labels formed -- can be further improved by using learner-constructed subgoal labels to scaffold 

initial problem solving. By using learner-constructed subgoal labels to scaffold problem solving, 

the present study also provides more information about the quality and usefulness of self-

explained subgoal labels. 

1.3 Present Study 

 The present study explored whether subgoal labels constructed through self-explanation 

of worked examples could be used to scaffold initial problem solving to improve performance 

while solving novel problems and explaining problem solving procedures. The scaffolding of 

practice problems differed between participants. They either received unscaffolded practice 

problems or one of two types of scaffolded practice problems. The unscaffolded practice 

problems gave participants a problem to solve and a blank space to solve it. For the scaffolded 
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practice problems, the blank space for solving the problem included scaffolds that sub-divided 

the problem-solving space in the form of subgoal labels that needed to be achieved (see Figure 

1). The subgoal labels were either those constructed by the participants or those constructed by 

an instructional design expert and programming expert through a task analysis procedure 

(Catrambone, 2011). The labels constructed by the experts were expected to improve 

performance because they were similar to the guidance that an instructor might provide. Learner-

constructed labels were also expected to improve performance, if participants constructed 

meaningful and accurate labels, because self-explanation helps learners mentally organize 

information (Wylie & Chi, 2014), and the labels would map that organization on to the problems. 

However, if participants struggled to self-explain the subgoals of the example, hastily made 

labels, or doubted whether their self-explanations were correct, then learner-constructed labels 

were not expected to provide guidance during problem solving. Therefore, the effect that learner-

constructed labels had on guiding initial problem solving was expected to provide information 

about the efficacy of learner-constructed labels.   

The problem-solving domain for the study was computer programming. Programming 

was considered an appropriate domain because it requires procedural problem solving, and 

programming instruction typically relies upon worked examples and practice problems. 

Furthermore, programming was a suitable domain for this experiment because previous work has 

found that programming performance can be improved by self-explanation of procedural 

structure (Pirolli & Recker, 1994; Soloway, 1986) and subgoal learning (Margulieux et al., 2016; 

Margulieux & Catrambone, 2016).  

Participants were required to be programming novices to minimize confounds due to 

learners’ prior knowledge. Because participants were novices, they solved programming 
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problems using a drag-and-drop programming language rather than a text-based language. Drag-

and-drop languages provide users with menus of code blocks that include all the syntax and 

structure that novice programmers find difficult to learn in text-based languages (Hundhausen, 

Farley, & Brown, 2009). Then novices need to only piece together the code blocks like puzzle 

pieces and fill in situational details, like variable names or the number of times that for loop 

should repeat (see Figure 3). Drag-and-drop programming languages are popular for novices 

because they have low barriers to adoption (Grover & Pea, 2013). Entire open curriculums are 

being developed for Scratch (e.g., Maloney, Peppler, Kafai, Resnick, & Rusk, 2008), Android 

App Inventor (Grover & Pea, 2013), and many others. We used Android App Inventor, a 

language that can be used to create applications (apps) for Android devices, because people of all 

ages and genders are equally interested in app development (Grover & Pea, 2013). Participants 

used App Inventor to create a Music Maker app that has images (e.g., drum or cymbal) that play 

sounds when pressed. Many introductory programming courses use text-based languages rather 

than drag-and-drop languages, but recent research (Morrison, Margulieux, & Guzdial, 2015; 

Morrison, Decker, & Margulieux, 2016) suggests that the same self-explanation of subgoal 

learning intervention is effective for text-based languages too; thus, the effects are expected to 

generalize to those settings as well.  

2. Method 

2.1 Design 

The experiment was a between-subjects design, meaning that all participants were 

randomly assigned, while controlling for number of participants per condition, to one of the six 

conditions. The first variable, subgoal learning method, had two levels based on findings from 

Margulieux and Catrambone (2019): with hints and without feedback or with feedback and 
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without hints. For the rest of the paper, we will refer to these groups at the hints group and the 

feedback group. The second variable, practice problem scaffolding, had three levels: 

unscaffolded, scaffolded with learner-constructed labels, and scaffolded with expert-constructed 

labels. The main dependent measures were performance on problem solving and explanation 

tasks. Time on task was measured while participants engaged with the worked example 

(including subgoal label construction and re-creating the app), feedback or re-reading, practice 

problems, problem solving tasks, and explanation tasks. Besides the manipulated variables, the 

following variables were included in analysis as possible predictors of performance: learner 

characteristics, working memory capacity, pre-test score, cognitive load, post-test score, and 

perception of understanding. In addition, the subgoal labels that participants construct were 

analyzed qualitatively and considered as a possible predictor of performance. 

2.2 Participants 

The six conditions each had 20 participants (N = 120). Participants were undergraduate 

students at a southeastern US, mid-sized institute and recruited through a subject pool. 

Participants could not have prior experience using App Inventor nor have taken more than one 

computer science course in high school or college. People who had more prior experience were 

disqualified because the instructional materials were designed for novices. To ensure that 

participants did not have prior knowledge of the task, they completed a 5-item, multiple-choice 

pre-test that asked them about basic App Inventor functions. One answer choice for each item 

was “I don’t know,” and participants were encouraged to select this option unless they knew the 

answer. Having this option reduces the chance that participants appeared more knowledgeable 

than they were by guessing.  
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Learner characteristics that have been identified as possible predictors of programming 

performance were collected (i.e., age, gender, high school GPA, college GPA, year in school, 

computer science experience, comfort with computers, and expected difficulty of learning App 

Inventor; Rountree, Rountree, Robins, & Hannah, 2004). These characteristics did not correlate 

with performance (see Table 1), meaning that learner characteristics did not affect whether the 

intervention was effective or not.  

In addition to these learner characteristics, working memory capacity was measured 

because it has been linked to successful self-explanation (Wylie & Chi, 2014). Working memory 

capacity was measured with the Shapebuilder task (Atkins et al., 2014) because it is similar in 

kind to programming with drag-and-drop programming languages. The Shapebuilder task shows 

participants a screen with four sets of four shapes, each set in a different color (i.e., 16 options 

total), and a 4x4 grid. The system then shows the participant a sequence of colored shapes on the 

grid (e.g., red circle in space 3 then blue circle in space 6) and the participant recreates the 

sequence from memory by dragging and dropping the shapes onto the grid, matching the order, 

shape, color, and location for each item. The task adds items to the sequence to make it 

progressively harder until it is confident that the participant cannot score higher. The task gives 

partial points for partially correct answers, like a correct color but incorrect shape. The 

Shapebuilder task matched the block-based programming task well because both involved 

dragging and dropping shapes in a correct sequence. Performance on the Shapebuilder task was 

not correlated with problem solving performance (see Table 1).  

2.3 Experimental materials 
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This section describes the materials that participants received throughout the experiment. 

The materials were the same as those used in Margulieux and Catrambone (2019). They are 

listed in the order that participants received them. 

2.3.1 Subgoal label training. All participants received the same subgoal label training 

because all participates creating their own subgoal labels, regardless of which manipulation they 

received. The training explained what subgoals and subgoal labels are, gave a worked example 

of constructing subgoal labels, and asked participants to construct subgoal labels for a simple 

math, order of operations, example problem. Order of operations was chosen because it is a task 

that all participants should know how to do and find easy. The last step of the training gave 

participants expert-constructed labels for the order of operations problem and asked them to 

compare their labels to the expert-constructed labels. The instructions specifically stated, “If your 

labels are different than the expert’s, that doesn’t mean that your labels are wrong.” 

2.3.2 App Inventor instructions. The instruction for teaching App Inventor had a 

worked example that demonstrated the steps taken to create an app. The app played sounds when 

images of instruments were touched or the device was tilted or shaken. For instance, when a 

drum image or cymbal image was touched, a drum sound or cymbal sound, respectively, would 

play. Because creating the app was a long process, taking about 30 to 35 minutes, participants 

learned to create only one app and, therefore, received only one worked example. The worked 

example was visually grouped into subgoals (see Figure 4), and participants were asked to 

construct subgoal labels for each of the subgoals in the worked example. The worked example 

had five unique subgoals that were repeated at least four times throughout the worked example: 

create components, set properties, handle events, set output, and set conditions. Margulieux and 
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Catrambone (2019) identified these subgoals using the Task Analysis by Problem Solving 

(TAPS) procedure (Catrambone, 2011). 

Each subgoal that served the same function was numbered with the same number (e.g., 

each group of steps that dealt with the ”set output” subgoal were numbered with “Function 4”) so 

that participants knew which subgoals served the same functions. This guidance was included to 

tell all participants which subgoals were functionally the same to help them to see past 

superficial differences in individual problem steps and focus on the function of groups of steps. 

Participants were asked to construct their subgoals after they had read through the entire worked 

example so that they saw each instance of the subgoals before constructing the labels.  

Half of the participants received hints while constructing subgoal labels for the worked 

example. The hints highlighted similarities among all subgoals that served the same function and 

appeared once next to the first instance of each subgoal. See Figure 5 for the full list of hints and 

their corresponding subgoals. The hints were written to not be function-focused so that 

participants could not copy the hints to be their constructed subgoal labels. The other half of 

participants received feedback on the subgoal labels that they had constructed after they finished 

with the worked example. For feedback, participants received another copy of the worked 

example with expert-constructed subgoal labels instead of subgoal label placeholders (see Figure 

2).  

2.3.3 Practice problems. Participants solved four practice problems to ensure that they 

understood the problem-solving procedure before they attempted the five novel problems that 

made up the problem-solving assessment. Two of the practice problems required isomorphic 

transfer from the worked example, meaning that they differed from the worked example only in 

surface features. Both the procedural steps and the context of the problem matched the worked 
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example. For instance, the worked example demonstrated how to create a drum ImageSprite that 

plays a drum sound when touched. Similarly, an isomorphic practice problem asked participants 

to create a cymbal ImageSprite that plays a cymbal sound when touched. The remaining two 

practice problems required contextual transfer from the worked example, meaning they differed 

in contextual features though the procedural steps still matched the worked example. For 

instance, one contextual transfer practice problem asked participants to create a button that 

changed colors when touched, which is similar to creating a drum ImageSprite that plays a sound 

when touched. Both require touching an area of the screen as an input from the user to prompt a 

noticeable, simple output from the device. 

Participants were assigned to receive one of three versions of the practice problems (see 

Figure 1). One version was unscaffolded, meaning that it gave the problem statement and a blank 

space to solve it (left side of Figure 1). Another version was scaffolded with references to the 

participant's constructed labels. After the problem statement, the problem-solving space listed 

each of the subgoals that needed to be achieved to complete the problem with space between 

each subgoal label for the participant's work (middle of Figure 1). The last version was 

scaffolded with expert-constructed subgoal labels. After the problem statement, the problem-

solving space listed the expert-constructed subgoal labels for each subgoal that needed to be 

achieved (right side of Figure 1).  

2.3.4 Learning and manipulation checks. For the learning check, participants took a 

post-test that had the same items as the pre-test to ensure that they had learned the fundamentals 

of App Inventor. For the manipulation check, participants indicated which learning strategies 

they used during the instructional period from the following list: read the instructions, applied 

knowledge to complete practice problems, self-explained parts of the instructions, wrote down 
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my own explanations of the instructions, compared my explanations to provided explanations, 

other (please explain). Along with these checks, participants rated their understanding of the app 

creation process and their comfort with creating simple apps in App Inventor. Participants also 

completed a cognitive load measure specifically adapted for programming instruction (Morrison, 

Dorn, & Guzdial, 2014). The measure asked three questions for intrinsic cognitive load (i.e., load 

that is necessary to learn the procedure), three questions for extraneous cognitive load (i.e., load 

that is necessary to complete the learning task but not to learn the procedure, such as contextual 

details of a worked example), and four questions for germane cognitive load (i.e., load that is 

necessary for using learning strategies).  

2.3.5 Problem solving assessment. To measure problem solving performance, 

participants were given an assessment that asked them to solve five novel problems. The 

problems asked them to modify or create components of an app. Of the five problems, two 

required contextual transfer from the worked example, meaning that they differed from the 

worked example in context (e.g., creating a ball instead of a drum) but the procedural steps taken 

to solve the problem were the same. The other three problems required procedural transfer, 

meaning that they differed from the worked example in the exact steps taken to solve the 

problem, but the abstracted procedure was the same. For instance, the worked example listed 

steps to program a drum sound to play when an ImageSprite was touched, and a procedural 

transfer problem asked participants to program a label to display text when an ImageSprite was 

touched. The abstract procedure to create both functions was the same even though the 

individual steps were different. 

2.3.6 Explanation tasks. Participants also completed explanation tasks that measured 

whether they could match steps of problem solutions to their functions. After participants 
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completed the entire problem-solving assessment, they received, for each problem, the solution 

and a list of functions completed in the problem, which were the subgoal labels that the expert 

had constructed. Then they were asked to match solution’s steps to the subgoal label that 

explained the function of that step. The instructions for the task clarified that multiple steps could 

match a single function, but multiple functions could not match a single step. This task used the 

solutions to the problem-solving assessment so that both assessments had the same context, 

reducing the contextual information unrelated to the problem-solving procedure that participants 

needed to process. 

2.4 Procedure  

Sessions took between 80 and 110 minutes, depending on how quickly participants 

complete each of the tasks. Before starting the instructional period, participants completed the 

demographic questionnaire, working memory measure, and pre-test, which took 10 to 15 

minutes.  

The instructional period took 40 to 55 minutes and contained all instructional 

manipulations. It started with a video that showed a person interacting with and explaining the 

various features of the App Inventor interface to introduce the interface to participants. This 

video was the same for all participants and did not include information about the procedure being 

taught. Palmiter, Elkerton, and Baggett (1991) found that videos help participants to intuitively 

learn to use direct manipulation interfaces, such as App Inventor. After the video, participants 

completed the subgoal label training and received the App Inventor instructions with the worked 

example of creating an app. Participants were assigned to receive one of two formats of the 

worked example: either with hints or without hints (see Figure 4). Participants also used the 
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worked example to re-create the app in App Inventor and, thus, actively engaged in the 

instruction.  

When participants finished re-creating the app and constructing their subgoal labels, 

participants who did not receive hints were given feedback. For feedback, participants received a 

copy of the worked example that had expert-constructed subgoal labels instead of subgoal label 

placeholders (see Figure 2). Participants were asked to compare the subgoal labels that they had 

constructed to those constructed by an expert. The other group, participants who received hints, 

did not receive feedback because in prior research (Margulieux & Catrambone, 2019), 

participants who received hints performed better when they did not receive feedback. To make 

time on task comparable between the groups, participants who received hints were asked to re-

read the worked example. Therefore, differences between the groups cannot be attributed to 

differences in time on task.  

Before receiving the assessment tasks, participants solved practice problems in the App 

Inventor interface to check their understanding. During this time, participants could access all the 

instructions that they had received. For the feedback condition, these instructions included the 

worked example labeled with expert-constructed subgoal labels. Participants solved four practice 

problems that typically took 10 to 15 minutes in total.   

When participants finished the practice problems, all the instructional materials that they 

had been given was collected, but they still had access to App Inventor. Participants were 

informed at the beginning of the session and before receiving the practice problems that they 

would not have access to the instructions during the assessment but that they would be able to 

use App Inventor.  Participants then received the cognitive load questionnaire. The questionnaire 

was given after the instructional period rather than after the assessment period to ensure that we 
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were measuring cognitive load while using the instructions. Afterward, participants completed 

the learning and manipulation checks. 

For the first assessment, participants received 25 minutes to complete the problem-

solving assessment. Similar to an exam, participants did not have unlimited time to work on the 

tasks, but the tasks were piloted to ensure that participants had adequate time to work on 

problems. Participants could use App Inventor to help them work through their solutions, but 

ultimately they were asked to write down the steps that they took to complete the tasks. Writing 

down the steps allowed the scorers to see the steps that participants took toward the solution 

rather than only the final product. In addition, some parts of the solutions depended on correct 

completion of earlier parts of the solution (e.g., participants could not program a sound to play 

when the phone was shaken if they did not correctly create an accelerometer). Writing down the 

steps allowed participants to receive credit for these parts of the solution, even if they could not 

implement them in the interface. Before leaving the sessions, the participants took three to four 

minutes to complete the explanation tasks.  

3. Results and Discussion 

Before the instructional period, most participants (84%) scored zero points on the pre-

test, and the remaining participants scored one point out of the possible five. After the 

instructional period, most participants (88%) correctly answered all five questions on the post-

test, which had the same items as the pre-test, and the remaining participants scored four out of 

five points, suggesting that all participants paid attention to the instructions. No participants were 

removed from analysis based on pre-test or post-test score.  

3.1 Learner-constructed labels effectively scaffold problem solving performance 
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Participants’ solutions on the problem-solving assessment were scored for correct steps 

taken to solve the problems. Because the solutions required many steps, scoring solutions for 

correct steps rather than correct outputs provided more sensitivity, like grading for partial credit. 

Steps were at the grain-level of those in Figure 2. The maximum score was 25. Differences 

among condition were statistically tested with a two-way ANOVA and Bonferroni post hoc 

analyses when necessary. 

Scaffolding of practice problems affected performance, F(2, 114) = 9.81, MSE = 21.5, p 

< .001, partial η2 = .15, f  = .40 (see Figure 6). Subgoal learning method did not affect 

performance, F(2, 114) = 0.19, MSE = 21.5, p = .67, partial η2 = .002, nor was there an 

interaction, F(2, 114) = 1.04, MSE = 21.5, p = .35, partial η2 = .02. To explore the effect of 

scaffolding across the three levels (i.e., no scaffolding, scaffolding with learner-constructed 

labels, or scaffolding with expert-constructed labels), a Bonferroni post hoc analysis was used. 

Participants whose practice problems were scaffolded with their own labels (M = 21.6, SD = 

3.86) performed statistically better on later problem solving than those whose practice problems 

were scaffolded with labels made by experts (M = 17.1, SD = 4.95; Mean Difference = 4.55, p < 

.001) or had no scaffolding (M = 18.8, SD = 3.90; Mean Difference = 2.80, p = .024). To the 

researchers’ surprise, participants whose practice problems included expert-constructed labels for 

scaffolding did not perform better than those who received no scaffolding, Mean Difference = 

1.75, p = .28. The results show that scaffolding initial problem solving with learners’ own 

explanations of the subgoals of the procedure resulted in better problem solving than no 

scaffolding or scaffolding with an expert’s explanation of the subgoals of the procedure. 

Moreover, the difference had a large effect size (i.e., partial η2 = .15, f  = .40), suggesting that 

adding learner-constructed labels as scaffolding to practice problems can greatly improve 
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problem solving performance over practice problems without scaffolding or even those with 

some types of expert-constructed scaffolding.  

3.2 Analysis of subgoal label quality 

To better understand why participants who constructed their own labels performed better 

when scaffolded with their labels, the learner-constructed labels were analyzed to determine their 

quality and whether certain characteristics of the labels corresponded with better performance. 

Each label that participants constructed was analyzed as one unit, meaning each word within a 

label was not analyzed individually. In addition, after finding through initial review that 

participants tended to make the same type of labels for each of the five subgoals, we decided to 

characterize each participant based on all their labels collectively. The coding scheme was 

determined a priori based on Margulieux and Catrambone’s (2019) scheme, which characterized 

labels as context-specific, context-independent, or incorrect (see Table 2). Context-specific 

labels included contextual details about the specific instantiation of the subgoal and, therefore, 

was applicable to only that one instance. For example, the learner-constructed label “create the 

drum image” was characterized as context-specific because could be applied only to the steps 

that created the drum Image Sprite.  

In contrast, context-independent labels did not include contextualized details about the 

specific instantiation of the subgoal and, therefore, could be applied to any instance of the 

subgoal. For example, the learner-constructed label “add components” was characterized as 

context-independent because it could be applied to any component that is added to the app, be it 

a drum, cymbal, or accelerometer sensor. Incorrect subgoal labels were either execution-based 

instead of function-based, such as “click on Image Sprite,” or did not correctly describe the 
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function, such as “start drum.”  In all cases, participants who made incorrect labels had no 

context-specific or -independent labels. 

We argue that context-independent labels promote learning better than context-specific 

labels because they suggest that learners have a more conceptual understanding of the procedure 

that can be seamlessly applied to solving new problems. Constructing context-independent labels 

is especially important when the labels are used to scaffold new problems. For example, if a 

novel problem was scaffolded with “add components,” the learner would be prompted to add the 

components for that problem. A scaffold that said “create the drum image” would require that the 

learner make an analogy between the drum image in the original problem, if they could 

remember it, and the components in the new problem.   

To establish reliability in the ratings, two raters applied the coding scheme to labels from 

20% of the participants. Then, interrater reliability was tested with intra-class correlation 

coefficient of agreement, ICC(A), because the coding scheme was based on nominal categories 

and absolute agreement would be the only valid standard for reliability. Initial interrater 

reliability well above threshold, ICC(A) = .96; therefore, the remaining labels were scored by a 

single rater. In all but three cases, each participant’s labels were either all context-specific, all 

context-independent, or all incorrect. In the other three cases, participants were classified based 

on which type of subgoal label they made most often.  

Almost all participants constructed correct, function-based subgoal labels, which suggests 

that the subgoal label training provided adequate instruction for this activity. Only 4% of 

participants who received hints and 7% of participants who did not receive hints made incorrect 

labels. The major difference between the groups was that more participants who received hints 

made context-independent labels (75%) than those who did not receive hints (35%). The hints, 
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therefore, helped learners to separate the context of the worked example from the functions 

demonstrated in it and make labels that transcended a single problem. 

Though participants who received hints made context-independent labels more often, 

they did not perform better than those who did not receive hints in general, F(2, 114) = 0.19, 

MSE = 21.5, p = .67, partial η2 = .002. If we look specifically at the groups that were scaffolded 

with their own labels, however, participants who received hints performed statistically better 

than those who did not in a 1-tailed t-test, t(38) = 1.77, p = .032, d = .56. Therefore, hints helped 

participants more than feedback when participants were scaffolded with their own subgoal 

labels.  

Contrary to our expectations, subgoal label quality was not a predictor of problem-

solving performance. Because subgoal label quality was not an independent variable, linear 

regression was used instead of ANOVA with problem solving performance as the dependent 

measure and format of practice problems, method of subgoal learning, and learner-constructed 

subgoal label quality as the predictors. The regression was stepwise with the predictors being 

entered into the equation in the order listed because previously reported ANOVAs and t-tests 

suggest that format of practice problems and method of subgoal learning are predictors of 

performance. The regression determined that subgoal label quality did not further predict 

problem solving performance, β = -.08, t(3, 118) = -.77, p = .44.  

We expected that participants who constructed context-independent labels would perform 

better than those who constructed context-dependent labels on later problem solving because 

context-independent labels indicate a context-independent understanding of the procedure. 

However, we did not find evidence that constructing context-independent labels improved 

performance. Therefore, all participants who received their own self-explanations as scaffolding, 
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regardless of which type support they received while self-explaining or the quality of self-

explanations, performed better than those who received no scaffolding or expert’s explanations 

as scaffolding. This finding supports this application of constructivism because it suggests that 

when learners’ construct their own explanations with sufficient support, those explanations are 

better at supporting students than an expert’s explanation. In this case, sufficient support 

included fixed guidance or feedback developed through instructional design, but it did not 

include personalized instruction at any point. 

It is possible, however, that participants’ labels were not representative of their final 

knowledge state. Participants constructed labels before receiving feedback, if they received 

feedback, and before working on practice problems. For the learners who initially constructed 

context-dependent labels and received feedback in the form of context-independent expert labels, 

perhaps that feedback helped them to recognize similarities among different instances of 

subgoals and decontextualize their understanding of the subgoals. In addition, working through 

the practice problems might have helped participants to decontextualize their subgoals. We 

cannot provide evidence for these possibilities though because participants did not externally 

update their labels at the end of the instructional period; therefore, we do not know how their 

understanding evolved over time. What we do know is that participants who started with lower 

quality explanations benefited more from scaffolding with their own explanations than from 

expert explanations. 

3.3 No differences in time on task 

The time taken to complete each part of the experimental procedure was recorded. No 

significant differences among conditions were found for time on task. On average, participants 

spent 34.1 minutes (SD = 5.99) completing the subgoal training, studying the worked example, 



Running head: SCAFFOLDING WITH SELF-EXPLANATION 27 

and constructing subgoal labels. There was no main effect of subgoal learning method, F(2, 114) 

= 0.17, MSE = 36.2, p = .68. Effects of the other independent variable, format of practice 

problem, was not analyzed because participants had not had practice problems at this point. To 

solve the practice problems, participants took an average of 9.57 minutes (SD = 3.21). There was 

no main effect of practice problem format during this period, F(2, 114) = 1.12, MSE = 10.4, p = 

.33. This result means that the different types of scaffolding did not affect the amount of time 

participants took to solve the practice problems. There was also no main effect of subgoal 

learning method, F(2, 114) = 0.37, MSE = 10.4, p = .54, and no interaction, F(2, 114) = 0.65, 

MSE = 10.4, p = .52. During the problem-solving assessment, participants took an average of 

23.2 minutes (SD = 2.58). There was no main effect of practice problem format, F(2, 114) = 

0.56, MSE = 6.78, p = .60, no main effect of subgoal learning method, F(2, 114) = 0.34, MSE = 

6.78, p = .56, and no interaction, F(2, 114) = 0.87, MSE = 6.78, p = .42. Therefore, the 

participants who received their own labels as scaffolding did not take longer to solve the practice 

problems or complete the problem-solving assessment than participants in other conditions, but 

they performed better on the problem-solving assessment. 

3.4 No differences in other metrics 

For the explanation assessment with a maximum possible score of 20, the mean score 

was 16.5 (SD = 3.67). There was no main effect of practice problem format, F(2, 114) = 0.18, 

MSE = 16.7, p = .84, subgoal learning method, F(2, 114) = 0.76, MSE = 16.7, p = .39, and no 

interaction, F(2, 114) = 1.35, MSE = 16.7, p = .26. These results suggest that all participants 

were equally prepared to complete the explanation task, regardless of whether they received hints 

during the worked example or received feedback after the worked example. The average score 

was close to the maximum score; therefore, most participants performed well.  
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No differences were found among conditions for cognitive load. Cognitive load was 

measured by self-report after the instructional period, including solving practice problems. The 

mean score was 39.7 (SD = 12.3) out of 100, with no main effect of practice problem format, 

F(2, 114) = 0.85, MSE = 155.4, p = .43, no main effect of subgoal learning method, F(2, 114) = 

0.37, MSE = 155.4, p = .54, and no interaction, F(2, 114) = 0.20, MSE = 155.4, p = .82. In 

addition, no differences were found within each of the three types of cognitive load: intrinsic, 

extraneous, and germane (see Table 3). These results suggest that participants in different 

conditions experiences the same perceived cognitive load.  

After rating their cognitive load, participants also rated how well they understood the 

instructions from “1 – Not well at all” to “7 – Very well.” Participants felt that they understood 

well (M = 6.00, SD = 1.0). There was no main effect of practice problem format, F(2, 114) = 

1.99, MSE = 0.96, p = .14, subgoal learning method, F(2, 114) = 0.54, MSE = 0.96, p = .47, and 

no interaction, F(2, 114) = 0.61, MSE = 0.96, p = .55. Furthermore, participants rated how 

comfortable they were solving novel problems from “1 – Not comfortable at all” to “7 – Very 

comfortable.” Participants were comfortable solving novel problems (M = 5.8, SD = 1.0). There 

was no main effect of practice problem format, F(2, 114) = 2.44, MSE = 1.08, p = .09, subgoal 

learning method, F(2, 114) = 0.21, MSE = 1.08, p = .65, and no interaction, F(2, 114) = 0.08, 

MSE = 1.08, p = .93. These results suggest that participants equally felt they could solve new 

problems regardless of the support they received during the worked example and practice 

problems and despite actual differences in problem solving performance. 

3.5 Comparing results to previous study 

Participants in the present experiment who received unscaffolded practice problems (and 

either hints or feedback during the study phase) had the exact same instructions as participants in 
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Margulieux and Catrambone (2019) who were in the groups (using Margulieux and 

Catrambone's terms), "guided constructive with hints and without feedback" and "guided 

constructive without hints and with feedback". Participants in these conditions received the same 

instructional materials, including worked examples and unscaffolded practice problems. The 

means from these conditions in both experiments were compared using a one-sample t-test, 

which compares data from the present experiment to a mean score from the literature, to ensure 

that the participants in each experiment performed equivalently and represent the same 

population. Participants who received hints but not feedback performed similarly in both studies, 

and the means were within the margin of error (Margulieux & Catrambone M = 21.0, present 

experiment M = 19.5, Std. error = 1.54). Likewise, participants who did not receive hints but 

received feedback performed within the margin of error (Margulieux & Catrambone M = 21.5, 

present experiment M = 20.2, Std. error = 1.54). Therefore, we conclude that the means of the 

groups who received unscaffolded practice problems are equivalent and that scaffolding practice 

problems with learner-constructed labels improves performance over this mean. 

The quality of subgoal labels was also consistent across the two experiments. In 

Margulieux and Catrambone (2019), participants who received hints mainly constructed context-

independent labels (69%) while relatively few of these participants constructed context-specific 

labels (22%) or incorrect labels (8%). In the present experiment, participants who received hints 

mostly constructed context-independent labels (75%) and again, relatively few participants 

constructed context-specific labels (22%) or incorrect labels (3%). Margulieux and 

Catrambone’s participants who did not receive hints constructed fewer context-independent 

labels than those who received hints (45%). A larger portion constructed context-specific labels 

(36%) and incorrect labels (19%). Similarly, in the present experiment, participants who did not 
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receive hints constructed fewer context-independent labels (35%), and more constructed context-

specific (58%) or incorrect labels (7%). These similarities suggest that the learners, regardless of 

the experiment in which they participated, were comparable and that the instructions had the 

same effect on them. Therefore, the effect seems to be robust and repeatable.  

4. Conclusions 

Problem solving performance can be significantly improved by scaffolding initial 

problem solving with learner-constructed subgoal labels. Importantly for constructivist learning, 

learner-constructed labels, regardless of their quality, better supported initial problem solving 

than expert-constructed labels. Importantly for application, the scaffolding that improved 

problem solving was pre-determined for all learners, meaning that it can be incorporated directly 

into instructional materials and distributed at scale. The present study found no differences in the 

intervention’s efficacy based on demographic differences, but this finding was based on a 

homogenous group of participants in terms of age, academic achievement, educational 

experience, and comfort with computers, which is not representative of the diverse array of 

learners who engage with many sources of programming, or problem solving more broadly, 

instruction. Though the present study replicated previous findings from Margulieux and 

Catrambone (2019), suggesting that the effect of the self-explanation intervention is stable, more 

research would be needed to test the scaffolding intervention in different groups.  

The higher level of performance by learners who received their own subgoal labels as 

scaffolds provides further evidence for constructivist instructional strategies, even in independent 

learning environments without personalized feedback from peers or instructors. In this learning 

environment, learners constructed labels that were conceptually relevant and accurate enough 

that they could be applied as effective scaffolds to practice problems. Effective scaffolds help 
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learners to apply procedural knowledge to novel problems (Pea, 2004), and if learner-constructed 

labels served as effective scaffolds, then they must be high quality. Implementing the scaffolds in 

problem solving instruction would be simple because the design is static, meaning that 

incorporating it would be no more time intensive than designing examples and problems to use 

in instruction. 

 The results of the present study also suggest that when learners construct subgoal labels 

with enough support, such as the hints or feedback provided in this study, they do not seem to 

benefit from expert-constructed subgoal label scaffolding. Scaffolding with experimenter-

constructed labels did not improve problem solving in this experiment over unscaffolded practice 

problems. This finding, though surprising to the researchers, is not unprecedented and similar to 

findings from memory research on subjective organization. Memory research suggests that 

people recall more words when they organize the words themselves (i.e., subjective 

organization) than when they are told to use a prescribed organization (e.g., recall words in 

alphabetical order; Tulving, 1962). In this research, the words to memorize were unrelated to 

each other, and no method of organization is more or less correct than another. In the present 

research, however, there are correct and incorrect explanations and conceptualizations of the 

problem-solving procedure. Therefore, the finding learners’ explanations improved performance 

more than an expert’s explanations suggests that even though learners’ explanation risk being 

incorrect or incomplete, they were more effective for scaffolding than an expert’s explanation, 

despite the expert’s explanation being developed through rigorous instructional design 

techniques. 

 Based on this study, we recommend that problem solving instruction promote self-

explanation of the problem-solving process and then link those self-explanations to initial 
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problem solving, such as through scaffolded practice problems. Our findings suggest that when 

learners are scaffolded with their own words rather than the words of experts, their later 

problem-solving performance improves. This instructional technique would engage learners in 

self-explanation, which promotes constructive knowledge building (Wylie & Chi, 2014), and 

helps connect learners’ prior knowledge to initial problem-solving attempts. This connection 

could be especially important in learning environments in which there is limited instructional 

resources per student and in which learners have varied prior knowledge. Though the 

intervention was fixed, its use of self-explanation makes it personal to each learner, a 

characteristic that could be of great value for increasing learner independence.   
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Unscaffolded Practice 

Problem 

Learner-Labeled Practice 

Problem 

Expert Labeled Practice 

Problem 

Problem: Create an app 

that plays a cymbal sound 

when the image of a 

cymbal is touched. 

 

Problem: Create an app that 

plays a cymbal sound when the 

image of a cymbal is touched. 

Subgoal 1: 

 

Subgoal 2: 

 

Problem: Create an app that 

plays a cymbal sound when the 

image of a cymbal is touched. 

Handle Event: 

 

Set Output: 

Figure 1. Unscaffolded practice problem compared to practice problems scaffolded by learner-

constructed and expert-constructed subgoal labels. 
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Create Component 

1. Click on the “Drawing and Animation” palette on the left. 

2. Drag out a canvas to Screen1.  

Set Properties 

3. Look at the properties menu on the right.  

4. Set the width to fill the parent's width.  

5. Set the height to 450 pixels. 

 

Figure 2. First several steps of the worked example of the procedure used to create the Music 

Maker app. In these steps, the user is creating the canvas on which to place the instrument 

images. Steps of the worked example are visually grouped into subgoals and labeled with 

meaningful subgoal labels that describe the function of that group of steps. 
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Figure 3. App Inventor interface with interlocking blocks of code selected from menus used to 

program features. In this case, the clap sound will play when the phone detects a change in the y 

acceleration of the phone. 
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Function 1: ____________________________ 

1. Click on the “Drawing and Animation” palette on the left. 

2. Drag out a canvas to Screen1.  

Function 2: ____________________________ 

3. Look at the properties menu on the right.  

4. Set the width to fill the parent's width.  

5. Set the height to 450 pixels. 

 

Figure 4. Worked example formatted for constructing subgoal labels with hints. The condition 

that did not receive hints were also told to work through multiple instances of the same subgoal 

before creating a label for it, but they did not receive the hints. Instead they were given feedback 

that included the expert-constructed subgoal labels, like in Figure 2. 

  

Hint 2: Subgoals marked with “Function 

2” all have to do with properties of parts 

of the app.  

To help you create labels for these subgoals, there are hints throughout the instructions. We suggest that you 

work through multiple instances of the same subgoal before you create a label that describes the function of that 

subgoal. 

Hint 1: Subgoals marked with “Function 

1” all have to do with parts of the app.  
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Markers Subgoal Identified by Expert Hint 

Function 1 Create components to be 

used in the app 

Subgoals marked with “Function 1” all have to do with 

parts of the app.  

Function 2 Set properties of components Subgoals marked with “Function 2” all have to do with 

properties of parts of the app.  

Function 3 Handle event/input to the 

app 

Subgoals marked with “Function 3” all have to do with 

inputs from the user.  

Function 4 Set output of the app Subgoals marked with “Function 4” all have to do with 

outcomes of inputs from the user.  

Function 5 Set conditions that moderate 

behavior 

Subgoals marked with “Function 5” all have to do with 

conditions of inputs from the user.  

 

Figure 5. Text included in the worked example for participants who received hints with their 

corresponding subgoal, as identified through task analysis. All hints also included the phrase 

“Please write the purpose of the subgoals marked with “Function X” in the blanks,” in which X 

was the number of marker in the worked example. 
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Figure 6. Performance on problem solving tasks among conditions. Dark bars are participants 

who received hints, and light bars are participants who received feedback. Maximum possible 

score was 25. Error bars are standard error. Statistically significant differences are indicated with 

asterisks. 
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Table 1 

Demographic Averages for Participants and Their Correlation with Problem Solving 

Performance. 

 Averages Correlations 

 M SD r or ρ* p 

Gender 58% male -   .11* .32 

Age 19.6 2.2 .03 .74 

Academic Major 62% engineering -   .10* .36 

High School GPA 3.65 .26 .05 .64 

Year in College 2.08 1.3 -.09 .41 

College GPA 3.32 .45 .12 .27 

Comfort with 

Computers (out of 7) 4.15 1.6 -.06 .56 

Expected Difficulty     

(out of 7) 4.13 1.3 .04 .69 

Score on Working 

Memory Task 

1747 (normative 

mean = 1581) 

411 (normative 

SD = 472) .07 .51 

Previous CS Courses 
44% taken 1 

course 
-   .06* .55 
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Table 2 

Examples of Subgoal Labels Constructed by Participants for Each of the Coding Classifications. 

Expert-

Constructed Label 
Context-Independent Context-Specific Incorrect 

Create component 
Add component to 

app 
Create image sprite Define variable 

Set properties Edit component 
Name and add picture 

to image sprite 
Select/drag 

Handle input 
Add interface 

command 

Add condition for 

when clap is touched 
Program functions 

Set output Set command result 
Make clapsound play 

when clap is touched 
Specify function 

Set conditions 
Add command 

conditions 

Make something 

happen if the user 

moves the phone 

New function 
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Table 3 

Results for Intrinsic, Extraneous, and Germane Cognitive Load Measures. 

 

M SD 

F practice 

problem 

format 

p 

F subgoal 

learning 

method 

p F interaction p 

Intrinsic Load 

(out of 30) 
9.8 6.3 1.87 .16 .34 .56 .05 .95 

Extraneous 

Load (out of 

30) 

5.6 5.4 1.34 .27 .16 .69 .67 .51 

Germane 

Load (out of 

40) 

24.4 7.5 .33 .72 1.41 .24 .28 .99 

 

 


	Scaffolding Problem Solving with Learners’ Own Self Explanations of Subgoals
	Recommended Citation

	tmp.1617203922.pdf.2ywZ2

