

Preliminary optimization of the environmental performance of PHA downstream processing

Mateo Saavedra del Oso, Miguel Mauricio-Iglesias and Almudena Hospido

Group of Environmental Biotechnnology Universidade de Santiago de Compostela

Building blocks for a sustainable bioplastic value chain

Framework: knowledge integration for efficient decision making

Bioplastic value chain hotspot: PHA downstream processing

Product requirements and processes selection

Quality	Chemical impurities	High molecular weight	Comply EU No 10/2011?
High-grade (H)	(C)	(C)	(C)
Low-grade (L)		•••	

G	Feedstock	Culture	Method	TRL
H1	Glucose	Pure	Acetone extraction	9
H2	Food waste	Pure	HPH + SDS digestion	9
Н3	Oleic acid	Pure	NaOH + Lysol digestion	4
H4	Glucose, soybean oil	Pure	Ethyl acetate extraction	6

G	Feedstock	Culture	Method	TRL
L1	Methane	Pure	Acetone extraction	4
L2	Canning wastewater	Halophilic bacteria	Osmotic shock + SDS digestion	4
L3	Wastewater	Mixed culture	NaClO + SDS digestion	4
L4	Molasses byproducts	Pure	Fusel alcohols extraction	8

Scenarios definition

(osmotic shock + SDS digestion)

Goal & Scope

SYSTEM FUNCTION: to obtain high-grade or low-grade PHA powder

FUNCTIONAL UNIT: 1 kg high-grade PHA powder or 1 kg low-grade PHA powder

GATE-TO-GATE: from PHA enriched biomass to PHA powder

PRIMARY DATA: mass and energetic balances from defined processes (articles, patents & process simulation)

SECONDARY DATA: Ecoinvent v3.3

MIDPOINT APPROACH:

Global warming (IPCC method), terrestrial acidification, freshwater eutrophication, human toxicity, freshwater ecotoxicity and fossil depletion (ReCiPe (H) v1.13)

Life cycle impact assessment: 1 kg high-grade PHA

■ Direct emissions □ Chemicals ■ Electricity ■ Heat duty □ Cooling duty ■ Waste or wastewater treatment

Life cycle impact assessment: 1 kg low-grade PHA

Optimization of the environmental performance

Technology	Hotspot	Scenario assessed	Result
Solvent extraction	Heat consumption in solvent	Oil as heat source	•••
Solvent extraction	recovery	Natural gas as heat source	00
Chamical disastics	Chemicals consumption	Chemicals are not recovered	
Chemical digestion		Chemical are recovered	(C)
	Electricity consumption in HPH	High-carbon electricity mix (Polish)	
Mechanical disruption		Low-carbon electricity mix (Swedish)	(C)

Drocoss	Framework	Improvement	Environmental impacts reduction		
Process		actions	GWP	Human toxicity	Fossil depletion
L2	Larger facilities with	Heat	83%	50%	73%
L4	available residual vapor	integration	12%	13%	11%

Conclusions

- Most promising PHA downstream processes were identified and evaluated
- Preliminary insights for the optimization of their environmental performance were provided
- Solvent extraction require high amounts of energy. Heat integration and the utilization so-called green solvents can reduce the environmental impacts
- Chemical digestion shows a better environmental performance when is combined with mechanical disruption or chemicals are recovered
- High pressure homogenisation is the most promising method from a environmental perspective

Preliminary optimization of the environmental performance of PHA downstream processing

msaavedra.deloso@usc.es

www.usc.es/biogroup

