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Abstract 

A recent poleward shift of hermatypic corals’ distribution has been reported and was attributed 

to the increase in sea temperature since the pre-industrial revolution. Ocean acidification and 

predicted increasing variability of sea surface temperatures, may together limit this shift in the 

future. The objective of this study was to investigate whether a tipping point exists in the 

physiological and metabolic responses of Acropora solitaryensis and Porites heronensis, to 

CO2, under average winter temperature and under cold event temperature (cold stress; -4°C 

decrease).We studied the effects of increased partial pressures of CO2 (pCO2) from  294 ppm 

to 5018 ppm, on a set of metabolic parameters. The light and dark calcification, skeletal growth 

rate, chlorophyll and protein concentrations decreased linearly as a function of increasing 

partial pCO2 in A. solitaryensis. In comparison only the dark calcification and skeletal growth 

rate decreased linearly as a function of increasing partial pCO2 in P. heronensis. For both 

species, the cold stress acted as an additional stress to the pCO2 exposure, except for the 

respiration in P. heronensis. No physiological tipping point has been identified, beyond which 

these coral species were no longer capable of carrying out the functions necessary to their 

survival.  The lack of a clear tipping point, as well as the emergence of potential ‘ecological 

winners’, here P. heronensis, in the face of decreasing pH and cold temperature stress, indicate 

that in the coming decades the species composition of coral reefs is likely to slowly change, to 

a new composition in which surviving in marginal high latitudes are those that show the 

required potential  for adaptation. Our study highlights the substantial advantages of the 

regression method to predict the impacts of ocean acidification. Resolving high resolution 

relationships between metabolism and pCO2 could greatly improve the accuracy of models 

describing the effects of future ocean acidification on calcifying organisms and marine 

ecosystems. 
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Resumo  

Nos últimos anos, o aquecimento global e a acidificação dos oceanos (OA) devido às emissões 

antropogénicas de CO2 tornaram-se algumas das questões ambientais mais prementes do 

mundo, representando uma ameaça fundamental para os recifes de coral tropicais. 

Impulsionados pelas condições ameaçadoras nos trópicos devido ao aquecimento global em 

curso, os limites biogeográficos das espécies de corais de águas quentes têm vindo a mudar.  O 

aumento da temperatura da superfície do mar (SST) a grande altitude permite que os habitats 

de coral se expandam para os pólos, encontrando refúgio em novas regiões temperadas quentes 

adequadas, ao mesmo tempo que limita o seu habitat nos trópicos devido a um branqueamento 

excessivo. O Japão cobre uma grande amplitude latitudinal, estendendo-se de áreas subtropicais 

a temperadas, e é definido como uma "zona de transição subtropical-temperada" para a 

distribuição geográfica de uma grande diversidade de espécies de coral. Esta zona, na 

vanguarda para as espécies subtropicais e na vanguarda para as espécies temperadas, 

proporciona uma oportunidade única para o estudo das mudanças e/ou expansões da gama de 

espécies devido ao aquecimento climático, numa grande escala espacial. No entanto, a 

acidificação oceânica projectada e a crescente variabilidade das temperaturas da superfície do 

mar (por exemplo, El Niño Southern Oscillation), podem, em conjunto, limitar as mudanças da 

gama de habitats de corais tropicais-subtropicais, nos mares que rodeiam o Japão. 

Estudámos aqui, em condições controladas, o efeito da acidificação oceânica sob a 

temperatura média de Inverno e sob a temperatura do evento frio (stress frio; -4°C de 

diminuição), em duas espécies de coral: o coral temperado quente e incrustado Porites 

heronensis, e a espécie Acropora solitaryensis de mudança de vara Acropora. Investigámos os 

efeitos de uma vasta gama de pressões parciais de CO2 (p CO2) (i.e. "abordagem de regressão"), 

de 294 ppm a 5018 ppm, sobre um conjunto completo de parâmetros metabólicos (níveis de 

pCO2 abrangendo as condições actuais, projecções do IPCC até ao ano 2100 e seguintes). O 

objectivo do estudo era: i) testar se a existência de um ponto de viragem fisiológico para além 

do qual as espécies de coral já não são capazes de desempenhar as funções necessárias à sua 

sobrevivência; ii) determinar se uma exposição a pH baixo pode afectar fortemente a 

sobrevivência dos corais durante um evento de frio extremo. 

Como resultado da experiência de 7 semanas, não foram identificados eventos de 

branqueamento, mas sim efeitos lineares significativos do aumento do pCO2 (isto é, 

acidificação oceânica) sobre a fisiologia e metabolismo, diferindo entre as espécies. A 

calcificação clara e escura, a taxa de crescimento do esqueleto, as concentrações de clorofila e 
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proteínas diminuíram linearmente em função do aumento parcial do pCO2 em A.solitaryensis. 

Enquanto que apenas a calcificação escura e a taxa de crescimento do esqueleto diminuíram 

linearmente em função do aumento parcial de pCO2 em P.heronensis.  Os efeitos dos níveis de 

pCO2 no metabolismo do coral não diferiram em função da temperatura, mas os dois 

combinados resultaram numa importante diminuição. Em A. solitaryensis, o stress do frio 

actuou como um stress adicional à exposição ao pCO2, tanto no metabolismo de zooxanthellae 

como no do hospedeiro. Em P. heronensis, o zooxanthellae só mostrou respostas 

significativamente mais baixas após o choque frio, enquanto que taxas respiratórias mais 

elevadas foram registadas. Não foi identificado nenhum ponto de viragem fisiológica, para além 

do qual estas espécies de coral já não eram capazes de desempenhar as funções necessárias à 

sua sobrevivência.   

Este estudo destacou a heterogeneidade na resposta dos calcificadores de recife ao pCO2 

elevado e ao stress adicional do frio, levando ao aparecimento de potenciais "vencedores 

ecológicos", tais como aqui a P. heronensis. De facto, os nossos resultados são consistentes 

com a afirmação de estudos anteriores, identificando A. solitaryensis como parte do grupo de 

"alta sensibilidade" ao pCO2, previsto ser severamente limitado geograficamente pela 

acidificação oceânica; e P. heronensis como parte do grupo de "baixa sensibilidade" ao pCO2, 

mostrando uma alta resiliência a níveis elevados de CO2. Mesmo que não tenha sido revelada 

qualquer interacção entre os níveis de pCO2 e os tratamentos de temperatura para estas duas 

espécies de coral, os nossos resultados sugerem que o impacto do stress frio extremo a curto 

prazo (~ 12 dias abaixo de 15°C) na fisiologia e no equilíbrio energético dos organismos do 

recife. É provável que o metabolismo dos corais, expostos ao stress da temperatura fria, seja 

ainda mais enfraquecido se estiverem sujeitos a ameaças adicionais como a qualidade da água 

(por exemplo, metais pesados, eutrofização) e pressões antropogénicas. Os resultados obtidos 

sublinham a necessidade de considerar a combinação da acidificação oceânica combinada com 

o evento de frio extremo, num contexto de expansão dos corais para os pólos. Os nossos 

resultados sugerem que o deslocamento para a poleward A. solitaryensis seria severamente 

limitado pela acidificação oceânica e apenas o coral temperado quente e incrustado  

P. heronensis, já estabelecido nestas altas latitudes, poderia manter taxas de crescimento 

adequadas sob futura acidificação oceânica e stress frio. A falta de um ponto de viragem claro, 

bem como a emergência de potenciais vencedores enfrente à diminuição do pH, indicam que 

nas próximas décadas a composição das espécies de recifes de coral irá provavelmente mudar 

lentamente, sem transições abruptas, para uma nova composição em que as espécies têm o 
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potencial necessário para se adaptarem nas altas latitudes marginais. A redistribuição dos 

recifes de coral e o declínio da estrutura estruturalmente complexa que forma os corais (por 

exemplo Acropora solitaryensis) nas altas latitudes marginais poderia causar modificações 

graves e fundamentais dos ecossistemas (por exemplo, redução da disponibilidade de habitat 

para peixes e muitos invertebrados) e, portanto, afectar fortemente: o funcionamento dos 

ecossistemas, o bem-estar humano (desenvolvimento económico, meios de subsistência, 

doenças emergentes, segurança alimentar), e a própria dinâmica das alterações climáticas 

(feedbacks, sequestro de carbono). Nestas circunstâncias actuais, a necessidade de avaliar os 

controlos ambientais sobre os recifes de coral e prever a distribuição global em cenários futuros 

de alterações climáticas é fundamental. 

O nosso estudo considerou apenas o aspecto fisiológico para a determinação da gama 

de distribuição futura, que pode não ser suficiente para uma previsão correcta. Contudo, a 

abordagem de regressão, utilizada neste estudo, demonstrou ser um método perspicaz para 

melhor prever os impactos da OA em comparação com a "abordagem de cenário", resolvendo 

a tendência geral e a forma da relação entre metabolismo e pCO2. A descrição destas relações 

para uma vasta gama de espécies que compõem as comunidades de recifes de coral, poderia 

expandir grandemente a nossa compreensão dos mecanismos empregados pelos corais, e 

melhorar grandemente a precisão dos modelos que descrevem os efeitos da OA prevista sobre 

os organismos calcificadores e os ecossistemas, sob as alterações climáticas.  

 

Palavras-chave : Corais Hermatypic, Alterações Climáticas, Acidificação Oceânica, Stress 

frio, Japão 
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CHAPTER 1 : Introduction 

1. Climate-driven biogeographic shifts 

Since the beginning of life on Earth, living organism’s geographical distribution has always 

been closely related to the environmental changes on different spatial and temporal scales 

(Davis and Shaw, 2001). To stay within their preferred environmental conditions, species shift 

their geographical range limits, which can be identified as dynamic and fluctuating over time 

according to the climate changes. Moreover, the sustainability of a specie over time, is highly 

related to its capacity to shift their distributions in response to tectonic, oceanographic, or 

climatic events (Rosen,1984). 

Nowadays, the increasing anthropogenic carbon dioxide (CO2) emission has driven 

rapid and major climatic changes, such as global warming and ocean acidification (IPCC, 

2019). These anthropogenic-driven environmental changes have already generated a rapid 

changes in ocean properties, profoundly affecting species’ biogeography and phenology, as 

well as ecosystem dynamics and biogeochemical cycling (Hoegh-Guldberg et al., 2014; Pörtner 

et al., 2014).The rapid modification in fundamental physico-chemical (e.g. warming and ocean 

acidification) and biological properties of the oceans, affect strongly the marine organism’s 

biogeography (i.e. what lives where).  

Following the RCP8.5 scenario of GHG emission (i.e. high greenhouse gas emission 

scenario in the absence of policies to combat climate change), atmospheric and ocean surface 

temperature in 2100 is predicted to rise by 4°C  by the year 2100 (IPCC, 2019). One of the way 

for marine organisms to respond to this important environmental change, is to shift in location 

at the cooler extremes of their distributions. Therefore, species are moving poleward, while 

their range limits are contracting at their warmer range edge, where environmental conditions 

are no longer tolerable. (Pecl et al., 2017). Major biogeographic shifts are already underway 

and reported in a large range of marine organisms, from copepods to sea birds (Figueira & 

Booth, 2010; Last et al., 2011; Ling et al., 2009; Wernberg et al., 2011; Pitt et al., 2010).   

1.1.  Poleward range expansion of corals 

Hermatypic corals (i.e. reef builders) are one of the world’s most important species, being not 

only primary producers, but also by being ecosystem engineers. These organisms are providing 

food and habitat to a large range of marine organisms, as well as providing many other 

ecological goods and services (Lilley and Schiel, 2006). Corals host in their endoderm 

endosymbiotic microalgae of the Symbiodinaceae family, commonly known as zooxanthellae, 
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and depend on their photosynthesis as corals get 90% of their energy requirements from the 

translocation of photosynthetic products (Edmunds and Davies, 1986; Leletkin, 2000). These 

symbiotic reef building corals have been identified as being extremely vulnerable to ocean 

warming (Hoegh-Guldberg, 1999).  

When corals are stressed by too high sea surface temperature (SST), symbiotic 

zooxanthellae inside them are weakened and the zooxanthellae will be released or degraded 

internally, and corals bleached (i.e. disintegration of the coral–dinoflagellate symbiosis;  

Hoegh-Guldberg and Smith, 1989). Such predicted a rise in sea surface temperatures, due to 

climate change, threaten corals in the tropics, leading to increasing frequency and severity of 

coral bleaching events with negative consequences for coral survival, growth, and reproduction. 

Mass mortality of most known tropical coral reefs would lead to the declines in coral abundance 

and biodiversity (Pandolfi et al., 2003; Heron et al., 2016; Hughes et al., 2017). With high 

temperature stress due to climate change threatening corals in the tropics, cooler high latitudes 

may become a potential refuge. To face these threatening conditions in the tropics, warm-water 

coral species are moving their biogeographic limits northward (Kayanne et al., 1999). Increases 

sea surface temperature (SST) at high-latitude allow coral habitats to expand poleward, finding 

refuge in new suitable warm temperate regions areas (Precht and Aronson, 2004; Yamano et 

al., 2011), while at the same time, limit their habitat in the tropics due to excessive bleaching 

(Guinotte et al., 2003; Meissner et al., 2012). Therefore, this climate-driven redistribution is 

characterized by a poleward range shifts and/or expansions of corals in temperate areas, from 

regional to global scale (Yamano et al., 2011; Baird et al. 2012; Kiessling et al., 2012; Muir et 

al., 2015; Grupstra et al., 2017). 

1.2.  Poleward range expansion recorded in Japan 

The poleward range expansion of several tropical corals with increasing SST has already been 

reported in Japan (Yamano et al., 2011; Yara et al., 2011), and in several places over the world 

(e.g. in the Caribbean (Precht & Aronson, 2004), in Australia (Hughes et al., 2012)).  

Japan covers a large latitudinal range, extending from subtropical to temperate areas, 

and is defined as a “subtropical-temperate transition zone”. The distribution of corals along the 

Pacific coast of Japan ranges from the southernmost islands of the Ryukyu Archipelago (24 °N) 

to Amatsukominato in Chiba Prefecture (34 °N). The presence of hermatypic corals at these 

high latitudes is mainly to the strong Kuroshio current, which brings warm water as far as 

Tateyama (34°N) (Yamano et al., 2011). Latitudinal geographical distribution limits of a highly 
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diverse coral species are overlapping over this area (Veron, 1992b; Yamano et al., 2001). This 

zone, at the leading-edge for subtropical species and the trailing-edge for temperate species, 

provides a unique opportunity for examining species range shifts and/or expansions due to 

climatic warming, over a large spatial scale (Yamano et al., 2011). 

Yamano et al. (2011) demonstrated, on the basis of long-term coral observations, that such 

northward expansion has already occurred along the coastlines of Japan, at a high speed (14 

km/year). Yara et al. (2009, 2011) investigated the potential future development of this 

northward expansion along the coasts of Japan, suggesting that this trend, at relatively smaller 

speeds (1 to 4 km/year), might continue for several decades.  Moreover, Kumagai et al. (2018) 

demonstrated the implication of the Kuroshio (warm-water) current in the rapid biogeographic 

coral shifts in Japan, by providing a high connectivity across latitudes (by enhancing the spread 

of larvae). These observations suggest that coral reefs might shift to higher latitudes of Japan, 

becoming therefore a potential refuge for scleractinian corals, and possibly counterbalancing 

the loss of coral reefs at lower latitudes (tropics) (Nakabayashi et al., 2019). Thus, these studies 

provide the evidence about the potential sustainability of coral reefs in the future, leading to 

reduced concern. However, Yamano et al. (2011) and Yara et al. (2009, 2011) took only into 

account the change in temperature (SST), but not changes in the aragonite saturation state and 

changing intensities as well as frequencies of extreme cold events at high latitudes. 

2. Climat change mitigation 

Over the 21st century, the ocean is projected to become profoundly affected by the 

anthropogenically-induced greenhouse gas emission, resulting in significant increases of the 

global sea surface temperature mean (SST + 4.3°C by the year 2100, under RCP8.5), increases 

in the frequency and intensity of marine heatwaves (MHWs), further acidification of the open 

ocean surface pH (- 0.3 pH unit by the year 2100, under RCP8.5), and numerous other impacts 

(e.g oxygen decline, greater upper ocean stratification, sea level rises, and increases in the 

frequency of extreme El Niño and La Niña events) (IPCC 2019). 

2.1. Ocean acidification 

Carbonate System in Seawater 

Due to their dependence on the formation of an aragonite skeleton, corals are also sensitive to 

the carbonate ion concentration, [CO3
 2− ], and to the aragonite saturation state, ΩAragonite. The 

process of calcification is strongly linked to seawater carbonate chemistry and calcium 
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carbonate. Atmospheric carbon dioxide reacts with water. The equations describing this 

carbonate system are: 

CO2 (g) ↔︎ CO2 (aq) 

CO2 (aq) + H2O (l) ↔︎ H+(aq)+ HCO3
- (aq) 

HCO3
- (aq) ↔︎ H+(aq) + CO3

2- (aq) 

the notations (g), (l) and (aq) show the state, i.e., a gas, a liquid, and in aqueous solution 

respectively (Riebesell et al., 2011; Kleypas and Langdon, 2006). Calcifying organisms, 

including corals, make skeletons using carbonate ions and calcium ions in seawater with the 

following equilibrium: 

CO3
2- (aq) + Ca2+ (aq) ↔︎ CaCO3 (s) 

where (s) indicates the solid phase (Riebesell et al., 2011). A direct consequence of the 

increasing partial pressure of CO2 in the atmosphere is the increase of total dissolved inorganic 

carbon in seawater, decreasing therefore the seawater pH (i.e. net increase in protons H+; 

Equation 2). However, in order to maintain charge balance, some carbonate ions will be 

converted to bicarbonate (HCO3
- ), lowering the carbonate ions concentration (CO3

2– ; Equation 

(3)). One of the important seawater parameters for coral is ΩAragonite. ΩAragonite shows the 

saturation state of aragonite, which is one of the common crystal forms of calcium carbonate in 

seawater, with the following equation : 

ΩAragonite = [Ca2+][CO3
2-] / Ksp(aragonite) 

When ΩAragonite is lower than 1, aragonite dissolution is thermodynamically enhanced. On the 

other hand, aragonite precipitation is favoured when ΩAragonite is higher than 1 (Riebesell et al., 

2011). The geographic distribution of corals reefs shows that corals need sufficient calcium 

carbonate saturation to form reefs (ΩAragonite > 3; Kleypas et al., 1999).  

Seawater carbonate chemistry changes implications 

With almost one third of released CO2 directly absorbed by the oceans, the world average 

seawater pH is predicted to decrease by 0.3 by the year 2100, under RCP8.5 (IPCC, 2019). 

Following the chemical equilibrium stated above, as increased atmospheric carbon dioxide 

dissolves in the ocean, the concentration of bicarbonate ions and hydrogen ions in seawater 

increases while the concentration carbonate ions decreases. ΩAragonite also decreases with the 

(1) 

(2) 

(3) 

(4) 

(5) 
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concentration of carbonate ions. This change in ocean chemistry is commonly refers to as ocean 

acidification (OA).  

Because coral reef ecosystems are confined to the upper mixed layer of the ocean, they will 

be readily exposed to these shifts in the ocean carbonate equilibrium. Under OA, the current 

saturation states may cross the threshold supporting biogenic calcification (ΩAragonite > 3; 

Kleypas et al., 1999), driving to a decline in calcification rates of corals, and, in the worst case 

scenario, to the  net dissolution of carbonate structures (coral reefs) (ΩAragonite < 1) (Albright et 

al., 2016). These changes in ocean chemistry presents a major challenge for marine calcifying 

organisms. Numerous scientific studies already highlighted the severe threat of low pH and 

ΩAragonite for reef-building organisms, affecting especially their calcification rates and their 

overall productivity (Kleypas et al., 1999; Anthony et al., 2008), but also reproduction and 

development (Kurihara, 2008), acid-base regulation (Pörtner, 2008), photosynthesis (Anthony 

et al., 2008), respiration (Kaniewska et al., 2012), and tolerances of other stressors  (Hoegh-

Guldberg et al., 2007). Hoegh-Guldberg et al. (2007) have suggested that a threshold of 

atmospheric carbon dioxide concentration (i.e. pCO2; 500ppm) exists, above which coral reef 

calcification will be dramatically reduced. 

Poleward shifts implications 

At high-latitude regions, seawater temperatures are colder, resulting into an increase of the CO2 

solubility, and thus, lower carbonate ion concentrations and ΩAragonite. High-latitude regions will 

therefore reach first critically low levels of seawater saturation states (Kleypas et al.,1999b; Orr 

et al.,2005; Fabry et al., 2014). By reducing the growth potential and survivorship of corals, 

decreasing ΩAragonite is predicted to cause the shift of corals distribution northern limit southward 

(Guinotte et al., 2003; Hoegh-Guldberg et al., 2007; Yara et al., 2012), countering the 

advantages of ocean warming (rising SST) in a context of range shifts and/or expansions of 

corals northward (Yara et al., 2012). 

Yara et al. (2012) found that coral habitats will be shifting constantly poleward by the 

end of 2100, due to the northward expansion of the average SST isolines, making seas 

surrounding Japan suitable to tropical-subtropical coral communities. Moreover, they projected 

that ocean acidification will give rise to the southward expansion of isolines of ΩAragonite, 

pushing current marine ecosystems, around Japan, below the ΩAragonite = 3 threshold (i.e. needed 

to support sufficiently high calcification rates; Kleypas et al.; 1999). As a result they projected 

that coral habitats will become “sandwiched” between high temperature regions (Tropical 
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regions; where the frequency of coral bleaching will increase), and low aragonite saturation 

states regions (temperate to subpolar latitudes; where the calcification rates will be reduced), 

leading to a significant reduction of suitable coral habitat around Japan.  

By investigating marine communities at volcanic seeps (off the Pacific Japanese coast), 

Agostini et al. (2018) found that an increased mean levels of pCO2 results in profound 

community-level changes, shifting sub-tropical ecosystems from carbonate to fleshy algal 

dominated systems. They observed a significant biodiversity loss, due to a decline in key 

habitat-forming species (e.g. scleractinian corals) and an increase in low-profile fleshy algae. 

Overall, this study highlights the expected implication of ocean acidification on the 

simplification coastal marine communities at the seas surrounding Japan, but also throughout 

East Asia. Regarding More recently, Agostini et al. (in preparation) combined field surveys and 

transplantation experiments at natural analogues of present day and future conditions. Their 

results suggest that an extensive loss in foundation kelp species will occur, and will not be 

replaced by  scleractinian corals, under the projected scenario of combined warming and 

acidification. They show the direct evidence that the new suitable regions (at higher latitudes) 

of some coral species, will be severely limited by ocean acidification (e.g. Acroporids), leading 

to fundamental changes within biotic communities and rapid changes in ecosystem functioning 

and services. Therefore, this study highlights the severe threat of an unprecedent loss of 

ecosystem services, caused by a simplification of the warm temperate region ecosystems. 

2.2. Extreme cold stress 

Bleaching is commonly defined as the loss of the symbiotic algae and/or its pigments. Severe 

and prolonged bleaching events can cause mass mortality of corals (Hughes et al., 2018; 

Kayanne et al., 2017; Sampayo et al., 2008). Over the last decade, records of coral bleaching 

events have been increasing in frequency and spatial scales (Gates et al. 1992, Brown et al. 

1994), due to elevated sea surface temperatures (Hoegh-Guldberg 1999). However, bleaching 

events have also been correlated with cold sea surface temperatures (Coles & Jokiel 1977, Gates 

et al. 1992; Higuchi et al., 2015; Higuchi et al., 2020), leading sometimes to mass mortality 

(Leriorato and Nakamura, 2019). Bleaching susceptibility has been demonstrated to varies 

greatly among coral taxa (Marshall  and  Baird, 2000),  leading  to strong selective mortality 

and marked directional shifts in the  structure  of  coral  assemblages  (e.g.,  Pratchett  et  al., 

2011). 
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ENSO events in the Pacific are predicted to increase in intensities as well as frequencies 

(Urban et al. 2000) suggesting that La Niña events may increase in frequency. La Niña events 

are defined by colder years, in which sea temperatures can be cooler than long-term averages, 

and different wind patterns. Notably the passage of cold air masses from the Arctic has been 

shown to have rapid cooling effects on shallow water carbonate environments, due to increased 

chilling and mixing of water bodies by strong winds (Roberts et al. 1982). In addition, extreme 

weather events (Wernberg et al., 2013, IPCC 2019); including extreme heat events (marine heat 

waves, MHWs) and extreme cold events (marine cold spells, MCSs); are expected to increase 

over time, leading to  severe impact on the structure of ecosystems (Jentsch et al. 2007).  

Cold bleaching and mortalities events recorded in Japan 

Japan host high latitudes coral communities, with the world northernmost coral reefs reported 

at Iki Island, Japan Sea (33°48’N; Yamano et al., 2001). Cold bleaching, and mortality events 

have already been recorded in marginal high-latitude coral communities in Japan (Veron and 

Minchin, 1992; Yamano and Namizaki, 2009), leading at times to high mortality rates of corals 

during winter. Recently, Leriorato and Nakamura (2019), recorded an extreme cold event, 

during the winter 2018 (SST < 15 °C, from 10 days to 2 months), at the coastal waters of Tosa 

Bay (Japan). This extreme cold event, enhanced by inflows region polar continental air masses 

(influenced by La Niña), caused an unprecedent massive coral bleaching event and subsequent 

mortality of more than 90% of corals in the bay. This study highlights the potential instability 

of temperate waters, acting as a refuge for range-shifting reef-building corals, due to the 

predicted increasing extreme climatic events, implicated in the severe declines and the potential 

disappearance of various coral species.  

Poleward shifts implications 

In the last hundred years, some coral species have expanded their range in Japan at tremendous 

speed, up to 14 km per year (Yamano et al., 2011). While the future increase in temperature 

under global warming may allow more species of corals to colonise higher latitudes, cold winter 

events will certainly occur and may cause extended mortalities of coral species less resilient to 

cold stress. This could severely limit the number of species that will be able to find refuges in 

higher latitudes, causing fundamental changes in corals associated ecosystem functioning and 

services. However other species do not show such expansion which suggests some inherent 

physiological characteristics to allow the survival in higher latitudes. Higuchi et al. (2020) 

showed the resistance of two hermatypic corals; commonly found in the temperate regions of 

Japan; to cold stress, inferring specific adaptations allowing their survival in the marginal high 
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latitudes (e.g. reduction in basal metabolism and shift to alternative source of energy). This 

resistance and resilience to cold stress, and the ability to colonise reef habitats in the aftermath 

of severe bleaching events, could be a common trait of corals found in high latitudes marginal 

coral communities (Chen et al., 2016; Howe and Marshall, 2001; Ross et al., 2018). Through 

their endemicity and potential adaptations, marginal coral communities, already established at 

high latitudes, represent a reservoir of biodiversity (Veron, 1992). These communities could 

therefore play a determinant role as a refuge for coral diversity under climate change (Makino 

et al., 2014).   

3. High latitudes coral communities 

Because different species respond at different rates and to different degrees, key interactions 

between species are disrupted within the ecological communities, and allow new interactions 

to develop (Pecl et al., 2017). These shifts are expected to continue with projected ocean 

warming (Jones and Cheung, 2015; Wisz et al., 2015) , causing potentially permanent changes 

within marine ecosystems, including: local extinctions (leading to “winners” and “losers” 

species) (Jones and Cheung, 2015), novel biotic communities and rapid changes in ecosystem 

functioning and services (Pecl et al., 2017).  

Tropical corals are under severe stresses at temperature under 18°C (Colella et al., 2012; 

Kleypas et al., 1999), defining therefore the geographic limits for the formation of coral reefs 

(Kleypas et al., 1999). Nevertheless, a few warm-water hermatypic coral species can extend 

their northern limit to regions presenting minimum temperatures reaching 10°C (Veron and 

Minchin, 1992). Marginal coral communities have been observed at high latitudes where 

surface seawater temperature regularly drops down to 10 °C (Denis et al., 2013; Dimond et al., 

2013; Yamano et al., 2001, 2011; Yamano and Namizaki, 2009). Such marginal communities 

could potentially represent a “refugia” , allowing corals to survive under a warming climate 

(Beger et al., 2014; Makino et al., 2014).  

 

3.1. Acropora solitaryensis 

Acroporid corals are abundant in the tropics and exhibit the highest diversity among corals, 

with approximately 180 species in the genus Acropora (5). In Japan, acroporid species can be 

observed even in the northernmost reefs, although their diversity decreases significantly at the 

highest latitudes (i.e. near Tateyama (34 °N)). For instance, Acropora solitaryensis have 

expanded its distribution northward in Japan (Yamano et al., 2011; Nakabayashi et al., 2019), 

but still has a more southerly range than other coral species belonging to the genus Acropora. 
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Bleaching of A. solitaryensis and other tabular acroporids was reported from high-

latitude coral communities near Nagasaki (32.5 °N) after 12 days of low temperatures (< 13 °C) 

in 2013 (Suzuki et al.,2013). Higuchi et al., (2015) investigated the resistance and resilience of 

the genus Acropora to cold bleaching. They highlighted the importance of cold resistance and 

recovery from cold bleaching, in determining the northern distribution limits of Acropora coral 

species. Low resistance to cold stress in A. solitaryensis was observed, due to a lack of 

protection against cold stress-induced damage, explaining why is less common at higher 

latitudes. Recently, Agostini et al. (in preparation) conducted field surveys, at the seas 

surrounding Japan, to assess the existing coral communities at present day and future conditions 

(warming and combined warming/acidification conditions). The Acroporid A. solitaryensis, 

was only found at the warming condition. Therefore, this study showed the direct evidence of 

the high sensitivity to pCO2 , and suggesting that the latitudinal shift of this fast growing 

Acropora species will be limited in the future by ocean acidification. 

3.2. Porites heronensis 

One of the dominant corals in temperate regions of Japan is the slow growing P.heronensis 

(Veron, 1985; Nishihira and Veron, 1995). This coral species can be found in more tropical 

areas, but it is more commonly found in higher latitudes. P. heronensis distribution range from 

Okinawa mainland (24°N) to Tateyama in Chiba prefecture (34 °N). 

Physiologic thermal limits of this species (Huey & Stevenson, 1979) were found to be 

12 °C for the lower critical temperature as most of the corals bleached and died at this 

temperature. Higuchi et al. (2020) investigated the effect of cold temperature on P.heronensis 

through field transplantation and in situ incubations (slow and natural decrease in temperature). 

After 243 days at temperature under 18°C, (i.e. limit for the development of reefs) and 110 days 

under 15°C , bleaching was observed but no specimens died. This study highlighted the high 

resistance of this temperate coral species to cold stress, through perhaps specific adaptations 

allowing it survival in the marginal high latitudes. Previous experiments showed also that  

corals of the genus Porites have a high resistance to high CO2 levels (Edmunds, 2011; Fabricius 

et al., 2011). Recently, Agostini et al. (in preparation), investigated the effect of ocean 

acidification and warming on high latitudes coral communities, under natural conditions. They 

observed that the warm temperate encrusting coral P. heronensis was consistently found in all 

locations. Therefore, this study showed the direct evidence that the slow growing coral species, 

such as P. heronensis, already established at these latitudes, could maintain suitable growth 

rates under the near-future projected ocean acidification. 
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4. Research questions 

Under these current circumstances, the study of the impact of ocean acidification and cold stress 

on the changing coral species’ biogeographic distributions is fundamental, in order to permit a 

better conservation and protection against the anthropogenic threats and pressures, and thus, 

ensure the fundamental coral’s ecological goods and services. 

Coral populations exhibit variability in tolerance to external stress, within and between 

coral species (Hoegh-Guldberg and Salvat 1995, Loya et al. 2001, Coles and Brown 2003). 

Moreover, these differences in tolerance can occur within a single site (Oliver and Palumbi 

2009) or across geographic regions (Coles et al. 1976, Hoegh-Guldberg 1999) showing the 

direct evidence that the evolution of stress tolerance,  has already occurred in the past. 

Therefore, it is important to emphasize that the definition of “coral habitats” must considers 

potential acclimation and adaptation processes, allowing them to expand outside their current 

ranges and/or reduce their sensitivity to ocean warming and ocean acidification (Pandolfi et al., 

2011). Recent studies demonstrated that corals are able to alleviate the potential impact of 

warming and ocean acidification (Pandolfi et al., 2011). For example, Cooper et al. (2012) 

pointed out that ocean warming would permit coral communities to migrate poleward, but also, 

may have a strong positive effect on coral calcification, potentially allowing them to overcome 

the negative effect of ocean acidification.  

Given that the warm temperate encrusting coral Porites heronensis, and the fast growing 

Acropora species Acropora solitaryensis; show different biological responses to ocean 

acidification, we posit the following questions : 

What is the impact of ocean acidification on the biological processes of the two coral species? 

Is there a tipping point beyond which these coral species are no longer able to perform the 

functions necessary for their survival? 

Does cold temperature shock have a significant effect on coral survival? And if so, are corals 

exposed to acidified seawater more sensitive? 

Is there an acclimation process (e.g. shift in energy allocation, thermal compensation) that 

would allow them to reduce their sensitivity to the ocean acidification and/or cold stress, and 

thus expand outside their current ranges? 
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5. Objectives  

For this experimentation, we use two coral species: the coral Acropora solitaryensis, identified 

as being a specie severely sensitive to ocean acidification and cold stress; and the coral Porites 

heronensis, identified as being a species remaining in acidified areas (Agostini et al., 2018; 

Agostini et al., in preparation). 

The aim of the study is to : i) to investigate under controlled conditions, the effects of a 

wide range of seawater pH by using the “regression approach” (Comeau et al., 2013; Dorey et 

al.,2013; Ventura et al.,2016), (6 targeted pH conditions - covering present conditions and 

IPCC’s projections by the year 2100) on a full set of metabolic/physiological parameters of 

two coral species; and    ii) study the effect of a cold temperature shock on the coral survival at 

the end of the pH exposure period. 

By using the “regression approach”, we expect to identify a high-resolution relationship 

between the pH and the measured parameter. Moreover, we expect to identify the physiological 

tipping point beyond which these coral species are no longer capable of carrying out those 

functions necessary to their survival. By identifying potential tipping points, and by comparing 

regression models of different metabolic responses, we could have a better understanding of 

the coral’s energy allocation strategy (i.e. acclimation processes, e.g. thermal compensation) 

under perturbated climate states (OA). 

By creating a thermal (cold) shock at the end of the pH exposure period, we expect to 

determine if a lower pH exposure can affect strongly the coral’s survival during thermal 

extreme event (acting synergistically?), in a context of poleward expansion of corals. Indeed, 

we hypothesize that a chronic acidified condition exposure will affect the coral’s metabolism 

and will have negative consequences on their temperature tolerance.  

And finally, by comparing the response of the two species, to the combined ocean 

acidification and extreme cold event, we would improve the knowledge about the future 

biogeographic distribution shift and assemblage structure of  hermatypic corals at high 

latitudes, in the seas around Japan. 
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Abstract 

A recent poleward shift of hermatypic corals’ distribution has been reported and was attributed 

to the increase in sea temperature since the pre-industrial revolution. Ocean acidification and 

predicted increasing variability of sea surface temperatures, may together limit this shift in the 

future. The objective of this study was to investigate whether a tipping point exists in the 

physiological and metabolic responses of Acropora solitaryensis and Porites heronensis, to 

CO2, under average winter temperature and under cold event temperature (cold stress; -4°C 

decrease).We studied the effects of increased partial pressures of CO2 (pCO2) from  294 ppm 

to 5018 ppm, on a set of metabolic parameters. The light and dark calcification, skeletal growth 

rate, chlorophyll and protein concentrations decreased linearly as a function of increasing 

partial pCO2 in A. solitaryensis. In comparison only the dark calcification and skeletal growth 

rate decreased linearly as a function of increasing partial pCO2 in P. heronensis. For both 

species, the cold stress acted as an additional stress to the pCO2 exposure, except for the 

respiration in P. heronensis. No physiological tipping point has been identified, beyond which 

these coral species were no longer capable of carrying out the functions necessary to their 
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survival.  The lack of a clear tipping point, as well as the emergence of potential ‘ecological 

winners’, here P. heronensis, in the face of decreasing pH and cold temperature stress, indicate 

that in the coming decades the species composition of coral reefs is likely to slowly change, to 

a new composition in which surviving in marginal high latitudes are those that show the 

required potential  for adaptation. Our study highlights the substantial advantages of the 

regression method to predict the impacts of ocean acidification. Resolving high resolution 

relationships between metabolism and pCO2 could greatly improve the accuracy of models 

describing the effects of future ocean acidification on calcifying organisms and marine 

ecosystems. 

Introduction 

Anthropogenic carbon dioxide (CO2) emission has driven rapid and major climatic changes, 

such as global warming and ocean acidification (IPCC, 2019). These anthropogenic-driven 

environmental changes  (e.g. ocean warming and ocean acidification) are profoundly affecting 

the biogeography (i.e. what lives where) and phenology of marine species, as well as ecosystem 

dynamics and biogeochemical cycling (Hoegh-Guldberg et al., 2014; Pörtner et al., 2014). 

These high environmental changes velocities have already led to rapid regional and global-scale 

range shifts of marine organisms (Poloczanska et al., 2013; Garcia et al., 2015; Poloczanska et 

al., 2016). Marine species are moving poleward (at the cooler extremes of their distributions), 

while their range limits are contracting at their warmer range edge, where environmental 

conditions are no longer tolerable. (Pecl et al., 2017). 

Pushed by the threatening conditions in the tropics due to the on-going global warming, 

the biogeographic limits of warm-water coral species have been shifting (Baird et al. 2012; 

Muir et al., 2015; Grupstra et al., 2017). Increases sea surface temperature (SST) at high-latitude 

allow coral habitats to expand poleward, finding refuge in new suitable warm temperate regions 

areas (Precht and Aronson, 2004; Yamano et al., 2011), while at the same time, limit their 

habitat in the tropics due to excessive bleaching (Guinotte et al., 2003; Meissner et al., 2012). 

The poleward range expansion of several tropical corals with increasing SST has already been 

reported in several places over the world (e.g. Caribbean (Precht & Aronson, 2004), Australia 

(Hughes et al., 2012)), including in Japan (Yamano et al., 2011; Yara et al., 2011). Japan covers 

a large latitudinal range, extending from subtropical to temperate areas, and is defined as a 

“subtropical-temperate transition zone” for the geographical distribution of a highly diverse 

coral species.  The presence of hermatypic corals at these high latitudes is principally due to the 
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Kuroshio current, which brings warm water as far as Tateyama (Yamano et al., 2011) and high 

connectivity across latitudes (Kumagai et al., 2018).This zone, at the leading-edge for 

subtropical species and the trailing-edge for temperate species, provides a unique opportunity 

for the study of species range shifts and/or expansions due to climatic warming, over a large 

spatial scale (Yamano et al., 2011). 

Scientific studies are predicting that the tropical-subtropical coral habitat range shifts, 

in the seas surrounding Japan, could be severely limited due climate change related events (Yara 

et al.; 2012, Leriorato and Nakamura (2019), Agostini et al. (in preparation)). Projected ocean 

acidification will lead to the southwardshift of isolines of Ωarag, pushing current marine 

ecosystems, around Japan, below the Ωarag=3, the minimum level for the maintenance of 

sufficient growth rates of corals and the formation of reefs(Kleypas et al.; 1999; Yara et al.; 

2012). As a result, coral habitats are projected to be “sandwiched” between high temperature 

regions (Tropical regions; where the frequency of coral bleaching will increase), and low 

aragonite saturation states regions (temperate to subpolar latitudes; where the calcification rates 

will be reduced). In addition, extreme cold events; which are predicted to increase in frequency 

and intensity (Urban et al. 2000); have been previously recorded in Japanese coastal waters, 

resulting in unprecedented massive coral bleaching and mortality events (Leriorato and 

Nakamura, 2019). Previous studies have shown that long term exposure to cold temperatures 

lead to higher mortality rates in tropical corals than high temperatures (Jockiel and Coles, 1977). 

However, the combined effects of ocean acidification and cold stress, predicted to severely limit 

the poleward biogeographic limits of coral species, remain poorly understood. 

The "scenario" approach is almost systematically used in the literature to describe the 

effects of ocean acidification on the physiology of marine organisms. This method consists of 

measuring the physiological response of organisms under a small number of pH conditions 

(generally 2-3), in replicates (i.e. representing ambient conditions and those expected for the 

end of the century). However, this method has limitations that have been pointed out recently, 

including the poor interpretive capability with the comparison of only a few environmental 

conditions (Vargas et al., 2017). Inferences of  bias due to the arbitrary choice of pH conditions; 

generally unrealistic compared to the natural variability remaining largely unknown today; have 

been emitted (Vargas et al., 2017). Finally, the protocols are often not standardized and do not 

allow comparisons between different studies (Gazeau et al., 2013). To face these limitations, 

the "regression" method was proposed as an alternative  (Dorey et al., 2013; Comeau et al., 
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2013; Ventura et al., 2016). The organisms are exposed to a vast gradient of different 

conditions, without any replication, in order to model each physiological response by regression 

as a function of pCO2. One can thus determine the existence or not of tipping-point, threshold 

from which the capacities of acclimatization are no longer sufficient and where a physiological 

parameter is impacted by the acidification of the oceans. This promising and largely under-used 

approach has been chosen in our study. 

We studied, under controlled conditions, the effect of ocean acidification and the effect 

of combined acidification and cold stress, on two coral species: the warm temperate encrusting 

coral Porites heronensis, and the poleward shifting Acropora species Acropora solitaryensis. 

We investigated a wide range of pCO2 (six  targeted pCO2 - covering present conditions, IPCC’s 

projections by the year 2100 and further; regression approach) on a full set of metabolic 

parameters. This approach was used in order to test for the existence of critical thresholds and 

to have a better understanding of potential acclimation processes in corals species, under 

disrupted climate states. The results obtained highlight the need to consider the combination of 

combined ocean acidification and extreme cold event, in a context of poleward expansion of 

corals. 

Materials and Methods 

Coral collection and laboratory conditions. Colonies of Porites heronensis (n=3) were 

collected in Shidagaura, Shimoda city, Shizuoka prefecture, Japan (34°39’58.1”N, 

138°56’33,6”E) (ca 3 m depth). Colonies of Acropora solitaryensis (n=3) were collected 

offshore Shikine Island, Tokyo, Japan (34°19′17″ N, 139°12′17″ E) (ca 5 m depth). Coral 

colonies were then transported to the Shimoda Marine Research Center, University of Tsukuba, 

Shimoda city, Shizuoka prefecture, Japan (34°40’3,92”N, 138°56’7,704”E). Coral colonies 

were maintained, for several months, in an outdoor tank (1.8m x 0.5m x 0.9m, volume = 810 

L) supplied continuously with seawater (flow rate = 42 L.min-1) pumped from 5 m depth, in 

front of the research center. 

Thereafter, each coral colony was sectioned into 8 comparatively sized nubbins (ca 3 to 

4 cm long) and glued with epoxy to cover the exposed skeleton, incorporating a plastic cable 

tie, so the corals maintained an upright position. Coral specimens (one nubbin per species) were 

randomly assigned to one of the 24 independent experimental units, and allowed to recover for 

30 days before the different treatments were applied. Each experimental unit consisted of one 

12L experimental tank, supplied continuously by raw seawater in open flow (flow rate = 0.13 
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L.min-1; turnover = 64%.h-1), pumped from 5 m depth, in front of the research center. The 

laboratory conditions were recreating the ambient seawater conditions, with a salinity of 34, 

temperature of  16.6 ± 0.36 °C , pHNBS 8.22 ± 0.06. LED Aquarium Lights (ZP4000-1200M, 

Zetlight®) provided an irradiance close to a natural cycle experienced by the corals in field in 

winter with a peak at ca 100  µmol photons m-2s-1 reached at 12:00, over a 14 h period of 

light.  An air bubbler was used to maintain a dissolved oxygen saturation state in excess  

(7.79 ± 0.3 mg O2 l-1) in each tank. Food supply was not regulated by external input. 

Experimental tanks were cleaned once a week to remove the growing algae. Coral nubbins were 

visually inspected each day of the recovery period and no evidence of bleaching or disease was 

observed. 

Experimental setup and Seawater carbonate chemistry. Once the recovery period was 

achieved, pH conditions were randomly assigned to the experimental tanks.  Six targeted pH 

conditions were tested, ranging from 8.2 (control condition) to 7.2 pH unit, with an increment 

of 0.2 pH unit between each condition. Three tanks were assigned to each condition except 

for  8.2 and 7.8 pH, representing the present-day conditions and the RCP8.5 IPCC projection 

by the year 2100, for which six tanks were assigned. This configuration allowed an intermediate 

coral sampling (n=3 per species and per pH condition) before the cold shock, for these two 

relevant pH conditions. 

Coral nubbins were progressively acclimated for 7 days, during which the seawater 

acidity was gradually decreased in the experimental tanks (0 to - 0.28 pH unit.day-1) to reach 

their specific targeted pH condition. Once the acclimatation phase completed, coral nubbins 

were held at their specific pH condition for 28 days (four weeks). After 20 days, a thermal cold 

shock was applied on the remaining coral  nubbins. The cold shock consisted of 8 days of 

temperature decrease (average of 0.4 °C.day-1), and 12 days under 15°C (Figure 2.2). 

The pH conditions were obtained by bubbling pure CO2 within each tank via an air stone 

cylinder with the input of CO2 constrained using a needle valve on each aquarium. In each tank, 

the bubbling was regulated by a pH-stat system (Apex, Neptune Systems, USA) that controlled 

a solenoid valve. The pH probes (Neptune Systems, USA), connected to the Apex interface (via 

a PM1 module and an Apex Base Unit; Neptune Systems, USA) continuously measured the pH 

in each tank (measure every 10 minutes) (Figure 2.1). To avoid over switching the solenoid 

valves a range of pH of ± 0.1 unit was allowed, meaning that the opening of the solenoid valve 

was triggered when the pH was 0.1 higher than the target and the valve was closed when the 
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pH read -0.1 from the target. Minimum variations in pH were obtained by reducing the flow of 

CO2 in each aquarium using the needle valve. Each pH probe was calibrated once per week 

with NBS buffered solutions (National Bureau of Standards) at pH 7. 0 and 10.1 (Thermo 

Fisher, USA). In addition, to verify the pH measurement of the pH probes within the tanks, pH 

measurements were done weekly using a ROSS pH electrode (8102BNUWP, Thermo Fisher, 

USA) calibrated on the pH NBS scale.   

For the cold shock, the temperature condition was obtained by diverting the general 

input seawater into a cooler chain connection (Aquarium cooler ZC-13000α, Zensui, Japan; 

Figure X). Temperature probes (Neptune Systems®), connected to the Apex interface (Neptune 

Systems, USA), were placed in each tank, and continuously measured the temperature (measure 

every 10 minutes) (Figure 1). The temperature setup of the coolers were adjusted to reach the 

targeted temperature in the aquarium.  

Calcification, photosynthetic and respiration rates. Metabolism was measured at 0, 28  

(i.e. before the cold shock), and 48 (i.e. after the cold shock) days after the start of 

experimentation. For metabolic rates measurements, the main water reservoir supply was 

stopped, and coral specimens were incubated in 300ml and 250ml beaker (container; for 

Acropora solitaryensis and Porites heronensis respectively) fully filled with seawater, well 

mixed with a magnetic stirrer, and sealed with a watch glass, to remove the air-seawater 

exchange surface. Incubations were conducted for 2h under light condition followed by 3h 

Figure 2.1. Schematic representation of the experimental system for Block 3 
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under dark condition. In between the two incubations, the containers were refilled  with 

continuous supply of seawater for over one hour under dark condition. The pH NBS, temperature, 

dissolved oxygen (DO) and seawater samples for the measurement of total alkalinity (ca. 50ml 

) were measured and collected from each container, at the beginning and at the end of each 

incubation. Measurements were done with a multimeter (Orion 4 stars, Thermo Fisher, USA) 

calibrated on the pH NBS scale and using a RDO® Optical Dissolved Oxygen Sensor (RDO, 

Thermo Fisher, USA) and a ROSS pH electrode (8102BNUWP, Thermo Fisher, USA). 

Seawater samples were collected with 50 ml syringes, filtered at 0.45 µm membrane (GF/F 

Whatman), and stored in plastic reagent bottles. 

Gross photosynthesis and respiration rates were calculated from the difference between 

the final and the initial DO values of the light and the dark incubation, respectively. The light 

and the dark calcification rates were estimated using the alkalinity anomaly technique 

(Chisholm and Gattuso, 1991) as the difference between the final and the initial Total alkalinity 

(TA) values of each incubation. TA (μmol kg-1) was measured by titration of the sampled 

seawater, with 0.1 M HCl using a Metrohm titration system (916 Ti-Touch, Metrohm®),  and 

calculated using the titration points from pH 3.9  to 2.9 by non linear regression (function “at” 

of the seacarb R package; function. The measurements were validated by comparison to 

certified reference materials for TA provided by A.G. Dickson (batch 121). 

The pH, temperature, TA and salinity measured during the metabolism experiments 

were used as the input variables for calculation of the other parameters using CO2SYS (Pierrot, 

Lewis, and Wallace, 2006) with the constant from Roy et al. (1993), KSO4 using Dickson 

(1990), and total borate concentration from Uppstorm (1974). 

Photosynthetic efficiency. At 0, 28 and 48 days after the start of experimentation, the 

photosynthetic efficiency (Fv/Fm) of the Photosystem II (PSII) of zooxanthellae in hospite were 

measured, following the incubation measurements.  Measurements (in the dark) were done 

using a JUNIOR-PAM chlorophyll fluorometer (Walz, Germany) (n = 5 for each species and 

each tank), following 30 min of dark adaptation. 

Skeletal growth rates. Coral specimens were weighted at 0, 28 and 48 days, using the buoyant 

weight technique (Davies, 1989). Samples were weighed using an electronic balance (1mg 

precision, ASONE® AS PRO ASP123F), in seawater of known density. The net buoyant weight 

of the corals was converted into dry weight using the density of the pure aragonite  
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(2.94 g cm-3). The skeletal growth rates were calculated as the daily change in dry weight 

between the initial and the final weight and expressed in mg.d-1. 

Zooxanthellae, Chlorophyll a and Protein content. At 28 and 48 days, coral nubbins were 

collected and frozen (-80°C) for measurements of zooxanthellae density, chlorophyll a, protein 

and surface areas. Tissues were removed from coral skeletons, using an airbrush compressor 

filled with 34 g l-1 solution of NaCl. The slurry was homogenized with a Glass Teflon Potter 

Homogenizer, and the total obtained volume was measured. About 1ml of homogenized tissues 

samples were centrifuged (at 1000 g for 10 min at 5 °C), and the zooxanthellae fraction was 

fixed with 5% formalin and used to count zooxanthellae cells on a Neubauer hemocytometer. 

To extract the chlorophyll a, 1ml of the homogenized slurry was filtered on a 25 mm GF/F 

filter, which was then extracted in 90% acetone overnight. Absorbances were read at 664 and 

647 nm, using a spectrophotometer (UV-1280, Shimadzu, Japan). Chlorophyll a concentrations 

were computed according to the spectrometric equations from Ritchie (2006). Total soluble 

protein concentration of the host fraction was then determined using the Bradford protein assay 

(Bradford, 1976).  Surface area of each coral was determined using the Wax Coating technique 

which consists in the dipping of corals in paraffin wax and measuring the increase in weight 

(Stimson and Kinzie, 1991). 

Statistical analysis . For statistical analysis, all parameters were normalized by the surface area 

of the coral skeleton, except for Fv/Fm ratio. All data were tested for the assumptions of 

normality and homoscedasticity using Shapiro Wilk's test and Bartlett’s test respectively. After 

verification, two-way ANOVAs were used to test the effects of pCO2 and temperature on the 

zooxanthellae density, chlorophyll-a concentration, total soluble protein concentration,  within 

and between the two targeted pH conditions 8.2 and 7.8. When the ANOVA determined a 

significant difference, a Tukey’s honest significant difference test (HSD) was used to attribute 

differences between specific factors.  

An Akaike Information Criterion (AIC) approach was used to determine which model 

best described the relationship between metabolic parameters and pCO2, before and after the 

cold shock, for each species. Two different models were tested: linear and polynomial. This 

statistical analysis, following the “regression approach”, used the mean over the whole 

experiment duration of the measured ppm values of each independent tank (Table 2.6, i.e. not 

the mean response of each targeted pCO2 condition), to obtain a high resolution regressions. To 

compare the response to  pCO2 prior and after the cold shock, analyses of covariance 
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(ANCOVA) were performed on the regression models within each species and each metabolic 

response. All data are expressed as the mean ± SE. The R statistical environment was used for 

these analyses (Team, 2011). 

Results 

Coral fragments recovered and grew during the acclimation period in the experimental tanks, 

covering the exposed skeletons with new tissue. No mortality events were observed throughout 

the experiment. The corals did not show any signs of bleaching prior to the cold and only minor 

paling after the cold shock. pHNBS conditions within the tanks were precisely regulated across 

time (standard errors ranging from 0.04 to 0.09 pH unit; Figure 2.2). The relation between the 

measured physiological parameters and levels of CO2 were best explained using a linear 

regression than a polynomial regression as shown by the lower AIC values obtained for linear 

regressions compared to polynomial regression (Table 2.1).  

 

 

Figure 2.2.Continuous data of pHNBS and temperature within 7 weeks of the experiment, for 6 aquaria 

from the Block 3 
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Table 2.1. Summary of the Akaike Information Criterion (AIC) used to determine the best model type 

(linear vs. polynomial) describing the relationship between measured metabolic parameters and  pCO2. 

The regression model revealing the minimum AIC value was considered the best fitting. 

Metabolic responses 
Regression 

model 
Acropora solitaryensis  Porites heronensis 

 
(Cold shock) Linear Polynomial  Linear Polynomial 

Photosynthesis efficiency Prior - 95 - 92.8  - 110 - 102.8 

 After - 56 - 55.2  - 76 - 73.9 

Gross Photosynthesis Prior - 35 - 32.2  - 21 -17.6 

 After - 3 - 1.12  30 32.7 

Respiration Prior - 98 - 95.1  - 59 134.7 

 After - 43 - 39.9  - 33 83.6 

Light Calcification Prior - 43 132.1  - 8.1 - 5.4 

 After - 67 67.3  - 25 - 24 

Dark Calcification Prior - 65 - 63  - 15 - 13.9 

 After - 42 - 41.8  3.6 -33.5 

Skeletal growth rate Prior - 33 - 32.8  3.6 4.1 

 After - 40 - 39.4  8.4 9.6 

Zooxanthellae density After 16 17  46 42.3 

Clorophyll After 81 81.8  120 122.8 

Protein  After 200 202.7  270 271.6 

 

 

Zooxanthellae metabolism. For A. solitaryensis and P. heronensis there were no significant 

linear declines in photosynthetic efficiency as a function of increasing  pCO2  (Figure 2.3 (a), 

Table 2.2). The ANCOVA revealed significant different intercepts between the two regression 

models (i.e. before and after the cold shock; Table 2.3, p < 0.001) in the two corals species, 

which indicate a significant negative effect of the cold temperature stress on the photosynthetic 

efficiency. The ANCOVA did not reveal differences in the slopes (Table 2.3).  

For both species, no significant effect of the increasing pCO2  on the gross 

photosynthesis has been identified (Figure 2.3 (b), Table 2.2). The outcomes of the ANCOVA 

showed significant higher intercepts of the gross photosynthesis -pCO2 regression models after 

the cold shock than before cold shock (Table 2.3, p < 0.001). Before the cold shock, the highest 

gross photosynthesis, for A. solitaryensis and P. heronensis, were recorded at 0.60 and  

0.59 µmol O2 h
-1 cm-2 (at 744 ppm and 437 ppm respectively). Whereas, after the cold shock, 

the highest gross photosynthesis was recorded at 0.90 and 1.72 µmol O2 h
-1 cm-2  (at 737  ppm 

and 388 ppm respectively). No significant different slopes were identified between the response 

to pCO2 prior and after cold shock (Table 2.3). 
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Figure 2.3. Zooxanthellae metabolic responses as a function of pCO2 (ppm) in the two studied 

species (1: A. solitaryensis; 2: P. heronensis): (a) Photosynthetic efficiency (Fv/Fm) ;  

(b) Gross photosynthesis (µmol 02 h-1 cm-2). Purple straight lines: coral response prior to the 

cold shock; Blue straight lines: coral response after the cold shock. Grey bands represent the 

95% CIs of the linear regressions. 

After the cold thermal treatment, A. solitaryensis exhibited no significant response of 

zooxanthellae density, neither as a linear decrease as a function of increasing  pCO2  (Figure 

2.6 (a1), Table 2.2), nor between and within the mean zooxanthellae densities of the targeted 

pH condition 7.8 and 8.2 (Figure 2.5 (a1), Table 2.5).  P. heronensis showed no significant 

linear model as a function of pCO2  (Figure 2.6 (a2), Table 2.2),  but a significant difference of 

zooxanthellae density between the two temperature treatments, for the targeted pH condition 

7.8  and 8.2 (Figure 2.5 (a2), Table 2.5, p < 0.01). 

For the chlorophyll a concentration measured after the cold shock, the two species 

displayed contrasting responses to pCO2. A. solitaryensis exhibited a linear decrease of 

chlorophyll a concentration as a function of increasing pCO2  (slope = -5.3 µg chlorophyll a 

cm-2 per 105 ppm of pCO2; Figure 2.6 (b1), Table 2.2,  p  =  0.014) with a minimum 

concentration of 4,27 µg chlorophyll a cm-2 recorded at 3532 ppm. P. heronensis showed 

unaffected chlorophyll a concentration as a function of  increasing pCO2  (Figure 2.6 (b2), 

Table 2.2). According to the scenario results comparing the targeted pH condition 7.8 and 8.2 

(i.e. control condition) before and after the cold shock; no significant differences of chlorophyll 

a concentration have been identified for A.  solitaryensis (Figure 2.5 (b1), Table 2.5).  

P. heronensis showed a significant difference in chlorophyll a concentration before and after 

the cold shock; for the targeted condition 7.8 and 8.2 (Figure 2.5 (b2),  Table 2.5,  p < 0.01), 

although no significant linear regression model was identified. 
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Figure 2.4. Host metabolic responses as a function of pCO2 (ppm) in the two studied species  

(1: A. solitaryensis; 2: P. heronensis): (a) Respiration (µmol 02 h-1cm-2); (b) Light calcification  

(µmol CaCO3 h-1 cm-2); (c) Dark calcification (µmol CaCO3 h-1 cm-2); (d) Skeletal growth rate (mg d-1 

cm-2). Purple straight lines: coral responses prior to the cold shock; Blue straight lines: coral response 

after the cold shock. Grey bands represent the 95% CIs of the linear regressions. 
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Table 2.2. Parameters of the linear regressions used to estimate the relationship between metabolic 

responses and pCO2 . P-values of the slopes and intercepts, as well as R2, for the linear regressions are 

given; intercept p-values were considered significant when p < 0.05. The stars represent significant 

differences at p < 0.05 (*), p < 0.01 (**)  and  p < 0.001 (***). 

 

 

 

Table 2.3. Results of the ANCOVA used to test for differences in slopes and intercepts in the 

relationships between metabolic responses and pCO2 in the two coral species, tested by thermal 

treatment pairs (i.e. prior - after cold shock). The stars represent significant differences at p < 0.05 (*), 

p < 0.01 (**)  and  p < 0.001 (***). 

 

 

 

 

 

Metabolic responses 
Regression 

model 
Acropora solitaryensis  Porites heronensis 

 (Cold 

shock) 
Values p 

Adj-

R2 
 Values    p 

Adj-

R2 

Photosynthesis efficiency Prior - 4.3 10-7 x + 0.71 0.930 -0.04  - 8.2 10-6 x + 0.68 0.240 0.02 

 After   1.2 10-5 x + 0.60 0.130 0.08  - 4.8 10-6 x + 0.60 0.550 -0.04 

Gross Photosynthesis Prior - 1.5 10-6 x + 0.27 0.940 -0.05    8.4 10-6 x + 0.26 0.830 -0.04 

 After   9.5 10-7 x + 0.49 0.980 -0.06  - 1.9 10-4 x + 0.96 0.230 0.03 

Respiration Prior - 3.2 10-6 x + 0.18 0.480 -0.02     2.3 10-6 x + 0.19 0.900 -0.04 

 After   3.6 10-6 x + 0.18 0.750 -0.05  - 1.8 10-5 x + 0.30 0.490 0.03 

Light Calcification Prior - 3.5 10-5 x + 0.23 0.015 * 0.23  - 6.6 10-5 x + 0.30 0.110 0.17 

 After - 1.9 10-5 x + 0.06 <0.001 *** 0.44  - 2.6 10-5 x + 0.13 0.170 0.06 

Dark Calcification Prior - 3.5 10-5 x + 0.17 <0.001 *** 0.43  - 8.4 10-5 x + 0.15 0.015 * 0.45 

 After - 4.8 10-5 x + 0.04 <0.001 *** 0.59  - 4.5 10-5 x + 0.06 <0.001 *** 0.47 

Skeletal growth rate Prior    - 0.003 x + 11.0 0.031 * 0.37  - 1.0 10-4 x + 0.68 0.015 * 0.22 

 After - 1.2 10-4 x + 0.52 <0.001 *** 0.20  - 3.1 10-5 x + 2.30 0.520 -0.05 

Zooxanthellae density After - 2.0 10-4 x + 2.10 0.068 0.14     2.4 10-4 x + 2.10 0.310 -0.01 

Clorophyll After - 5.3 10-5 x + 0.19 0.014 * 0.31  - 8.5 10-3 x + 2.30 0.610 -0.04 

Protein  After   - 0.032 x + 500 0.034 * 0.22        0.025  x + 1200 0.730 -0.05 

Species Metabolic responses 
Residuals 

df 
Slope  Intercept 

 
  F p  F p 

Acropora solitaryensis Photosynthesis efficiency 38 2.741 0.106  65.594 <0.001 *** 

 Gross Photosynthesis 38 0.018 0.893  20.801 <0.001 *** 

 Respiration 38 0.454 0.504  0.834 0.367 

 Light Calcification 35 0.857 0.361  42.920 <0.001 *** 

 Dark Calcification 35 1.613 0.212  79.386 <0.001 *** 

  Skeletal growth rate 39 2.192 0.147  87.105 <0.001 *** 

 
       

Porites heronensis Photosynthesis efficiency 38 0.026 0.872  81.285 <0.001 *** 

 Gross Photosynthesis 37 1.156 0.289  28.800 <0.001 *** 

 Respiration 37 1.132 0.294  20.348 <0.001 *** 

 Light Calcification 26 1.158 0.293  5.463 0.210 

 Dark Calcification 23 1.690 0.207  0.927 0.346 

 Skeletal growth rate 36 1.523 0.225  4.308 0.067 
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Host metabolism. In the two symbiotic corals, no significant effect of the increasing pCO2 on 

the respiration has been identified for the two temperature treatments (Table 2.2). The 

ANCOVA revealed a significantly higher intercept for the linear regression after the cold shock 

(Figure 2.4 (a2), Table 2.3, p < 0.001), for P. heronensis. Before the cold shock, the highest   

respiration rate, for P. heronensis, was recorded at 0.22 µmol O2 h
-1 cm-2 at 748 ppm. Whereas, 

after the cold shock, the highest respiration rate was recorded at 0.46 µmol O2 h-1 cm-2 at  

388 ppm. No significant different slopes were identified (Table 2.3). 

The light calcification declined significantly and linearly as a function of increasing 

pCO2 for A. solitaryensis , with the strongest pCO2  dependent decline measured  after the cold 

shock (with respective slopes of  - 3.5 and - 1.9 μmol CaCO3 h
-1 cm-2 per 105 ppm of pCO2 , pre 

and post -cold shock) (Figure 2.4 (b1), Table 2.2). In addition, the ANCOVA results showed a 

significant higher intercept of the pre-cold shock regression model, but no differences in slopes 

(Table 2.3, p < 0.001 and p = 0.361 respectively). Before the cold shock, the highest light 

calcification rate was recorded at 0.35 μmol CaCO3 h
-1 cm-2 at 463 ppm. After the cold shock  

the highest light calcification rate was recorded at 0.07 μmol CaCO3 h
-1 cm-2  at 441 ppm.   

No significant decline in light calcification rate as a function of pCO2   has been identified for 

P. heronensis (Figure 2.4 (b2), Table 2.2), and no differences of intercepts and slopes between 

the regression models (Table 2.3). 

The response of dark calcification as a function of increasing pCO2 was significantly 

negated in A. solitaryensis and P. heronensis. The strongest pCO2  dependent decline was 

measured for P.heronensis before the cold shock (respective slopes of  - 3.5 and -8.4 μmol 

CaCO3 h-1cm-2 per 105 ppm of pCO2; Table 2.2), and A. solitaryensis after the cold shock 

(respective slopes of  - 4.8 and - 4.5 μmol CaCO3 h
-1cm-2 per 105 ppm of pCO2 ; Figure 2.4 (c), 

Table 2.2). The ANCOVA confirmed the significantly higher intercept of the relationship dark 

calcification - pCO2  before the cold shock, for A. solitaryensis and no significant differences in 

slopes (Table 2.3). 

Before the cold shock, the skeletal growth rate decreased significantly as a function of 

increasing pCO2 , in A. solitaryensis and P. heronensis, with the strongest pCO2  dependent 

decline measured for A. solitaryensis (respective slopes of - 30 and - 1.7 μmol h-1 cm-2 per  

104 ppm of pCO2; Figure 2.4 (d), Table 2.2). After the cold shock, the skeletal growth rate was 

negated by pCO2 only in A. solitaryensis (slope = -1.2 μmol h-1 cm-2 per 104 ppm of pCO2;  

Table 2.3). Significant different intercepts, between the two temperature treatment regressions, 
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have been revealed for A. solitaryensis, but not for slopes (Table 2.3). When submitted to the 

cold shock, the skeletal growth rates decreased by an average of 65% in A. solitaryensis, relative 

to the rates prior to the cold shock. 

Regarding the total soluble protein concentrations after the cold shock, the two studied 

species demonstrated dissimilar responses to pCO2 . A. solitaryensis exhibited a significant 

decrease as a function of increasing  pCO2   (slope = - 3.2 μg cm-2 per 102 ppm; Figure 2.6 (c1), 

Table 2.2, p = 0.034), and  a significant difference of concentration between the two 

temperature treatments, for the targeted pH condition 7.8 and 8.2 (Figure 2.5 (c1), Table 2.5,  

p = 0.045).  P. heronensis ,demonstrated no significant response of protein concentration, 

neither as a linear decrease as a function of increasing  pCO2 (Figure 2.6 (c2), Table 2.5), nor 

between and within the targeted pH condition 7.8 and 8.2 (Figure 2.5 (c2), Table 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Scenario approach. Mean metabolic responses as a function of targeted pH conditions 

(pHNBS) in the two studied species (1: A. solitaryensis; 2: P. heronensis): (a) Zooxanthellae density  

(106 cells cm-2);  (b) Chlorophyll a concentration (µg cm-2) ; (c) Total soluble protein concentration   

(µg cm-2). Purple boxplots: coral response prior to the cold shock; blue boxplots: coral response after 

the cold shock. The stars represent significant differences at p < 0.05 (*), p < 0.01 (**)  and   

p < 0.001 (***), computed by Tukey HSD test at 95% interval of confidence. 
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Table 2.4. Means of parameters of the carbonate chemistry, for the targeted pHNBS condition 8.2 and 

7.8, and for each temperature treatment (i.e. before and after cold shock). pHNBS (continuous 

measurement), temperature (continuous measurement) and total alkalinity (n = 13) are measured values; 

and pCO2, HCO3, CO3
2-, and ΩAragonite are calculated values using CO2sys. Values are presented as  

mean ± S.E.. 

 

 

 

Temperature 

treatment 

Targeted pH 

NBS 

condition 

Measured  

pHNBS 

Temperature 

(°C) 

Total Alkalinity 

(µmol kg-1) 

pCO2 

(µatm) 

HCO3 

(µmol kg-1) 

CO3
2- 

(µmol kg-1) 
ΩAr in 

Prior to cold 

shock 
8.2 8.12 ± 0.07 17.9 ± 0.02 2269.8 ± 1.2 507 ± 119 1859.4 ± 45.8 168.4 ± 18.7 2.61 ± 0.29 

 7.8 7.76 ± 0.06 17.9 ± 0.03 2268.9 ± 3.1 1247 ± 232 2068.3 ± 24.7 82.9 ± 10.1 1.29 ± 0.16 

After cold 

shock 
8.2 8.09 ± 0.07 15.13 ± 0.05 2261.4 ± 1.1 574 ± 119 1890.7 ± 42.9 151.5 ± 17.5 2.33 ± 0.27 

 7.8 7.83 ± 0.04 15.34 ± 0.02 2259.9 ± 1.2 997 ± 106 2051.0 ± 16.7 86.2 ± 6.8 1.33 ± 0.10 

Figure 2.6. Coral metabolic responses as a function of pCO2 (ppm), after the cold shock, in the two 

studied species  (1: A. solitaryensis; 2: P. heronensis): (a) Zooxanthellae density (106 cells cm-2);   

(b) Chlorophyll a concentration (µg cm-2) ; (c) Total soluble protein concentration  (µg cm-2).   

Grey bands represent the 95% CIs of the linear regressions.  
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Table 2.5. Results of the ANOVA for the effects of temperature and pCO2 on the two coral metabolic 

responses. P-values were considered significant when p <  0.05. The stars represent significant 

differences at p < 0.05 (*), p < 0.01 (**)  and  p < 0.001 (***). 

Metabolic responses 

 

df 
Acropora solitaryensis  Porites heronensis 

 F p  F p 

Zooxanthellae density temperature 1 0.443 0.524  14.59 0.005 ** 

 pH 1 0.462 0.516  0.363 0.563 

 temp* pH 1 0.002 0.963  0.005 0.944 

Chlorophyll temperature 1 3.481 0.095  11.84 0.008 ** 

 pH 1 2.839 0.130  0.112 0.746 

 temp* pH 1 0.001 0.973  0.928 0.363 

Protein temperature 1 5.900 0.045 *  0.049 0.829 

 pH 1 0.065 0.806  0.023 0.882 

 temp* pH 1 0.004 0.950  0.059 0.813 

 

 

Discussion 

Effects of OA. In the present study, based on a 7-week experiment, only light paling was 

observed. In addition to cold stress, significant linear effects of increasing pCO2was observed 

on some of the physiological and metabolic parameters investigated , but the response differed 

among the species.  

The strongest effect of increasing pCO2 was measured for A. solitaryensis, on the total 

soluble protein concentration (-32 μg cm-2 per 103 ppm of pCO2), whereas no significant effect 

of the increasing  pCO2 was identified for P. heronensis. Impairment of protein metabolism 

was shown for several coral species (Edmunds and Wall., 2014). In addition  protein reserves 

are important indicators of the energy balance and the overall health of corals (Anthony et al., 

2008). A significant decrease in protein contents suggests that the coral host is compensating a 

loss of energetic supply (i.e. photosynthates translocation from the photosynthesis) by using its 

own reserve (Rodrigues & Grottoli, 2007). OA was also shown to affect protein metabolism in 

some corals.  

Increasing pCO2 led to significant reduction in dark calcification and skeletal growth 

rates for the coral species P. heronensis, but not for the light calcification. Further reductions 

in skeletal growth, light and dark calcification rates were revealed for the coral A. solitaryensis. 

Calcification rates, in both species, reached from near zero to negative rates under high pCO2 

conditions (ΩAragonite < 1, circa pCO2 of 1500 ppm), indicating severe decreases in 

calcification and even the net dissolution of the skeleton. These results, in respect to 

calcification, suggest that the two corals are sensitive to pCO2 under average winter temperature 
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(~18°C), with a slightly higher resistance for P. heronensis. The effect of elevated  pCO2 on 

calcification in corals have been well documented (Gattuso et al., 1999; Langdon et al., 2003; 

Marubini et al., 2003). Some studies highlighted the ability of the massive Porites spp. to resist 

the effects of high pCO2 exposure under warm temperatures (> 22°C) (Edmunds et al., 2011; 

Fabricius et al., 2011). Moderately elevated temperatures can stimulate enzyme activity 

(Marshall and Clode 2004) and metabolic rate (Edmunds 2005), including calcification in corals 

(Marshall and Clode 2004). The reduction of calcification under elevated pCO2 in  

P. heronensis, is likely to have been due to the combination of the low winter temperature and 

the effect of  elevated pCO2 on calcification.  Similar strongly reduced calcification rates or net 

dissolution are commonly observed during the lowest temperature period (i.e. winter) in coral 

species found at high latitudes (Howe and Marshall, 2001; Higuchi et al., 2015; Higuchi et al., 

2020). 

Significant loss pigmentation (i.e. chlorophyll a contents) was observed in  

A. Solitaryensis under elevated pCO2, and neither gross photosynthesis nor photosynthetic 

efficiency (Fv/Fm) significantly increased for both species. These results suggest that 

zooxanthellae are resistant to short-term high pCO2 exposure. This hypothesis is consistent with 

the study by Langdon et al. (2003) which did not find change in productivity response to 

elevated pCO2, suggesting that symbiotic algae are able to rely on bicarbonate for 

photosynthesis (Burris et al., 1983; Goiran et al., 1996), and the additional inorganic carbon 

provided by the increased pCO2 is likely too small to lead in a significant increase of 

photosynthesis.   

Overall, our results are consistent with previous studies, identifying P. heronensis as 

part of the  “low-sensitivity” group to pCO2, showing a high resistance to high CO2 levels 

(Edmunds, 2011; Fabricius et al., 2011); and A. solitaryensis as part of  “high-sensitivity” group 

to pCO2 , predicted to be severely limited geographically by ocean acidification, in a context of  

poleward shift (Agostini et al. 2018; Agostini et al., in preparation). Such resistance to 

increasing pCO2 potentially may be due to heterotrophy and changes in biomass (Edmunds, 

2011), and/or to the coral ability to up-regulate pH at the site of calcification (Herfort et al., 

2008; McCulloch et al. 2012), which might be a critical factor in determining the dominant 

species in the predicted high pCO2 oceans.   

Our study highlights the different possible interpretations of the effect of pCO2 on coral 

metabolisms, according to the used approach : “regression” versus “scenario”. The “scenario” 
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method; consisting of measuring the physiological response of organisms under a small number 

of pH conditions (generally 2-3) in replicates; has been pointed out recently for its limitations 

(Vargas et al., 2017; Gazeau et al., 2013). To face these limitations, the "regression" method; 

consisting of investigate responses under a vast gradient of different conditions, without any 

replication; was proposed as an alternative  (Dorey et al., 2013; Comeau et al., 2013; Ventura 

et al., 2016). In the present study, the regression approach revealed significant linear models 

demonstrating the effect of pCO2 on the chlorophyll-a and protein contents, for A.solitaryensis, 

after the cold shock (p = 0.014 and 0.034 respectively); whereas the scenario approach did not 

identity significant differences of chlorophyll-a and proteins between the two targeted pH 

conditions 8.2 and 7.8 (covering the present condition and IPCC’s projections by the year 2100, 

respectively) (Figure 2.5). It is likely that the regression approach is an insightful method to 

better predict the impacts of OA in comparison with the “scenario” approach, by resolving the 

general trend and the shape of the relationship between metabolism and pCO2. The description 

of these relationships could greatly expand our understanding of potential acclimation 

mechanisms in corals (i.e. by comparing the regression models within the metabolic parameters; 

e.g. thermal compensation, energy allocation shift), and greatly improve the accuracy of models 

describing the effects of the predicted OA on calcifying organisms and ecosystems. 

No physiological tipping point were identified, beyond which these coral species were 

no longer capable of carrying out the functions necessary to their survival. These observations, 

regarding the calcification, do not match with previous studies suggesting a pCO2 threshold at 

500 ppm (Hoegh-Guldberg et al. 2007), above which calcification of coral reefs is projected to 

be catastrophically reduced. However our results are consistent with the previous study of 

Comeau et al. (2013), who identified no tipping-points within the responses of eight coral reef 

calcifiers to increasing pCO2, and stressed the necessity to consider a multidimensional 

environment (multiple drivers) to conclude about experimental studies. Indeed, it is likely that 

both biological and methodological effects can explain the reason why the effects of seawater 

acidification on the metabolism of A. solitaryensis and P. heronensis, has been limited in the 

present study, regarding bleaching, productivity and calcification responses, compared to 

previous studies (Anthony et al., 2008). One explanation is that in this study, low-light 

intensities have been used (maximum of 100 µmol photons m-2s-1), which did not trigger the 

synergic exacerbation of photoinhibition (Foyer et al. 1994, Long et al.1994). These light levels 

are lowered than those use in most coral studies but here temperate coral species were 

considered, compared to tropical species, and light levels of 100 µmol photons m-2s-1 are 
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frequent in winter at the depth where coral are found in high latitudes. Indeed, pCO2 

concentration and high light irradiance (irradiance of >1000µmol photons m-2s-1) interaction  

have been demonstrated to trigger bleaching (Dunne and Brown, 2001; Jones & Hoegh-

Guldberg 2001) and different light regime have been shown to change the response of corals to 

elevated pCO2 (Comeau et al., 2016, 2013; Dufault et al., 2013; Suggett et al., 2013; Wall et 

al., 2017). Moreover, our experiment was carried out by supplying non filtered seawater to the 

experimental tanks. This could have resulted in the supply of  energy-rich compounds 

(POC/nutrients) to corals that would have  contributed to a mitigation of the deleterious effects 

of low pH (Edmunds, 2011). Therefore, if food supply is abundant and light irradiance 

moderated, which are typical conditions in temperate latitudes, corals may still be capable of 

calcifying at sufficient rates to maintain growth. This also suggests that coral calcification, at 

least to a certain seawater acidity and duration of exposure thresholds, is mainly an energy-

limited process and is still possible even at considerably low pH. 

Effects of temperature. Coral bleaching events (i.e. loss of pigmentation), correlated with 

decreases in sea surface temperatures, have been widely reported in coral reefs (Coles and 

Jokiel 1977, Gates et al. 1992; Higuchi et al.,2015; Higuchi et al., 2020). In marginal high 

latitude  coral communities, cold bleaching events have been recorded in winter after unusually 

cold weather, leading to high mortality rates of corals (Yamano and Namizaki, 2009; Leriorato 

and Nakamura, 2019). In the present study no bleaching and mortality events have been 

identified for the two coral species as the result of cold shock. These results highlight a 

resistance of these two hermatypic corals to a short-term cold stress. However, the survival 

strategies to the cold temperature seem to differ among the species. 

In P.heronensis, decreased Fv/Fm (i.e. indicating increased photoprotection; Jones and 

Hoegh-Guldberg 2001), zooxanthellae density and chlorophyll content; along with a significant 

increase in photosynthesis wa observed. Calcification rates of P.heronensis under low seawater 

temperature did not decrease significantly; even under ΩAragonite < 1 conditions (i.e. 

enhancing the aragonitic skeleton dissolution); and a significant increased of respiration rates 

was observed. These results are consistent with the wide temperature tolerance range of the 

warm temperate coral P.heronensis (Higuchi et al., 2020), and suggest a faster acclimation to 

cold temperatures, compared to its symbionts. In addition, the significant increase of respiration 

rates after the cold stress suggests that a thermal compensation in metabolism rates may have 

occurred. Increased respiration rates and production of enzymes to defend against stress, have 

been observed in corals (Jacques et al., 1983; Howe and Marshall, 2001), and in other organisms 
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(Sassaman and Mangum, 1970; Mangum et al., 1972). However, our results do not match with 

previous studies on P.heronensis, showing great resistance to cold stress by means of a 

reduction in basal metabolism (decrease of photosynthesis, calcification, respiration, ETSA; 

Higuchi et al., 2020). Nevertheless, such resistance to cold stress potentially may be due to 

endemicity and potential adaptations, which might be a critical factor in determining the 

dominant species in the high latitude marginal coral communities of the future. Regarding 

A.solitaryensis, decreases of photosynthetic efficiency and calcification (i.e. skeletal growth 

rate, light and dark calcification rates) were observed, although a significant increase of 

photosynthesis was observed. However, these results do not accord with previous studies, 

which showed a higher sensitivity to cold stress in A.solitaryensis (severe bleaching and 

mortality when exposed at 13 °C; Higuchi et al., 2015).  

The limited paling and absence of bleaching in our study may be linked to the low-light 

intensities that have been used (maximum of 100 µmol photons m-2s-1).These could have 

contributed to the limited effect of the cold shock treatment. Also, the experimental period of 

cold stress (below 15°C) lasted 12 days, which was shorter than the one recorded by Higuchi 

et al. (2020) (i.e. 110 days), or by Leriorato and Nakamura (2019) (i.e. 58 days); thereby playing 

a major role in the ultimate survival of corals. Nevertheless, our results suggest that 

P.heronensis has a higher tolerance to cold temperatures than A.solitaryensis, in line with 

previous studies identifying the fast growing  A.solitaryensis as low resilient coral to cold stress, 

and P.heronensis highly resilient to cold stress and already established at high latitudes 

(Higuchi et al., 2015; Higuchi et al., 2020). This study highlights the diversities of response 

among corals to cold temperature events; and the need to better understand the response of these 

high latitude marginal coral communities, for better conservation of this future reservoir of 

biodiversity, in a context of global change. 

Combined effects of OA and temperature. Even if no interaction between pCO2 levels and 

temperature treatments has been revealed for these two coral species (i.e. no different slopes 

between regression models), this study highlights the additional effect of cold stress, on the 

weakened metabolism of coral exposed to acidified seawater. Skeletal growth rates in  

A. solitaryensis, decreased by an average of 65% when exposed to the cold shock (23 days). It 

is likely that coral colonies exposed to acidified seawater will be even more weakened if they 

are subjected to additional threats (i.e. water quality, anthropogenic pressures). When corals are 

exposed to a poor seawater quality, it has been widely demonstrated that they stop their growth 
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and expel their zooxanthellae (e.g. Hoegh-Guldberg, 1999; Ferrier-Pages et al., 2000), so a cold 

thermal stress would exacerbate these phenomena (Saxby et al., 2003).  

Conclusion 

The variety of responses to high pCO2 and additional cold stress reported in this 7 week-

incubation experiment and elsewhere demonstrate heterogeneity in the response of reef 

calcifiers (Pandolfi et al. 2011; Higuchi et al., 2015; Higuchi et al., 2020; Agostini et al., in 

prepa). These different responses could lead to the emergence of potential “ecological winners”, 

such as P. heronensis here. In a context of poleward shift, our results suggest that poleward 

shifting A. solitaryensis would be severely limited by ocean acidification and only the warm 

temperate encrusting coral P. heronensis, already established at these high latitudes, could 

maintain suitable growth rates under future ocean acidification and cold stress. The results of 

this study suggest that the impact of short-term extreme cold stress (12 days under 15°C) on the 

physiology and energy balance of reef organisms, is acting as an additional stress to 

acidification threats. The lack of a clear tipping point, as well as the emergence of potential 

winners in the face of declining pH, indicate that in the coming decades the species composition 

of coral reefs is likely to slowly change, without abrupt transitions, to a new composition in 

which species do have the required potential for adaptation in the marginal high latitudes.  The 

redistribution of coral reefs and the decline in structurally complex framework forming corals 

(e.g. Acropora solitaryensis) at the marginal high latitudes could cause severe and fundamental 

ecosystem modifications (e.g. reduction of habitat availability for fish and many invertebrates; 

Sunday et al., 2017; Cattano et al., 2020) and thus, strongly affects: ecosystem functioning, 

human well-being (economic development, livelihoods, emerging diseases, food security; Hall-

Spencer and Harvey, 2019), and the dynamics of climate change itself (feedbacks, carbon 

sequestration; Pecl et al., 2017). Under the current changing environment, the need to evaluate 

the environmental controls on coral reefs and predict global distribution under future climate 

change scenarios is fundamental. 

Our study only considers the physiological aspect for the determination of the future 

distribution range which may not be sufficient for a correct prediction (Pearson & Dawson, 

2003). However, the regression approach, used within this study, has been demonstrated to be 

an insightful method to better predict the impacts of OA in comparison with the “scenario 

approach”, by resolving the general trend and the shape of the relationship between metabolism 

and pCO2. The description of these relationships for a wide range of species composing coral 
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reef communities at low and high latitudes, could improve the accuracy of models describing 

the effects of the predicted OA on calcifying organisms and ecosystems, under climate change. 
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Supplementary materials 

 

Table 2.6. Parameters of the carbonate chemistry, for each tank, prior and after the cold shock (n = 24 

and n = 18 respectively). pHNBS (continuous measurement), temperature (continuous measurement) and 

total alkalinity (n = 79 and n = 50 respectively) are measured values; and pCO2, HCO3, CO3
2-, and 

ΩAragonite are calculated values using CO2sys. Values are presented as mean ± S.E.. 

 


