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Abstract 

 
Over the last few years autonomous driving had an increasingly strong impact on the 
automotive industry. This created an increased need for artificial intelligence algo- 
rithms which allow for computers to make human-like decisions. However, a compro- 
mise between the computational power drawn by these algorithms and their subsequent 
performance must be found to fulfil production requirements. 

 
In this thesis incremental deep learning strategies are used for the control of a mobile 
robot such as a four wheel steering vehicle. This strategy is similar to the human 
approach of learning. In many small steps the vehicle learns to achieve a specific goal. 
The usage of incremental training leads to growing knowledge-base within the system. 
It also provides the opportunity to use older training achievements to improve the 
system, when more training data is available. 

 
To demonstrate the capabilities of such an algorithm, two different models have been 
formulated. First, a more simple model with counter wheel steering, and second, a 
more complex, nonlinear model with independent steering. These two models are 
trained incrementally to follow different types of trajectories. Therefore an algorithm 
was established to generate useful initial points. The incremental steps allow the robot 
to be positioned further and further away from the desired trajectory in the environ- 
ment. 

 
Afterwards, the effects of different trajectory types on model behaviour are investigated 
by over one thousand simulation runs. To do this, path planning for straight lines and 
circles are introduced. This work demonstrates that even simulations with simple 
network structures can have high performance. 
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1 Introduction and Motivation 

 
1.1 Introduction 

Since the 1960s, there has been a large interest in understanding machine learning and, 
more specifically, the use of neural networks to achieve it. However, given the limi- 
tations of computational power at the time, it would take another 20 years, until the 
1980s, for our more modern interpretation of neural networks to be established. Now, 
given their potential applications in a variety of fields, research into neural networks 
have garnered massive interest [1]. 

 
Nowadays, a lot of deep learning strategies are implemented in almost every type 
of system including optimization systems, diagnostic systems, and control systems. 
Starting with industry 4.0,  many companies are starting to save huge data sets and 
need new strategies to analyse them. For example, services which require the analysis 
of such data sets, like Spotify, could not exist without such algorithms. Now, in order 
to overcome challenges facing their automated driving assistants and warning systems, 
such as the navigation of unknown territories, parking in tight spaces, or the naviga- 
tion of narrow streets, the automotive industry has invested heavily in development of 
these algorithms. 

 
The transition to technical supported solutions offers facilitation of the task but also 
leads to a longer development process in advance. The application of neural networks 
is nowhere more so apparent than (uncrewed) vehicles. Utilizing the sensors available 
to it, the vehicle must gather information about its environment, plan a course of 
action, and execute the plan to achieve a specific goal. Currently, these systems are 
controlled remotely, however systems which could be completely automated or even 
work in tandem with other automated machines or vehicles would be revolutionary. 

 
The focus of this work is to utilize deep learning applications to navigate a mobile 
four-wheel steering (4WS) robot on different target trajectories. This can later be 
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used to navigate (uncrewed) vehicles within dangerous terrain for remote monitoring 
or surveillance applications. 

 
1.2 Motivation 

Unmanned reconnaissance and defense systems are increasingly attracting attention. 
The advantage of free actions while being in a difficult situation leaves the interest 
in many different sectors of public life. The majority of those systems are aircrafts, 
often used for military purposes. But also land and water vehicles appeal. Unmanned 
underwater vehicles are used for reconnaissance and mapping. Often there are used 
swarms of robots to 3D map simultaneously the ground. The land vehicles have their 
application fields more in reconnaissance causes. 

 
The ability of unmanned reconnaissance and defense systems to perform logical deci- 
sions to accomplish specific tasks autonomously has been demonstrated by numerous 
applications within the defense and aerospace sectors. Further, the ability of such sys- 
tems to communicate in networks allows, for example, 3D mapping of the ocean floor. 
These commercial successes have attracted both public and scientific attention. The 
use of land vehicles is of particular interest given the unique challenge of operating 
upon a variety of different surfaces. The specifications of the land vehicle’s steering 
system play a critical role in the exact directions the vehicle can move, and therefore 
greatly impact the algorithms that can be used to govern a vehicle’s movement. 4WS 
systems provide advantages over their modern counterparts due to: 

• their reduced turning radius— due to the ability of the front and rear wheels to 
steer simultaneously, 

• their increased agility at low and medium speeds— due the ability of the front 
and rear wheels to steer in opposite, 

• their increased stability at higher speeds— due to the ability of the front and 
rear wheels to steer in the same direction. 

 
Due to a better maneuverability and high-speed stability the automotive industry ap- 
plies the system in their new cars. The aforementioned advantages of such systems 
have been implemented into new vehicles for small steering angles such as the Acura 
TLX, Audi A8, BMW 7 Series, and Cadillac CT6. More exaggerated versions of these 
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systems are often implemented into special-purpose vehicles. Fire engines, for exam- 
ple, exhibit such forms of pronounced steering (as observed in 1.1). This allows for 
such a large vehicle to retain manageable maneuverability so it can provide assistance 
in very tight or small spaces. 

 
 

Figure 1.1: Fire truck with 4WS [2] 

 
In reconnaissance vehicles 4WS technology is being paired to a control system which 
is tasked with dealing with nonlinear system dynamics. In many situations there is 
no clear specification of the setting. Therefore it is desirable to let the system make a 
decision based on the present setting. 

 
This decision can be made statically with simple queries. Another approach is to use 
learning strategies to make the decisions more dynamic. The dynamization of the 
decisions helps to control the nonlinear system. Advantages of this approach are the 
easier implementation of those algorithms and having the opportunity to enlarge the 
skill set of the controller. Also there are great benefits for growing data sets and as a 
consequence growing knowledge of the system. 

 
1.3 Objective of the work 

The objective of this work is to use incremental deep learning to train and validate a 
4WS robot for autonomous positioning and tracking under different scenarios. 
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Several previous works have dealt with modelling and parameter estimation of those 
systems. Because of that, the main focus in the proposed master thesis will be in 
following a target trajectory using learning algorithms.  Part of the validation will be, 
to change parameters of the network as well as those of the robot and the trajectories 
for different driving scenarios. To accomplish this objective the following topics will 
be deeply examined in this work: 

• reproduction and validation of an exact but simple mathematical model of an 
4WS vehicle, 

• design of an adapted neuro controller, 

– tuning of the hyperparameters of neuro controller, 

– implementation of the learning strategy, 

• pathplanning, 

• validation with different scenarios, 

• comparison of the behaviour of different trained networks, 

• simulating system, controller and environment to portray system, controller and 
environment. 

 

Since the main aspect of this work is to simulate the system, MATLABⓍR    was used to 
implement and validate different algorithms. The goal is to create a complete software 
package that can challenge the trained robot with different scenarios. Therefore com- 
putational resources are needed. The presentation of the results and the illustrations 
will be realized with LATEX. 

 
1.4 Outline and content 

The objective of this work is to evaluate incremental deep learning with the model 
of a 4WS mobile robot. Therefore the developed software must be able to change 
hyperparameters and different control scenarios. 

 
First the state of the art is presented, including different control strategies for 4WS 
vehicles. Approaches like H∞ as well as fuzzy control are considered. 
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Secondly the mathematical model of a 4WS robot is introduced. This includes the 
derivation of the equations and the validation of the model. Therefore a software piece 
is presented to display the output. 
Then a neuro controller is designed to calculate the input of the system to reach a 
certain point or follow a trajectory. This neuro controller is parameterized and trained 
with different tasks and scenarios with an incremental deep learning strategy. 

 
In the end a standard parameter set is used to simulate various cases including a exam- 
ination of different parameters. Ultimately, the results will be critically reflected upon. 

 
The content presented in this thesis is organized as follows: 

• Chapter 2 presents the state of the art. Including existing control strategies for 
4WS vehicles and application fields of incremental learning strategies. 

• Chapter 3 describes the model of a general 4WS vehicle. The development of the 
mathematical model is explained as well as an simulated validation. 

• Chapter 4 contains an overview over deep learning neural networks. Learning 
strategies and the training process are described. Also the control problem is 
defined. 

• Chapter 5 introduces the implementation of the system with its architecture and 
used algorithms. 

• Chapter 6 presents the simulation setup as well as the resulting data. 

• Chapter 7 concludes the thesis with a summary of the main results and discusses 
the outlook for possible future topics of research. 
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2 State of the Art 

 
This chapter provides an overview over the latest developments in the field of 4WS 
vehicles, applications with incremental deep learning (IDL), as well as the design of 
4WS models using the SUMMIT example. It holds the information used in further 
chapters. The existing works are presented in the following sections. 

 
2.1 Model design of four wheel steering vehicles 

2.1.1 Model of the mobile robot SUMMIT 

In previous works with the mobile robot SUMMIT a nonlinear one track model of 
SUMMIT was designed, parametrized and validated. 

 
In 2016, the TU Ilmenau introduced a project to test autonomous driving using the 
mobile robot SUMMIT [3]. Part of this project was to obtain a valid nonlinear system 
of the robot, to implement a laser scanner for obstacle avoidance and to deploy a real 
time control system. 

 
The first work was written in 2013 [4]. It includes a one track model with consideration 
of influences of tires as well as first considerations to model predictive control (MPC). 
All of the further works [5, 6, 7, 8] consider the same one track model but with different 
numbers of considered states in the system. They differ in the determination of the 
model parameters. 

 
The first, [5], provides a mechanical discussion about parameters like inertia. The 
second, [7], utilizes the findings of [9] to optimize model parameters using neural 
network (NN) algorithms. [8] then utilizes a NN to estimate the real steering angle 
out of a calculated angle. These calculations offer increased accuracy which is further 
validated in [8] due to the ability of NN to intercept and evaluate disturbances and 
sensor noise. 
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Neural networks are very well suited to intercept and evaluate disturbances and sensor 
noise. 

 
2.1.2 Model of a four wheel steering vehicle 

Usually a two degree of freedom (DOF) dynamics model, the bicycle model, is used. 
The advantage is in the handling ability. The model consists of two states: the sideslip 
angle (lateral movement) and the yaw rate. 

 
This model is consulted by [10, 11, 12, 13, 14, 15]. In [16] a lateral dynamics model 
for four wheel steering vehicles is described. It also belongs to the two DOF models. 
It does not include roll and pitch movement, as well as the impact of the steering 
mechanism itself. 

 
The three DOF model is described in [17]. In addition to lateral movement and yaw 
rate it considers roll motion. Thereby the accuracy of the model increases. 

 
[11] introduces a seven DOF model, where roll, pitch and vertical dynamics are con- 
sidered. It is validated and used in the paper. 

 
Another approach is to use a nonlinear model to train a radial basis function (RBF) 
neural network. The results are described in [18]. 

 
2.2 Control strategies for four wheel steering vehicles 

The control of a 4WS vehicle is a demanding task because of its nonlinear dynamics. 
Often there are two parts to be implemented for the control. The first part reduces the 
influence of model uncertainties and the second part is the actual control algorithm. 
The broad variety is described in the following paragraphs. 

 
 
2.2.1 Model predictive control 

As mentioned in 2.1,  MPC is often discussed for SUMMIT. The topic was reviewed 
by further works from [4, 5, 6].  All of them are using MPC to follow trajectories. 
[8] uses a Kalman filter for an increase of robustness in the prediction phase of the 
system. It extends the model predictive controller and gives the possibility to tune the 
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robustness. 
It is easy to see that the project is using MPC and developed this approach further 
and further.   While in the beginning only model parameters were optimized,  in the 
end dynamic approaches were implemented, which were supposed to intercept the 
discrepancies between model and reality. 
In contrast to the previous work, this master’s thesis looks to achieve these goals using 
learning algorithms. 

 
2.2.2 Optimal control 

The papers of [16, 10] are using an H∞ optimum controller as a control strategy. 
Simulations in [16] prove the applicability of an H∞ controller for an ideal steering 
model. The transient response can be improved in contrast to a front wheel steering 
vehicle. On the other hand, [10] uses an H2 optimal controller and a Kalman filter for 
the ideal model. Success is achieved at low speeds. Because of model uncertainty, an 
H∞ controller is designed [10] and shows robustness, adaptability and stability. 

 
2.2.3 Sliding mode control 

The research of [11, 19, 14, 15, 20] delineate a sliding mode control strategy. The 
objective is to improve vehicle handling stability. Input variables are rear wheel steer- 
ing and yaw moment. The overall achievement is an improved robustness. With [11] 
this is accomplished by the use of the center of gravity slip angle and yaw rate. The 
measurement of those parameters is not applied in many systems. 

 
[19] introduces an approach for discrete time sliding mode control. It shows that a 
continuous controller and the proposed discrete controller do have similar performance. 

 
2.2.4 Fuzzy control 

Fuzzy control is not based on a mathematical model of the system. It is based on 
human knowledge of the system and has predefined rules. But to obtain data, often a 
simple model is used [17, 13]. 

 
The simple fuzzy control approach is used in [17]. By using a three DOF model of a 
4WS vehicle the fuzzy rules are applied. The controller inputs are velocity and front 
wheel angle and the output is the rear wheel angle. With the 3 DOF model sideslip 
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angle, yaw rate, roll angle and roll angular velocity are generated. 
Also [13] deals with fuzzy controllers. Here, excessive understeering at high speeds 
is the challenge. As an input, yaw error and side slip angle error, as well as their 
respective derivatives are selected.  Output of the system is the direct yaw moment. 
The system is parted in the side slip angle fuzzy logic controller and the yaw fuzzy 
logic controller. 

 
In [12] a fuzzy NN system is designed. The NN is introduced as a computing tool 
and generates reasonable fuzzy rules through learning. Lastly the fuzzy system will 
be optimized by a genetic algorithm. The fuzzy NN controller has five layers and 
generates the steering angle of the rear wheel, which is the input of an NN, which 
calculates yaw rate and side slip angle. A similar approach is chosen in [21]. 

 
2.2.5 Neural network control 

Starting from fuzzy NN, it leads to the pure neural networks approaches. Although 
the NN does not need an exact mathematical model, training data can be obtained 
through simple models, to proof the performance on the real plant afterwards. 

 
Neural networks can be classified in two types: static and dynamic networks. Static 
networks are networks where the outputs are generated at the same time when the 
inputs are introduced in. There is not a temporal relationship between inputs and 
outputs, nor a dynamic relationship between them. But with applications in robotics 
there is always a relationship within the time. So dynamic networks define that the 
present outputs do not depend on external inputs only, but also on past network out- 
puts or past network states. Thus the network has a dynamic and memory. Those 
networks are used for, among other things, control problems, filtering, language pro- 
cessing, and patter recognition. 

 
For the training of dynamic neural networks two algorithms are used: Back Propa- 
gation Through Time (BPTT) and Dynamic Back Propagation (DBP). The BPTT 
Algorithm was proposed by Paul Werbos [22]. It is basically the application of the 
standard error back propagation algorithm to networks that are augmented by unfold- 
ing the original network at each time step. 
The DBP Algorithm was proposed by Kumpati Narendra [9, 23]. It is an efficient 
way to compute the total partial derivatives of the dynamic network outputs with re- 
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spect to weighting coefficients by using a recursive equation integrating present simple 
derivatives and previous-step total partial derivatives. 
More information about neural networks and their algorithms will be given in chapter 4. 

 
To imitate a human driver a feedforward neural network is proposed in [24]. A feed 
forward NN is a nonrecurrent network, so it has no feedback connection. The control 
system consists of two parts, each with a two layered NN. The first part acts as an 
emulator and the second represents a feedforward controller. The simulations include 
side winds and obstacle avoidance maneuvers. 

 
In addition to a NN controller a model based on a NN is used in [18]. The structure 
of the NN controller is synthesized with an radial basis function model. The inputs of 
this systems are yaw velocity, steering angle of front wheel and the reciprocal of the 
velocity. The output is as usual the steering angle of the rear wheel. 

 
The NN direct inverse control is represented [25]. It consists of two parts. First, the 
output of the inverse model is equal to the input of the controlled object. Then, if the 
error is nearly zero, it can be applied as a controller.  The NN has one hidden layer 
with 12 neurons. Inputs are the steering angle of the front wheel and the slip angle. 

 
2.3 Application fields of incremental learning strategies 

Deep learning methods are powerful approaches with a large field of applications. In- 
cremental deep learning as a strategy is likely used for problems with high complexity 
but also for problems with a growing data set. The idea is to do the learning process 
like human kind in small steps. It is based on the learning process of babies. So one 
step itself does not conclude the objective, but leads to a bigger task. 

 
One often mentioned application is to use incremental deep learning for face recogni- 
tion. It is considered in [26, 27, 28]. With this approach it is possible to recognize a 
face from different angles. Also there is the option of two different networks: one for 
facial features and the other for full face detection. 

 
Not only face recognition is an often used application also object recognition [29], 
speech recognition, natural language processing and computer vision [30] are common 
focus areas. 
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Skill learning like the imitation of human behaviour is described in [31, 32]. 

 
Another application is the learning of classifiers [33]. That means that reinforcement 
learning is used to learn a policy to incrementally build neural network classifiers. Re- 
inforcement learning in combination with incremental learning can be found in [34] for 
the adjustment to dynamic environments on the basis of maze navigation in a ware- 
house. Also [35, 36] deal with incremental learning in nonstationary environments. 

 
As mentioned in section 2.1.2 neural networks are used for model design as well. The 
real time modelling of robot dynamics using incremental learning is depicted in [37]. 
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3 Modelling and Computation 

 
Models of technical systems are only approximations of reality. The parameters used 
to approximate this reality can greatly vary in their complexity. As such, finding 
the correct parameters which are both as simple as possible and maintain the desired 
accuracy of the model represents a key challenge when building such a system. In the 
formulation of models of systems the focus is identifying the dynamical relationship 
between inputs and outputs. These relationships are used in the controller design 
process.  There are several assumptions made in this work to describe a 4WS robot 
with its complex, nonlinear, underactuated and nonholonomic system. 

 
3.1 Assumptions 

The general 4WS vehicle has a rectangle shaped body with a length and a width. 
Most of the models are based on low speed, so that side slipping can be neglected, as 
it only occurs to a minor extent. Likewise is 3D-behaviour not part of the mathemat- 
ical model. That means, that the motion of the vehicle is determined by geometrical 
considerations. Masses, inertias and frictional forces are omitted. The acceleration of 
the vehicle is considered as zero, so the vehicle has a constant velocity. 

 
Due to the ability of the robot to steer both its front and rear wheels, its behavior 
remains the same when moving forward or backwards. For the control, it is assumed 
that full state information is instantly available. 

 
Ultimately, the following assumptions are made: 

• Only 2D movement in the x-y-plane is being considered. 

• Low speed so that dynamical effects are neglected. 

• No longitudinal or lateral slip is considered. 

• Wheels are not modeled, and friction is neglected. 
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3.2 State description 

Considering the 4WS vehicle in the 2D-plane, the coordinates (x1, y1) describe the 
middle of the front axis of the robot. The angle Ψ describes the orientation of the 
robot. In positive x direction the angle will be zero and will rise counterclockwise as 
one can see in figure 3.1. 

 
 

Figure 3.1: State of the robot 
 

The 4WS vehicle is controlled by the steering angles of the front axis and the rear axis. 
Therefore two steering angles δF and δR are introduced. Both are limited with 

 
δmin ≤ δF ≤ δmax, δmin ≤ δR ≤ δmax. (3.1) 

To simplify the model it is assumed that −δmin = δmax. 

 

Figure 3.2: Steering angles of the robot 
 

To complete the description of the robot, there are length and width of the robot. In 
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 , u =   =  
front  (3.3) 

 

the following a single track model will be introduced. Therefore the width of the robot 
will be irrelevant. Only for visualization causes a width will be used. 

 
3.3 Identification of vehicle dynamics 

The model of a 4WS robot consists of a function which determines the new state by 
using the current state and the given input 

ẋ  = f (x, u), (3.2) 
 

with x ∈ Rn, u ∈ Rm and f : Rn+m  → Rn. 

To obtain a mathematical model the system equations of the mobile robot SUMMIT 
will be used. The single-track model can be taken from the works of [8] and [5]. How- 
ever,  in order to make the model more interesting and variable,  the formulation will 
be generalized. In the following not only steering in the opposite direction (counter 
steering), but also front wheel steering, diagonal steering, back wheel steering and in- 
dependent steering (the front axis is fully independent from the rear axis) are analysed. 

 
In [4] and [5] a mathematical model with five states was established. But if the robot 
has a low velocity the model can be simplified to a three-state-model. So the state and 
control variables are defined as 

 
x1 

 

 

 

 
xpos  

  

 
u1 

  
δ 

 

 
x3 

  
Ψ 

 u2 δrear 

 

with xpos and ypos as the position of the robot in a x-y-plane, Ψ as the yaw angle, 
v  as  the  velocity  of  the  robot  in  meters  per  second  and  δfront,  δrear  as  the  steering 
angle for the front axle and the rear axle. In the following x is used to describe the 
position of the robot in x-direction, in order to reduce the number of indices. In figure 
3.3 a detailed version of the model can be observed. It will be the foundation of the 
following equations. 

pos y = x = x2 
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Figure 3.3: Movement of robot in time interval [k, k + 1] 

 

 
First part of the consideration is the distance how much each wheel moves in one time 
step. The rear wheel moves a distance rR and the front wheel a distance rF . This 
can be observed in figure 3.4. Thus the traveled distance in the x-y-plane can be 
determined as follows: 

∆xF = rF cos(Ψk + δF ), (3.4a) 

 
∆yF = rF sin(Ψk + δF ), (3.4b) 

 
∆xR = rR cos(Ψk − δR), (3.4c) 

 
∆yR = rR sin(Ψk + δR), (3.4d) 

with ∆x = xk+1 − xk. The same applies to y and Ψ. After this step [8] simplifies the 
equations, but since the model is supposed to be generalized, they are not introduced. 
In order to display the global robot movement ∆x and ∆y the following equation has 
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to be used 
 

Using 3.4 and 3.5 follows: 

 
∆x = 

 
∆xF + ∆xR 

2 
. 

 

∆x = 
rF cos(Ψ + δF ) + rR cos(Ψ − δR) 

, (3.6a) 

 
∆y = 

rF sin(Ψ + δF ) + rR sin(Ψ − δR) 
. (3.6b) 

 
 
 
 
 

Figure 3.4: Close-up of front wheel and rear wheel in time interval [k, k + 1] 

 
By using the definition of the derivative and respective limit one can obtain the time 
derivative of x and y: 

ẋ  = v 
cos(Ψ + δF ) + cos(Ψ − δR) 

 
(3.7a) 

 
 

y˙ = v 
sin(Ψ + δF ) + sin(Ψ − δR) 

. (3.7b) 

Second part of the consideration is the yaw angle Ψ, which also changes. This can be 
observed in figure 3.3. Now the marked distances a, b, c and d are used. In figure 3.5 
the front part of the vehicle is displayed. The objective is to find a connection between 

(3.5) 
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the lengths b and d and ∆Ψ. In addition the height of the triangle is marked with hF . 
Considering now a small time interval, ∆t, the equations 3.6 can be transformed into 
Using the general trigonometric functions follows: 

 
 
 
 

Figure 3.5: Close-up of front wheel in time interval [k, k + 1] 
 
 
 
 
 

 
 

cos(δF 

d = xF + yF 

) = 
xF

 

rF 

 
 

(3.8) 

 
 
 

Using the sine leads to: 

cos(∆Ψ) = 
yF

 

b 

 

⇒ d = rF cos(δF ) + b cos(∆Ψ). (3.9) 

 

sin(δF ) = 
hF

 

rF 
 

(3.10) 
sin(∆Ψ) = 

hF
 

b 

 

⇒ rF sin(δF ) = b sin(∆Ψ). (3.11) 

The same equations can be formulated for the rear wheel axle. 
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Figure 3.6: Close-up of rear wheel in time interval [k, k + 1] 
 

 
This leads to: 

 
 
 

cos(δF 

 

 
a = xR + yR, 

) = 
yR 

, 
rR 

 
 

 
(3.12) 

cos(∆Ψ) = 
xR 

, 
c 

 

⇒ a = c cos(∆Ψ) + rR cos(δF ), (3.13) 
 
 

 
sin(δF ) = 

hR 
, 

rR 

 

(3.14) 
sin(∆Ψ) = 

hR 
, 

c 

 

⇒ rR sin(δR) = c sin(∆Ψ). (3.15) 

Considering that ∆Ψ is relatively small and using equations 3.13 and 3.9, leads to: 

a + d = c cos(∆Ψ) + rR cos(δR) + rF cos(δF ) + b cos(∆Ψ) 

= b + c + rR cos(δR) + rF cos(δF ). 

 
(3.16) 

 

Furthermore a function f (L, rF , rR, δF , δR) has to be found, which describes b + c or 
a + d with known or controllable parameters. Therefore the equation 2L = a + b + c + d 

is used. L describes the length of the mobile robot. Accordingly follows 

a + d = 2L − b − c = b + c + rR cos(δR) + rF cos(δF ), 

2b + 2c = 2L − (rR cos(δR) + rF cos(δF )), 

b + c = L − 
2 

(rR cos(δR) + rF cos(δF )). 

(3.17) 
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By using the equations 3.11 and 3.15 follows: 
 

(b + c) sin(∆Ψ) = rR sin(δR) + rF sin(δF ). (3.18) 
 

sin(∆Ψ) can be approximated with ∆Ψ. Also it can be observed, in figure 3.3, that the 
traveled distances by the wheels are the same r = rF = rR. By equating the equations 
3.18 and 3.17 results 

L − 
2 

(cos(δF ) − cos(δR)) = 
r(sin(δF ) + sin(δR)) 

∆Ψ 
.
 

For small angles δF and δR the cosine term can be omitted 
 

L∆Ψ = r(sin(δF ) + sin(δR)). (3.20) 
 

Considering  now  a  small  time  interval  ∆t  and  with  lim∆t→∞ ∆Ψ  =  Ψ̇ 

3.21 can be transformed into 
the equation 

 

Ψ̇  =  
v 

(sin(δ   ) + sin(δ 
 

)). (3.21) 
L F R 

 

Finally the dynamics of the mobile robot summit are governed by 

ẋ  = v cos(Ψ+δF )+cos(Ψ−δR) 

 
 

Σrobot  : ẏ = v sin(Ψ+δF )+sin(Ψ−δR) 

. (3.22) 

Ψ̇  =  v (sin(δF ) + sin(δR)) 
 

The length L of the robot is given in [8] with L = 0.37 meters. 

Additional theorems of sine and cosine 

For the circular functions sin (t) and cos (t) the following relations apply 
 

cos (α ± β) = cos α cos β ∓ sin α sin β, (3.23a) 

sin (α ± β) = sin α cos β ± sin β cos α. (3.23b) 

(3.19) 
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Counter wheel steering 

By using the addition theorems and the equality for counter wheel steering δF = δR = δ 

the system equation will change: 

ẋ  = v 
cos(Ψ + δ) + cos(Ψ − δ) 

= v 
1
(cos(Ψ) cos(δ) − sin(Ψ) sin(δ) + cos(Ψ) cos(δ) + sin(Ψ) sin(δ)) 

= v cos(Ψ) cos(δ) 

(3.24a) 

 
 

y˙ = v 
sin(Ψ + δ) + sin(Ψ − δ) 

= v 
1
(sin(Ψ) cos(δ) + sin(δ) cos(Psi) + sin(Ψ) cos(δ) − sin(δ) cos(Psi)) 

= v sin(Ψ) cos(δ) 

 
 

(3.24b) 

 
 
 
 
 

ẋ  = v cos(Ψ) cos(δ   ) 

Σrobotcounterwheel  : ẏ = v sin(Ψ) cos(δ) 

 
. (3.25) 

Ψ̇
 

= 2v (sin(δ)) 

The resulting system can be compared with [8]. 
 
 
 

Controlling with a reduced state model 

For the control of the given system, it can be useful to reduce the state representation. 
While it is possible to describe a model with more states than needed, a reduced state 
with x ∈ R2 is introduced. The model with its three states and two inputs is under- 
actuated. It can be transformed in an actuated system when using the reduced state 
with two components and an input also with two components. This can improve the 
training process of the NN, as fewer inputs simplify the training. By testing different 
configurations it was found that two inputs suffice to reach all of the target types. 
This might be to the fact that the missing value can be obtained with the state and 
the target. 
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3.4 Model validation 

Since this work has no real-life object available, the validation is implemented with 
MATLABⓍR .  In  four  different  scenarios  the  possible  ways  to  use  the  model  are  sim- 
ulated. Therefore counter wheel steering, front wheel steering and diagonal steering 
will be tested. The scenarios will be explained and validated with the help of figures. 
These figures display the robot in the x-y-plane with its wheels and their turnaround. 
The counter wheel steering results, from figure 3.9, can be compared with those from 
[8]. 

 
 
3.4.1 Straight ahead 

The first scenario is to drive straight ahead. Therefore the steering angles will be zero. 
In reality, there will be disturbances for the robot. Here it is assumed that the robot 
moves along a straight line.  The straight lines in figure 3.7 have an angle of Ψ = 0 

(left) and Ψ = π   (right) to the x-axis.  300 steps were simulated with a time step of 
0.01 seconds and a velocity of 3 m . 
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Figure 3.7: Straight ahead Drive with δF = δR = 0 

 
In figures 3.7 the movement of the point lying in the middle of the front axis can be 
seen. It is like expected a straight line. The wheels are not steered. 

y
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3.4.2 Front wheel steering 

The advantage of the mobile robot is, that all kinds of steering are possible. How 
the model behaves with only front wheel steering will be shown in this section. The 
difference to counter wheel steering will be noticeable in driving through curves. That 
is why the simulation works with a constant front wheel steering angle δF = π . The 
curve diameters can be compared to counter wheel steering in the following section. 
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Figure 3.8: Front wheel steering with Ψinit = 0 and δF = π and δR = 0 
 
 

Finally, a large semi-circle-like is created. The simulation was over 800 steps to show 
the relative large oval 3.8. 

 
3.4.3 Counter wheel steering 

Counter wheel steering is used with the mobile robot SUMMIT. It makes a narrower 
curve passage possible. This facilitates turning and maneuvering in small areas. The 
steering angle of front and back wheels are the same. 

 
In figure 3.9 the difference between the diameters is easy to see. By the shorter distance 
with counter wheel steering the simulation time can be shortened, which also makes 
the training of the neural network in forthcoming sections easier. 

y
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Figure 3.9: Counter wheel steering and front wheel steering 

 
3.4.4 Diagonal steering 

The last scenario shows diagonal steering. Front and rear wheels are steered. Because 
the angles are on opposite sides of the horizontal intersection of the robot, δF has to 
be −δR. For this simulation δF = π and δR = − π . The robot starts on its initial point 

at [x, y, Ψ]T = [−5, −2, 0]T . The driven trajectory is shown in 3.10. 
 
 
 

10 

 
 

 

5 

 
 

 

0 

 
 

 

-5 

 
 

 

-10  
-5 0 5 10 

x 

 

Figure 3.10: Diagonal steering 
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3.4.5 Conclusions 

The general model proposed in section 3.3 gives the opportunity to investigate all kinds 
of steering, such as front wheel steering, diagonal steering, counter wheel steering, 
back wheel steering and independent steering (the front axis is independent from the 
rear axis). The model as presented can perform those different driving styles. The 
independent steering model is the most complex one, the other models are special cases 
there of. It will be compared to the more simple model of counter wheel steering. 
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4 Theory of deep learning neural 

networks 

This chapter comprises a brief overview of NN including the structure of a neural 
network, important functions and different learning strategies. Furthermore the com- 
ponents of the update equations for the training process are developed. 

 
 

4.1 General overview over neural networks 

Neural networks are designed with the idea to imitate the neuron structure of the 
human brain. While the complete reproduction of a human brain, with its 100 billion 
neurons, is impossible given the current computational power available, the structure 
of how information can be processed and analyzed in recreated. 

 

4.1.1 Structure of a neural network 

A standard feedforward NN consists of three types of layers— the input layer, the 
hidden layers and the output layer. The hidden layers can consist of multiple layers. 
In the following neurons of the same layer have the same activation function. This 
function can be linear or nonlinear. Usually both the input and output neurons have 
a linear activation function illustrated in figure 4.1. The activation function of the 
hidden layers often is nonlinear with m the neuron input and n  the output of the 
neuron, such as the: 
sigmoid function (type 1) 

 
 

sigmoid function (type 2) 

n = 
1 + e−m 

2 

, (4.1a) 

n = 
1 + e−m  

− 1, (4.1b) 
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ear neuron 

 

rectified linear units (ReLU) function 
 

n = max(0, m), (4.1c) 
 

arcus tangens function 
 

and gaussian function 

 
n = arctan(x), (4.1d) 

 
n = e−m2 (4.1e) 

illustrated in 4.2. These different functions can play an important role for the perfor- 
mance of the NN. 

 
 
 

Figure 4.1: Illustration of a linear neuron 
Figure 4.2: Illustration of a nonlin-

 
 
 

The selection for the activation function is determined by any symmetries that may 
exist within the data, if there is no decision to make try and error will be used. 

 
The neurons are interconnected with a coefficient of connection— the weights. These 
weights will change during the training process of the NN. It is possible to miss some 
connections or define weights as constant if needed. In the following, the neural net- 
work illustrated in figure 4.3 will be considered. 

 
 

Figure 4.3: Neural Network with one hidden layer 
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To obtain the output y the inputs have to go through the network beginning with 
the input layer. The input layer has a linear activation function. To get the input of 

the hidden layer the input will be multiplied with the weight v ∈ Rni×nh, with ni the 
number of input neurons and nh the number of hidden neurons, at the connection line: 

m1 = v11x1 + v21x2 

m2 = v12x1 + v22x2 

m3 = v13x1 + v23x2. 

(4.2) 

In figure 4.4 one can see the inputs and outputs of the neurons of the hidden layer. 
 
 
 

Figure 4.4: Input and Output of the hidden layer 

 
Next an activation function has to be chosen. To generalise the example the activation 
function will be f (m). So the output of the hidden layer is 

n1 = f (m1) 

n2 = f (m2) 

n3 = f (m3). 

(4.3) 

 

Lastly the output of the neural network will be calculated, by using the weights w ∈ 

Rnh×no with no the number of outputs, as follows: 
 

y = w11n1 + w21n2 + w31n3. (4.4) 
 

This procedure is called ‘forward pass‘. If the network is well trained the forward pass 
will be used to calculate the outputs for the process or the control inputs of the model 
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2 xk − xk 
T Q xk − xk 

 

for the next step. 

 
Before one can use the NN, the first step is to define the structure—requiring the deter- 
mination of the number of inputs and outputs. Furthermore it has to be decided how 
many hidden layers with how many neurons are needed to perform the task. Finally, 
the type of activation function has to be selected. 

 
Lastly, a neuron called bias has to be considered. It is an additional neuron with a 
constant value. If both inputs are zero but the output is not zero, the given structure 
of the network with a certain activations function can not produce a value different to 
zero. Therefore the bias neuron will be added. 

 
 
 
4.1.2 Training of a neural network 

 
Other ways in which NN can learn are unsupervised learning, in which systems only 
receive input data and try to classify it and reinforcement learning, in which a neu- 
ral network itself can control the input data and receives dynamic output data back 
together with a task related to this output data (e.g. to maximize a score). In the 
following supervised learning will be used. So after the neural network structure has 
been built, each weight receives a random value.  This value should be very small. 
Then the input data is put into the NN and each neuron weights the input signals 
with its weight and passes the result to the neurons of the next layer. At the output 
layer, the overall result is then calculated. Usually the first passage has nothing to 
do with the known actual result, since all neurons have a random initial weight. For 
supervised training a desired  state has to be known.  Then  the size  of  the error  can 
be calculated and the part that each neuron had in that error. So the weight of each 
neuron can be changed in the direction that minimizes the calculated costs with the 
cost function 4.5. The cost function can be chosen depending on the problem. The 
easiest way to define the cost function is to sum all the errors for a trajectory or a 
data set. The cost function used in this thesis, depends on the positioning error and 
the control variable: 

=  
1 
"

N   

( 

 

∗) ( ∗) + 

# 

(4.5) 
k=0 

k J uT Ruk 



Master’s thesis Isabella Glöde 

 

 

= − 
∂v

 

∂v 

ΣN ∂J 
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for a data set of N points. Accordingly, the optimization problem describes the weights, 
which minimize the cost function with: 

∂J 

∂vlij 
= 0, (4.6) 

where l is the previous layer of the weight and i and j signify the connection between 
the i-th neuron to the j-th neuron of the next layer. Using the gradient descent method 
the weighting coefficients will be updated by the following equations 

∂J 
vlij vlij η 

lij 

 
. (4.7a) 

η is the learning rate of the training and has to be chosen. The update of the weighting 
coefficients can be made in batches or in every single step. 
Training with batches will change the calculation of ∂J

 
ij 

and  ∂J 
jk 

.  Due to the data 
will be in batches the average over all the data points will be calculated: 

 
 

 

4.2 Control problem 

∂J  
=

 

∂vlij 

k=1 ∂vlij . (4.8a) 
N 

 

The objective to be achieved is the autonomous control of positioning of the mobile 
robot. To control the system properly a neuro controller is designed to provide inputs 
for the system so that it will respond as required. For this, a NN will be trained to 
perform as a controller for the mobile robot. The system architecture will be build 
based on [38]. Figure 4.5 shows the general concept of the control system. 

 
 

Figure 4.5: Concept of the control system 

 
Like in commonly used control systems, the input of the neuro controller will be the 
error between desired state x∗ and actual state x. The output of the neuro controller 

   

∂w 
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is the input u for the system. 
With the nonlinear model of the vehicle given in equations 3.22 a discrete-time state 
equation 

xk+1 = f (xk, uk) (4.9) 

is used for the control system with xk ∈ R3 and u ∈ R2. This results in 
 

x1(k+1) 

 
= x1(k) + r 

cos(x3(k) + u1(k)) + cos(x3(k) − u2(k)) 
 

(4.10a) 
 
 

x2(k+1) 

 
= x2(k) + r 

sin(x3(k) + u1(k)) + sin(x3(k) − u2(k)) 
 

(4.10b) 
 
 

x3(k+1) = x3(k) + 
r 

(sin(u1(k)) + sin(u2(k))), (4.10c) 
L 

where k signifies a step. In addition f (xk, uk) has to have continuous derivatives. To 
solve the stabilization problem a control law uk  depending on state x  has to be found 
to accomplish the control objective. The neuro controller represents this law with 

 
uk = k(xk). (4.11) 

 

k(·) is a function R3  → R2. 

The neuro controller optimizes its cost function of the following quadratic formula: 

=  
1 
 

N   

( 
 

 
∗) ( ∗) + 

!

 

 
(4.12) 

with Q and R square, symmetric and positive semidefinit matrices with dimensions 
Q ∈ R3×3 and R ∈ R2×2. In order to obtain bounded values of the control input uk, R 

has to have an inverse. 
 

4.3 Dynamic training of neuro controller 

4.3.1 Equations for the training 

For the training of the neuro controller, dynamic backpropagation (DBP) will be used. 
The used training will be gradient descent covered in section 4.1. Therefore the neuro 
controller will be trained to minimize the cost function given in 4.12 and the weighting 

k=0 

J , 
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(xk − xk T Q xk − xk 
uT Ruk 

xk − xk 
T Q 

∂vGij 
uT R 

 

coefficients will be updated using: 
 

v = v − η 
∂v 

. (4.13) 

 
 
 
 
 

Figure 4.6: Structure of the NN 
 
 
 
 

 

Where η is the learning rate and ∂J the total partial derivative of J with respect to 
weight v. Depending on the number of hidden layers there will be a lot of weighting 
coefficients updated by a similar function. 

 
In figure 4.6 a general structure of a network is displayed. The model deduced in 
chapter 3 has three inputs: the position x and y and the angle Ψ. The velocity of the 
robot will be constant to simplify the network. Thus, there are two outputs δF and 
δR. The number of hidden layers as well as the number of neurons in each layer should 
be changeable, therefore a lot of derivatives have to be considered individually. That 
means that in figure 4.6 the vi with i = 1, . . . , n are matrices with different sizes. To 
describe a weight between the G-th and the (G + 1)-th layer, which connects the i-th 
neuron with the j-th neuron, there are three indices vGij. 
To describe the total partial derivative of J with respect to vGij follows: 

 

 
 

  ∂J = 
   ∂ 1   

 
∗) ( 

 
 

∗) + )

!

 

 
k=0 

N 
· x   − x∗)T

 
 ∂xk Q + 2 · 

1 
uT R

 ∂uk
 (4.14) 

k k 
k=0 ∂vGij 2  k ∂v Gij 

= 
 
 

( 
 

∗
) 

∂xk   
+

  ∂uk 
!

 
 

  

The derivatives included in equation 4.14 can be divided into model-depending and 
network-depending. 

∂vGij 
k 

k=0 

N 

∂vGij 

. 

2 
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4.3.2 Terms of the derivative of the cost function 
 

 
 

  ∂xk   
∂vGij 

is the total derivative of xk with respect to the weighting coefficient. To update 
the value a recursive equation will be used: 

 

∂xk+1 
 

 
= 

∂xk+1  ∂uk 
 

 

+ ( 
∂xk+1 

+ 
∂xk+1 ∂uk 

) 
 ∂xk . (4.15) 

∂vGij ∂uk ∂vGij ∂xk ∂uk ∂xk ∂vGij 
 
 

 

Similar the derivative of ∂uk 
 

∂vGij 
is calculated with the recursive equation: 

 
  

∂uk+1 
 

 = 
∂uk+1  

+ 
∂uk+1   ∂xk . (4.16) 

∂vGij ∂vGij ∂xk    ∂vGij 
 

∂xk+1 

∂uk and ∂xk+1 

k 
are derivatives, which depend on the model equations.  The model 

equations are deduced in chapter 3.3. With the equations 4.10, ∂xk+1
 

k 
can be computed 

as: 
 
∂x1(k+1) 

 

  

∂x1(k+1)  
 

 
∂uk =  

∂u1(k) 

∂x3(k+1) 
∂u1(k) 

∂u2(k) 

∂x3(k+1) 
∂u2(k) 

 
(4.17) 

− 1 r sin(u1 + x3) − 1 v sin(u2 − x3)  
 1 r cos(u1 + x3) − 1 v cos(u2 − x3) 

  
  

r  cos(u1) v cos(u2)  

with uk = (u1(k), u2(k))T  = (δF , δR)T   and xk = (x1(k), x2(k), x3(k))T   = (x, y, Ψ)T .  Thus 
with the equations 4.10 ∂xk+1

 
k 

can be computed as: 

 
∂x1(k+1) 

 

  

 
∂x1(k+1) 

 

 

∂x1(k+1)  
 

 

∂xk =  
∂x1(k) ∂x3(k)      

(4.18) 
1   0 1 r(sin(u2 − x3) − sin(u1 + x3)) 

=   0   1 1 r(cos(u2 − x3) + cos(u1 + x3)) . 

0 0 1  

 

To describe the equations 4.16 and 4.15 fully, two other terms have to be considered. 
They depend on the structure of the network. In the following sections, the general 
equations for the calculation of these derivatives are explained at each point in the 
neural network, i.e. according to any weight. 

∂x3(k) ∂x2(k) ∂x1(k) 

k+1 ∂x 

2 2 

∂u2(k) 

∂x2(k+1) 

∂u1(k) 

∂x2(k+1) k+1 ∂x 

   

= 

   

 

 ∂x2(k+1) ∂x2(k+1) ∂x2(k+1) 

 ∂x2(k)  

∂x3(k+1) ∂x3(k+1) ∂x3(k+1) 

∂x1(k) ∂x2(k) ∂x3(k) 
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.l  0 

 
State derivative of the output ∂ur  

 
m 

 

In order to ensure the generality of the neural network, the derivatives must be de- 
rived individually. The indices will be changed for the following considerations to the 
component indices in step k.  Therefore ∂ur  

 
m 

is to be describe for a network with s 

hidden layers. The approach is to consider the problem with a few hidden layers and 
then generalize it. 
The notation of the problem is as follows: 

 
∂ur 

= H(r, m) 
∂xm .

0
 

= v1mr . (4.19) 

This means that the derivative of ∂ur
 

m 
with zero hidden layers can be described through 

the weight of the first space between input and output, which connects the m-th input 
with the r-th output. The layers are connected through weights with three indices. 
The first one describes the previous layer. Signified by the layer in which the base of 
the arrow begins in figure 4.7.  The second and third indices describe which neurons 
the weight connects. So the second index is the number of the neuron where the arrow 
starts and the third, the number of the neuron where it ends in the next layer. The 
number of neurons in the n-th layer is described through #N (n). All neurons in one 
layer have the same activation function, which is described by fl(˜) with the layer 
l. The derivation of the activation function in the l-th layer on the o-th neuron is 
described by f 𝘫(o). The function H(r, m) describes the reduced notation. 

 
The equation 4.19 results from the equation of u. In figure 4.7 one can see a general 
neural network with three inputs and two outputs. There is no hidden layer accordingly 
for example u1 can be described as: 

u1 = x1v111 + x2v121 + x3v131. (4.20) 
 

So that 
 

In general this means 

 
∂u1 

∂x2 

 
= v121. (4.21) 

∂ur 

∂xm 
= v1mr . (4.22) 

Now a network with one hidden layer is considered.The network in figure 4.8 is used 
as an example. This network has one hidden layer with 4 neurons. 

0 
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Figure 4.7: Structure of the NN with no hidden layer 
 
 

Also, in this case, it is possible to set up the equations for u. In this case, one equation 
will suffice: 

u1 =v211f2(x1v111 + x2v121 + x3v131) + v221f2(x1v112 + x2v122 + x3v132)+ 

v231f2(x1v113 + x2v123 + x3v133) + v241f2(x1v114 + x2v124 + x3v134). 

Again, it is possible to derive the equation 

 
(4.23) 

 

∂u1 

∂x2 
= v211f2

𝘫 (1)v111  + v221f2
𝘫 (2)v112  + v231f2

𝘫 (3)v113  + v241f2
𝘫 (4)v114 

4 

= f2
𝘫 (i)v11iv2i1. 

i=1 

 
(4.24) 

This leads to: 
 

∂ur = H(r, m)
.
 

 
#N (1) 

= 

 
 
f 𝘫  

 

 
(j)v v . 
 

  

 
(4.25) 

∂xm .
1

 .
1 

j=1 

2jr 1mj H

`

(j

˛

,m

¸ x

)
.
 
0 

In the case of two hidden layers the representation of the NN and the equations become 
very complex. In this example, shown in figure 4.9, the network has two hidden layers. 
The first hidden layer has 4 neurons and the second one 3 neurons. So for u1 the result 

2 
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Figure 4.8: Structure of the NN with one hidden layer 
 

is: 

u1 =f3(f2(x1v111 + x2v121 + x3v131)v211 + f2(x1v112 + x2v122 + x3v132)v221+ 

f2(x1v113 + x2v123 + x3v133)v231 + f2(x1v114 + x2v124 + x3v134)v241)v311+ 

f3(f2(x1v111 + x2v121 + x3v131)v212 + f2(x1v112 + x2v122 + x3v132)v222+ 

f2(x1v113 + x2v123 + x3v133)v232 + f2(x1v114 + x2v124 + x3v134)v242)v321+ 

f3(f2(x1v111 + x2v121 + x3v131)v213 + f2(x1v112 + x2v122 + x3v132)v223+ 

f2(x1v113 + x2v123 + x3v133)v233 + f2(x1v114 + x2v124 + x3v134)v243)v331. 

Since nearly every term depends on x the derivative is 

 
 
 
 

(4.26) 

 

3 4 

∂u1 
∂x2 = [f3

𝘫 (i)v3i1(
 
f2

𝘫 (j)v2ji v12j )]. (4.27) 
i=1 j=1 
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Figure 4.9: Structure of the NN with two hidden layers 

 
In general for two hidden layers follows: 

 

∂ur 

∂xm .
2

 

#N (2) 

= H(r, m) = [f  
i=1 

 
(i) v 

 

3ir 

#N (1) 

( f2
𝘫
 

j=1 

 
(j) v2jiv1mj ]. 
 

 

 
(4.28) 

` 

H(i

˛

,m

¸ 

).1
  

x

 

Using the knowledge obtained from equations 4.27 and 4.28, the following equation 
can be set up for an undefined number s of hidden layers: 

∂ur 
= (

 
 

  

 
#N (s) 

)
. 

= [ ( ) 
 

( )
. 

] 

 
(4.29) 

 
 

Weight derivative of the output ∂ui 
 

Gkj 

To describe the term ∂ui 
 

Gkj 
in general for an unknown number of hidden layers an ex- 

ample is given to illustrate the problem in a smaller environment and then generalized. 
Also, here the example will be the network shown in figure 4.9. 
The goal of these considerations is to be able to show the derivations of the outputs 
to all weights in all layers. For this purpose work is done from the back to the front 
of the NN, because the longer the path from input to output, the more complex the 
equation becomes. At this point the previous notation is extended by another variable 
outGj which is the output of the j-th neuron in the G-th layer. 

k=1 s m 
r, m (s+1)kr H . 
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∂v321 

∂v3 

∂v222 

Kronecker delta 

The Kronecker delta is a mathematical symbol and is defined as: 

δ ij = 
1, i = j 

.
 

0, i /= j 
(4.30) 

 
 
 

 
 

Figure 4.10: Structure of the NN highlighting  ∂u1  
 

 

 

 

In the last hidden layer, ∂ui 
 

kj 
has to be calculated.  As demonstrated in figure 4.10 

there are three possible neurons which can lead to a specific output. Only the weights, 
which connect to the right ui will count. This means that 

  ∂ui 

∂v3kj 

 
= out3k 

 
δij 

 
, (4.31) 

 

with δij  the Kronecker delta.  If the weight does not connect to the right output ui the 
derivative will be zero. 
In the penultimate hidden layer only one way through the network will lead to a deriva- 
tive different from zero. It is shown in figure 4.11, which illustrates ∂u1 . 
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Figure 4.11: Structure of the NN highlighting  ∂u1 
 

 

This means starting with the output of the neuron, where the weight starts out22 the 
derivation depends on f3

𝘫 (2) and the connecting weight to u1, which is v321. out12 

describes the output of the second neuron of the first layer. Therefore applies the 
equation: 

 ∂u1    
= out22f3

𝘫 (2)v321. (4.32) 
∂v222 

For the upcoming generalization applies 
 

  ∂ui 

∂v2kj 

= out2k f3
𝘫 (j)v3ji . (4.33) 

`
=:M

˛
3

¸
(j,i)

x
 

 

Therefore M3(j, i) is a variable, which describes the last two factors. It is this defini- 
tion that allows for the generalization of the equation later. One layer further back, 
as demonstrated in figure 4.12, all paths are weightmarked, which will influence the 
derivation of ∂u1 .  The connecting weight between the first and the second layer is 
fixed, but after that there are three ways to reach u1. All of those paths have to be 
investigated. Considering just the blue path in the middle of the network. The deriva- 
tion will depend on out11, f2

𝘫 (2), v222, f3
𝘫 (2) and v321. The upper green path will depend 

on out11, f2
𝘫 (2), v221, f3

𝘫 (1) and v311. As well as the other green part will depend on 
out11, f2

𝘫 (2), v223, f3
𝘫 (3) and v331. Thus the equation is 

∂u1    
= out11f2

𝘫 (2) 
 
f3

𝘫 (p)v3 1v22  . (4.34) 
p=1 
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Figure 4.12: Structure of the NN highlighting  ∂u1     and all possible ways through the 
network 

 
The generalization is 

∂v122 

 

  ∂ui 
 

= out1 f2
𝘫 (j) 

#N (3) 
f3

𝘫 (p)v3 1v22 
 
. (4.35) 

∂v1kj 
k p p 

p=1 
` 

=:M

˛
2

¸
(j,i)  

x
 

 

To understand the generalisation step better in the following the equation for one more 
hidden layer is written down: 

 
  ∂ui 

∂v0kj 

 
= out0k 

 
f1

𝘫 (j) 

 
#N (2) 

 
m=1 

 
f2

𝘫 (m) 

 
#N (3) 

 
p=1 

 
f3

𝘫 (p)v3pi  ̀
M3

˛
(

¸
p,i) 

x
 

 
v2mp 

 
v1jm 

 
. (4.36) 

   
M2(m,i) 

=:M

˛
1

¸
(j,i)  

x
 

 

Thus an equation can be set up, which is valid for all hidden layers except for the last 
 

  ∂ui      
= out 

∂vGkj 
f(

𝘫
G+1) 

 
(j) 

#N (G+2) 

 
p=1 

 
M(G+2) 

 
(p, i)v 

 

(G+1)jp 

 
. (4.37) 

 

This can be explained by the additional paths if one hidden layer further towards the 
entrance is considered. With every step one sum is added for all the neurons, which 
possibly could bring the result to the desired output. 

Gk 



42 4 Theory of deep learning neural networks 

Master’s thesis Isabella Glöde 

 

 

 

The last hidden layer in the network holds another equation: 
 

  ∂ui      
= out 

∂vGkj 
. (4.38) 

 

But only if G = numberOfLayers − 1. The recursive equation for M finally is 
#N (G+2) 

M(G+1)(j, i) = f(
𝘫
G+1)(j) 

p=1 
M(G+2)(p, i)v(G+1)jp. (4.39) 

 

4.3.3 The challenge of overfitting or underfitting 

During the training of neural networks, training challenges can arise in addition to the 
parameterization of the network. Overfitting and underfitting can be consequences of 
the training process. While underfitting may indicate that the training was too short 
so that important influencing factors were not taken into account, overfitting means 
that the network only memorizes the training samples so that a transfer to the gener- 
ality is not possible. 
The main causes of underfitting are the unfitting of learning algorithm and model 
complexity as well as the under-consideration of influencing factors. An example can 
be a constant value as an output although the input changes. If underfitting occurs, 
the learning algorithm and its parameterization should be reconsidered. 

 
Overfitting describes the opposite effect. In this case, the model is specialized to the 
training data. This achieves a high model quality in the first sense, but since the model 
is overfitted, a transfer of the model to the generality is no longer possible. In figure 
4.13 one can see an example of overfitting. While in case B the cost function decreases, 
another training step with case A means, that the cost will increase. The goal is to 
find the point, where case A also has its minimum. 
The challenge of training is to avoid overfitting and underfitting. Experience, back- 
ground knowledge and expertise help to find a good applicable model. To avoid overfit- 
ting, an earlier stop point in the iterative training of this network should be considered. 

Gk 
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Figure 4.13: Example for overfitting 

 
For the algorithm of the thesis two arrangements were found. The network will be 
saved if the costs are less than those in the previous step. To make further incremental 
learning possible despite higher error,  the minimum cost is reset to a high value in 
each increment step. This reduces the possibility of overfitting in order to continue a 
reduction in error. 
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4.4 Incremental learning 

To solve the control problem supervised learning including DBP is used. But after 
choosing a learning method also a paradigm about the tasks can be chosen. This pro- 
cess is shown in figure 4.14. 

 
 
4.4.1 Incremental learning tasks 

 

 

Figure 4.14: Process of Incremental Learning 

 
Incremental Learning (IL) is a dynamic method in machine learning. The idea is 
derived from human learning, as children also solve simple tasks at first and master 
more difficult ones over time. The learning process takes place when a modification to 
the previous learned example is made. The most important difference to traditional 
machine learning is that the training data appear over time and are not available at 
the beginning [39]. Thereby it is possible to change the task or complicate the task. 

 
In the context of the control problem this means, that the robot should learn first from 
an easy mission. Therefore the initial point is very close to the desired point. After 
learning the most simple task, the initial point will be more advanced. The angle Ψ 

can be changed or the distance to the desired position. Possible steps are illustrated 
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in figure 4.15, where the desired position is x2 ypos    

 
x3 
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Figure 4.15: Incremental Learning Tasks 

 
Importantly, changes in the initial points are only useful when the algorithm is con- 
verging. If the algorithm does not converge, the initial point must be closer to the 
target. 

 
During the implementation, the initial points were defined and trained. The number 
of points and orientations will be used in an algorithm which calculates the initial 
states.  A distinction must also be made between the two model types.   The model 
with independent steering will solve the tasks differently than the model with 4WS. 
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2 

for i = 1 : numberOrientationP oints 
2π(i 

Ψ initial = π 
2 numberOrientationP oints +    −1)  

xright(1, i) = d 

xright(2, i) = Ψinitial 

xleft(1, i) = −d 

xlef t(2, i) = Ψinitial 

end 

 

4.4.2 Initial points 

To train the network properly a selection of initial points have to be found. The goal 
is to achieve good results with few initial points. There are many approaches to find 
those sets. In the following one of those approaches, which will be used in this thesis, 
will be described. 
The main idea is to start at two mirror points with different orientations. To simplify 
the data the initial position in y-direction is always zero. Also the initial orientation 
of the robot will be Ψ = π . In a set of distances the x-coordinates will be described. 
The values increase with the index. 

 
 
 
 

 

Figure 4.16: Initial Points 

 
In figure 4.17 the different orientations are illustrated. Using an algorithm, the initial 
states can be modified due to varying numbers of different orientations. 

 

With this algorithm, the initial points with a given distance to zero will be calculated. 
Note that numberOrientationP oints is the number of half of the initial points. It 
describes the number of orientations of each site. Also it means that the full circle 
will be parted in numberOrientationP oints to obtain the intial orientations similar 
to figure 4.17. 
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Figure 4.17: Initial Orientations 

 
Ultimately, the incremental learning points take place at different distances to zero 
and with a given number of orientations. 
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5 Implementation of the system 

 
For the implementation of the system an object-oriented approach was chosen. The 
implementation is realized with the software MATLABⓍR .  In order for different training 
scenarios to be represented, a more general approach is used. 

 
5.1 Architecture 

 

 

 

Figure 5.1: Block diagram of neural network training process 

 
The system consists of four different parts, which can be seen in figure 5.1. The main 
function, alongside a configuration set, parameterizes the network, model and incre- 
mental strategy. Then the incremental learning function will be called,  which trains 
the network for the different initial points. After the network is trained several times, 
an algorithm is called to find the best trained network for this particular configuration 
set. This network will be used for the validation process. 

 
In the following sections the functions, classes and parameters as well as the algorithms 
of each system part will be examined more closely. Therefore an overview is given in 
figure 5.2. 
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Figure 5.2: Functions, classes and parameters of the system 
 
 
5.2 Structures in use for the system 

In figure 5.2 there are the different structs which store the parameters for the system. 
While params hold the model properties, netParams and target are important for the 
training and validation. netParams encapsulates all parameters which describe the 
structure of the network and the parameters for the incremental learning. In target, 
the parameters for the target trajectory will be stored. 
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     2 change the model as well. While the normal state consists of three parts: x = y  , 

 
 
 

Implementation of the model 

Part of the system is the model of a 4WS vehicle, designed in chapter 3. Therefore 
a class Robot is introduced. Because the visualisation is an object method of Robot, 
properties like the driven path and the target are saved. Next to the constructor there 
are methods to calculate the derivatives. 

 
5.2.1 Model functions 

The object functions of the class Robot are functions to calculate the derivatives as 
∂xk+1 , ∂xk+1 and ẋ, but also functions to visualize the robot itself.  The equations can 
∂uk ∂xk 

be found in 4.17, 4.18 and 3.22. 

 
5.2.2 Parts of the model 

Counter wheel steering 

As described in chapter 3 a special case of 4WS is counter wheel steering. Here the 
angles δF and δR are equal. In the class Robot there is a property named counterwheel, 
which is a boolean. If it is true the model will change to the model in equation 3.25. 

 
Reduced state 

Like mentioned in chapter 3.3 there are useful cases to run the system with a reduced 
state to simplify the calculations. Therefore the variable reducedState as a boolean can 

x1

  
x 

 
 

x1

  
x 

 
x3

 
Ψ

 

the reduced state will be 
x2

 = 
Ψ

. 

5.2.3 Visualization of the model 

The visualization of the robot takes place in the function draw(). This function is part 
of the object methods of the class Robot. The process, also shown in figure 5.3, holds 
three steps: 

1. drawing the robot as a rectangle at point (0,0), 
 

2. rotating the points by angle Ψ, 
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3. shifting the rectangle to the desired position. 

In the first step five x-coordinates and five y-coordinates have to be found to describe 
the rectangle.  The rectangle of the robot is located in (0,0) with its center.  Therefor 
the coordinates depend of the length and width of the robot. It follows that rectx = 

[− L, L, L, − L, − L ] and recty = [− b , − b , b , b , − b ].  The same idea is used to create a 
rectangle for the wheels. 
The second step includes the rotation of every point y an angle. Therefore a rotation 
matrix like in [40] is used to rotate the coordinates. 

 

 
 

Ultimately, a new position is calculated and in the last step shifted to the new position. 
Shifting means to sum the resulting vectors. 

 
 

 

Figure 5.3: Steps for visualization of robot 

 
Part of the visualization is also the functions of the desired trajectories and the desired 
state itself. For the validation of the networks a draw fast method is used to show the 
calculated trajectory of the network without the visualization of the robot itself. 
For the simulation the body of the vehicle is a blue rectangle with a red dot to show 
the orientation. Also the driven trajectory is shown with a red line. The wheels are 
displayed with green rectangles. Part of the evaluation is the usage of an ϵ-area around 
the desired trajectory. Therefore an orange tube is displayed around the desired tra- 
jectory in green, what can be seen in figure 5.4. 

Rotation Matrix 

x𝘫
 

= 

 
cos(Φ) sin(Φ)

 
x  

y𝘫
 

− sin(Φ) cos(Φ)
 

y  
(5.1) 
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Figure 5.4: Visualization of robot while upwards driving 

 
For the scenarios of straight line following and circle line following the desired state of 
the full vehicle is drawn in grey, shown in figure 5.5. 
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Figure 5.5: Visualization of robot while following a straight line 

 
The advantage is, that a statement about the current situation can be made more 
easily, when the desired state is visible. 

y
 

y
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5.3 Implementation of the learning algorithm 

The learning algorithm is implemented by the function incrementalLearning() and the 
object methods of the class Network. In figure 5.6 the structure of the algorithm is 
displayed. To describe the algorithm more closely the functions incrementalLearning() 

and update(), shown in figure 5.2, have to be examined. Another function, which is 
used in the object method update() is the forwardPass() function. 

 
 

 

Figure 5.6: Structure of the learning Algorithm 

 
Forward pass 

The forwardPass() function uses the equation 4.4 to calculate the output of the net- 
work with one hidden layer. If the network is generalized, more structures must be 
given to store the values. In figure 5.7 a general network is given. The layers are pre- 
sented through one neuron, which stands for all the neurons of the layer.  From this, 
one can see that the various activation functions and weight matrices require their own 
structures such as tensors to store all the data. 

 
 

Figure 5.7: NN structure and variables 

 
Incremental learning 

The incrementalLearning() function consists of two parts: the function call of update() 

and the calculation of all the incremental points for a given distance in x-direction 
to zero. To calculate the initial states the algorithm introduced in section 4.4.2 will 
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be used. The update() function will be called as often as necessary until all initial 
points have been used. Also the number of epochs influences the number of calls of the 
update() function. That means, that the network will be trained for a certain number 
of trajectory steps and overall in a certain number of epochs, to reduce the error. 

 
Update of the NN 

Lastly the update() function updates the weights for a given input of the network. For 
the training the cost function will consider the error between the desired state and the 
current state, but will not consider the steering angles. 

 
 
 
 
 

Figure 5.8: Structure chart of the update algorithm 
 
 

In figure 5.8 one can see the structure of the algorithm. The equations have been 
developed in chapter 4.3.2. The update method is called batch and means that the 
mean of all derivatives of dJ

 and dJ
 over the whole trajectory is used to update the 

weights. After the whole trajectory is calculated the weights will be updated. 
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5.4 Pathplanning 

Using the neuro controller for the model, various trajectories can be followed. To 
compute the desired state an algorithm has to be found. The algorithm distinguishes 
between the different target trajectories. For pathplanning of a straight line the line 

of sight methodology will be used, but for a circle the perpendicular desired position 

methodology as in [41] will be used, which computes the proper values of x∗, y∗, Ψ∗, δF
∗
 

and δR
∗   of the desired state. 

Therefore, a perpendicular line is drawn between the actual position (x, y) of the robot 
and the trajectory. The intersection point will be (x∗, y∗). Ψ∗ will be calculated using 
the derivative of the function of the trajectory at the intersection point. 

 
 
5.4.1 Upwards 

The task of driving upwards is the most simple of the paths. It is clear that the x-
coordinate of the robot does not change over time and will be a constant and pre- 
defined. Because of the dynamics it could be possible to follow the trajectory with 
steered wheels and also an orientation, which is not π . This is the case of diagonal 
steering. With counter wheel steering it is not possible and the steering angles δF and 
δR  as well as the orientation Ψ have to be zero.  The possible scenarios are displayed 
in figure 5.9. 

 
 
 

Figure 5.9: Desired states for upward driving 
 

To simplify the solution the steering angles are zero in both cases and the orientation 
will be Ψ = π . 
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5.4.2 Straight line 

For the pathplanning of the straight line another method will be used. The line of 

sight method uses one of the real coordinates of the robot to calculate the desired 
state. In figure 5.10, the y-coordinate of the current position is used also as the de- 
sired y-position. 

 
 

Figure 5.10: Computation of desired position for straight lines 

 
To calculate the desired x-coordinate the equation for general straight functions will 
be used: 

f (x̄) = ȳ = mx̄ + n. (5.2) 

With a given y∗ = y, x∗ can be calculated with 

x∗ = 
y∗ − n

. (5.3) 
m 

Like in figure 5.9, utilizing two cases can lead to a successful pathfollowing of a straight 
line. Also in this case only the case of non-steering will be considered. Therefore δF 

and δR are zero. By using the relationships shown in figure 5.11: 
 

m =  
∆x̄  

= tan(Ψ) (5.4) 

lead to 
Ψ∗ = arctan(m). (5.5) 
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Figure 5.11: Geometrical relationships with line of sight method 
 
 
5.4.3 Circle 

The computation of the desired states of a circle-like path cannot be made using the 
line of sight method. This is because the circle can be positioned under or over the 
line of sight of the current position.  So there is no intersection of the functions.  That 
is why the perpendicular desired position methodology will be used. 

 
A circle with radius R and center (xc, yc) has the equation 

 
R2 = (x̂ − xc)

2  + (ŷ  − yc)
2 (5.6) 

for all (x̂, ŷ) on the circle.  This results in 

ŷ = ±
q

R2  − (x̂ − xc)2  + yc (5.7) 

for (xc − R) ≤ x̂ ≤ (xc + R)  and with ± describing the upper and lower part of the 
circle, respectively. 
A line with slope m and y-intercept n has the equation 

 
ỹ = mx̃ + n (5.8) 

 

for all x ∈ R. 
The parameters m and n of the line connecting the robots current position (x, y) and 
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− x 

(x − x )c − x 

− x 

c 

 
 

 
 

Figure 5.12: Computation of desired position for circular trajectories 
 
 
 
 

the center of the circle (xc, yc) (assuming those points are different from each other) 
can be computed as follows: 

m := 
(y − yc) 

(x − xc) 

Using the known center point, one can obtain 

. (5.9) 

 

y = 
(y − yc) 

x
 

(x − xc) 
+ n (5.10) 

n = yc 
(y − yc) 

(x − xc) 
(5.11) 

⇒ ỹ =  
(y − yc) 

x̃ + y 
(y − yc) 

(x − xc) 
c . (5.12) 

 
 

As can be seen in Figure 5.12, this line intersects with the circle at some point (x∗, y∗), 
so the respective equations are equal at this point (assuming the intersection is with 
the upper part of the circle, lower part follows analogously): 

(y − yc) 
x∗ + y

 

(x − xc) 

(y − yc) 

(x − xc) 
c = 

q

R2 − (x∗ − xc)2 + yc 

 
. (5.13) 

c 

c 

c 

c 
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k
 

c 

s      

R 

 x 
s       

q 

(x − xc) c c 

c 2 R2 − x∗ − xc 

x − x 

(x−xc) c c 

c c 

⇒ x∗ = 
− c 

+ x 

 

Canceling yc and simplify yields: 

(y − yc) 
(x∗ − x ) = 

q

R2 − (x∗ − x )2  . (5.14) 
 

Squaring both sides leads to: 

  
(y − y  ) 

!2 

(
 

 

 

 
)  = ( ) 

 

 
(5.15) 

x − xc) 

Now bring (x∗ − xc)2 to the other side and simplify again: 
  

(y − y  ) 
!2  

+ 1

 

( )   =
 

 
  

 

 (5.16) 
 

( )  x∗ − x R2 . 

Using the square root and defining := (y−yc)   2 
+ 1 , the equations are reduced to 

(x−xc) 

√
k (x∗ − xc) = R (5.17) 

⇒ 
√

k x∗ − 
√

k xc = R, (5.18) 
 

and finally  
⇒ x∗ = 

R + 
√

k x 

√
k 

. (5.19) 

Substituting k by its definition, pulling a factor out of the square root and canceling 
parts leads to the final result for x∗: 

 

+ (y−yc)  2 
+ 1 

  (x−xc) c 

x∗ =    
(y−yc)  2 

+ 1 
(x−xc) 

(5.20) 

= 
R + (    

1    
) 

q
(y − yc)2 + (x − xc)2xc 

 

 

 (5.21) 
⇒ x∗   x−xc  

      1  (y − y )2 + (x − x )2 
 

 

∗ 
= 

R(x − xc) + 
q

(y − yc)2  + (x − xc)2xc ⇒ x q
(y − y )2 + (x − x )2 

(5.22) 
c c 

  R(x x )  

q
(y − y )2 + (x − x )2 

c
 

(5.23) 

Note that this is a closed form solution for the x-value of the closest point to the robots 

c 

2 
c 

c 

( x∗ − xc 
2 . 
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c √
c
 

yc 

c 
yc 

s 

(y − y )2 + (x − x )2 

y 

c c 

c c c 

 

position on the upper circle. 
Using equation (5.7) the respective y-value y∗ can be obtained: 

y∗ = 
q

R2 − (x∗ − xc)2 + yc . (5.24) 

With x∗ from equation (5.20) 

.
‚  

  R(x − x  )  
2

 

 
 

  y∗ = 
.
,R2  − q 

c 
+ x   − x    + y . (5.25) 

Canceling xc − xc, defining c := (y − yc)2 + (x − xc)2 and computing the square: 

 
y∗ = 

‚
.
,R2  − 

  
R(x − x  )

!2
 

 

 
+ yc (5.26) 

⇒ y∗ = 

s

R2  − 
R2(x − xc)2  

+ (5.27) 
c 

Expand with c and simplify yields 

 
y∗ = 

s 
cR2 

−
 
R2(x − xc)2  

+ (5.28) 
c 

⇒ y∗ 

⇒  ∗ 

= 
cR2  − R2(x − xc)2 

c 
s 

R2(c − (x − xc)2) 

+ yc (5.29) 

 

Substituting c by its definition, pulling R2 out of the square root, applying the root 

on the denominator and canceling (x − xc)2 − (x − xc)2: 

 
y∗ = 

R
q

(y − yc)2 + (x − xc)2 − (x − xc)2 

q
(y − yc)2 + (x − xc)2 

 
 

 
(5.31) 

∗ 
= 

R
q

(y − yc)2 

⇒ y q
(y − y )2 + (x − x )2 

(5.32) 

Finally, the root cancels the square and the final expression for y∗ is 
 

y∗ =
 R(y − yc)  

q
(y − yc)2 + (x − xc)2 

 

(5.33) 

c c 

= 
c 

+ yc (5.30) 
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  ! 

 

Note that for x∗ ∈ [xc − R, xc + R], it is required that y∗ ∈ [yc − R, yc + R]. This is 
ensured, as the intersection is on the circle. 

 
The desired angle of the robot is a tangent of the circle and therefore orthogonal to 
the line mentioned before. The resulting slope is 

m := 
−1 

= 
xc − x 

 
(5.34) 

 
leading to angle 

⊥ 
m y − yc 

Ψ = arctan 
xc − x (5.35) 
y − yc 

 
 
 

As the angles will be small for the used circles (small curvature), they will be set to 
zero for computational efficiency: 

 

δF
∗ 

δR
∗ 

:= 0 (5.36) 

:= 0 (5.37) 
 

The exact calculation can be done with the help of the geometric relations between 
the circular trajectory and the robot shown in figure 5.13. 

 
 
 
 

 

Figure 5.13: Geometrical relations for circular trajectories (1) 
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L 

2 

 

A section of the circle on which the robot is located is considered. The front axis and 
the rear axis are R far away from the center of the circle. In order to follow the circle, 
the wheels must be steered like tangents on the arc of the circle. This can be seen in 
the right angles drawn. It is easy to see that the robot can only move further along 
the circular line via counter wheel steering. Therefore, the steering angles must be the 
same at the front as at the rear. 

 
 
 

 

Figure 5.14: Geometrical relations for circular trajectories (2) 
 

The triangle from figure 5.13 is symmetrical, so for further analysis only one side can 
be considered. In figure 5.14 the individual angles in the triangle are shown. The 
steering angle δ is present as an angle at intersected straight lines. So the lower left 
angle in the triangle can be described by 90◦ − δ. Using the interior angle sum in the 
triangle, one can then calculate the upper angle, which is also δ. Finally, to calculate 
the angle δ, trigonometric equations are used. It follows: 

 

sin(δ) =  2  =  
L

 
R R 

(5.38) 

δ = arcsin( 
L 

) = δ∗ 
 

 

= δ∗ (5.39) 
2R F R 

(5.40) 
 

The simulations in Chapter 6 examine the difference between these two approaches. 
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width of the model 1.5 m 
velocity 1 m/s 

time step 0.1 s 
δmax 

π 
4 

 

ϵ to target trajectory 2 m 
length of trajectory 500 

number input neurons 2 
number of net trainings 5 

 

 
 
 
 
 
 
 

6 Simulations 

 
The system described in chapter 5 was used to simulate different scenarios.  Therefore 
a selection of the parameters to be investigated must be made. 

 
6.1 Simulation setup 

To investigate the proposed controller and the overall system, a structured approach 
will be taken. Therefore, 12 cases are being considered. The general system uses a 
neural network with one hidden layer. The standard parameter set will be 

 

The following describes the desired trajectories for the training process. In the simu- 
lations, deviating values were used to test what had been learned beyond the learning 
process.This also means how adaptable is what has been learned to new tasks. 

 

 
The goal is to change one or more parameters to be able to draw a comparison. The 
following parameters are beeing considered: 

– model with or without counter wheel steering, 

– number of neurons in the hidden layer (20, 50, 100), 
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– activation function of the hidden layer (Sigmoid Type 1, Sigmoid Type 2, ReLu, 
Atan), 

– number of orientations for incremental learning (2, 4, 8), 

– learning rate η (0.1, 0.01, 0.001), 

– length of the robot (2, 5), 

– noise (on, off), 

– target trajectory (up, line, circle) and 

– number of learning epochs (100, 500, 1000). 

 
6.2 Quality of performance 

To estimate the quality of the algorithm, a region around the desired trajectory is 
defined. It should surround the trajectory like a tube.  Disturbances can change the 
state of the robot. The tube indicates the area in which the robot should stay in the 
best case. The parameter, which describes the tube is epsilon2target and is in the 
standard parameter set set to two. In figures 5.4 and 5.5 one can see the area displayed 
in orange. The performance of the neuro controller is considered as good, if the robot 
will reach the tube in a given area. 

 
6.3 Parameterization and incremental learning strategy 

When training the neuro controller, challenges can arise due to incorrect parameter- 
ization. Such incorrect parameters lead to misbehavior. For training a standardized 
parameter set had to be able to draw comparisons later. 
This training set is then used in section 6.4. In the following the standard behaviour 
of the training cases will be displayed. In figures 6.1 and 6.5 the different target tra- 
jectories are displayed. The model of counter wheel steering is used for the simulations. 
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Figure 6.1: Target: Line (1) 
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Figure 6.2: Target: Line (2) 
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Figure 6.3: Target: Line (3) 
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Figure 6.4: Target: Line (4) 
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There are two ways to define the desired steering angle for the circle trajectory. These 
possibilities were explained in chapter 5. In the following, the approaches are examined 
by simulation. In figure 6.5 the behaviour of the two models with counter wheel and 

independent steering is shown.  With a desired steering angle of δF
∗
 

can not follow the trajectory for a long time. 
= δR

∗
 = 0 the robot 

 

 
 

Figure 6.5: Target:  Circle δF
∗
 = δR

∗
 = 0 (1) 

 

In figure 6.6 it can be observed, that the driven paths are closer to the desired circular 
trajectory. There has been an improvement in the path following over a bigger number 
of steps. Both models follow the trajectory more closely. It can be observed, that the 
robot tends to leave the desired path after circa 500 steps. Which can be examined in 
figure 6.7. Although the desired state was adjusted to all circle sections. 
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Figure 6.6: Target: Circle (2) 
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Figure 6.7: Target: Circle (3) 
 

Various simulations have shown that it is a challenge to follow the entire circle, since 
a jump in the angle of orientation happens when going around. Because of its better 
performance the desired state is calculated exactly in the following simulations. 

y
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2 2 

    overall behavior is very similar. For the case of the initial point at y = −2  , the 

 

Influence of incremental points 

Before examining the influence of the number of orientations at the incremental points 
in the next section, the initial points far away from the desired trajectory are compared 
to investigate the different reactions of the NN. For this purpose, training was per- 
formed with different numbers of incremental points. Therefore one distance means two 
incremental points at the coordinates (−distance, 0, Ψ) and (−distance, 0, Ψ). While 
the angle Ψ had also two different orientations π and 3π

 

 

 

Figure 6.8: Behaviour of the networks with a different number of trained incremental 
points for line 

All of the networks studied reached the target. Differences can be seen in the graphs. 
While the less trained network covers a longer distance than the other networks, the 

 
x 

 
−23

 

 

Ψ
  

π 
 

robot initially steers toward the direction of the goal, however it over steers and then 
travels downward, away from the target, nevertheless it corrects itself and eventually 
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reaches the trajectory. 

 
In figures 6.9 and 6.10 the target trajectory is switched to a circle. In the first step 
it appears that because of the complexity of the target, the initial points, which are 
at the limits,  are closer to the y-axis.  The networks reacted in different ways during 
the simulation. Two such simulations are shown in the figures 6.9 and 6.10. It can be 
observed, that with the circle trajectory there is not a similar or constant behavior. 
While in figure 6.9 the well trained network was only able to reach the target with 
an initial point with negative x  coordinate, the red network, the less trained, follows 
the trajectory with an initial state with a positive x coordinate. In figure 6.10 the 
behaviours are very similar. 

 
 

Figure 6.9: Behaviour of the networks with a different number of trained incremental 
points for circle (1) 
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Figure 6.10: Behaviour of the networks with a different number of trained incremental 
points for circle (2) 
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the desired states of y∗ = ˜ are reached.  The steering angles are different and 

= 

 

6.4 Investigation of various parameters 

In the following a set of parameters will be examined. Therefore an overview with the 
used parameters for this case will be given at the beginning. To consider the influence 
of model complexity, the general model is compared against counter wheel steering 
models. 

 

At first the overall model behaviour will be introduced. Therefore the more complex 
model represented by equation 3.22 is used. 
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Figure 6.11: Independent steering and following the trajectory of case 1 
 

In the figures 6.11 it is easy to see, that the robot is performing the task successfully. 
In sum, it begins with steering all wheels independently, then transitions to diagonal 
steering and then continues on the trajectory using only small steering angles, observed 
in 6.12. 

 
The incremental distances were [1, 2, 4], but the initial point is at 

 
x 

 

  
−17  
  

Ψ
  

π 
 

This shows how well trained the network is.  In figures 6.12 it can be observed, that 
 
x∗ 

 
1

 

 

Ψ∗ 

perform diagonal steering. 
0

 

y
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Figure 6.12: States and angles of case 1 
 

In this case the number of hidden neurons is changed to study their influence. The 
networks were trained with the same parameters. To reduce the influence of the ran- 
dom initialization of the weights, five networks were trained and the best one was used 
for validation. The model used is the general model. 

 
 

Figure 6.13: Behaviour of the different networks of case 2 
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R1 
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The graphs in figure 6.13 show a case at the limits of the network. The initialisation 
point is far away from the learned points. The network with 20 hidden neurons in 
red does not succeed in performing the task. The networks with 50 or more hidden 
neurons perform very well. Furthermore, there is hardly any difference between the 
behaviors of the 50- and 100- hidden neuron networks. 

 

The third case shows the same scenario with the less complex model. With counter 
wheel steering the network has to calculate just one steering angle, which will be used 
for the front and rear axis. 

 
 
 

Figure 6.14: Behaviour of the different networks of case 3 
 

In this case the network with 20 hidden neurons can complete the task. This shows, 
that the less complex model is able to perform the task with the same amount of 
training as the others. 
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The fourth case shows the dependency on the activation function of the hidden layer. 
While the network is trained in the standard training with a Sigmoid function type 2, 
the following figure 6.15 shows the behaviour with other activation functions. Similar 
to the other cases the initial point is at the boundary of the system. 

 
 

Figure 6.15: Behaviour of the different networks of case 4 

 
The steering angles, displayed in figure 6.16, show the behaviour with the Sigmoid 
type 1 function. The calculated angles are out of any boundary and display the limit 
of this network. The other networks with ReLu and arctan as their activation function 
work with normal steering signals and are successful in path following. 
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Figure 6.16: Steering angles of case 4 
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4 

 
 

 

The fifth case holds the same as the fourth but again with the more simple model. 
The reduction in model complexity results in all networks performing the task well. 

 
 

Figure 6.17: Behaviour of the different networks of case 5 
 

The steering angles stay in the normal range of ± π . Ultimately, the behaviour of the 
ReLu and Arctan functions are very similar. This shows that model complexity has 
to be considered while choosing an activation function. 
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A very interesting case is to investigate the influence of the number of initial points 
with different orientations. Therefore the set of distances for the incremental learning 
strategy is equal, but some networks have been trained with more initial points with 
more orientations. To analyze this behavior multiple initial points with different values 
of Ψ were simulated. 

 
 

Figure 6.18: Behaviour of the different networks of case 6 

 
There is a difference in the behaviour of the network trained with two different orien- 
tations at each point and the other two networks, trained with more orientations. The 
biggest difference is recognizable in the convergence to the trajectory. While the red 
graphs approach slowly, the others manage to get into the desired area faster. 
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The learning rate is a very powerful parameter. Often the learning process depends 
strongly on this parameter. In the seventh case two networks with a very high or low 
learning rate are being compared. 

 
 

Figure 6.19: Behaviour of the different networks of case 7 

 
The network with the large learning rate performs worse than the one with the very low 
learning rate. Both networks perform worse than the standard network with η = 0.01. 
An excessive learning rate leads to very large changes in the values of the weights, 
therefore they jump too much and no optimal values can be found. 
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Now the networks are also to perform more demanding tasks. For this purpose, a 
straight line is to be followed. The learned straight line has other parameters than the 
ones used for validation. Again the more complex model shall be compared with the 
simpler one. 

 
 

Figure 6.20: Behaviour of the different networks of case 8 

 
The two networks are successful in completing the task. The distances traveled are 
different, but the entry point into the desired area is approximately the same. 
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The model dynamics depend strongly on the model parameters.  The length of the 
robot is crucial for the performance. 
During parameterization, it was noticed that a shorter robot is easier to train and can 
perform difficult tasks well due to its dynamics. Here we discuss the advantages of 
such dynamics. 

 
 

Figure 6.21: Behaviour of the different networks of case 9 

 
In figure 6.21 one can see, how slowly the longer robot steers to get to the trajectory. 
Its dynamics inhibit the completion of the task. 
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To further complicate the trajectory, a circular path is now to be followed. Again, the 
two models are compared. 

 
 

Figure 6.22: Behaviour of the different networks of case 10 

 
For initial points closer to the circle both networks work well. But to display the 
limits of the networks a further point as well as a not learned orientation of Ψ = π are 
chosen. The more complex model completes the task, but takes a longer path to reach 
the trajectory. In figure 6.22 one can see that both models reach the target trajectory 
by using completely different paths. 
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Lastly the influence of the epochs of training are to be examined. Therefore the target 
is to follow a line and in the next case a circular path. 

 

Figure 6.23: Behaviour of the different networks of case 11 
 

In figure 6.23 it is obvious, that the networks generate different trajectories. The 
desired state will be found with the line of sight method. This means, that the best 
behaviour will be to go in a horizontal line to the desired line. This behaviour can be 
seen better the more epochs have been trained. The target is reached for all networks. 
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The more complex trajectory is the circle. In figures 6.24 and 6.25 the behaviours 
can be observed. While the less trained network does not achieve the goal, the more 
trained networks work well. 

 
 

Figure 6.24: Behaviour of the different networks of case 11 (1) 

 
This effect can be shown in greater distance to zero.It is remarkable that the network, 
which was trained with only one distance, still performs very well at distance of 7 and 
larger. 
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Figure 6.25: Behaviour of the different networks of case 11 (2) 
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6.5 Transferability to other tasks 

In this section, it will be investigated whether the trained NN can also be applied to 
other target trajectories. The networks with the default parameters and the counter 
wheel steering model are selected. 
The first network trained, for the path ’up’, should perform a line trajectory. In figure 
6.26 it can be observed, that the network can complete the task easily. 
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Figure 6.26: Evaluating the "up"-trained net with target type "line" 
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Now the network trained for "line" should perform a circle.Simulations were performed 
with a radius of 20 and 10 meters. The results are shown in the figures 6.27 and 6.28. 
The desired states of "line" and "circle" are similar to each other if the circle has a 
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Figure 6.27: Evaluating the "line"-trained net with target type "circle"with R = 20 

 
big radius so it can be considered as straight small areas, with steering angles equal 
to zero. So it can be interpreted as a straight line. The desired steering angles were 
calculated with the exact formula. 
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Figure 6.28: Evaluating the "line"-trained net with target type "circle" with R = 10 
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Thirdly, the network trained for circle paths should perform a line, illustrated in figure 
6.29. Also this task is completed well. 
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Figure 6.29: Evaluating the "circle"-trained net with target type "line" 
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Lastly, the network trained for the line trajectory is evaluated with different lines. 
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Figure 6.30: Evaluating the "line"-trained net with other targets type "line" (2) 
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Figure 6.31: Evaluating the "line"-trained net with other targets type "line" (2) 
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Figure 6.32: Evaluating the "line"-trained net with other targets type "line" (3) 

 
As a summary of the figures 6.30,  6.31 and 6.32 it can be said that all straight lines 
that have a positive slope are well reached by the robot. Straight lines with negative 
slope cannot be reached. The robot moves in the wrong direction in this case. 
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6.6 Conclusions 

After finding a parameter set which generates good solutions, many informative com- 
parisons could be drawn. 
The simulations were partly computed on a Workstation with Intel Core i7 6700 CPU 
(4 Cores @3.40 GHz) and 8GB of memory and on a 2017 MacBook Pro with Intel 
Core i5 CPU (2 Cores @3.1 GHz) and 16GB of memory. An average training with the 
standard parameter set takes approximately 5 minutes and 47 seconds.  That means, 
that the computation time for all training situations was about 60 hours. Therefore 
the visualization was turned off to compute even faster. 

 
The validations were made with initial states with a greater distance to the previous 
learned incremental points. It follows that the quality of the trained networks is very 
high, since almost all of them successfully completed the task. Only a few networks 
cannot perform the tasks to the same extent as others due to the intentionally inferior 
parameterization. Through validation, the differences between the more complex gen- 
eral model and the less complex counter wheel steering model become apparent. 

 
The results show that even a very simple network structure with one hidden layer can 
lead to very good results. Nevertheless, parameterization and computing time play a 
major role. 

 
The incremental learning strategy applies very well to the designed models. An im- 
provement could be shown in various simulations, with different training sets. 
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7 Summary and outlook 

 
For this work two different models of 4WS vehicles were introduced to perform tra- 
jectory following. The more general model allows independent steering angles on the 
front wheel and rear wheels. This leads to more flexibility and complexity. Counter 
wheel steering is a special and more simple case of the general model. 

 
Furthermore a general neuro controller was described to control the nonlinear mod- 
els. Therefore several networks have been trained to follow different trajectories. A 
standard parameter set was found and then used for further investigation of param- 
eterization. Therefore several cases were examined with initial states at the limits of 
the trained network. Several simulations showed, that the approach of incremental 
learning leads to good performance with desired behavior even in areas that have not 
been trained. Every well trained net had successful task completion. Also the trans- 
ferability was investigated and showed, that with the trained trajectory the network 
is able to perform other trajectories as well. 

 
The introduced model has the advantage of generality. Through parameterization it 
is possible to simulate diagonal, front and counter wheel steering as well as indepen- 
dent steering. This allowed the complexity of the model to be changed at any point. 
Nevertheless,  certain assumptions needed to be made about the model.  The model 
was limited to two dimensions, and did not incorporate considerations for realistic side 
slipping, or nonlinear behavior of the wheels. Additionally, the system operates at a 
constant velocity. 

 
Ultimately, the neuro controllers apply well to the system despite a short training 
process. Therefore the different kinds of trajectories were evaluated. The incremental 
learning strategy can increase the controllable area. 
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Outlook 

Due to the results of the simulations, the learning strategy applies well to complex non- 
linear models. Accordingly, nonlinear complex models are suitable for such a learning 
strategy. While the considered model is based on some assumptions, the next step is 
to include further influences like wheels and 3D behaviour. Beyond the model, the 
expansion of the path planning module is another development point. Complete tra- 
jectory planning in an environment with obstacles and limitations is an important part 
of autonomous driving. 
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A Appendix 

 
The influence of noise 

The mathematical model is a strong simplification of reality. However, in order to 
simulate sensor inaccuracies, a disturbance is introduced. The neural network is trained 
with this measurement disturbance, since such a disturbance will also exist in reality. 
This noise is implemented as an array of normally distributed random numbers. This 
array will be added to the calculated state after each step. In figure A.1 one can see 
the distribution of the values. Normal distributions have the advantage that more 
improbable values are represented. The amplitude of the noise effects the position as 
well as the state of the robot. Therefore, training with and without noise has been 
investigated in chapter 6. 
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Figure A.1: Histogram of 1000 normally distributed random values with expected value 
0 and standard deviation 1 
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List of abbreviations and symbols 

Abbreviations 

4WS four wheel steering 
BPTT Back propagation through time 
DBP Dynamic back propagation 
DOF Degrees of freedom 
IDL Incremental deep learning 
IL Incremental Learning 
MPC Model predictive control 
NN Neural network 

 
Symbols 

∆t Timestep 
δF , δR, δ Steering angle in rad 
ϵ Distance to target trajectory 
η Learning rate 
Ψ Orientation of the robot 
d Distance to x = 0 

f () Activation function 
J Cost function 
L Length of robot 
m Input of hidden Neuron 
n Output of hidden neuron 
R, Q Matrices of cost function 
u Vector of model inputs 
v Velocity of robot in m/s 
vlij, wlij Weight after layer l, which connects the i-th with the j-th neu- 

ron 
x Vector of model states 
xpos, ypos Coordinates of position of the robot 
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