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Abstract.
BACKGROUND: Interfaces of transtibial prosthesis have an important role in the transmission of ground reaction forces,
damping gait loads and tissue protection.
OBJECTIVE: This work aims to study the influence of prosthesis interfaces on amputees’ gait and perception on pain, comfort
and the overall interface/prosthesis system.
METHODS: Commercial samples of three different interface materials were selected: block copolymer (Material I), silicone
gel (Material II) and silicone elastomer (Material III). Using standardized prosthesis, four amputee subjects performed gait tests
at three imposed cadences in a barometric platform. The subjects also filled in a questionnaire about their perception.
RESULTS: Material II presented the highest asymmetries of vertical ground reaction forces and was perceived as the most
painful and uncomfortable. Material III led to the most symmetric load distribution between legs and was perceived as the most
comfortable. Material I showed better overall biomechanical behavior and better subject’s perception.
CONCLUSIONS: Material III showed appropriate characteristics for lower levels of activity for which it is recommended.
Prescription of Material II should be rethought, as it is only adequate for specific and occasional situations. Material I should
be considered adequate for both active and less active amputees. When correlating the subjects’ perception with the interface
properties, we concluded that the mechanical properties are the most influential.
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1. Introduction

The main purpose of the lower limb amputee’s rehabilitation is to recover the subject’s ability to perform
activities of daily living, quality of life and normal gait [1]. Transtibial amputees lose static support and
adequate gait function, requiring joints adaptation and muscular mechanisms of compensation [2,3].
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Symmetric limb weight is very important for balance during gait, since the gravity centre is shifted
laterally to the sound limb side. Gait asymmetry is imposed by insufficient prosthesis mass to compensate
the lost limb weight, loss of normal neuromuscular control, mechanical asymmetries of the prosthesis
[3,4] and other factors, like pain and postural instability [5,6].

The quality of prosthetization depends on the choice of components of the prosthesis according to
each patient’s characteristics. Currently, there is a wide range of available components and a suitable
choice therefore requires a deep knowledge of the materials in terms of their structure, properties and
behavior [7].

The amputated limb becomes vulnerable due to the absence of joints and tissues for cushioning the
impact of the repetitive load during gait, which can induce stump pain [8], discomfort and skin injuries
[9], but also knee osteoarthritis in the sound leg, osteoporosis in the stump [10] and back pain [8]. To
improve the amputee’s safety and comfort, a cushioning interface, usually named a liner, between the
stump skin and the prosthetic rigid socket is used, and is a determinant component of the prosthesis [9].

Silicone-based materials and polymeric elastomers have been used in the interface confection and their
properties have been studied. The results in the literature show that physical properties of silicone gel and
silicone elastomers are quite similar [11,12]. Moreover, elastomers are often preferred due to their stiffness
properties and compressive strength, while polyurethane shows higher coefficient of friction [11,12]. The
results of the shear tests led to the conclusion that silicone elastomers and polyurethane are the most
suitable materials for stumps with a high proportion of soft tissue, because they prevent the slide of the
stump in the socket, while silicone gels are appropriate for stumps with abundant bony prominences, due
to the cushioning effect [11,12].

Thus, the assessment of rigidity and damping characteristics of the interface material is a determinant
step to optimize the interface material selection and adapt its geometry to the needs of the amputee.

Currently, an amputee’s functionality is defined based on a Mobility Scale (Functional Levels defined
by the Centres for Medicare and Medicaid Services of the United States Department of Health and Human
Services [13,14]), which is composed of five K-levels of mobility, from K0 - the patient is immobile and
has neither the potential nor the ability to ambulate or transfer, with or without assistance; to K4 - the
patient has the ability or potential to use a prosthesis as an aid in activities that require skills beyond
basic and are characterised by high impact, energy consumption or stress levels [13,14]. Through this
Mobility Scale, Mobility Scale-based Guidelines for prosthetic device provision were developed by the
same centres [13,14]. This scale also has five K-levels with information regarding the adequate prosthetic
device provision, namely: K0 - patients are not advised to use prosthesis either for ambulation or transfer;
K1 - patients are advised to use prosthesis to attain the functional goal of unlimited or limited in-house
ambulation; K2 - patients are advised to use prosthesis so as to attain the functional goal of limited
community ambulation; K3 - patients are advised to use prosthesis in order to develop their functional
potential that goes beyond mere locomotion, so as to be able to traverse most barriers and cope with more
demanding exercises and other activities; K4 - patients (typically children, active adults and athletes) are
advised to use prosthesis even with the most demanding activities [13,14]. Nowadays, this classification
method is used by manufacturers to classify the suitability of prosthesis components according to the
patient’s functional level [13].

The aim of this research was to study the influence of the prosthetic interface material in transtibial
amputees’ gait and perception on pain, comfort and the interface/prosthesis system. For this purpose, three
commercial samples of interfaces, representative of the most used elastomeric materials, were studied
in their service conditions (in vivo). The biomechanical behavior and subject perception results were
analysed considering also the materials mechanical and structural characteristics, previously evaluated
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Fig. 1. Studied materials: M I) a block copolymer (AKDT Locking, Extreme gel for high activity); M II) a silicone gel (Clear
liner basic, Streifeneder 1S3 silicone gel), and M III) a silicone elastomer (First class liner, Streifeneder 1S5 silicone elastomer).

by the authors [15,16]. We believe that the knowledge of the mentioned influence may draw attention to
the essential importance of this component and their properties and result in an adequate precursor of
prescribing guidelines, which are currently non-existent.

2. Methods

2.1. Interface materials

Three of the most used commercial interface materials were studied (Fig. 1): Material I, a block
copolymer (AKDT Locking, Extreme gel for high activity); Material II, a silicone gel (Clear liner basic,
Streifeneder 1S3 silicone gel) and Material III, a silicone elastomer (First class liner, Streifeneder 1S5
silicone elastomer).

According to the Mobility Scale-based Guidelines for prosthetic device provision described in Section
1, interfaces of Materials I and II are recommended for more active amputees (K3–K4), while Material
III is recommended for less active amputees (K1–K2).

2.2. Study design and preparation

In order to characterize the materials in their service conditions (in vivo), it was necessary to assess
their biomechanical behavior in transtibial amputees during a gait course, where kinematic and kinetic
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Table 1
Characterization of the subjects with amputation who voluntarily participated in the test

study of the interfaces

Subject
A B C D

Age (years) 34 42 52 54
Weight (kg) 80 82 85 85
Height (cm) 183 177 180 183
Time of amputation (years) 10 14 35 18
Amputation side Right Right Left Right
Activity level High Moderate Moderate High
Stump shape Conical Conical Conical Cylindrical
Soft tissue Firm Firm Regular Flaccid
Bone prominences Fibula head None Fibula head None
Skin condition Preserved Preserved Preserved Preserved
Blood circulation Preserved Preserved Preserved Preserved
Tolerance to distal pressure Moderate High High High

data were collected. The information of the individual’s perception about the prosthesis, pain and comfort
for each interface was also collected through a questionnaire.

This study involved several phases. First, an approval of a local ethics committee was obtained,
and after that, subjects with transtibial amputation were selected. All the selected subjects visited the
prosthesis laboratory three times: first for making the socket casts, preparing the prosthesis and filling in
the characterization questionnaire; second for testing the prosthetic sockets and alignments and recording
the self-selected walking cadences (slow, normal and fast); and third for assessing the gait and filling in
the Global Perception Questionnaire.

2.2.1. Subject selection

The subjects were selected from the list of patients of the Instituto de Especialidades Ortopédicas
S.L. (IDEO) and were asked to participate voluntarily in this study, based on the following inclusion
criteria: i) unilateral traumatic transtibial amputation (> 2 years); ii) males under the age of 55; iii) stump
length between middle and lower third; iv) stable stump with skin integrity preserved; v) no associated
pathologies.

Four male patients (45.5 ± 9.3 years old) agreed to participate in the study. They all had a high/moderate
activity level and the stumps were in good conditions in terms of shape, skin, blood circulation and distal
pressure tolerance. For each patient, a characterization form was filled in with personal and amputation
data (Table 1). All subjects were willing to participate freely in this study and signed an informed consent
form.

2.2.2. Prosthesis preparation and characteristics

In order to limit bias and eliminate the influence of other prosthesis components on gait, which has
been previously cited as a limitation in these kind of studies [4], an endoskeletal prosthesis was prepared
with the same modular prosthesis components (Fig. 2a). Moreover, the same uniformed running shoes
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Fig. 2. Prosthesis components description: (a) complete endoskeletal prosthesis; (b) running shoe; (c) prosthetic foot; (d) rigid
pylon; (e) pin lock system; (f) interfaces used in the study (Materials I, II and III) and matching full contact sockets.

were used for all subjects (Fig. 2b). The selected prosthetic foot was a Multiflex-standard® by Endolite
(Fig. 2c) with a duralumin rigid pylon (Fig. 2d) and pin lock system (Fig. 2e). Also, three different full
contact sockets for each of the three interfaces were made per subject (twelve in total), in a transparent
thermoplastic material (Fig. 2f). This procedure is fundamental, since the rigid components must be as
adapted as possible to the stump of the ampute, in order to provide the structure and stability necessary
for the remaining prosthesis. In this sense, the fittings of the full contact sockets must be manufactured in
an individualized way, considering the anatomical characteristics of each subject, as well as the interface
being applied. For standardized manufacturing, the cast was made with the aid of a pressure machine, so
that the forces applied in the removal of the cast were the same in the three interfaces.

At the first lab visit, the conditions of the stump were evaluated and measures were taken in accordance
with standard procedures and a datasheet used by IDEO, and the casts were made and the size of some
prosthetic components were selected, as the foot/shoe size and the rigid pylon height.
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Fig. 3. Scheme of the experimental setup of the gait test.

Table 2
Order of testing of the interface materials (Material I: a block copolymer; Material II: a silicone

gel; and Material III: a silicone elastomer) during the three moments of the gait assessment

Subject Test moment 1 Test moment 2 Test moment 3
First interface tested Second interface tested Third interface tested

A Material I Material II Material III
B Material II Material I Material III
C Material II Material III Material I
D Material III Material II Material I

At the second lab visit, the prosthesis and alignments were tested and the self-selected walking cadences
were recorded. Because speed is known to influence the ground reaction force (GRF) [17], the walking
cadence was normalized for all subjects. The self-selected slow, normal and fast walking cadences were
collected for all subjects after five trails and averaged between all subjects.

All casts and sockets were performed by an experienced certified prosthetist orthotist (> 20 years
of practice), who also performed all prosthesis alignments before each evaluation, to ensure the same
alignment, since this has also been found to influence gait [18].

2.3. Gait assessment

Gait analysis was carried out at the third lab visit of the subjects, at three imposed cadences over a 10
meters distance, where a barometric platform (FreeMed® Professional Model by Sensor Medica, 200 Hz,
120 × 50 cm2 of sensors area) was embedded in the middle of the walkway in order to avoid effects of
initial acceleration and final deceleration [19] (Fig. 3). A metronome was used to impose, to all subjects,
the same average slow (75 steps per minute), normal (85 steps per minute) and fast (110 steps per minute)
cadences during the gait tests. The same sequence was used in all tests: slow, normal and fast. The gait
analysis was performed at the Instituto de Biomecánica y Postura de Sevilla.

Five valid trails were collected for each cadence and interface. The sequence order in which the
interfaces were tested was randomized (Table 2). Between interfaces, a rest period of fifteen minutes was
allowed, during which pain and comfort levels were registered and a Global Perception Questionnaire
(GPQ) of the interface was filled in.

Gait tests were preceded by an initial rest period of 30 minutes without any prosthesis, after which
warm-up exercises were performed, consisting of repetitions of flexion and extension of the stump and
stretching. The gait output parameters were: (1) Step length (cm), measured by the difference in length
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between the prosthetic leg and the sound leg; (2) Stance, swing and double support time (ms), being the
average of all cadences and all subjects determined in both legs, according to the interface material used;
(3) Vertical component of ground reaction force (GRF-V), being the maximum force of this component
collected and normalized with the body weight percentage (% BW).

2.4. Pain/comfort perception and Global Perception Questionnaire (GPQ) about the interface/prosthesis
system

All subjects were asked their opinion regarding pain and comfort sensation, compared to their daily
prosthesis both at the beginning and ending of all tests, with a visual analogue pain scale (0 = no pain; 1
= slightly painful; 2 = moderately painful and 3 = very painful) and visual analogue comfort scale (0 =
very comfortable; 1 = comfortable, 2 = uncomfortable; 3 = very uncomfortable).

A GPQ was developed to register the subject’s perception of the interface/prosthesis. For each tested
interface, eight different questions were asked and answered according to a four- point scale:

1. Stand up comfort (very comfortable, comfortable, uncomfortable or very uncomfortable);
2. Sit down comfort (very comfortable, comfortable, uncomfortable or very uncomfortable);
3. Energy required to use the prosthesis (not exhausting, slightly exhausting, exhausting or very

exhausting);
4. Instability during walking (never, sometimes, many times or always);
5. Sensation/sensitivity regarding temperature and texture (pleasant, slightly unpleasant, unpleasant or

very unpleasant);
6. Easy donning and doffing the interface (easy, slightly difficult, difficult or very difficult);
7. Sweat rate compared with own prosthesis (no sweat, slightly sweaty, sweaty or very sweaty);
8. Prosthesis weight (very light, light, heavy or very heavy).

2.5. Data analysis

For each parameter, the applied statistics are described below.
1. Step length: the average of all subjects for each of the three materials was calculated separately for

the two legs. The results were split into three groups - Material I, Material II and Material III - and a
Mann-Whitney U test was performed regarding the prosthetic and sound leg results.

2. Temporal parameters (swing, stance and double support time): the average of all subjects for each
of the three materials was calculated separately for the two legs. The same Mann-Whitney U test was
performed as described in item 1 (step length). In addition, a Kruskal-Wallis test was performed, using
the results split in three groups (Material I, Material II and Material III), regarding the three gait temporal
parameters. Furthermore, a post hoc test (the Bonferroni test) was performed for the values which showed
statistical significance.

3. GRF-V: the average of all subjects for each of the three materials was calculated separately for
the two legs, with slow, normal and fast cadences. The same Mann-Whitney U test was performed as
described before. Additionally, a Kruskal-Wallis test was also performed, with the results split in three
groups (Material I, Material II and Material III), regarding the three gait cadences (slow, normal and fast).
After that, a post hoc test (the Bonferroni test) was performed for the values which showed statistical
significance.

4. The subjects’ perception of pain and comfort and their answers to the Global Perception Question-
naire were analyzed and the averages of all subjects for each of the three materials were calculated. The



AU
TH

OR
CO

PY

218 A. Cavaco et al. / A study on the influence of prosthetic interface material in transtibial amputees’ gait

Table 3
Step lengths (cm) of the prosthetic and sound legs and difference between them for

the three interface materials. Average ± standard deviation

Prosthetic leg Sound leg Difference
between legs

Material I 57.5 ± 10.2 54.3 ± 9.3 3.3
Material II 59.8 ± 9.4 55.4 ± 9.7 4.4
Material III 52.1 ± 5.7 55.8 ± 9.7 −3.7

differences were assessed for the three interface materials, which were tested in four subjects, using the
Kruskal-Wallis test and Bonferroni test. Differences were considered statistically significant when p <
0.05.

3. Results

All subjects showed slight differences between step length of the prosthetic leg and the sound leg;
when using Materials I and II, the results indicate shorter steps in the sound leg, while for Material III the
contrary was observed, as shown in Table 3. However, the statistical tests show that there is no significant
difference between the legs in the three materials.

Average times (ms) of swing and stance phases in the prosthetic and sound legs and average double
support time (ms) over all cadences were calculated (Table 4). Regardless of the material, the stance
phase time of the sound leg was always higher than the stance phase in the prosthetic leg. In the prosthetic
leg, Material III led to a longer stance phase and shorter double support time. Contrarily„ Material II
had a higher swing time of the prosthetic leg and longer double support time. The applied statistical tests
showed that there is no significant difference between the legs with the three materials. On the other hand,
the Kruskal–Wallis test performed between the three gait temporal phases presented p-values < 0.05 for
all materials, showing the statistical significance in these differences. For these results, the Bonferroni test
showed p-values < 0.05 between all phases: swing and double support, stance and double support; and
swing and stance time, in all materials.

The GRF-V for the three tested materials at slow, normal and fast cadences for prosthetic and sound
legs is presented in Table 5. The GRF-V increases slightly as the cadence increases, in all tested materials
and in both legs. GRF-V was higher in the sound leg in comparison with the prosthetic leg, for all walking
cadences and materials. In general, Material I led to the highest GRF-V at all walking cadences for both
legs. On the other hand, Material III showed a more global symmetry between legs, especially at fast
cadence.

As before, the statistical tests showed that there is no significance of the differences between the legs
with the three materials, but the Kruskal–Wallis performed between the three gait cadences presented
a p-value < 0.05 for Material II, showing statistical significance of the recorded difference. For these
results, the Bonferroni test showed a statistical significance of the differences between the slow and normal
cadences (p-value = 0.000), slow and fast cadences (p-value = 0.018) and normal and fast cadences (p-
value = 0.000).
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Table 4
Swing and stance phase times (ms), double support time (ms) and corresponding gait cycle percentage

(%) for the three interface materials. Average ± standard deviation

Swing phase time Stance phase time Double
support time

Prosthetic leg Sound leg Prosthetic leg Sound leg

Material I 650.0 ± 40.6 358.0 ± 88.6 685.6 ± 155.2 738.7 ± 166.3 198.7 ± 98.8
48.7% 32.6% 51.3% 67.4% 8.2%

Material II 648.3 ± 70.1 481.3 ± 19.8 670.2 ± 127.3 730.3 ± 161.4 267.7 ± 85.2
49.2% 39.7% 50.9% 60.3% 10.6%

Material III 659.5 ± 38.9 405.8 ± 83.7 700.4 ± 157.5 736.1 ± 167.9 161.6 ± 99.2
48.5% 35.5% 51.5% 64.5% 6.5%

Table 5
GRF-V (% BW) for the different walking cadences and the three interface materials. Average ± standard

deviation

Slow cadence Normal cadence Fast cadence
Prosthetic

leg
Sound leg Prosthetic

leg
Sound leg Prosthetic

leg
Sound leg

Material I 129.2 ± 9.4 131.6 ± 9.6 133.8 ± 8.4 136.0 ± 8.2 134.4 ± 7.8 137.5 ± 7.2
Material II 125.0 ± 5.7 127.0 ± 7.1 130.7 ± 10.8 134.1 ± 7.8 133.6 ± 14.2 137.9 ± 8.5
Material III 123.1 ± 7.2 125.1 ± 10.3 132.4 ± 13.5 133.0 ± 5.7 134.5 ± 4.9 134.4 ± 12.4

Both pain and comfort were worse after gait testing, regardless of the interface material (Table 6).
Material II was identified by all subjects as more painful and less comfortable after gait tests. Material I
was perceived as being the one that provides less global pain increase, however, Material III was identified
with a more homogeneous behavior providing the smaller global comfort decrease.

Table 6 summarizes the results of the subjects’ global opinion on the interface material/prosthesis.
Material II was identified as being the worst by all subjects. Materials I and III had similar results in stand
up and sit down comfort, sweat rate and prosthesis weight. However, Material I was perceived as being
less exhausting regarding the energy required to use the prosthesis, more stable and with easy donning
and doffing; and Material III was perceived as the more pleasant on temperature and texture relatively to
skin contact.

4. Discussion

The difference between the step length of the sound limb and prosthetic limb is common in lower limb
amputee’s gait. Knee and hip osteoarthritis are common in the transtibial amputee’s leg. Step asymmetry
is known to cause several problems in the subject’s health, like pain, postural instability or osteoarthritis
in the contralateral limb. The inadequate prosthesis prescription induces the observed asymmetry.
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Table 6
Pain and comfort, and subjects’ global opinion on the interface material/prosthesis. Scale levels are described in Section 2.4

Pain and comfort perception
Assessment moments Material I (0 - 3) Material II (0 - 3) Material III (0 - 3)

Pain Before gait test 0.5 0.5 0.25
After gait test 0.75 2.0 0.75

Global increase 0.25 1.5 0.5

Comfort Before gait test 0.25 1.5 0.25
After gait test 1.0 2.5 0.75

Global decrease 0.75 1.0 0.5

Global perception of the interface/prosthesis
Questions Material I (0 - 4) Material II (0 - 4) Material III (0 - 4)

1. Stand up comfort 1.0 2.25 1.0
2. Sit down comfort 0.5 1.5 0.5
3. Energy required to use the prosthesis 1.0 2.5 1.25
4. Instability 0.75 2.25 1.0
5. Sensation/sensitivity (temperature and texture) 0.75 1.75 0.5
6. Easy donning and doffing the interface 0.5 2.0 0.75
7. Sweat rate compared with own prosthesis 0.5 2.0 0.5
8. Prosthesis weight 0.5 1.0 0.5

In the current study, all materials resulted in step length differences when averaged among all subjects
and cadences. However, despite the lack of statistical significance, two different trends were observed.
The use of Materials I and II resulted in a higher step length of the prosthetic leg than in the sound
leg, with a higher difference for Material II. These results are in accordance with previously published
results [20] in a gait study with transtibial amputees who used their own prosthesis, where slightly higher
length differences were observed, probably because different protocols were used. Due to difficulties of
the amputees in loading the weight on the prosthetic leg [5], the step length of the sound leg is normally
lower. However, when Material III was used, results showed a higher step length for the sound leg than
for the prosthetic leg. This shows that a single component of the prosthesis, in this case the interface,
may allow an inversion of the symmetry effect in transtibial gait, and this is certainly the reason why the
subjects perceived this material as the more comfortable (Table 6).

Asymmetry has also been described in gait temporal parameters for transtibial amputees comparatively
with healthy subjects. In normal subjects, stance and swing phases are symmetric between legs and
normally correspond to 60% of the gait cycle for the stance phase versus 40% for the swing phase [2,20]. In
transtibial amputees, gait cycle asymmetries were found in the literature between stance and swing phases,
when comparing the sound and prosthetic legs. For the prosthetic leg, the stance phase corresponded to
57–59% of the gait cycle and the swing phase was 43–41%; in the sound leg, the stance phase was 63–
62% while the swing phase corresponded to 37–38% of the gait cycle [2,20]. The asymmetries between
temporal gait phases, which had statistical significance in our study, could be caused by differences in
step length and difficulty of weight loading in the stump, which lead to an increase of the stance phase of
the sound leg and of the swing phase of the prosthetic leg.

Although the results of our study (Table 4) are globally in agreement with the above referred values
[20] for all materials, Material III had the shortest double support time phase.
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Table 7
Summary of relevant properties of the interface materials previously assessed: bulk modulus (E′ )
tangent of the phase angle (tan 𝛿), thermal conductivity at 20 °C (k), coefficient of friction (COF)

and energy of adhesion measured on human skin (in vivo). Data collected from Refs [15,16]

E′

(MPa)
tan 𝛿 k (W/(m.K)) COF Energy of adhesion

(mJ)

Material I 1.62 0.27 0.1438 ± 0.0002 2.15 ± 0.25 0.133 ± 0.007
Material II 11.9 0.28 0.1996 ± 0.0002 1.91 ± 0.09 0.067 ± 0.051
Material III 1.64 0.57 0.1891 ± 0.0003 2.46 ± 0.70 0.340 ± 0.322

GRF-V is largely studied and is believed to be particularly important for analysing shock absorption
that occurs during the loading response phase of gait [20]. It is an important biomechanical parameter
to analyse the amputee’s risk of developing joint disorders in the residual limb and intact contralateral
leg [10]. GRF-V increased with increasing cadence (Table 5) for all materials, as expected. In general,
the GRF-V were asymmetric between legs, being higher in the sound leg, in agreement with previously
published data [5,21].

The GRF-V in the prosthetic and sound legs registered in our study are within the range considered
for gait in normal subjects, which is between 120% and 150% for walking cadences of 3.5km/h to 5km/h
[20]. Further comparison between our GRF-V values and other previous published values is not possible,
because other prosthesis components were used [21], or cadence and prosthetic components were not
controlled [5]. Our GRF-V results globally differ between the studied materials. When just analysing
the prosthetic limb, Material III damps more load at a slow cadence and Material II at normal and fast
cadences. However, when analysing GRF-V of the prosthetic limb versus the sound limb, Material II is
also responsible for the highest asymmetries of GRF-V between legs. The greater ability of Material II
in damping load has a negative effect on the contralateral limb in both normal and fast cadences, being
responsible for the highest absolute differences in GRF-V between limbs, which over time may have an
adverse effect on the overloading of the sound leg [10]. For this material, there was a statistical significance
between the slow and normal cadences and the slow and fast cadences, indicating the consistent sensibility
of Material II.

Material III is responsible for the lowest GRF-V in the sound leg in all cadences, besides being the best
damping at slow cadence and overall showed a more symmetric GRF-V distribution between legs. The
interface material has cushioning and comfort purposes, reducing load transmission from the prosthesis
to the residual limb [22]. Subjects preferred greater damping devices [23], which can explain subjects’
better perception of Material III.

For the GRF-V gait parameter, although the results showed a clear direction of the differences, there
was no significant difference between legs. This may be due to the small sample size.

The mechanical behavior of the three interface materials was analysed in a previous study [15] (Table 7),
in which Material II showed to be the most rigid, with higher bulk modulus when compared to Materials
I and III. Material III presented a higher tan 𝛿 when compared to the other materials, corresponding
to the highest hysteresis component on dynamic loading [15], and, therefore, to the highest energy
dissipation/damping capacity. The more adequate mechanical behavior of Material III to accommodate
soft tissues, bone prominences and dissipate loads, in combination with a higher coefficient of friction
and adhesion, is in line with the current results of the perception of the amputees, since it was the material
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which provided the best sensation/sensitivity of temperature and texture and lower decrease of comfort
(Table 6). Table 7 also shows that Material II presented a higher thermal conductivity value, as well
as a higher stiffness and lower coefficient of friction and adhesion. This material was perceived by the
subjects as the worst during its use (Table 6). Thus, it was concluded that the subjects’ perception is
mainly dependent on the mechanical properties of the interface.

5. Conclusion

In conclusion, it is considered that the prescription of Material I, due to its mechanical properties
(similar stiffness and lower capacity of energy dissipation when compared to Material III), should be
rethought to also include subjects with lower activity levels (K1–K2). On the other hand, Material II should
only be prescribed for situations of non-daily use. The interfaces of Material III showed characteristics
suitable for the activity levels for which it is recommended (K1–K2).
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