
Fast Search of Third-Order Epistatic
Interactions on CPU and GPU Clusters

Journal Title
XX(X):??–??
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Christian Ponte1, Jorge González-Domı́nguez1 and Marı́a J. Martı́n1

Abstract
Genome Wide Association Studies (GWAS), analyses that try to find a link between a given phenotype (such as a
disease) and genetic markers, have been growing in popularity in the recent years. Relations between phenotypes and
genotypes are not easy to identify, as most of the phenotypes are a product of the interaction between multiple genes,
a phenomenon known as epistasis. Many authors have resorted to different approaches and hardware architectures
in order to mitigate the exponential complexity of the problem. However, these studies make some compromises in
order to keep a reasonable execution time, such as limiting the number of genetic markers involved in the interaction,
or discarding some of these markers in an initial filtering stage. This work presents MPI3SNP, a tool that implements
a 3-way exhaustive search for cluster architectures with the aim of mitigating the exponential growth of the runtime.
Modern cluster solutions usually incorporate GPUs. Thus, MPI3SNP includes implementations for both multi-CPU and
multi-GPU clusters. To contextualize the performance achieved, MPI3SNP is able to analyze an input of 6,300 genetic
markers and 3,200 samples in less than 6 minutes using 768 CPU cores or 4 minutes using 8 NVIDIA K80 GPUs. The
source code is available at: https://github.com/chponte/mpi3snp.

Keywords
Bioinformatics, Epistasis, Genetic Interaction, GPU, GWAS, High Performance Computing, MPI, Mutual Information

Introduction

A Genome-Wide Association Study (GWAS) is an observa-
tional study that attempts to identify genes involved in the
manifestation of a specific trait (for instance, suffering from
a certain disease). Typically, a GWAS tries to find correlation
between a phenotype of interest and genotype frequencies
from population samples.

The genetic markers in GWAS usually take the form of
a collection of Single-Nucleotide Polymorphisms (SNPs),
which serve as a representation of the variation present in
the genetic code. A SNP identifies a specific position (loci)
in the genome where at least 1% of the population presents
a genomic variation. Depending on where the SNP is
located, it may affect how a specific phenotype is expressed.
Individually assessing SNPs in order to determine phenotype
susceptibility is widely acknowledged to be ineffective
(????), as the genetic risk associated to a single SNP is
usually low. High penetrance genes are the exception and
not the norm, as evolution tends to discard them, therefore
interactions among several genes need to be considered (??).

Genetic interaction between multiple loci when expressing
a trait, known as epistasis, was first described in the
early 20th century as a deviation from the Mendelian
inheritance pattern. As summarized by ?, eye color
determination in Drosophila provides a classic example.
Epistasis interactions need to be considered in order to
find a relation between genotypes and phenotypes. Previous
studies have found epistasis in multiple diseases such as
breast cancer (?) or Alzheimer (?). These studies can be
divided into two approaches, exhaustive search strategies

where all combinations of SNPs are considered, and non-
exhaustive search methods where only a reduced number
of combinations are actually explored. Exhaustively testing
for interaction between genes is a computationally expensive
task as it requires checking all the combinations among
the SNPs included in the study. Therefore, exhaustive
approaches are usually impractical for large datasets as
the number of possible combinations grows exponentially.
Discarding combinations by following a non-exhaustive
strategy, however, may lead to missing key combinations that
could provide biological insight to some diseases

In a previous work, we proposed GPU3SNP (?), a
tool that is able to exploit several GPUs within the
same node to exhaustively search third order epistatic
interactions. Although the results show that GPU3SNP
achieves high performance and significantly reduces the
execution times, the analysis of large GWAS datasets
would still require a significant amount of time. For
instance, the analysis of a dataset consisting of 50.000
SNPs and 1000 individuals needs nearly 22 hours on a
computing node with 4 NVIDIA GTX Titan GPUs. Thus,
for large datasets, HPC cluster architectures should be
used instead.

1Universidade da Corua, Grupo de Arquitectura de Computadores,
Departamento de Ingenierı́a de Computadores, Spain.

Corresponding author:
Christian Ponte, Universidade da Corua, Grupo de Arquitectura de
Computadores, Facultad de Informtica, Campus de Elvia, 15071 A
Coruña, Spain.
Email: christian.ponte@udc.es

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

The final publication is available at SAGE 
via https://doi.org/10.1177%2F1094342019852128

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/395734002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/chponte/mpi3snp


2 Journal Title XX(X)

The aim of this work is to provide researchers
with a new tool, MPI3SNP, that is able to exploit the
computational capabilities of both multi-CPU and multi-
GPU clusters. The main contributions of this work are
the following:

• A hybrid implementation that combines Message
Passing Interface (MPI) processes and threads to
efficiently exploit the cores available on each node
of a multicore CPU cluster.

• A hybrid MPI/CUDA approach to exploit the
resources of a multi-GPU cluster. In this version,
MPI is used for internode communications, and
the CUDA kernels developed in (?) are used to
take benefit from the massive parallelism inside the
GPUs of each node.

• A workload distribution that avoids communica-
tions and synchronizations and balances the com-
putation among the available nodes of the cluster.

Both, the CPU and GPU cluster implementations are
scalable and achieve next to ideal parallel efficiency

The rest of this work is organized as follows. Section
?? presents existing studies related to parallel epistasis
detection and offers a brief comment on them. Section ??
explains the bioinformatic method followed by MPI3SNP
to find epistatic interactions. Section ?? describes the
parallel implementation proposed and how the work is
scheduled among the architecture to obtain a good load
balance. Section ?? shows an experimental evaluation of
MPI3SNP’s parallel efficiency. Finally, Section ?? draws
some conclusions and offers some lines of future work.

Related work
Multiple authors have addressed the combinatorial problem
inherent to the interaction between genes, and the most
common approach is to discard a large number of SNPs and
only consider a subgroup with biological interest. There is
a large variety of methods to identify the interesting SNPs,
from following a statistical approach (???), to applying
clustering strategies (??), or using different machine learning
techniques (??). Nevertheless, initially discarding some
SNPs can lead to worse accuracy, as proven by ? for third-
order epistatic interactions.

Similarly to our project, other works focus on performing
an exhaustive search and reducing the runtime by exploiting
High Performance Computing (HPC) architectures. How-
ever, these works are limited to pairwise interactions. The
target architectures vary from one to another, including
GPUs (??????), FPGAs (?) and multi-node clusters (???).

The number of studies that carry on high-level (higher than
two) exhaustive epistasis detection is more reduced. Non-
parallel approaches (?????) are limited to small datasets,
as the number of operations grow exponentially with
the number of SNPs involved in the epistasis process.
Parallel approaches avoid this limitation by exploiting
highly parallelizable architectures in order to reduce the
computation time, such as GPUs (?) and FPGAs (?).
However, to the best of our knowledge, there is no previous
work that considers cluster architectures for third or higher
epistasis level.

Background
The bioinformatic method of MPI3SNP to detect epistasis
follows the same approach as ?, which, in turn, is based on
information theory measures proposed by ? and generalized
to third-order epistatic interactions. The time complexity of
the algorithm is O(n3 ∗m), with m being the number of
individuals and n the number of SNPs included for each
individual.

MPI3SNP takes a collection of SNPs from multiple
individuals in PLINK/TPED format, and stores it in memory
using a bit-level representation. The SNPs are then combined
in groups of three and the frequencies of all their possible
combination of values are kept in contingency tables. Once
the tables are built, interactions between the SNPs are
tested using an entropy-based ranking algorithm. The actual
implementation will be discussed in the following sections,
giving a more insightful view of the method. It is separated
into the data representation and the ranking algorithm used.

Data representation
The program input consists of a large collection of SNPs
from different individuals, separated in two case-control
classes. The first step of the method consists in constructing
the contingency tables of the SNPs triples, which represents
the genotype combination frequencies associated with a
certain phenotype. These tables used together with a
statistical test are proven to be a common, efficient solution
for finding associations between a combination of genotypes
and a certain phenotype (?????).

Creating the contingency tables from the textual represen-
tation of the dataset is inefficient, so an intermediate bitwise
representation is employed (?). Individuals are segregated
attending to their phenotype into two tables, one for cases
and the other for controls. Each table is made of multiple bit-
vectors encoding the genotype information for all SNPs of
each individual. A 1 in the bit-vector indicates the presence
of that genotype on the SNP of the individual corresponding
to that position, and a 0 the absence. Since most SNPs
are biallelic, only three different genotypes are considered:
homozygous wild (w), heterozygous (h) and homozygous
variant (v), labeled as 0, 1 and 2 respectively. This makes
a total of three bit-vectors for each table.

Table ?? illustrates with an example the bitwise
representation of three SNPs from six different individuals,
three belonging to the case group and the other three to the
control group. Each position si,j corresponds to the SNP i
from individual j of each group. For instance, the genotype
associated to the first SNP (i = 0) of the first individual
(j = 0) from the control group is homozygous wild (0).

Contingency tables are computed from this bitwise
representation using efficient bit-level operations. Counting
the number of individuals that present a combination of
genotypes only requires selecting the individuals’ genotypes
from the bit-vectors, applying a logical AND operation
between them, and counting the number of 1’s in the
resulting vector.

Table ?? represents the contingency table associated with
the genotype information from Table ??. Each cell of the
contingency table indicates how many individuals meet the
corresponding genotype combination. The notation si = k

Prepared using sagej.cls



Christian Ponte et al. 3

Table 1. Example of a bitwise representation for three SNPs from six individuals.

Genotype s0,0 s0,1 s0,2 s1,0 s1,1 s1,2 s2,0 s2,1 s2,2

C
as

es 0 (w) 1 1 1 0 0 0 0 0 0
1 (h) 0 0 0 0 0 0 0 0 0
2 (v) 0 0 0 1 1 1 1 1 1

s0,0 s0,1 s0,2 s1,0 s1,1 s1,2 s2,0 s2,1 s2,2
C

on
tr

ol
s 0 (w) 1 0 0 0 0 0 1 0 1

1 (h) 0 0 1 0 0 1 0 0 0
2 (v) 0 1 0 1 1 0 0 1 0

Table 2. Contingency table example, using the genotype data
from previous Table ??.

s2 = 0 s2 = 1 s2 = 2

C
as

es

s0 = 0 s1 = 0 0 0 0
s1 = 1 0 0 0
s1 = 2 0 0 3

s0 = 1 s1 = 0 0 0 0
s1 = 1 0 0 0
s1 = 2 0 0 0

s0 = 2 s1 = 0 0 0 0
s1 = 1 0 0 0
s1 = 2 0 0 0

C
on

tr
ol

s

s0 = 0 s1 = 0 0 0 0
s1 = 1 0 0 0
s1 = 2 1 0 0

s0 = 1 s1 = 0 0 0 0
s1 = 1 1 0 0
s1 = 2 0 0 0

s0 = 2 s1 = 0 0 0 0
s1 = 1 0 0 0
s1 = 2 0 0 1

expresses genotype k for the SNP i. Considering that we are
using combinations of three SNPs, that each SNP has three
possible genotypes, and that tables are segregated by case-
control groups, there will be a total of 2× 3× 3× 3 = 54
resulting frequencies for each combination.

As an example, obtaining the frequency of the combina-
tion (s0 = 0, s1 = 2, s2 = 0) for the control group would
involve first selecting genotypes 0, 2 and 0 for SNPs 0, 1
and 2 respectively from the control bit-vectors, which would
be 100, 110 and 101. Then the three vectors would be
combined by applying two successive AND operations, 100
AND 110 AND 101 = 100. Finally, the frequency is
obtained by counting the number of 1’s in the resulting vec-
tor: count(100) = 1. It is worth noting that many of the
intermediate results can be reused in following operations.
Using the same example, the combination (s0 = 0, s1 =
2, s2 = 0) shares the operation 100 AND 110 with combi-
nations (s0 = 0, s1 = 2, s2 = 1) and (s0 = 0, s1 = 2, s2 =
2). Reusing intermediate results means reducing the number
of AND operations required to calculate a contingency table
from 108 to 72.

Ranking algorithms
A look into the values of the contingency table can help to
identify whether the SNP combination is able to explain the
presence or absence of the disease. Tables with significantly
different probabilities comparing the half related to each
group indicate that the SNP triple is able to distinguish
between cases and controls. Automated programs use
metrics in order to quantify the correlation of a combination
of SNPs with a certain class. Not every metric is appropriate
to find this correlation. Chi-square tests, frequently used for
pairwise interactions, are inaccurate when low-frequencies
are present (very common in the case of our third-order
studies) as not every combination represents a significant
population number. Mutual Information (MI), as stated by
?, is adequate for this purpose.

MI quantifies the amount of knowledge provided by one
variable when another is given. The two stochastic variables
defined in our problem are the genotype value (homozygous
wild, heterozygous and homozygous variant) of a SNP,
denoted as X, and the phenotype associated with a sample,
denoted as Y. MI is defined by the formula:

I(X;Y ) = H(X) +H(Y )−H(X,Y )

where H(X) and H(Y ) are the marginal entropies and
H(X,Y ) is the joint entropy of X and Y . The marginal and
joint entropies are given by the following formulas:

H(X) = −
∑
x∈X

p(x)log(p(x))

H(X,Y ) = −
∑
x,y

p(x, y)log(p(x, y))

with p(x) representing the probability of the random
variable X taking the value x, p(y) the probability of the
random variable Y taking the value y, and p(x, y) the joint
probability of both events.

Although MPI3SNP offers MI as the only ranking
algorithm available for both the CPU and GPU architectures,
it is implemented following a modular design so that it will
be easy in the future to include more metrics if required by
the users.

Parallel implementation
Finding third-order epistatic interactions among SNPs
is a combinatorial problem, where every combination
without repetition of SNPs needs to be tested by creating

Prepared using sagej.cls



4 Journal Title XX(X)

Table 3. Example of the balancing technique with 6 SNPs and 3 threads. For each SNP pair, it is shown the assigned thread, the
possible non repeating combinations beginning with that pair and its count.

Thread Pair Combinations Count

0 (s0, s1) (s0, s1, s2), (s0, s1, s3), (s0, s1, s4), (s0, s1, s5) 4
1 (s0, s2) (s0, s2, s3), (s0, s2, s4), (s0, s2, s5) 3
2 (s0, s3) (s0, s3, s4), (s0, s3, s5) 2
0 (s0, s4) (s0, s4, s5) 1
1 (s1, s2) (s1, s2, s3), (s1, s2, s4), (s1, s2, s5) 3
2 (s1, s3) (s1, s3, s4), (s1, s3, s5) 2
0 (s1, s4) (s1, s4, s5) 1
1 (s2, s3) (s2, s3, s4), (s2, s3, s5) 2
2 (s2, s4) (s2, s4, s5) 1
0 (s3, s4) (s3, s4, s5) 1

its contingency table and using the ranking algorithm
previously explained. The number of possible non-repeating
combinations for three elements is given by the following
expression:

Cn,3 =

(
n

3

)
=

n!

3!(n− 3)!
=

n ∗ (n− 1) ∗ (n− 2)

6

being n the number of SNPs. It can be seen that the
number of combinations for a given number of SNPs
is proportional to its cube. With the hope of mitigating
the inherent cubic time complexity of the problem, and
thus to be able to deal with large datasets, MPI3SNP
is designed to exploit cluster architectures. It is a hybrid
two-level parallelization approach supporting nodes with
both multicore CPUs and GPUs. On the inter-node level,
MPI is used to communicate different nodes for both
implementations. On the intra-node level, Pthreads and
CUDA are used for the CPU and GPU implementations,
respectively.

Multicore CPU clusters
The parallel implementation begins creating one or several
MPI processes per node. Every MPI process reads all the
input data (kept in memory using the previously explained
bitwise representation). This data replication is beneficial
in terms of performance, since distributing it would lead to
communication bottlenecks when creating the contingency
tables. The consequent memory overhead due to replication
is affordable on current multicore clusters. For instance,
storing the genotype data of the biggest dataset employed in
the experimental evaluation (6,300 SNPs and 3,200 samples)
only requires 58MB of memory.

Then, each MPI process launches as many threads as
available cores and assigns to each one a fraction of the
workload to compute. The best balancing choice, in terms of
number of operations, would be using the combinations of
three SNPs as our distribution unit for the threads, and thus
assigning the same number of SNP triples to each thread.
However, this would not be the most efficient approach as
many intermediate results (logical AND operations) can be
reused between SNP triples that share two common SNPs.

The distribution unit chosen instead is a SNP pair. Table
?? gives an example of this approach, distributing all SNP
triplets resulting from 6 SNPs among 3 threads. Pairs

are assigned following a round robin distribution. Then,
from each pair it is possible to calculate all non-repeating
combinations that begin with it, maximizing the reuse of
logical operations. The example in Table ?? uses a very
small number of SNPs and some differences in the number of
combinations per thread can be noted. However, with a more
realistic number of SNPs, the differences are unnoticeable
in relation with the total number of combinations assigned
to each thread, as will be seen in the posterior experimental
evaluation.

Remark that this balancing approach is static and
completely distributed, involving only a single collective
communication at the very end of the execution in order to
gather the results into the only MPI process that will write
the output.

GPU clusters
The GPU parallelization strategy follows the same approach
as the CPU one with two variations.

1. An MPI process is created for each available GPU
device and the workload is partitioned among all MPI
processes following the same pairwise distribution
explained in the previous subsection. Thus, each
MPI process is responsible of transferring its fraction
of the workload to its associated GPU and calling
the appropriate CUDA kernels to compute the
corresponding triples. However, since memory is
more limited in the GPUs than in a CPU node,
SNPs combinations are transfered in blocks following
an iterative procedure until their fraction of the
computation is completed. Results are kept in the GPU
memory until the end, and then gathered into a single
MPI process.

2. As explained in the previous section, MPI3SNP
employs a bitwise data representation to accelerate
the contingency table construction step. In the CPU
version, all the data is consecutively stored by
SNP to exploit cache locality. Nevertheless, a data
transposition is applied in the GPU version in order
to increase the coalescence and thus the performance
of the device memory accesses.

More details about the data transposition and its benefits,
as well as the CUDA kernels and the iterative SNP block
transfer can be found in the original work of ?.

Prepared using sagej.cls



Christian Ponte et al. 5

Experimental evaluation
Performance evaluation consists of a series of tests using
different configurations and problem sizes in order to
measure the parallel efficiency and scalability of both multi-
CPU and multi-GPU implementations. The dataset used in
all executions is the same, and different sizes are obtained by
trimming either the number of individuals (from the original
6,400 samples to 3,200, 1,600 and 800) or the number of
SNPs included (from 40,000 to 6,300, 5,000, 4,000 and 3,200
SNPs), making a total of 12 different tests. It is a synthetic
dataset created by ? following a uniform distribution of
the genotypes, and it is available at the MPI3SNP’s Github
repository.

The evaluation was performed on two different clusters,
Pluton and Finisterrae II, described in Table ??. A very
similar software environment was used in both clusters,
composed by the C++ compiler GCC 5.3, the CUDA
compiler NVCC 8.0 and the MPI library OpenMPI versions
1.8 and 1.10 in the Pluton and Finisterrae II clusters,
respectively.

It is worth mentioning that both the NVIDIA Tesla K80
and the NVIDIA GRID K2 are dual GPU cards, meaning
that each one contains two GPUs, thus making a total of 8
GPUs in each cluster queue.

Evaluation on CPU multicore clusters
Since both clusters have dual-socket CPU nodes, the best
configuration of number of processes and threads was
first checked by using different combinations of MPI
processes and threads on a single node. The smallest dataset
(3,200 SNPs and 800 samples) was used to keep runtimes
manageable. Each test was repeated three times and, as a
non-significant variability among executions was observed,
the mean time was considered. The results can be found
in Table ??, where no significant difference can be seen.
Therefore, the configuration adopted for all CPU tests was
the most intuitive: one MPI process per node with one thread
per core.

Speedup, calculated as the fraction between the sequential
and parallel runtime, is used to measure the performance of
the parallel implementation. Table ?? shows the sequential
runtime for the different datasets considered, i.e., executing
MPI3SNP on one core (one process with only one thread).
Some experiments, underlined in Table ??, could not be
completed on a single core on Pluton due to the time
constraint of this cluster (3 days per execution). In those
scenarios, the runtime is estimated as the product of the
previous largest execution time (corresponding to 6300 SNPs
and 800 samples) and the linear slopes calculated from
previous increases between the 800 samples, and 1600 and
3200 ones (values 1.446 and 1.906), as the time scales
linearly with the number of samples.

Figures ?? and ?? compare the speedups achieved as
the number of nodes increases. The ideal speedups are
annotated in the graphs as the horizontal grids, calculated
as the product between the number of nodes used and the
number of cores per node. The first figure (??) corresponds
to the Pluton cluster, showing a linear scalability and some
instances of superlinearity. The second figure corresponds
to the Finisterrae cluster and, in this case, speedups are

hindered by the Intel Turbo Boost technology, since the
single-threaded execution is running at 3.30Ghz and the
multi-threaded one at 2.90GHz. If the CPU frequencies were
kept constant, the resulting speedups would be in line with
those of Pluton.

These good results are mainly due to the replication
of the SNP information avoiding communications among
processes, and the proposed workload distribution that
allows the reuse of logical operations and ensures a good load
balancing without any synchronization overhead.

Table ?? shows the workload balance among threads.
Each cell from the table represents, for each configuration,
the maximum relative deviation from the number of triples
that should be equally assigned to each thread, since the
largest deviation will be determining the global runtime. The
maximum relative deviation is calculated as the maximum
difference to the mean number of operations divided by
the mean. The scheduling strategy implemented is very
effective as the largest deviation is 0.00418, which represents
a negligible effect on the runtime.

To give some perspective, remark that the sequential
runtime for the dataset with 6,300 SNPs and 800 individuals
on the Finisterrae cluster is roughly 62 hours, and it is
reduced to under 6 minutes by exploiting 32 nodes of the
cluster. Moreover, datasets with 6,300 SNPs and 1,600 or
3,200 individuals could not be completed on a single CPU
in Pluton due to the maximum execution time allowed by the
cluster administrators (three days), while the parallel version
with eight nodes only needs around 33 and 46 minutes,
respectively.

Evaluation on GPU Clusters
Following an analogous approach, speedups are used to
evaluate the performance of MPI3SNP on heterogeneous
clusters, where each node contains one or several GPUs.
In this case, for each GPU-cluster we calculated the
speedups using as reference the execution time in a single
GPU of that cluster (which is equivalent to execute the
version implemented by ? on that GPU). Table ?? shows
these baseline runtimes. GPU affinity does not affect the
performance, thus no particular binding options was used.

Figures ??, ?? and ?? compare the speedups obtained
when increasing the number of GPUs. Again, the ideal
speedups are annotated as horizontal grids, which would be
the number of GPUs used. The speedups obtained with all
three different GPUs can be considered almost linear.

In terms of load balance, the workload is partitioned
among the MPI processes (one per GPU). Thus, the number
of units on which the workload has to be divided is smaller,
and the load balance is even better than in previous section.
Using the same metric as before, the maximum difference
to the mean number of operations divided by the mean, the
deviation values range from 0 to 6.05× 10−7.

The thousands of cores available in a GPU make
it adequate to accelerate applications that are highly
parallelizable. This is the case for epistatis detection. For
instance, using the largest dataset size (6,300 SNPs and
3,200 samples), eight GPUs reduce the compute time from
approximately 65, 92 and 30 minutes for K20m, K2 and K80
respectively, to 9, 12 and 4.

Prepared using sagej.cls



6 Journal Title XX(X)

Table 4. Hardware characteristics of the clusters used in the performance evaluation.

Cluster Node configurations
CPUs/node Cores/node GPUs/node Nodes

Pluton 2x Intel Sandy Bridge-EP 2660 16 NVIDIA Tesla K20m 8
Finisterrae II 2x Intel Haswell 2680v3 24 - 32

2x Intel Haswell 2680v3 24 2x NVIDIA Tesla K80 2
2x Intel Haswell 2650v3 20 NVIDIA GRID K2 4

Figure 1. CPU speedups on the Pluton cluster for different dataset sizes and number of nodes.

Figure 2. CPU speedups on the Finisterrae II cluster for different dataset sizes and number of nodes.

Conclusions and future work

The principal limiting factor of epistatic searches is the
exponential growth of the number of combinations with
the number of SNPs involved on the interaction. Instead of
reducing the scope of the search by means of a previous
filtering stage, or limiting the usability to small datasets,

our approach relies on cluster architectures to overcome
this exponential growth and achieve a manageable runtime.
The current implementation obtains next to linear speedups
thanks to the use of a static distribution of the workload that
avoids communications and synchronizations and provides
an almost perfect load balance.

Prepared using sagej.cls



Christian Ponte et al. 7

(a) Results for NVIDIA K20m GPUs. (b) Results for NVIDIA K2 GPUs.

(c) Results for NVIDIA K80 GPUs.

Figure 3. Speedups using a variable number of GPUs and diffferent datasets.

Table 5. CPU affinity test combining different number of
processes and threads, using the dataset with 3,200 SNPs and
800 samples.

Processes Threads Runtime

Pl
ut

on

1 16 1,795s
2 8 1,796s
4 4 1,795s
8 2 1,794s
16 1 1,788s

Fi
ni

st
er

ra
e

II 1 24 760s
2 12 760s
4 6 760s
12 2 760s
24 1 758s

Take as an example the largest dataset tested, composed
by 3,200 samples of 6,300 SNPs each. When using 8
nodes of 16 CPU cores each, the obtained speedup is 134
compared to a completely sequential execution. On the GPU
implementation the same level of parallel efficiency is
achieved, as the total runtime is reduced 7.69 times when
using 8 NVIDIA K20m GPUs against one.

MPI3SNP, however, has its limitations. The current
implementation only supports third-order epistatic searches
and, given the promising performance results, it would be

Table 6. Sequential runtime of MPI3SNP on both clusters.
Underlined data means estimated runtime.

SNPs Samples Pluton Finisterrae II

3,200 800 25,672s 15,902s
3,200 1,600 37,115s 20,791s
3,200 3,200 48,935s 29,323s
4,000 800 50,193s 31,132s
4,000 1,600 72,596s 40,644s
4,000 3,200 95,631s 57,274s
5,000 800 98,004s 60,784s
5,000 1,600 141,740s 79,432s
5,000 3,200 187,006s 111,887s
6,300 800 196,428s 121,842s
6,300 1,600 284,035s 159,097s
6,300 3,200 374,391s 224,132s

interesting to see how many SNPs can we combine before
the runtime becomes unmanageable. In terms of the ranking
algorithms, Mutual Information is the only one currently
offered and it is of great interest to expand the number of
evaluation metrics, keeping in consideration the possibility
of variable number of SNPs in the interaction. These two
lines will be addressed as future work.

MPI3SNP is open-source software and available to
download at the following Github repository: https://
github.com/chponte/mpi3snp.

Prepared using sagej.cls

https://github.com/chponte/mpi3snp
https://github.com/chponte/mpi3snp


8 Journal Title XX(X)

Table 7. Maximum relative deviation from the mean number of triples assigned to each thread, using multiple number of nodes and
different dataset sizes for both clusters.

Pluton 16 32 64 128

SN
Ps

3200 0 0 0 7.41e-06
4000 0 1.23e-07 4.76e-05 1.58e-04
5000 3.83e-06 9.59e-06 4.02e-05 1.03e-04
6300 2.42e-06 7.24e-06 2.65e-05 7.03e-05

Finisterrae II 24 48 96 192 384 768

SN
Ps

3200 6.41e-04 6.68e-04 7.83e-04 9.39e-04 1.79e-03 4.18e-03
4000 5.08e-04 5.26e-04 5.80e-04 6.47e-04 1.31e-03 3.21e-03
5000 4.06e-04 4.23e-04 4.69e-04 5.61e-04 7.75e-04 1.89e-03
6300 3.21e-04 3.32e-04 3.52e-04 4.02e-04 6.37e-04 1.22e-03

Table 8. Runtime of MPI3SNP on a single GPU.

Number
of SNPs

Number of
samples K20m K2 K80

3,200 800 138 s 200 s 104 s
3,200 1,600 220 s 315 s 149 s
3,200 3,200 528 s 748 s 241 s
4,000 800 268 s 393 s 203 s
4,000 1,600 428 s 616 s 290 s
4,000 3,200 1,013 s 1,459 s 469 s
5,000 800 522 s 774 s 397 s
5,000 1,600 833 s 1,208 s 570 s
5,000 3,200 2,027 s 2,866 s 919 s
6,300 800 1,039 s 1,550 s 785 s
6,300 1,600 1,649 s 2,407 s 1112 s
6,300 3,200 3,943 s 5,519 s 1775 s

Acknowledgements

We gratefully thank Galicia Supercomputing Center for providing
access to the FinisTerrae-II supercomputer.

Funding

This research was supported by the Ministry of Economy and
Competitiveness of Spain and FEDER funds of the EU [Project
TIN2016-75845-P (AEI/FEDER, UE)]; the Xunta de Galicia and
FEDER funds of the EU (Centro Singular de Investigación de
Galicia) [grant number ED431G/01]; Consolidation Program of
Competitive Research [grant number ED431C 2017/04]; and the
FPU Program of the Ministry of Education of Spain [grant number
FPU16/01333].

Declaration of conflicting interests

The Authors declare that there is no conflict of interest.

Prepared using sagej.cls




