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Abstract  

High-resolution sound and movement recording tags (e.g. Dtags, Acousonde tags, A-

tags) offer unprecedented views of the fine-scale foraging behaviour of cetaceans, 

especially those that use sound to forage, such as the sperm whale (Physeter 

macrocephalus). However, access to these tags is difficult and expensive, limiting 

studies of sperm whale foraging behaviour to small sample sizes and short time periods, 

preventing inferences at the population level. The development of accurate foraging 

indices from relatively inexpensive time-depth recorder (TDR) data would allow 

obtaining data from a larger number of individuals, and capitalizing on datasets already 

available, providing long-term analyses of foraging activity. In this study, data from 

high-resolution acoustic and movement recording tags from 8 sperm whales was used to 

build predictive models of the number of buzzes (i.e, indicative of prey capture attempts 

(PCA)) for dive segments of different lengths, using dive metrics calculated from time-

depth data only. The number of buzzes per dive segments of 180s and 300s was best 

predicted by the average depth, depth variance, vertical velocity variance and number of 

wiggles. Model performance was best for 180s segments, accurately predicting the 

number of buzzes in 63% of the segments used to construct the model and in 58% of the 

segments for new individuals. Predictive accuracy reached 81%, when only presence or 

absence of buzzes in segments was assessed. These results demonstrate the feasibility of 

finding a reliable index of sperm whale foraging activity for time-depth data, when 

combining different dive metrics. This index estimates the number of buzzes over short 

dive segments (of 180s), enabling investigating and quantifying PCAs at very fine-

scales. Finally, this work contributes to leverage the potential of time-depth data for 

studying the foraging ecology of sperm whales and the capacity of applying this 

approach to a wide range of cetacean species.  

Keywords: Sperm whale, Dtag, time-depth data, foraging behaviour, buzz predictive 

model 
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Resumo  

O cachalote (Physeter macrocephalus) é um dos mais conhecidos predadores marinhos, 

passando mais da metade da sua vida abaixo dos 500m de profundidade, onde se 

alimenta principalmente de lulas meso e bentopelágicas, embora também possam 

consumir outros cefalópodes, peixes profundos e invertebrados. Apresenta uma 

distribuição mundial e pode ser encontrado no arquipélago dos Açores durante todo o 

ano, perto da costa, razão pela qual os Açores foram uma das regiões baleeiras mais 

importantes.  

O som desempenha um papel fundamental na vida dos cachalotes. Eles produzem sons 

enquanto estão a socializar e na procura e captura de alimento. Foram identificados pelo 

menos quatro tipos de cliques (cliques usuais, “buzzes”, codas e “slow clicks”), dos 

quais os cliques usuais e os “buzzes” estão envolvidos no comportamento de 

alimentação. Os cliques usuais têm níveis sonoros elevados e são altamente direcionais, 

servindo como um biosonar para navegar pelo ambiente e eco-localizar presas. Os 

“buzzes”, consistem em cliques de alta frequência e baixa amplitude, produzidos em 

intervalos rápidos. Por esta razão, têm um alcance mais curto do que os cliques usuais, 

fornecendo uma resolução mais alta e, portanto, informações mais detalhadas sobre o 

seu ambiente próximo e presas. 

A observação direta é uma das ferramentas mais poderosas para estudar o 

comportamento animal, não obstante, no caso dos cachalotes é altamente limitada, 

consequência dos longos períodos que passam em profundidade. Por este motivo, os 

estudos sobre o comportamento do cachalote, e de outros predadores marinhos de 

mergulho profundo, dependem da utilização de diferentes ferramentas que permitem 

obter informações sobre o seu comportamento subaquático. Os hidrofones e as marcas 

colocadas em animais estão entre as ferramentas mais importantes para estudos sobre o 

comportamento dos cetáceos, permitindo o registo contínuo de sons produzidos debaixo 

de água e o seguimento, também contínuo, de movimento e outras variáveis de 

mergulho.  

A incorporação de hidrofones em marcas para colocação em animais, como as marcas 

acústicas digitais (“Dtags”), marcas “Acousonde” ou “A-tags” revolucionou o estudo do 

comportamento dos cetáceos. Estas marcas fornecem dados de movimento tri-

dimensional e acústicos de alta resolução, simultaneamente registando informação sobre 
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o comportamento do animal, possibilitando, por exemplo, a compreensão de como os 

cachalotes usam o som durante a alimentação. Estudos baseados na análise de dados de 

“Dtags” revelaram que a presença de picos de velocidade na parte mais profunda do 

mergulho e movimentos rápidos da mandíbula estavam relacionados com a produção de 

“buzzes”. Consequentemente, foi sugerido que os “buzzes” são emitidos durante a fase 

terminal de captura de presas, a fim de obter informação de alta resolução sobre o alvo. 

Desde então, a produção de cliques tem sido usada como um indicador de esforço de 

alimentação e a produção de “buzzes”, considerada como o melhor indicador de 

tentativa de captura de presas.  

Não obstante, o acesso a estas marcas de alta resolução acústica e movimento é 

extremamente difícil e caro, limitando o estudo do comportamento de alimentação do 

cachalote a amostras pequenas e curtos períodos de tempo. Por esta razão, o 

desenvolvimento de um índice de esforço de alimentação exato, a partir de dados de 

mergulho 2D de dados de tempo-profundidade como os “time-depth recorders” (TDR), 

permitiria capitalizar um conjunto de dados de mergulho já disponíveis, analisando 

séries temporais de atividade de alimentação e avaliando alterações ligadas a mudanças 

climáticas ou antropogénicas. 

No presente estudo, dados de alta resolução com informação acústica de oito cachalotes 

marcados com “Dtags” no arquipélago dos Açores foram usados para construir um 

modelo preditivo do número de “buzzes”, baseado exclusivamente em dados 

profundidade-tempo e com resolução máxima de 1m de profundidade, correspondendo, 

portanto, às capacidades de registo de um TDR. O número total de “buzzes” por 

segmento foi modelado a partir de um conjunto de variáveis que descrevem a média e 

variabilidade de profundidade, tempo passado na fase profunda do mergulho, 

velocidade vertical, aceleração vertical e número de excursões verticais, usando um 

modelo linear generalizado misto (GLMM), com o indivíduo como um efeito aleatório.  

De um total de 816 “buzzes” analisados, 95% apresentaram uma duração de 2 a 14 

segundos. Portanto, inicialmente os mergulhos foram divididos em segmentos de curta 

duração. Porém, as primeiras análises demonstraram fracas capacidades preditivas e 

finalmente optou-se por usar segmentos de 180s e 300s. 

Os melhores modelos de número de buzzes por segmento de 180s e 300s incluíram a 

profundidade média, a variância de profundidade, a variância da velocidade vertical e o 
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número de “wiggles” por segmento. Os segmentos de mergulho com “buzzes” 

apresentaram uma maior profundidade média, menor variância de profundidade, maior 

variância de velocidade e maior presença de “wiggles”, sendo a profundidade média a 

métrica mais relevante do modelo. Estes resultados confirmam que os “buzzes” ocorrem 

nas partes profundas do mergulho e sugerem que as várias tentativas de captura podem 

ocorrer numa extensão de profundidade limitada, demonstrado pela pequena variação de 

profundidade, maior variação de velocidade e presença de “wiggles”. 

O desempenho do modelo foi melhor para segmentos de 180s, resultando em deteções 

corretas do número de “buzzes” em 63% dos segmentos usados para construir o modelo 

e em 58% dos segmentos para novos indivíduos usados para testar o modelo. Assim 

mesmo, o modelo resultou em 81% de deteções corretas quando avaliada apenas a 

presença ou ausência de “buzzes” nos segmentos. Apesar do nosso modelo ter algumas 

deficiências preditivas, os resultados preditivos são similares àqueles obtidos com 

modelos desenvolvidos anteriormente, para prever tentativas de captura de presas em 

conjuntos de dados 2D de baixa resolução em outras espécies. Porém, ao contrário 

desses modelos que previram tentativas de captura de presas na escala de mergulho ou, 

na melhor das hipóteses, em escalas de 30 minutos e de uma hora, o modelo 

desenvolvido neste estudo previu tentativas de captura de presas a cada 3 minutos. 

Este é o primeiro estudo a desenvolver um modelo que prevê o número de tentativas de 

captura de presas e, consequentemente, o esforço de alimentação em cachalotes a partir 

de perfis de mergulho 2D. O presente método poderá ser aplicado a conjuntos de dados 

de profundidade de tempo já disponíveis, a fim de conduzir análises retrospetivas do 

comportamento de alimentação. Porém, o aumento do tamanho da amostra e uma 

análise de dados mais detalhada permitiria obter previsões mais precisas. Finalmente, a 

presente abordagem de estimativa de alimentação é baseada na previsão do número de 

“buzzes” e, portanto, poderia ser potencialmente aplicada a uma série de espécies de 

odontocetes, potencialmente permitindo estimativas mais precisas do esforço de 

alimentação, do que os índices grosseiros e gerais tipicamente derivados de perfis de 

mergulho 2D. 

Palavras-chave: Cachalote, Dtag, dados tempo-profundidade, comportamento de 

alimentação, modelo preditivo de “buzzes”. 
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The Sperm Whale 

The sperm whale (Physeter macrocephalus, Linnaeus 1758), the largest of all toothed 

cetaceans, is commonly recognized by its prominent and squarish head forming the 

hypertrophied nasal complex, which can make up to one-third of the animal‟s total 

length. As a consequence of its massive head, it is the animal with the biggest brain and 

spermaceti organ (Jefferson et al. 2011), which is strongly involved in sound 

production, contributing to the powerful and characteristic echolocation clicks of sperm 

whales (Whitehead 2018). 

Adult females are up to 11m long and 15t weight, while adult males can reach and 

overpass 16m and 45t, making sperm whales the most sexually dimorphic of all 

cetacean species (Connor et al. 1998, Teloni et al. 2008, Jefferson et al. 2011, 

Whitehead 2018). The body is laterally compressed with a characteristically S-shaped 

blowhole offset to the left as a consequence of the skull‟s asymmetry (Whitehead 2018). 

The dorsal fin is thick, low and rounded and is located at approximately 2/3 of the body; 

the fluke is wide, flattened and triangular, and is usually used for photo-identification 

(Jefferson et al. 2011). 

The body presents a dark coloration, ranging from black, dark bluish-gray to brown-

grey, but the belly is lighter and often white (Gosho et al. 1984). In addition, tooth scars 

are frequently found in the head of mature males as a consequence of intra-sexual 

competition and/or prey fighting (Kato 1984, Jefferson et al. 2011). Between 20 to 26 

pairs of conical teeth are present uniquely in the Y-shaped lower jaw (Gosho et al. 1984, 

Whitehead 2018).  

 

Distribution and life history 

Sperm whales are widely distributed across all oceans and seas, from the tropics to the 

pack-ice of both hemispheres. Their distribution is not homogenous but is associated 

with steep bottom topography, strong oceanographic fronts, and high productivity 

(Jefferson et al. 2011). Furthermore, sperm whale distribution varies with sex and 

maturity stage. Adult females, juveniles and calves of both sexes live in long-term 

stable social units, moving within tropical and temperate waters (Christal et al. 1998, 

Whitehead 2003). Young males disperse from their natal groups before puberty and 
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aggregate with other males in “bachelor herds”. As males grow older, they decrease in 

sociality and increase in migration range; after attaining sexual and social maturity, in 

their twenties, adult males turn solitary and gradually move to cold waters near the 

poles. The older the male, the further north it ventures, only coming back to warmer 

waters in their late twenties in order to mate (Gosho et al. 1984, Whitehead 2003, 

Jefferson et al. 2011, Whitehead 2018). During the mating season, adult males often 

associate with social units for short periods of time (Best 1979, Pinela et al. 2009, 

Ortega‐Ortiz et al. 2012) (Figure 1.1). 

The drivers of sexual segregation in sperm whales are not well understood but likely 

reflect different physiological, ecological and social needs of the sexes. Males may 

access high-latitude food sources to avoid competition from females and increase 

growth rates to attain competitive size, while calf thermoregulatory limitations may 

prevent social units from reaching colder waters. In addition, social units may avoid 

high-latitude waters to reduce predation risk of small calves (Whitehead 2003).  

Sperm whales are “k-selected” species and as such are characterized by low 

reproductive rates, slow growth, high survival, and consequently longevity, presumably 

reaching over 50 years (Christal et al. 1998, Jefferson et al. 2011, Whitehead 2018). 

Females become sexually mature at around 9 years, and ~9m in length, and usually give 

birth every 5 years, although pregnancy rates slow down with age and may differ 

between locations. Adult males, on the other, reach sexual maturity at 25-27 years of 

age when they are most frequently from about 11.6 m upwards in size (Tarasevich 

1967, Best 1979, Whitehead 2003). Sperm whales are polygamous; most births occur 

between the summer and after a gestation of 14 to 16 months, with newborns being 

around 4m long and weighting 1ton (Best et al. 1984).  

Sources of natural mortality in sperm whales are poorly understood. Mass strandings are 

common in some regions but the causes and rates are unknown. Pitman et al. (2001) 

suggested that killer whale predation may be underappreciated in the evolution of sperm 

whale ecology, but no estimates have been provided.  
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Figure 1.1. Sperm whale distribution map showing the sexual differences in habitat range between males 

and females (extracted from Whitehead et al. 2018). 
 

 

Sounds and sound production 

Sounds play a fundamental role in the lives of cetaceans and sperm whales are no 

exception. Although sperm whales occasionally produce some low intensity tonal 

sounds (e.g., “squeals”, “trumpets” and “pips”) (Goold 1999, Teloni et al. 2005), clicks 

are the most frequent sound produced by sperm whales. Clicks are sharp-onset, 

broadband, impulsive vocalizations with energy ranging from 5 to 25 kHz (Madsen et 

al. 2002a, Madsen et al. 2002b). They are involved in foraging behaviour and social 

communication.  

At least four kinds of clicks (usual clicks, buzzes, codas, and slow clicks) have been 

identified (Weilgart 1993, Jaquet et al. 2001, Miller et al. 2004). The usual clicks are the 

most common sound produced by sperm whales, and consist in long trains of regularly 

spaced clicks, often lasting for minutes and with an inter-click interval (ICI) of about 

0.5-1.0s. Usual clicks are highly directional and have the highest biologically produced 

source levels ever recorded (Møhl et al. 2000). Usual clicks have a much longer 
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echolocation range than other click types (Madsen et al. 2002a) and are mostly used in 

echolocation, for scanning the environment, searching, locating and capturing prey 

(Jaquet et al. 2001, Madsen et al. 2002a, Miller et al. 2004). Buzzes, also termed 

“creaks”, consist of high-frequency low amplitude clicks produced in rapid click trains 

with short ICI 15-100ms (Madsen et al. 2002a, Fais et al. 2016). Buzzes are produced at 

depth during foraging dives; they have shorter echolocation range than usual clicks, 

providing a higher resolution scan and therefore, more detailed information about their 

close environment. Several studies have linked the production of buzzes with bursts of 

swimming speed (Amano and Yoshioka 2003, Aoki et al. 2012) and fast jaw 

movements (Fais et al. 2016). For these reasons, it has been proposed that buzzes are 

emitted during the foraging terminal phase in order to provide high resolution 

echolocation of their target after being detected by their click scan and enable the 

capture of the prey, with the aid of fast jaw movements (Madsen et al. 2002a, Miller et 

al. 2004, Fais et al. 2015, Fais et al. 2016). Codas are stereotyped sets of 3 to 40 clicks 

lasting 0.2-5s, and are mostly produced within social units for communication (Rendell 

and Whitehead 2003). The slow clicks or “clangs” are composed of distinctively ringing 

and metallic clicks repeated every 5-8s (Madsen et al. 2002b). They have been reported 

only in adult males, and may be used for long range communication between males or 

with females, the function depending on the behavioural context in which they are 

produced (Weilgart and Whitehead 1988, Madsen et al. 2002b, Oliveira et al. 2013). 

The sperm whale has a particularly complex sound production system integrated in the 

nasal complex, in which the spermaceti plays a determinant role (Møhl et al. 2000, 

Madsen et al. 2002a). The nasal complex is composed of a set of wax-filled cavities: the 

spermaceti organ; the “junk”, a structure formed by several wax-filled cavities 

interspaced by connective tissue; two nasal passages extending through the nose; two 

air sacs diverting from the right nasal passage; and the monkey lips or “museau de 

singe”, composed of connective tissue and surrounding the right nasal passage 

(Wahlberg et al. 2005) (Figure 1.2). 

 



6 
 

 

Figure 1.2. Cross section of the head of a sperm whale showing anatomical structures relevant for sound 

production: B, brain; Bl, blow hole; Di, distal air sac; Fr, frontal air sac; Ju, junk; Ln, left naris; Ma, 

mandible; Mo, monkey lips/museau de singe; MT, muscle/tendon layer; Ro, rostrum; Rn, right naris; So, 

spermaceti organ; T, tag. Arrows indicate the sound path according to Møhl, 2001. (Extracted from 

Madsen et al. 2002). 

 

 

The sound production mechanism starts in the so-called monkey lips by pressurized air 

flowing from the right naris through the monkey lips, producing the initial sound pulse 

(Wahlberg et al. 2005). The majority of the click energy is redirected backward along 

the spermaceti and reflected in the frontal air sac. After this, part of the click signal is 

reflected into the junk, causing its emission towards the water, and the rest of the pulse 

is reflected back in the distal air sac and again in the frontal air sac, which leads to the 

formation of a second pulse redirected to water by the junk as well  (Madsen et al. 

2002a, Wahlberg et al. 2005). The successive repetition of these back and forth pulse 

reflections creates a loop resulting in the complex multipulsed structure of sperm whale 

clicks, where each inter-pulse interval (IPI) is proportional to the size of the spermaceti 

organ and, hence, of the individual whale (Gordon 1991, Rhinelander and Dawson 

2004). 

 

Foraging behaviour 

Sperm whales present two clear and distinctive behavioural modes: foraging in the deep 

ocean versus resting and socializing in shallow waters (Whitehead 2003, 2018). Sperm 

whales are deep-diving predators, spending more than half of their lives below 500m 

depth, where they mainly target meso- and benthopelagic squids, although they may 



7 
 

also consume other cephalopods, deep-fishes and invertebrates (Madsen et al. 2002b, 

Aoki et al. 2007, Teloni et al. 2008, Thode et al. 2015). Moreover, sperm whale diet and 

foraging behaviour varies geographically (Martin and Clarke 1986, Clarke et al. 1993, 

Evans and Hindell 2004) and, more importantly between the sexes, possibly as a result 

of physiological needs and habitat characteristics. 

Adult females and subadults display a stereotyped foraging behaviour, making 30-45 

min long dives, to 600-1200 m depths (Amano and Yoshioka 2003, Watwood et al. 

2006). Mature males target a higher proportion of deep-fishes than females and 

youngsters, although cephalopods still dominate their diet (Martin and Clarke 1986, 

Whitehead 2003, Isojunno and Miller 2018). Mature males also show a bimodal 

foraging mode, preying on highly mobile prey in shallow waters (14-500m), and on less 

mobile, more densely distributed and perhaps more predictable resources during deep 

dives (1000-1860m) (Isojunno and Miller 2018). The selection between shallow and 

deep foraging modes seems to be governed by the whale perception of the relative 

energetic profits in each depth layer (Teloni et al. 2008). Each foraging dive is followed 

by a resting period at the surface of approximately 9-10 min, or by shallow dives and 

behavioural displays (Watkins et al. 2002, Amano and Yoshioka 2003, Whitehead 

2003).  

In order to navigate in the environment and ultimately detect and capture prey, sperm 

whales use usual clicks and buzzes, whose echo give them information about their 

surroundings (Miller et al. 2004, Watwood et al. 2006). After leaving the surface for a 

deep foraging dive, adult females and subadults start making usual clicks at 

approximately 100-220 m depth (Madsen et al. 2002a, Watwood et al. 2006, Oliveira 

2014). In the Azores archipelago, the foraging phase, the period between the first and 

last buzz within a dive, occurs between 700-1200 m and lasts around 25 min (Oliveira 

2014). The first usual click of adult males from higher latitudes is produced between 4 

and 218m and buzzes have been recorded between 17 and 1860m depth (Teloni et al. 

2008). 

How sperm whales actually locate and capture their prey has become and on-going 

debate since the first scientific studies of the species. Early in the 19
th

 century, Beale 

(1835) proposed for the first time the “sit-and-wait strategy” by which sperm whales 

attract and capture their prey luring them with their white lips. This hypothesis was later 
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changed by the bioluminescence mucosa produced by squid prey that remains attached 

to the mouth of the whale (Gaskin and Cawthorn 1967) and by bioluminescent 

organisms that are stimulated with the whale‟s movement (Fristrup and Harbison 2002). 

Contrary to these passive foraging theories, Rice (1989) proposed that sperm whales 

may use an active search and pursue of prey while swimming randomly with their 

mouths open, and using tactile sense to detect their prey. However, after the discovery 

that sperm whale produce intense broadband pulses termed “clicks”, most of the 

researchers supported the idea that sperm whales use an active foraging behaviour in 

which these clicks are involved (Worthington and Schevill 1957). Some investigators 

even hypothesized that these clicks were used to acoustically debilitate prey and enable 

their capture (Norris and Mohl 1983). The most accepted of these hypotheses was active 

searching and pursuing using echolocation (Norris and Harvey 1972, Whitehead and 

Weilgart 1991, Jaquet et al. 2001, Whitehead 2003). 

However, it was not until the development of animal attached tags that some light was 

brought into this conjecture, confirming the previous hypothesis. The long bottom times 

and the variability both in depth and velocity with “bursts of speed” found by Amano 

and Yoshioka (2003) confirmed that sperm whales use an “active search-and-pursue 

strategy” while foraging, in which the clicks are used as a biosonar in order to 

echolocate prey (Madsen et al. 2002a, Madsen et al. 2002b, Møhl et al. 2003). Both 

clicks and buzzes are involved in the foraging behaviour of sperm whales for the 

detection and capture of prey items. Madsen et al. (2002a) showed the echolocation 

ranges of creaks (buzzes) were remarkably smaller than those of usual clicks. In fact, it 

has been suggested that usual clicks are used to scan the environment and detect prey, 

whereas buzzes are emitted before prey capture (Madsen et al. 2002a, Miller et al. 

2004).This fact was later confirmed by Fais et al. (2016) who demonstrated strong 

acceleration (“jerks”) approximately 5 seconds before the end of most buzzes, 

suggesting these jerks are triggered by “rapid movements in the gular region during 

strikes at prey”. 

They also seem to have developed “active auditory stream segregation”, enabling the 

tracking of fast-moving prey in challenging reverberant conditions (Fais et al. 2015). 

Therefore, sperm whales adjust their sounds according to prey range: as sperm whales 

approach prey, they increase the click rates (shorter ICI) and reduce the source levels in 

order to provide high temporal and spatial resolution “image” of the prey in the last few 
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meters before capture. In addition, the ICI has also been related to the animal‟s size and 

manoeuvrability, as the distance to be covered by the sound increases with animal‟s size 

(Fais et al. 2015, Fais et al. 2016).  

The finding of intact prey items in the stomach content, and the anatomy of the gular 

apparatus, point towards suction feeding (Fais et al. 2016). In addition, sperm whales 

start buzzing at a median distance of 24m from the prey (Tønnesen et al. 2020). 

Moreover, sperm whales rely upon information obtained in previous dives and 

preceding foraging events in order to decide where to invest their foraging effort (Fais et 

al. 2015). 

Nevertheless, how prey items are echolocated in the last few meters of their capture, 

especially after being off from the sperm whales‟ sonar range, how they are finally 

captured and engulfed and the role of sound production in this final phase still remains 

an incognita. 

 

Social behaviour and communication 

Sperm whales are probably among the most social cetaceans, with a multilevel social 

structure: solitary adult males, young male associations, small tight familiar units, 

bigger group movements and socializing during different activities.  

Female sperm whales spend their whole lives in the company of other females and their 

offspring, forming the so-called social or matrilineal familiar units, composed of around 

7-12 members (Whitehead 2003), often genetically related (Christal et al. 1998, Pinela 

et al. 2009). Different units are frequently seen moving together for several hours or 

days forming aggregations of 20-30 individuals; aggregations of animals within a 

certain geographical area are most likely “clans” of animals which share similar coda 

vocalizations (Christal et al. 1998, Whitehead 2003, 2018). 

The formation of groups is especially important for the protection of calves and 

youngsters against predators, “alloparental care” and most likely increased foraging 

success (Pitman et al. 2001, Whitehead 2003, 2018). When being attacked, most often 

by killer whales, sperm whales display the commonly known “marguerite formation”, 

adults gather and may react aggressively with their flukes or jaws against predators, 

maintaining calves or injured individuals in the middle (Pitman et al. 2001, Jefferson et 
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al. 2011). Therefore, long-term relationships and alliances are critical for the survival 

and reproductive success of sperm whales. The communal care of the young, termed 

“alloparental care”, ensures almost continuous protection and even nursing to calves by 

other females (“allosuckling”), while their mothers forage at the depths (Whitehead 

1996a, Perrin et al. 2009). Although this might offer foraging advantages to adult 

females, the benefit of socializing to sperm whale foraging success is still unclear 

(Whitehead 1989).  

The highest social level of sperm whale corresponds to the “vocal clans” or “coda 

clans”, a group of whales or units that share a coda repertoire or dialect (Rendell and 

Whitehead 2003, Gero et al. 2016b, Amorim et al. 2020). As explained earlier, codas 

consist of three or more broadband clicks produced in stereotyped patterns exchanged at 

or near the surface to communicate (Watkins and Schevill 1977). Coda clans are not 

genetically distinct, and therefore, coda repertories or dialects are culturally transmitted 

through social learning (Rendell and Whitehead 2003). Different coda clans coexist 

sympatrically in the Pacific and Eastern Caribbean, while in the Atlantic codas may 

differ depending on the geographic area (Gero et al. 2016a, Gero et al. 2016b). 

Therefore, different coda dialects may segregate and establish the sperm whale society, 

as social units seem only to associate with each other if they share a dialect (Gero et al. 

2016a). In addition, codas may encode individual and behavioural information in the 

form of fine variations in the click pattern and in the type of coda produced in a certain 

context (Antunes et al. 2011, Oliveira et al. 2016). 

Male sperm whales, on the other hand, switch from a social to a solitary lifestyle. After 

leaving the natal social unit they usually aggregate in bachelor groups and become 

solitary with age (Whitehead 2003, Pinela et al. 2009). However several temporal 

clusters of mature males have been registered both in breeding grounds (Christal and 

Whitehead 1997) and feeding grounds (Lettevall et al. 2002). Besides, solitary mature 

males from higher latitudes have been identified to produce slow clicks, mainly at the 

surface and during ascents from foraging dives (Oliveira et al. 2013), in some sort of 

communication, as previously speculated by several authors (Madsen et al. 2002b, 

Whitehead 2003). The click interval and waveform of slow clicks plus the context in 

which they are produced point towards a potential long range communication in which 

individual encoded information might be transmitted (Oliveira et al. 2013). 
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Sperm whales also perform a series of behavioural displays at the surface - breaching, 

flucking-up, spyhops, sideflucking- which have been associated to communication and 

social interactions, although the context and meaning of such displays remain unknown 

(Whitehead 2003, Dudzinski et al. 2009, Whitehead 2018).  

 

Sperm whale in the Azores archipelago 

Sperm whales can be found year round in the waters around the Azores archipelago 

(Silva et al. 2014). Groups of females and offspring –sometimes accompanied by large 

adult males- are present during the summer months, confirming that the Azores serves 

as a breeding and feeding ground for sperm whales (Clarke 1956, Matthews et al. 2001, 

Pinela et al. 2009). In addition, the year round presence of large males and their 

interaction with female groups (Pinela et al. 2009, Silva et al. 2014) suggests that 

mating may also occur in the archipelago.  

Whaling in the Azores was one of the most important local industries during the 20
th

 

century. Prieto et al. (2013) estimated that between 1896-1987 a total of 23557 whales 

were hunted. This unsustainable catch had a huge impact on the population, from which 

it is still recovering. Based on the development of a multi-state open robust design 

model (MSORD) using opportunistic data, the sperm whale open population in the 

Azores has been estimated to 275 individuals for the year 2014 (Boys et al. 2019).  

The sperm whales visiting the Azorean archipelago belong to a single genetically 

differentiated population with high genetic diversity and absence of inbreeding (Pinela 

et al. 2009). The sperm whale primary social units are mainly composed by members of 

the same family and are highly related with members of secondary social groups (union 

of primary social units) (Christal and Whitehead 2001, Whitehead 2003, Pinela et al. 

2009). Immature males from the Azores archipelago have a significantly higher age at 

dispersal (16.6 years) than previously found, which could be consequence of the 

whaling era (Pinela et al. 2009). 

While the Azorean sperm whale population is still recovering from the whaling era, an 

indirect but potentially harmful activity has been increasing in the region during the last 

decades. The whale watching industry in the Azores archipelago has the sperm whale as 

its main target species. While no clear short-term reaction pattern has been identified, a 
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continuous monitoring should be carried out in order to analyse the potential long-term 

effects of the whale watching industry for the Azorean sperm whale population 

(Magalhães et al. 2002). 

 

Conservation 

The presence of top-predators as sperm whales and other cetaceans has been identified 

as an excellent indicator of ecosystems‟ health and productivity (Katona and Whitehead 

1988). However, sperm whale populations worldwide are still recovering from the 

declines caused by the commercial whaling, which hunted them to near extinction 

during the last centuries (Whitehead et al. 1997, Baker and Clapham 2004, Gero and 

Whitehead 2016). “Open-boat” whaling for sperm whales commenced in 1712 and 

peaked around 1830, continuing until the end of the 19
th

 century and becoming one of 

the most important industries due to its precious oil for which it was hunted (Whitehead 

2002, 2003). The development of engine-powered whaling vessels, harpoon guns and 

other technologies greatly triggered the intensification of the hunts. During the 1950-

1960s the sperm whale hunt experimented the second peak after all the other whale 

populations have been drastically depleted and the sperm whale became the principal 

target (Whitehead 2002, Baker and Clapham 2004). Whitehead (2002) estimated the 

sperm whale global population in 360000 whales using a model that scales up the 

population from the 24% of sperm‟s whale global surveyed habitat.  

Commercial whaling ceased in 1988 with the International Whaling Commission 

moratorium, although some native groups from Indonesia are still allowed a small quota 

(Whitehead 2018). However, even though sperm whales are not being hunted anymore 

they are currently facing an increasing number of threats from anthropogenic activities 

and possibly climate change (Magalhães et al. 2002, Whitehead 2003, Farmer et al. 

2018). The most obvious of these threats are those causing direct mortality, including 

ship strikes, entanglement in fishing gear, ingestion of plastic debris or chemical 

pollution (Whitehead 2003). Nevertheless there are a series of other threats that can 

have adverse effects on individual health and ultimately on populations, like underwater 

noise (Whitehead 2003, Farmer et al. 2018).  

Sperm whales depend on sound to forage, communicate, navigate and perceive threats, 

and high levels of noise can cause behavioural disturbances and potentially reduce 
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foraging and reproductive efficiency (Miller et al. 2009, Isojunno et al. 2016, Farmer et 

al. 2018). Most of the research on the consequences of noise to sperm whales have 

focused on occasional sources of intensive noise, such as military sonars and seismic 

surveys used for oil and gas exploration (Miller et al. 2009). Fewer have addressed the 

potential impact of chronic disturbance from vessel noise, including from the whale 

watching boats. 

Therefore there is an important gap in our understanding about the potential long-term 

effects of permanent noise pollution that could lead to significant biological and 

ecological consequences for the population. This could be especially important in an 

area as the Azores archipelago, that constitutes an important feeding, calving and 

mating ground for sperm whales (Oliveira 2014, Silva et al. 2014). 

 

Tools to study the foraging behaviour of sperm whales 

Direct observation is one of the most powerful tools to study animal behaviour and it 

constitutes the base of the first behavioural studies of sperm whales. Nonetheless, direct 

observation of sperm whales is rather complicated by the fact that the animals spend 

most of their time underwater. For this reason, several tools have been developed during 

the last decades (e.g., depth sounders, hydrophones, animal-borne tags) enabling to 

study the behaviour of sperm whales at depth. Some of the most important tools are 

hydrophones and animal attached tags. Hydrophones are electronic instruments 

specifically designed for recording sounds produced underwater. They convert sound 

waves into electrical voltage by detecting pressure changes in the surrounding 

environment (Gordon and Tyack 2002, Romero Vivas and León López 2010). They 

allow the continuous monitoring of underwater sounds for long periods of time, 

allowing documenting the presence, movements and behaviour of vocalizing cetaceans, 

including sperm whales (Mann 1999, Gordon and Tyack 2002, Perrin et al. 2009). 

Animal attached tags are capable of collecting location, movement, sounds, and even 

environmental data for periods ranging from hours to years (Mann 1999, Johnson and 

Tyack 2003). Depending on how the data are obtained and transmitted, there are two 

main types of tags: satellite tags and archival tags. Satellite tags allow tracking animals 

for long periods of time as the information is being transmitted directly while the animal 

is at the surface. However, satellite transmissions can only send small amounts of 
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compressed data at each uplink due to bandwidth and satellite limitations of the 

ARGOS system, resulting in low resolution data, and therefore are not suitable for fine-

scale studies (Szesciorka et al. 2016, Palacios et al. 2019). Archival tags, on the other 

hand, have a high sampling rate, providing a high resolution dataset of different 

variables depending on the tag and included sensors, and therefore enable the detailed 

study of animal behaviour. These tags need to be recovered by using the incorporated 

VHF transmitter in order to obtain the data, and both their internal storage and attaching 

duration limit the total recording time, resulting in high resolution datasets over short 

periods of time, most frequently less than 24h (Szesciorka et al. 2016, Palacios et al. 

2019).  

Time-depth recorders (TDRs) are small size archival tags designed to study the diving 

and foraging behaviour of marine animals. They were first used in the late 60s and early 

70s to study the diving patterns of Weddell seals  (Leptonychotes weddellii) in the 

Antarctic, and have been commonly used since the 90s (Perrin et al. 2009). TDRs 

provide depth variation over time, therefore computing a 2D profile of the animal dive. 

Since its development, several models have been designed, reducing its size while 

increasing capacity and number of sensors. Most commonly, TDRs include a depth, 

temperature, light-level, and wet/dry sensors (Wildlife Computers) and most frequently 

they are attached to the animal‟s body with suction cups or barbs/hooks (Hooker and 

Baird 2001, Madsen et al. 2002a). TDRs datasets have been widely used to investigate 

the diving and foraging behaviour of several marine mammal species (Heerah et al. 

2014), namely sperm whales (Amano and Yoshioka 2003). 

As a consequence, most foraging behaviour studies using TDR tags use low resolution 

data and are based solely on depth data, relying on very “coarse” indices. As a matter of 

fact, U-shaped diving profiles with a clear “horizontal” bottom phase (Figure 1.3) have 

been widely interpreted and used as indicators of foraging activity for different deep 

diving predators (Thompson et al. 1991, Lesage et al. 1999).  

The development that revolutionized the study of the foraging behaviour of cetaceans 

was the incorporation of hydrophones into animal attached archival tags (e.g., Dtags, 

Acousonde tags, A-tags). Among these, digital acoustic tags (Dtags) (Johnson and 

Tyack 2003) are small size archival tags that include one or two high resolution 

hydrophones. 



15 
 

 

Figure 1.3. Sperm whale 2D dive profile (time-depth) from TDRs showing a series of U-shaped dives 

indicative of foraging activity. 

 

Dtags record sounds produced by tagged individuals, as well as surrounding sounds, 

continuously through the dive cycle. In addition to hydrophones, Dtags contain sensors 

for pressure (depth), acceleration and magnetic field. Dtags are normally deployed with 

suction cups and, after a pre-programmed time, an electric conductor penetrating the 

suction cup is burnt off releasing the tag which floats to the surface. An integrated VHF 

transmitter allows the animal tracking and the recovery of the device after its release 

(Johnson and Tyack 2003). 

Dtags provide high-resolution acoustic and 3D movement data of tagged animals and 

enabled understanding how sperm whales use sound during foraging (Miller et al. 2004, 

Watwood et al. 2006, Oliveira et al. 2013, Fais et al. 2015, Fais et al. 2016) (Figure 1.4). 

Some of these studies revealed that bursts of speed at the bottom of the dive were 

correlated with the production of buzzes; buzz production was thereafter considered as 

the best indicator of a prey capture attempt and used for the detailed examination of 

sperm whale foraging behaviour (Fais et al. 2015, Fais et al. 2016)  

Notwithstanding, Dtags are not commercially available and can only be used through 

leasing contracts or under agreements with tag developers. This makes access to Dtags 

extremely difficult, expensive and unpredictable. Because of this, studies on foraging 
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behaviour using Dtag data are most often based on very small sample sizes, usually 

collected from a handful of animals in a single year, do not accounting for individual or 

environmental variability or the effect of gender or age class. Moreover, it is almost 

impossible to rely on Dtags to monitor changes in behaviour associated with 

anthropogenic activities, as these studies generally require sampling over multiple 

seasons and years.  

Figure 1.4. Sperm whale 2D dive profile (time-depth) from a Dtag showing acoustic production. 

 

Motivation of the current study 

While sperm whales are protected by several international agreements and legislation 

(e.g., The International Whaling Commission, the International Union for Conservation 

of Nature, the Convention of Biological Diversity, Habitats and Birds Directive, etc.) 

they face important and an increasing number of threats (Perrin et al. 2009). Several 

human activities (e.g., fisheries, shipping traffic, deep-sea mining, construction, etc.) are 

likely to alter species distribution, directly or indirectly through changes in prey 

availability and habitat alterations. Moreover, sperm whales rely heavily on sound to 

find and capture prey, and increasing human use of the oceans, with the consequent 

introduction of noise, can directly interfere with their ability to forage successfully 

(Whitehead 2003, Perrin et al. 2009, Jefferson et al. 2011). Therefore, knowledge of 

foraging behaviour is critical to identify important areas for sperm whale conservation, 

as well as to evaluate and monitor the potential impacts from human activities.  
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While time-depth recorders provide valuable information about the diving behaviour of 

marine species, the lack of acoustic data imposes obvious limitations to study the 

foraging behaviour of those marine species that use sound to search and capture prey 

items, as the sperm whale (Madsen et al. 2002b, Miller et al. 2004, Watwood et al. 

2006). On the other hand, the use of high resolution movement and acoustic recording 

tags is extremely difficult and pricey, and as a consequence, studies on sperm whale 

foraging behaviour based on these tags are generally limited by small sample sizes and 

short sampling periods.  

The development of accurate, high-resolution foraging indices from 2D dive profiles, 

would allow maximizing the use of already available and future datasets obtained from 

cheap and widely available TDRs. Improved predictions of foraging events in the TDR 

data would allow the re-interpretation of extensive datasets available for many 

geographic areas, and provide much needed information on the sperm whale foraging 

behaviour. Finally, analysing time-series datasets of diving activity would allow the 

identification of potential changes in the foraging behaviour, in response to climate or 

anthropogenic changes which could have caused biological and ecological population 

effects.  

 

Previous research on foraging indices from low-resolution 2D dive data 

Measuring the actual foraging effort and foraging success of deep divers still remains a 

complex objective due to the fact that there is no way of actually verifying the foraging 

activity at great depths. For this reason, the study of the foraging behaviour of deep 

diving predators relies on the identification of proxies or indices capable of estimating 

the foraging effort (Dragon et al. 2012, Vacquié-Garcia et al. 2015). The most 

traditional methods analysed the animal dive profile and estimated the foraging effort 

based on the time at depth or breaking up the dive in the classical 3 phases: ascent, 

bottom, descent; from which the bottom time and the U-diving profiles were used as the 

foraging time (Thompson et al. 1991, Lesage et al. 1999, Bailleul et al. 2007, Dragon et 

al. 2012). 

Heerah et al. (2014) demonstrated the possibility of developing an accurate method for 

the detection and quantification of foraging effort in low resolution diving data. The 

method is based on the identification of diving parameters which correlate with the 
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foraging effort found in the high resolution data and capable of being detected in the 

low resolution data (Heerah et al. 2014, 2015, Heerah et al. 2019). Despite the fact that 

this method was developed for southern elephant seals (Mirounga leonina) and Weddell 

seals (Leptonychotes weddellii) it clearly highlights the possibility of doing the same for 

other deep diving predators if a proper species specific index is identified.  

 

Objectives 

The principal aim of this master thesis is to develop a method to accurately identify and 

quantify the foraging effort and prey capture attempts of sperm whales in 2D dive 

profiles from TDRs datasets, when no concurrent acoustic information is available. In 

order to achieve this, a subset of high-resolution movement and acoustic data collected 

from tags with 3D movement and acoustic sensors (Dtags) were analysed in order to 

identify and calculate a set of candidate 2D movement parameters associated with buzz 

production, indicative of prey capture attempts.  

These movement parameters were then combined into a model to predict prey capture 

attempts in a 2D dive profile. Model performance was assessed by applying it to a 

second subset of novel Dtag data, for which presence of buzzes was used to confirm 

foraging events. If successful, this model could be extremely useful to identify foraging 

behaviour in TDR data, thereby increasing the potential of this tool in future studies and 

maximizing the application of an extensive and already available dataset.  
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Abstract 

High-resolution sound and movement recording tags (e.g. Dtags, Acousonde tags, A-

tags) offer unprecedented views of the fine-scale foraging behaviour of cetaceans, 

especially those that use sound to forage, such as the sperm whale (Physeter 

macrocephalus). However, access to these tags is difficult and expensive, limiting 

studies of sperm whale foraging behaviour to small sample sizes and short time periods, 
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preventing inferences at the population level. The development of accurate foraging 

indices from relatively inexpensive time-depth recorder (TDR) data would allow 

obtaining data from a larger number of individuals, and capitalizing on datasets already 

available, providing long-term analyses of foraging activity. In this study, data from 

high-resolution acoustic and movement recording tags from 8 sperm whales was used to 

build predictive models of the number of buzzes (i.e, indicative of prey capture attempts 

(PCA)) for dive segments of different lengths, using dive metrics calculated from time-

depth data only. The number of buzzes per dive segments of 180s and 300s was best 

predicted by the average depth, depth variance, vertical velocity variance and number of 

wiggles. Model performance was best for 180s segments, accurately predicting the 

number of buzzes in 63% of the segments used to construct the model and in 58% of the 

segments for new individuals. Predictive accuracy reached 81%, when only presence or 

absence of buzzes in segments was assessed. These results demonstrate the feasibility of 

finding a reliable index of sperm whale foraging activity for time-depth data, when 

combining different dive metrics. This index estimates the number of buzzes over short 

dive segments (of 180s), enabling investigating and quantifying PCAs at very fine-

scales. Finally, this work contributes to leverage the potential of time-depth data for 

studying the foraging ecology of sperm whales and the capacity of applying this 

approach to a wide range of cetacean species. 

 

Introduction 

Efficiency at foraging is crucial for predators so that enough energy is left for the 

remaining life-history traits, ensuring growth, reproductive success and ultimately, 

individual survival (Charnov 1976, Krivan 1996). Consequently, foraging activity 

constitutes one of the most important drivers of populations‟ dynamics (Robinson et al. 

2012). For this reason, the study and quantification of foraging effort over long time 

series represents one of the most powerful tools to assess populations‟ health and the 

impact linked to climatic or anthropogenic changes (McIntyre et al. 2011, Bost et al. 

2015, Nabe‐Nielsen et al. 2018). 

For the vast majority of marine diving predators, foraging occurs at depth, and 

consequently direct observation of foraging activity is, at least, challenging. As a result, 

the first studies on the foraging behaviour of diving predators (e.g., northern elephant 
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seal (Mirounga angustirostris) (Morejohn et al. 1970); ringed Seal (Phoca hispida 

Schreher) (McLaren 1958) and various cetaceans (Fitch and Brownell Jr 1968)) were 

based in occasional direct observations and the examination of stomach contents. 

Through the analyses of stomach contents of whaled or stranded individuals, Clarke 

(1955) revealed that sperm whales (Physeter macrocephalus) are deep-diving predators, 

that feed primarily on bathypelagic and demersal prey. These studies also provided the 

first estimates of daily food consumption of individual animals (Lockyer 1981, Clarke 

et al. 1993). Later, observations of defecation by fluking whales were used to infer 

feeding success and investigate variations with behavioural context and oceanographic 

conditions (Clarke 1955, Whitehead 1996b).  

Advances in animal-attached biologging devices allowing the continuous tracking and 

recording of movements and behaviour of animals at sea, revolutionized the study of 

foraging behaviour of marine predators (Mann 1999). Some of the first biologging 

devices collect only vertical movement data (i.e., depth), usually at sampling 

frequencies of 1 second or more (Kooyman et al. 1976, LeBoeuf et al. 1986). Data 

collected by time-depth recorders (TDRs) enable reconstructing the 2D dive profile and 

have been widely used to calculate different dive metrics to infer foraging activity 

(Watkins et al. 2002, Amano and Yoshioka 2003). Numerous studies have separated 

dives into different phases - descent, ascent, bottom, and surface – to discriminate and 

quantify time spent transiting, foraging, and resting (Hindell et al. 1991), and used dive 

shape to separate foraging (U-shaped) from exploratory (V-shaped) dives (Thompson et 

al. 1991, Lesage et al. 1999). Several studies have used dive duration, time spent at the 

bottom of a dive, the number of wiggles (vertical excursion with a certain extent) or 

vertical sinuosity as indirect measures of foraging effort or success in several pinniped 

(Dragon et al. 2012, Gallon et al. 2013, Heerah et al. 2014) and cetacean species (Watts 

and Draper 1986, Baird 1994, Croll et al. 2001, Calambokidis et al. 2007). Use of these 

metrics  is based on the assumption that diving predators increase vertical sinuosity and 

reduce vertical speed once prey are encountered, in order to remain in depth layers with 

higher density of prey and thus maximize foraging efficiency (Dragon et al. 2012). This 

is analogous to a behaviour known as area restricted search (ARS) (Kareiva and Odell 

1987), but in the vertical dimension. Evidence for a link between ARS behaviour 

measured from surface tracks and foraging activity has come from studies on different 

taxa (Kuhn et al. 2010, Dragon et al. 2012). Nevertheless, the complexity in the diving 
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behaviour of most marine predators later revealed by high resolution movement tags, 

highlighted the need to refine this approach and to develop and validate species-specific 

proxies to estimate foraging effort from time-depth data (Heerah et al. 2014, 2015, 

Vacquié-Garcia et al. 2015). 

The use of the first animal attached tags and underwater acoustic recording tools (e.g., 

hydrophones) provided new insights into the foraging behaviour of marine predators, 

especially those that use sound to forage as the sperm whale (Weilgart 1993, Jaquet et 

al. 2001). Sperm whales produce sharp-onset, broadband, impulsive vocalizations with 

energy ranging from 5 to 25 kHz commonly known as “clicks” (Madsen et al. 2002a, 

Madsen et al. 2002b), from which at least four kinds (usual clicks, buzzes, codas, and 

slow clicks) have been identified (Weilgart 1993, Jaquet et al. 2001, Miller et al. 2004). 

Codas are stereotyped sets of 3 to 40 clicks lasting 0.2-5s, and are mostly produced 

within social units for communication (Rendell and Whitehead 2003). Slow clicks are 

composed of distinctively ringing and metallic clicks repeated every 5-8s (Madsen et al. 

2002b), only produced by adult males for long range communication (Weilgart and 

Whitehead 1988, Madsen et al. 2002b, Oliveira et al. 2013). Usual clicks are the most 

common, and consist in long trains of regularly spaced clicks, often lasting for minutes 

and with an inter-click interval (ICI) of about 0.5-1.0s. (Møhl et al. 2000). They are 

highly directional and have the highest biologically produced source levels ever 

recorded, suggesting its use in habitat scanning and echolocation and enabling the 

search, location and capture of prey (Jaquet et al. 2001, Madsen et al. 2002a, Miller et 

al. 2004). Buzzes consist of high-frequency low amplitude clicks produced in rapid 

click trains with short ICI 15-100ms, therefore providing a higher resolution but shorter 

echolocation range (Madsen et al. 2002a, Fais et al. 2016).  

The development of more sophisticated tags incorporating high-resolution tri-axial 

accelerometers and hydrophones (e.g., Dtags, Acousonde tags, A-tags) enabled 

unprecedented views of the 3D fine-scale diving behaviour of cetaceans and the 

correlation of movement and acoustic data (Watwood et al. 2006, Teloni et al. 2008). 

Amano and Yoshioka (2003), and later Aoki et al. (2012), demonstrated that sperm 

whales spent long periods of time at the bottom of the dives with great variability in 

depth and velocity, and occasional bursts of speed, suggesting an active-pursuit hunting 

foraging strategy. Using digital acoustic recording tags (Dtags) (Johnson and Tyack 

2003), Miller et al. (2004) demonstrated that buzzes occurred most often at the bottom 
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phase of sperm whale dives, and were associated with increased manoeuvring. Later, 

the existence of strong and sudden changes in acceleration were found to occur near the 

end of the buzzes (Fais et al. 2016). For these reasons, click and buzz production have 

been widely used as proxies for sperm whale prey searching and capture attempts 

respectively (Miller et al. 2004, Watwood et al. 2006, Teloni et al. 2008, Miller et al. 

2009, Fais et al. 2016). 

Unfortunately, the wide-scale and long-term use of the aforementioned tags is severely 

constrained by their high cost and reduced availability, limiting data collected to a few 

animals and hours (rarely more than 24 h), and making it difficult to assess within or 

between individual variations in foraging behaviour. The development of a reliable 

index of sperm whale foraging activity from time-depth data alone, could offer the 

possibility of using relatively inexpensive, widely available TDRs to investigate 

different aspects of sperm whale foraging behaviour. This would not only enable 

increasing the sample size and duration of studies but also conducting retrospective 

analysis of existing diving datasets to assess changes in foraging behaviour over longer 

time scales. 

Several studies have succeed in developing methods capable of predicting foraging 

effort and prey capture attempts (PCA) in low resolution diving datasets of several 

marine species: Antarctic fur seals (Arctocephalus gazella) (Viviant et al. 2014), 

southern elephant seals (Mirounga leonine) and Weddell seals (Leptonychotes 

weddellii) (Heerah et al. 2014, 2015), and Australian fur seals (Arctocephalus pusillus 

doriferus) (Volpov et al. 2016).  

Viviant et al. (2014) modelled Antarctic fur seals PCA at the dive scale based in the 

ascent and descent rates, and concluded that vertical transit rates are between the most 

important parameters in predicting foraging success in a marine predator. Heerah et al. 

(2014) developed a more robust method that uses a broken stick algorithm in order to 

summarize each dive in the best number of broken stick points (inflection points), from 

which those highly sinuous segments were found to indicate foraging activity of both 

southern elephant seals and Weddell seals. Volpov et al. (2016) showed that the most 

accurate diving parameters in predicting Australian fur seal foraging activity in time-

depth datasets were bottom time and ascent rate. However, both Viviant et al. (2014) 
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and Volpov et al. (2016) agreed that accuracy of diving predictor variable differs 

depending on the data resolution. 

While the aforementioned studies were quite successful in developing reliable proxies 

of foraging activity that could potentially be applied to several pinnipeds, there have 

been no attempts to develop similar indices for large toothed whales, including sperm 

whales. The objective of this study was to develop a predictive model of foraging effort 

in sperm whales from low-resolution time-depth data. To do this, we used high-

resolution movement and sound data from eight sperm whales instrumented with Dtags 

in the Azores archipelago during 2017-2019 to extract time-depth values with a 

sampling frequency of 1 s and detect buzzes (considered to represent PCA). These 

dataset was then used to calculate a suite of diving metrics at different time scales and to 

use these metrics to develop models predicting the number of buzzes. Finally, we tested 

the predictive performance of the best model by applying it to an independent time-

depth dataset derived from four other sperm whales fitted with Dtags, to compare 

predicted and observed buzzes.  

 

Material and methods 

Tagging data 

Data used in this study were from sperm whales tagged by the Azores Whale Lab group 

(http://whales.scienceontheweb.net/) during 2017-2019 around the islands of Faial and 

Pico, in the Azores archipelago (38ºN, 28ºW).  

The tags used were digital acoustic recording tags (Dtag, version 3) (Johnson and Tyack 

2003) that record 2-channel acoustic data (96 kHz sampling frequency, 16 bit 

resolution), and collect pressure, 3-axis accelerometer and 3-axis magnetometer data at 

50 Hz (16 bit). Tags were attached to the backs of surfacing whales with four suction 

cups using a 11m cantilevered pole from a 9m long rigid-hulled inflatable boat (RHIB), 

or a 6m handpole from a 5m long RHIB. Tags were located and recovered by radio 

tracking after being released from the whale, naturally or after a programmed maximum 

deployment time that varied across sampling years.  

http://whales.scienceontheweb.net/
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Sperm whale tagging was conducted under research permits 37/2016/DRA, 

80/2017/DRA and SAI-DRA/2018/3602 issued by the Regional Government of the 

Azores. 

 

Data processing 

Dtag data from 12 sperm whales were available for analysis in this study. Dtag data 

from eight of these whales were used for data exploration and to calculate dive metrics 

to be included in the models predicting the number of buzzes. Data from the remaining 

four whales were used to test model predictions (Table 2.1).  

The first dive of all animals was removed to eliminate potential effects from the tagging 

operation (Miller et al. 2009). In order to exclude resting periods at the surface and 

shallow submersions from further analysis, only dives deeper than 25m (i.e., about two 

body lengths, Teloni et al. (2008)) were analysed. A foraging dive was defined as being 

deeper than 25m and including at least one buzz (Isojunno and Miller 2015). 

Table 2.1. Summary of the sperm whale tagging, diving and acoustic data used in this study. 

 

 
 

Depth data collected by Dtags at 20-25 Hz were downgraded into 1Hz to match the best 

resolution of the TDR data (1 second sampling rate). Acoustic data had been previously 

analysed by Azores Whale Lab group for the 12 sperm whales using MATLAB 2007b 

and 2016b (Mathworks, Inc., Natick, MA) with a custom spectrogram (512 sample FFT 

block size, 15 s segments with 2 s overlap) and dive depth display, to identify usual 

clicks and buzzes. Clicks produced by the tagged whale were identified based on their 

higher received acoustic level, angle-of-arrival to tag hydrophones (Johnson et al. 2006) 

Animal Frequency (Hz) Tagging date Duration (hh:mm) Nº Dives Nº of Dives Analysed Nº Foraging Dives Nº of Buzzes

sw17_194a 20 13 July 2017 8:57 10 8 8 135

sw18_170a 25 19 June 2018 4:22 6 5 4 34

sw18_172a 25 21 June 2018 5:04 6 5 5 94

sw18_177a 25 26 June 2018 6:21 5 4 4 87

sw19_137a 25 17 May 2019 9:28 18 16 9 134

sw19_158a 25 07 June 2019 7:51 9 8 6 67

sw19_160a 25 09 June 2019 25:45 31 28 22 180

sw19_163a 25 12 June 2019 13:54 18 17 11 85

Total 81:42 103 91 69 816

sw17_203a 20 22 July 2017 17:13 8 8 8 85

sw18_173a 25 22 June 2018 3:13 4 3 3 12

sw18_292a 25 19 October 2018 6:35 10 10 5 70

sw19_088a 25 29 March 2019 23:17 25 25 24 360

Total 50:18 47 46 40 527

  Model development    

Model evaluation
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and temporal characteristics (Zimmer et al. 2005). Following Isojunno and Miller 

(2018), the start time of a buzz was defined as a change in amplitude and/or spectral 

content of clicks before a fast run (click rate >5 Hz); buzz end time was defined as the 

start of a pause before the next usual click train, exceeding the ICI of the subsequent 

usual clicks, or start of a pause before the next surfacing. In the absence of a clear 

pause, the end time of a buzz was identified as a change in amplitude and/or spectral 

content of clicks. The time between the end of one buzz and the start of the following 

was defined as the inter-buzz interval (IBI).  

 

Approach to select the time scale of analysis  

Following Fais et al. (2016), that showed the occurrence of “strong and sudden changes 

in acceleration near the end of the buzzes”, we attempted to identify the duration of 

these moments to choose the time scale for subsequent analyses. First, the duration of 

buzzes and of inter-buzz intervals (IBI) was calculated. Based on these results, dives 

from all eight whales (Table 2.1) were divided into segments of different lengths, with 

and without overlap, by applying a moving window, with package „zoo‟ (Zeileis and 

Grothendieck 2005) in R (R Core Team, 2016).  

A second approach was to automatically divide sperm whale dives into segments of 

different length, by applying an optimized broken stick algorithm (Heerah et al. (2014). 

This method iteratively selects a series of inflexion points for individual dives, and 

calculates a suite of summaries that is used to automatically select the number of 

inflexions that best summarised the dive shape. These inflections define the start and 

end of each segment along the dive. While this method has shown promising results in 

the analysis of pinniped dives (Heerah et al. (2014), segments generated in the sperm 

whale dives analysed in this study were nonsensical, despite many efforts to adjust 

algorithm parameters (although it might be possible to refine the algorithm). Therefore, 

outputs from the broken stick algorithm are not shown here and this approach was 

abandoned.  
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Dive metrics 

A set of candidate dive metrics were calculated for different dive segment lengths, 

based on knowledge of the species‟ foraging behaviour (Amano and Yoshioka 2003, 

Watwood et al. 2006, Aoki et al. 2007, Teloni et al. 2008, Aoki et al. 2012, Fais et al. 

2016, Isojunno and Miller 2018) and their potential to predict buzzes (Table 2.2). All 

dive metrics were calculated from time-depth data with 1s of temporal resolution and 

1m of depth resolution. For each dive segment, the total number of buzzes and the total 

buzz duration were calculated.  

Sperm whales produce more buzzes and show increased manoeuvring, changes in body 

orientation and dive inflections during the bottom phase of their dives (Miller et al. 

2004). To attempt to capture these behaviours in 2D dive data, for each dive segment 

we calculated a series of parameters potentially indicative of foraging at depth (average 

depth, sum depth, maximum depth), and of changes in depth resulting from increased 

manoeuvring along the vertical axis (variance and standard deviation of depth). As 

pointed out by Heerah et al. (2014), foraging during the bottom phase of the dive does 

not necessarily mean that foraging occurs at the maximum depth of the dive. Therefore, 

for each segment of a given dive, bottom times were calculated as the percentage of 

time of that segment spent at more than 60%, 70%, 80% and 90% of the dive maximum 

depth.  

In sperm whales, the production of buzzes is associated with strong bursts of speed and 

changes in acceleration (Fais et al. 2016). Although time-depth data cannot be used to 

calculate swimming speed and acceleration, it can be used to detect changes in the 

vertical component of animal motion. Vertical velocity was calculated as the depth 

difference between time t+1 and time t, and vertical acceleration was defined as the 

difference in vertical velocity between consecutive time intervals. Average, total sum, 

variance and standard error of the selected diving metrics per segment were also 

calculated and tested for its capacity to predict buzz production. 

Inflection points were defined as those moments in time t in which depth was higher or 

lower than depth at t+1 and time t-1. Following Aoki et al. (2007), a wiggle was defined 

as an inflection point with a difference in depth > 20m to the subsequent infection point. 

Steady points reflect the time spent at the same depth, and can be indicative of prey 

chasing along the horizontal axis (Aoki et al. 2012). Sequences of points at the same 
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depth (i.e. steady points) were common within our data, and therefore the total number 

of steady points and the number of steady point sequences per segment were calculated. 

The degree of vertical sinuosity is believed to be an indication of ARS behaviour during 

an animal‟s dive and was found to be the best proxy of prey capture attempts in 

southern elephant seals and Weddell seals (Heerah et al. 2015). In this study, the 

vertical sinuosity (hereafter, sinuosity) was calculated for each dive segment, as the 

ratio between the vertical distance swum in a linear path (i.e., the absolute depth 

difference between the start and end of the segment) and the sum of all the vertical 

distances the whale has actually swum in that segment (Heerah et al. 2015). A segment 

with a sinuosity of 1 expresses a straight path during this part of the dive; any deviation 

from a straight path decreases the sinuosity towards 0.  

Prior to constructing the model, all candidate variables were tested for collinearity using 

the Pearson‟s correlation coefficient. Only those variables with a Pearson‟s coefficient < 

0.7 were selected (Dormann et al. 2013) (Figure A3.1 of the annex). 

Table 2.2. Description of dive metrics calculated for each dive segment. 

 

 

Dive metrics Definition Calculation Unit

Individual Whale individual ID

DiveID Dive number per individual

Total Nº Buzzes Total Nº of Buzz Summed No unit

Total Buzz duration Total Nº of seconds during which there is a buzz occuring Summed No unit

 Steady points Point X with = depth to the previous second (X-1) Summed No unit

 Start steady points Start point of a sequence of steady points Summed No unit

 End steady points End point of a sequence of steady points Summed No unit

 Inflections Point X in which depth (X-1)>X and (X+1)>X or (X-1)<X and (X+1)<X Summed No unit

 Wiggles Inflection point with more than 20m difference with the following inflection point Summed No unit

 Depth

 Average depth Averaged depth Averaged m

 Sum depth Summed depth Summed m

 Maximum depth Maximum depth Maximum m

Variance depth Depth variance Variance m

 Standard error depth Depth standard error Standard dev. m

 Depth difference Absolute depth difference between start-end of the segment Difference m

 Bottom time 60% max. Depth Ratio 0-1 of the % of time spent at more than 60% of the dive's maximum depth sum(tz)/t Ratio 0-1

 Bottom time 70% max. Depth Ratio 0-1 of the % of time spent at more than 70% of the dive's maximum depth Formula Ratio 0-1

 Bottom time 80% max. Depth Ratio 0-1 of the % of time spent at more than 80%  of the dive's maximum depth Formula Ratio 0-1

 Bottom time 90% max. Depth Ratio 0-1 of the % of time spent at more than 90%  of the dive's maximum depth Formula Ratio 0-1

 Vertical velocity Absolute depth difference between time t+1  and time t m s
-1

 Average vertical velocity Vertical velocity averaged over segment duration Averaged m s
-1

 Sum vertical velocity Vertical velocity summed over segment duration Summed m s
-1

 Variance vertical velocity Vertical velocity variance over segment duration Variance m s
-1

 Standard error vertical velocity Vertical velocity standard error over segment duration Standard dev. m s
-1

 Vertical acceleration Absolute vertical velocity difference between time t+1  and time t m s
-2

 Average vertical acceleration Vertical acceleration averaged over segment duration Averaged m s
-2

 Sum vertical acceleration Vertical acceleration summed over segment duration Summed m s
-2

 Variance vertical acceleration Vertical acceleration variance over segment duration Variance m s
-2

 Standard error vertical acceleration Vertical acceleration standard error over segment duration Standard dev. m s
-2

 Sinuosity Absolute depth difference / Sum vertical velocities over segment duration |Δz| / sum (v) Ratio 0-1

tz = time at depth greater than x; t = segment duration; Δz = depth difference; v = vertical velocity
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Time scale for modelling 

As buzzes were short and IBIs were long, dive metrics were initially calculated for dive 

segments of 5s, 10s, 15s, 20s, 25s, 30s, and 60s, with and without overlap, and models 

were built with these metrics. However, although some dive metrics were significant, 

they showed weak prediction capacity of the number of buzzes, possibly explaining the 

poor fit and small proportion of variance explained by all models developed (not shown 

here). 

 

Model development and evaluation 

Sperm whale foraging behaviour exhibits important differences between the sexes, most 

likely as a result of distinct physiological needs and habitat characteristics (Watwood et 

al. 2006, Teloni et al. 2008, Isojunno and Miller 2018). In addition, depth range targeted 

seems to be governed by the whale perception of the relative energetic profits in each 

depth layer (Teloni et al. 2008), which could induce differences in diving depth between 

whales tagged at different times and in different areas. For these reasons, the 

relationship between the number of buzzes and the candidate dive metrics was 

investigated using generalized linear mixed models (GLMMs), with individual whale as 

a random effect (package „lme4‟ (Bates et al. 2007) in R) . Models were fitted with a 

Poisson family distribution and maximum likelihood of Laplace Approximation. 

Separate models were built for each segment length. The initial models contained all 

dive metrics with Pearson‟s correlations <0.7. Models were ranked based on the 

corrected Akaike‟s information criterion, AICc (Burnham and Anderson 2004), and the 

model with the lowest AICc was selected.  

The predicted number of buzzes per segment was estimated based on the best fitting 

GLMM, and compared to the observed number of buzzes. Model predictive 

performance was first evaluated with the train data, to test the model ability to predict 

the number of buzzes for the dataset used to construct the model. Then, the model 

performance was assessed by fitting the model to a new dataset, collected from four 

other sperm whales (Table 2.1), and comparing predicted and observed buzzes per dive 

segment. This procedure was applied only to dive segments of 180s and 300s, which 

were the ones yielding the best modelling results (see Results). Modelling results were 
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compared between segment lengths to identify the best temporal scale for future 

analyses, and across individual sperm whales. 

 

Results 

Buzz duration and IBI 

The eight sperm whales performed a total of 101 dives during the tag deployments. 

After removal of the first dive of all whales and of incomplete dives (due to tag release 

or malfunction), the dataset analysed contained information on 91 dives (Table 2.1). Of 

these, 69 (76%) were classified as foraging dives, during which 816 buzzes were 

detected (Table 2.1). Buzz duration ranged between 2 and 50s but most buzzes were 

substantially shorter, lasting only 4-6 s (Figure 2.1). Buzzes of 2-14s represented 95% 

of all buzzes identified. Over 95% of all IBI recorded fell within the 0-500s range 

(Figure 2.1). 

 

Figure 2.1. Distribution of the duration of buzzes (top) and of the inter-buzz-interval (IBI) (bottom) for 

the 12 sperm whales analysed in this study. 
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An exploratory analysis of dive metrics calculated for longer dive segments, of 180s 

and 300s of duration, strongly suggested that these could yield satisfactory results. 

Therefore, the following sections present the results obtained for dive segments of 180s 

and 300s.  

The dives of the eight whales analysed were slit into 1115 segments of 180s and 653 

segments of 300s of duration (Figure 2.2). Number of buzzes per segment ranged from 

0-5 and 0-6 for 180s and 300s, respectively. About 43% (n=484) of the 180s segments 

and 58% (n=380) of the 300s segments contained at least one buzz.  

 

Figure 2.2. Number of segments as a function of the number of buzzes for segments of 180s (top) and of 

300s (bottom). 
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Relationship between buzz production and diving behaviour 

The best fitting GLMM for the number of buzzes per segments of 180s and 300s 

included the same dive metrics: average depth, variance of depth, variance of vertical 

velocity, and wiggles, and individual whale as a random effect (whale ID). The 

summary of the modelling output is included in Table 2.3. 

Table 2.3. Summary of the best GLMMs of the number of buzzes per segment, for segments of 180s and 

300s. 

 

Average depth and variance of depth were, respectively, the first and second most 

important predictors of the number of buzzes for both segments lengths (Table 2.3). In 

general, relationships between dive metrics and number of buzzes were very similar for 

the 180s and 300s segments. Dive segments with buzzes were deeper than segments 

without buzzes (Figure 2.3). The number of buzzes increased with increasing average 

depth for segments with 1-3 buzzes, but segments with 3-5 buzzes occurred at similar 

depths. Variance of depth was higher in segments without buzzes and in segments with 

the maximum number of buzzes (n=5), than in the segments containing 1 to 4 buzzes 

(Figure 2.3). Variance of vertical velocity was higher in segments with buzzes than 

without buzzes, and the number of buzzes increased with increasing vertical velocity 

variance (Figure 2.3). No wiggles were found in segments with 1 buzz and in segments 

without buzzes. Occurrence of wiggles was higher but similar in segments with 2-4 

buzzes and highest in segments with the maximum number of buzzes (n=5) (Figure 

2.3).   
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Figure 2.3. Boxplots of dive metrics for segments of 180s with different number of buzzes. Boxplots for 

segments of 300s were very similar and are not presented. The horizontal line represents the median, the 

box represents the 25th and 75th percentiles and the whiskers represent the extreme values within 1.5 

times the length of the box. Outliers are plotted as points. 

 

Predictive ability of the models 

The model capacity to predict the number of buzzes per segment was compared 

between segments of 180s and 300s using train and test data (Table 2.4). As expected, 

the ability of models to correctly detect the number of buzzes per segment was higher in 

the train data than in the test data. Also, the model for the 180s was substantially better 

at predicting the number of buzzes than the model for the 300s segments. The model for 

the 180s accurately predicted the exact number of buzzes in 63% of the segments for the 
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train data and 58% of the segments for the test data, compared with the 51% (train data) 

and 41% (test data) of the model for the 300s (Table 2.4).  

Both models were very good at discriminating between segments with and without 

buzzes (Table 2.4). In fact, model accuracy for both segment lengths and data types 

ranged from 80% to 82%, where the highest percentage of correct detections was with 

the model for the 300s segments on the train data. 

Table 2.4. Predictive performance of the best fitting GLMMs for segments of 180s and 300s. The 

percentage of correct detections is shown both for the number of buzzes and for the presence/absence of 

buzzes per segment.  

 

 

As the model for the 180s segments was better at predicting the number of buzzes, a 

more in-depth analysis of its predictive performance was carried out, in order to 

contribute to future model improvements. 

Differences between the number of buzzes observed and predicted per segments of 180s 

for both train and test data are shown in Figure 2.4 and Table 2.5. Overall, the model 

tended to predict fewer buzzes per segment than those observed, especially in the test 

data (Table 2.5). In the majority of these cases (75% for the train data and 67% for the 

test data), the model predicted only one buzz less than what was observed (Figure 2.4). 

Similarly, 85% of the segments that were overpredicted by the model showed a 

difference of one buzz. However, in a few segments of the test data, overpredictions 

were of >5 buzzes, and in one instance the model predicted 11 buzzes in a segment with 

only 2 buzzes present (Figure 2.4).  

Number of segments

   Percentage of correct predictions 

of number of buzzes per segment

   Percentage of correct predictions of

presence/absence of buzzes per segment

Test data

(4 individuals)

Train data

(8 individuals)

Train data

(8 individuals)

300s Segments

Test data

(4 individuals)

180s Segments

81%

58% 51% 41%

81%

63%

80% 82%

1115 653621 330
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Figure 2.4. Differences in the number of observed and predicted buzzes per segment for train and test 

data, using outputs from the model of 180s segments. Dark colours indicate the number of segments with 

no difference in the number of predicted and observed nº of buzzes. 

 

Table 2.5. Differences in the number of observed and predicted buzzes for segments of 180s for both 

train and test data. The percentage of correct prediction of the number of buzzes is shown for both train 

and test data.  

 

 

Predictive ability of the models across individuals and within dives 

The performance of the model (for 180s segments) at predicting the number of buzzes 

per segment was similar among individual whales, for both the train and test data 

(Figure 2.5A and C). For nearly all individuals, the distribution of observed-predicted 

values was centred about zero, suggesting a balance between over and underpredictions. 

In addition, the mean of observed-predicted values was very close to zero and most 

Negative diff Positive diff diff = 0 Negative diff Positive diff diff = 0

Diff (Observed-Predicted) total Buzz events 180s segments

Train data 1115 segments Test data 621 segments

194 (17%) 220 (20%) 701 (63%) 102 (16%) 159 (26%) 360 (58%)
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values were within -2 to +2 range. Still, in one case (individual sw19_088a) the model 

performed considerably worse, predicting fewer buzzes in approximately 50% of the 

segments and overpredicting from 3 to 9 buzzes in other segments.  

To further investigate the causes of the poor predictivity of the model, the distribution 

of the differences between observed and predicted buzzes were examined as a function 

of two model variables: the average depth and the variance of the vertical velocity 

(Figure 2.5B and D). For both the train and test data, the higher differences were found 

at the greatest depths and higher vertical velocities. This suggests that the model is 

unable to predict well at the upper end of the data range of both predictors.  

 

Figure 2.5. Differences in the number of observed and predicted buzzes per segment for individual sperm 

whales (A and C) and as a function of average depth (m) and variance of vertical velocity (m/s) (B and 

D). Predictions were made with train data (top) and test data (bottom). The horizontal line represents the 

median, the box represents the 25th and 75th percentiles and the whiskers represent the extreme values 

within 1.5 times the length of the box. Outliers are plotted as points. 
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The prediction accuracy of the total number of buzzes per individual whale was 

remarkably high for both train and test data, varying from 80% to 100% (Table 2.6). 

The only exception was individual sw18_173a which had the lowest number of buzzes, 

and for which the model overpredicted buzz production. 

Table 2.6. Model prediction performance of the total number of buzzes for individual whales, in the train 

and test data. 

 

 

Figure 2.6 presents the differences in the absence/presence and number of buzzes 

observed and predicted by the model for the 180s segments along the dive profile of two 

sperm whales from the test data. Most of the incorrect predictions occurred in segments 

located during the ascent phase of the dives, followed by those located nearby depth 

peaks. Interestingly, most of the errors within the deep peaks corresponded to an 

overestimation of the actual number of buzzes, while most errors in the ascent phase 

were underpredictions of buzzes.  

 

 

 

 

 

 

Animal Observed Prediction Prediction accuracy

sw17_194a 135 135 100%

sw18_170a 34 35 97%

sw18_172a 94 87 93%

sw18_177a 87 87 100%

sw19_137a 134 126 94%

sw19_158a 67 58 87%

sw19_160a 180 157 87%

sw19_163a 85 83 98%

Total 816 768 94%

sw17_203a 85 93 91%

sw18_173a 12 17 58%

sw18_292a 70 65 93%

sw19_088a 360 287 80%

Total 527 462 83%

Total Buzz events per Individual

Train data  

Test data
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                                    180s Segments (Observed – Predicted) 

 Buzz Absence/Presence                                                                           Total nº of Buzzes 
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Figure 2.6. Location within the dive profile of differences in the presence/absence (left) and in the 

number (right) of buzzes observed and predicted by the models for 180s segments for four new individual 

whales (test data). 

 

Discussion 

Sperm whales use echolocation clicks to find and track prey (Watwood et al. 2006, 

Teloni et al. 2008, Fais et al. 2016, Tønnesen et al. 2020). The association of fast click 

trains or buzzes with increased manoeuvring of sperm whales, supports the hypothesis 

that buzzing plays a role in prey acquisition (Miller et al. 2004). Hence, production of 

echolocation clicks has been widely used as a proxy of foraging activity and effort in 

the species, with buzzes indicating prey capture attempts (Fais et al. 2015, Fais et al. 

2016, Isojunno et al. 2016). 

We developed a model to detect the number of buzzes within sperm whale dive 

segments, when no concurrent acoustic information is available and solely based in dive 

metrics derived from low-resolution (at 1Hz and 1m) 2D dive profiles. Previous studies 

have developed similar methods to predict foraging activity for other diving predators, 

namely pinnipeds, in low-resolution datasets (Heerah et al. 2014, 2015). However, to 

the best of our knowledge, this is the only method capable of predicting prey capture 

attempts by sperm whales at the scale of a few minutes, along the entire dive. The 

model developed here was able to detect the presence and number of buzzes within dive 

segments of new individuals with good accuracy, despite of inter-individual variability 

in behaviour. This model, therefore, constitutes a powerful tool to estimate sperm whale 

foraging activity in time-depth data, representing a significant improvement over 

previous approaches without acoustic information (e.g., surface time (Watkins et al. 

1999); dive duration, surface interval and distance travelled during a dive cycle (Jaquet 

et al. 2000);  

 

Effect of time scales on model performance 

The fine scale analysis of foraging behaviour obviously requires measurements at short 

temporal resolutions, ideally at the scale of individual capture events. The majority of 

buzzes detected were 2-14s long, in accordance with previous studies reporting a 

median buzz duration of 9.1s (Fais et al. (2016). For this reason, the initial analyses 
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focused in segments of short duration; however estimations from these segments 

provided disappointing results. Although a detailed investigation of the causes is 

beyond the scope of this work, these results suggest that, over time scales of <60s, 

vertical movements during prey capture attempts are not substantial, and that increased 

manoeuvring (Miller et al. 2004) occurs mostly while the whale is swimming 

horizontally.  

The models based on segments of 180s and 300s provided good fits to the data. Both 

models showed a very high accuracy (80-82%) at predicting presence and absence of 

buzzes in segments. However, segments of 300s contained more buzzes than those of 

180s, and the model of 300s was considerably worse in predicting the number of buzzes 

per segment (41% of segments of new individuals correctly predicted, compared to 58% 

of the model for 180s). Thus, in the case of this dataset, 180s was considered the most 

suitable time scale for modelling the number of buzzes. With a longer dataset and a 

more extensive analysis, it might be possible to refine the models or find a set of other 

parameters capable of detecting prey capture attempts in shorter segments. A model 

predicting presence/absence of a buzz could then be applied to obtain data for every 

capture attempt. 

 

Dive metrics used to detect buzzes 

In the Azores archipelago, the sperm whale foraging phase, the period between the first 

and last buzz within a dive, mainly occurs between 700m and 1200m depth (Oliveira 

2014), explaining why average depth was an important predictor in the model. The fact 

that foraging activity occurs within a restricted, well-defined depth range also 

contributes to the excellent ability of the model in discriminating between segments 

with and without buzzes, and to the better model performance for segments with an 

average depth < 500m.  

In addition, sperm whales produce higher buzz rates during the bottom phase of the 

dives and with increased bottom duration (Oliveira 2014). None of the metrics used in 

this study to measure time spent at the bottom phase of the dive was retained in the final 

models. However, the number of buzzes per segment was found to be an increasing but 

decelerating function of the average depth of the segment (Figure 2.3). For segments 
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deeper than ~800m, a higher average depth did not imply a higher number of buzzes per 

segment, resulting in great overlap in average depth for segments ranging from 3 to 5 

buzzes. This partly explains why differences between the number of observed and 

predicted buzzes increased with depth (Figures 2.5B and D). On top of this, the dataset 

used to develop the model included few dives deeper than 1000m and model accuracy 

in the deepest segments was substantially reduced.  

The presence of buzzes was associated with reduced depth variance, most likely 

because the majority of segments without buzzes occur during the descent and ascent 

phases of the dive. Average vertical velocity during the descent and ascent phases of 

dives for sperm whales in the Azores is 1.35±0.21 ms
-1

 and 1.60±0.19 ms
-1

 (Oliveira 

2014). This means that changes in depth between the start and end of segments located 

in the descent and ascent phases of the dive can surpass 200m, so the variance in depth 

within these segments is high. Conversely, results from this study showed that during 

the bottom phase of the dives, where most buzzes are produced, variations in depth over 

time scales of a few minutes are substantially smaller and variance in depth within 180s 

segments is lower than during descents and ascents. Variance in depth during the 

foraging phase possibly results from the occurrence of vertical excursions, which has 

been previously defined as ARS behaviour and linked to foraging activity (Dragon et al. 

2012, Heerah et al. 2014, 2015). Although variance in depth was a good predictor of the 

presence and absence of buzzes, it did not increase with increasing number of buzzes, 

suggesting that consecutive prey capture attempts concentrate in a restricted depth 

range. 

The emission of buzzes by sperm whale is linked to strong bursts of speed (Amano and 

Yoshioka 2003, Fais et al. 2016). In order to try to detect the vertical component of 

these bursts, we calculated the average vertical velocity (i.e, change in depth between 

time t and t+1) and average vertical acceleration (i.e, change in vertical velocity 

between consecutive time intervals) of dive segments, as well as other statistics 

describing the amount of variation in these metrics within segments. Only variance in 

vertical velocity had a significant effect on the number of buzzes per segment. Buzzes 

occurred in segments with higher variance in vertical velocity, in accordance with the 

bursts of speed previously reported (Amano and Yoshioka 2003, Fais et al. 2016). 

Increased variance in vertical velocity may be the consequences of sudden accelerations 
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during active prey chases, followed by slowdowns after prey has been captured (Fais et 

al. 2016).  

Vertical excursions are necessarily linked to a change in vertical direction in animal 

movement and are consequently, linked to the presence of inflection points and wiggles 

(Dragon et al. 2012). In fact, vertical sinuosity quantified by wiggles, has been 

previously related to successful prey capture in cetaceans and other deep diving 

predators (Goldbogen et al. 2006, Calambokidis et al. 2007, Heerah et al. 2019). For 

this reason, and in base that buzzes are emitted prior to a prey capture attempt (Fais et 

al. 2016), the presence of wiggles was selected as a predictable variable. The number of 

wiggles proved to be a significant predictor in the final model. Nonetheless, the small 

number of wiggles detected within our dataset resulted in difficulties for this variable to 

predict the number of buzzes per segment, and consequently considerable lower 

predictivity than that of the other variables. These results suggest that the definitions 

used to calculate both wiggles and inflection points (the latter was not retained in the 

final model), used to calculate the former, might have not been the most appropriate. 

The reduced number of inflection points was due to both to the depth resolution and the 

selected time interval (t-1, t+1). Thus, we strongly believe that the presence of wiggles 

and inflection points, could improve buzz prediction if a longer time interval is used to 

account both the lower depth resolution and large body size of the species for the wiggle 

definition. 

 

Model predictive performance and potential application for population inference 

Overall, the best fitting model developed for the analysis of 180s dive segments 

correctly detected the presence or absence of buzzes in 81% of new observations, from 

the four sperm whales used in the test data. In 58% of these new segments, the model 

was able to accurately predict the number of buzzes. The performance of this model is 

similar to that of models developed to predict prey capture attempts in 2D low 

resolution datasets of southern elephant seals and Weddell seals using a different 

approach (Heerah et al. 2014, Viviant et al. 2014, Heerah et al. 2015). Unlike these 

models that predicted prey capture attempts at the dive scale (Heerah et al. 2014, 2015) 

or, at best, at 30 minutes and hourly scales (Viviant et al. 2014), the model developed in 

this study predicted prey capture attempts every 3 minutes. 
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Hence, the model developed in this study shows great potential to estimate prey capture 

attempts at very fine scales in low-resolution 2D sperm whale dive profiles. 

Nonetheless, some problems still remain that deserve further work. 

Perhaps the most important problem was that, for all dive metrics included in the final 

model, there was a large overlap in the distribution of values for different numbers of 

buzzes. This was especially evident for the variance in depth, the number of wiggles, 

and for the average depth in segments ranging between 3 and 5 buzzes. This largely 

explains why the model performance at predicting presence/absence of buzzes was 

substantially better that at predicting the exact number of buzzes, given presence. The 

increasing but decelerating relationship between average depth and number of buzzes is 

also believed to have been responsible for the overestimations observed in the dive 

segments that peaked in depth (Figure 2.6), leading to lower model performance in the 

deepest parts of the dive.  

The underestimation in segments during the ascent phase of the dive is more difficult to 

explain, when compared to the model remarkable accuracy for segments in the descent 

phase. We did not conduct a detailed analyses of these segments but, in general, the 

buzzes detected in the ascent and descent parts of the dive occurred in segments that 

were shallower, characterized by a high variance in depth but low variance in vertical 

velocity, as swimming speed is more or less constant. Therefore, it is not surprising that 

the model had difficulty in predicting the presence or the accurate number of buzzes in 

these segments. What is surprising was the huge difference in model performance 

between the ascent and descent phases. Fais et al. (2015) showed that, in deep dives, 

sperm whales produced around 17% of the buzzes while ascending, and that some of 

these buzzes might represent opportunistic prey capture attempts, while the whales 

continuously echolocate to obtain information for subsequent dives (Fais et al. 2015, 

Fais et al. 2016).  

The goal of developing a model to predict prey capture attempts from time-depth data 

was then to apply this model to different individuals, tagged in different locations and 

periods of time. To account for the individual, spatial and temporal variability in diving 

and foraging behaviour, the model was developed using data from different months and 

years, and including individual whales as a random effect. As expected, the random 
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factor was significant in all models, confirming there was high inter-individual 

differences in behaviour.  

Despite some of the shortcomings discussed above, the model performed reasonably 

well when applied to data from new individuals. In three out of four whales, the model 

predicted the true number of buzzes in the majority of dive segments, and the errors in 

the remaining segments were usually small (varying between -2 to +2). There was one 

individual, however, where the model performed substantially worse. This individual 

produced an average of 4 buzzes per dive, whereas the average number of buzzes per 

dive for all the other whales (both test and train data) varied from 7.8 to 21.8. Although 

the reasons for this difference are unknown, the model was unable to account for this 

variability, emphasizing the importance of adding data from more individual whales to 

refine and test the model. 

 

Recommendations for model improvement 

The segments in the ascent and deepest part of the dive, which accounted for most 

predictive errors, represent the most important limitations and, if improved, could 

greatly increase the performance of the model. The inclusion of the diving phase in a 

conditional model could discriminate between “ascent buzz segments” and the rest, 

potentially enabling a better prediction of buzzes in the ascent phase and in the whole 

dive. Additionally, standardizing or normalizing the dive metrics, or finding other dive 

metrics that better expain the number of buzzes could help improve model accuracy. 

Generalized additive mixed models should also be tried. 

Another important improvement for our method would be to reduce the length of the 

dive segments for which buzzes are predicted. A successful model predicting the 

number of buzzes or the presence/absence in shorter segments would, most likely, 

increase the model prediction accuracy and give more precise information about when 

the buzzes are being produced. However, this requires a more exhaustive data analysis, 

increasing the sample size and the re-assessment of more diving metric candidate 

parameters.  

 

 



53 
 

Conclusion 

This is the first study to develop a model that predicts the number of prey capture 

attempts, and consequently foraging effort, in low-resolution time-depth data for sperm 

whales. The model showed good predictive performance at short-time scales (3 

minutes) for whales tagged in different times and locations, and therefore has huge 

potential to investigate the fine-scale foraging activity of sperm whales. We believe that 

the present method could already be applied to available time-depth datasets, in order to 

conduct retrospective analyses of the foraging behaviour of the species. However, we 

also identified a number of issues in the models. These issues could be solved with an 

increased sample size, and by a more detailed data analysis in order to obtain more 

accurate predictions. Moreover, further research is needed to understand whether all the 

buzzes are produced within a foraging context, and if not, to identify those that 

represent prey capture attempts. 

The present foraging estimation approach is based on the prediction of the number of 

buzzes and, therefore, could potentially be applied to a number of odontocete species, 

potentially enabling more accurate estimations of foraging effort than the coarse and 

general foraging indexes typically derived from 2D dive profiles.  
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Annex 

Figure A3.1: Pearson‟s correlations diagram of all dive metrics. 

 


