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ABSTRACT 

Renal neoplasia is the 14th most common tumor type diagnosed worldwide. With a vast 

heterogeneity, renal neoplasia encompasses different subtypes. 90% of the neoplasms arise 

from the epithelial layer of the nephron and vary from benign renal masses (renal oncocytoma, 

RO) to more indolent or aggressive cancers (renal cell carcinomas, RCC). As RCC subtypes, 

clear cell (ccRCC) subtype is the most predominant subtype, followed by papillary (pRCC) and 

chromophobe (chRCC). Despite the different outcomes, some overlapped histological and 

morphological features difficult their differentiation and diagnosis. Therefore, new approaches 

for a clear and accurate diagnosis are still needed.  

To achieve this goal, renal tissue biopsies diagnosed with ccRCC (n = 7), pRCC (n = 5), 

chRCC (n = 5), RO (n = 5) and normal adjacent tissue (NAT, n= 5) were enrolled in this study. 

As a very resourceful tool for proteome analysis and biomarker discovery, mass spectrometry 

(MS)-based methods were used to interrogate the proteome of each tumor in order to 

undisclosed differences trough which to develop faster and accurate diagnostics.  

The results achieved with this doctoral thesis include i) the accomplishment of an 

effective ultrasonic workflow to recover the proteome of optimal cutting temperature (OCT)-

embedded tissues, ii) a novel analytical approach based on MALDI-MS profiling to distinguish 

chRCC from RO, iii) a 109-protein panel to discriminate between chRCC and RO and NAT, iv) a 

top 24-protein panel to diagnose ccRCC, pRCC, chRCC and RO based on absolute 

concentration values, v) the translation and validation of three promising biomarkers by 

immunohistochemical analysis, and vi) an approach for phosphopeptide enrichment. 

This work brings new insights into the different mechanisms underlying formation of 

these tumors as well as it provides valuable information to improve clinical diagnosis by opening 

new avenues for immunohistochemistry and mass spectrometry-based approaches. 

Keywords: Renal tumors, Differential diagnosis, Mass spectrometry, Proteome 

analysis.  
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RESUMO 

A neoplasia renal é o 14º tumor mais diagnosticado no mundo. Com uma elevada 

heterogeneidade, a neoplasia renal abrange diferentes subtipos. 90% das neoplasias são 

provenientes da camada epitelial do nefrónio, variando desde massas benignas (oncocitoma 

renal - OR) - a cancros mais indolentes ou agressivos (carcinomas de células renais - CCR). 

Dentro dos subtipos de CCR, o subtipo de células claras (CCRcc) é considerado o mais 

predominante, seguido pelo papilar (CCRp) e pelo cromófobo (CCRcr). Contudo, a similaridade 

de algumas características histológicas e morfológicas dificultam a sua caracterização, e 

consequentemente, o seu diagnóstico pelo que são necessárias novas abordagens para um 

diagnóstico inequívoco. 

Para atingir este objetivo, biópsias de tecido renal diagnosticadas com CCRcc (n = 7), 

CCRp, (n = 5), CCRcr (n = 5), OR (n = 5) e tecido adjacente normal (TAN, n = 5) foram 

incluídos neste estudo. Como ferramenta muito útil para análise do proteoma e descoberta de 

biomarcadores, a espectrometria de massa foi utilizada para analisar os proteomas de cada 

tumor em estudo. 

Os resultados alcançados incluem: i) o desenvolvimento de um procedimento 

ultrassónico eficaz para a recuperação do proteoma de tecidos preservados em OCT (optimal 

cutting temperature medium), ii) uma nova abordagem analítica baseada no perfil de MALDI 

para distinguir CCRcr de OR iii) um painel de 109 proteínas para discriminar entre CCRcr, OR 

e TAN, iv) um painel de 24 proteínas principais para diagnosticar CCRcc, CCRp, CCRcr e OR 

com base em valores de concentração absoluta v) aplicação e validação, por 

imunohistoquímica, de três potenciais biomarcadores e vi) uma abordagem quantitativa para 

enriquecimento de fosfopeptidos. 

Este trabalho revela novas perspetivas sobre os diferentes mecanismos subjacentes à 

formação desses tumores. Além disso, estas descobertas fornecem informações valiosas para 

melhorar o diagnóstico clínico, abrindo novos caminhos para a imunohistoquímica e sua 

implementação na medicina. 

Palavras-chave: Tumores renais, Diagnostico diferencial, Espectrometria de massa, 

Análise proteómica.  
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 ESI Electrospray ionization 

 ETD Electron transfer dissociation 

 EAU 

 

European Association of Urology 

F 
  

 FA Formic acid 

 FAB Fast atom bombardment 

 FASP Filter-aided sample preparation 

 FD Field desorption 

 FDG 18F-2-fluoro-2-deoxyglucose 

 FDR False discovery rate 

 FFPE Formalin-fixed and paraffin-embedded 

 FI Field ionization 

 FNA Fine needle aspiration 

 FT 

 

Fourier transform 

G 
  

 GC Gas chromatography 

 GMA Glycidyl methacrylate 

 GO Gene ontology 
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H 
  

 HILIC Hydrophilic interaction liquid chromatography 

 HK1 Hexokinase 1 

 HPLC 

 

High-performance LC 

I   

 IAA Iodoacetamide 

 ICAT Isotope-coded affinity tag 

 ICR Ion cyclotron resonance 

 IDH3A Isocitrate dehydrogenase [NAD] subunit alpha 

 IDH3B Isocitrate dehydrogenase [NAD] subunit beta 

 IEX Ion-exchange chromatography 

 IHC Immunohistochemical 

 IHC Immunohistochemistry 

 IMAC Immobilized metal affinity chromatography 

 IR Infrared 

 IRMPD Infrared multiphoton dissociation 

 ISUP International Society of Urological Pathology 

 IT Ion trap 

 iTRAQ 

 

Isobaric tags for relative and absolute quantification 

K 
  

 KEGG Kyoto encyclopedia of genes and genomes 

 KIT Transcription factors mast/stem cells grow factor receptor 

 KRT7 

 

Keratin type II cytoskeletal 7 

L 
  

 LAMP1 Lysosome-associated membrane glycoprotein 1 

 LC Liquid chromatography 

 LFQ Label-free quantification 

 LGALS3 Galectin-3 

 LIFDI Liquid introduction field desorption ionization 

 LIT Linear ion trap 

 LLE Liquid-liquid extraction 

 LOH 

 

Loss of heterozygosity 
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M 
  

 M Metastases 

 m Mass of the ion 

 m/z Mass-to-charge ratio 

 MALDI Matrix-assisted laser desorption/ionization 

 MAPs Most abundant proteins 

 MCP. Multichannel plate detector 

 MME Neprilysin 

 MOAC Metal oxide affinity chromatography 

 MRI Magnetic resonance imaging 

 MRM Multiple reaction monitoring 

 MS Mass spectrometry 

 MS1 First scan 

 MS2 Second scan 

 MWCO 

 

Molecular weight cutoff 

N   

 N Regional lymph nodes involvement 

 NAT 

 

Normal adjacent tissues 

O   

 OCT Optimal cutting temperature 

 OXPHOS 

 

Oxidative phosphorylation 

P   

 PAX2 Paired box protein 2 

 PAX8 Paired box protein 8 

 PCA Principal component analysis 

 PDI Polydispersity 

 PEG Polyethylene glycol 

 PET Positron emission tomography 

 PLCG2 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 

 PLIN2 Perilipin-2 

 PMF Peptide mass fingerprinting 

 PP Protein precipitation 

 PPIs Protein-protein interactions 
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 ppm Parts per million 

 pRCC Papillary renal cell carcinoma 

 PRM Parallel reaction monitoring 

 PSAQ Protein standard absolute quantification 

 PSM Peptide-to-spectrum match 

 PSMA Prostate-specific membrane antigen 

 Ps-NPs Polystyrene nanoparticles 

 PTMs Post-translational modification 

 PVA Polyvinyl alcohol 

 PVALB 

 

Parvalbumin 

Q   

 Q Quadrupole 

 QCAT Artificial concatemer of standard peptides 

 QIT Quadrupole ion trap 

 QqQ Triple quadrupole 

 RCC Renal cell carcinomas 

 RF Radio frequency 

 RO Renal oncocytoma 

 ROC Receiver operating characteristics 

 RPC 

 

Reverse-phase chromatography 

S 
  

 SAX Strong anion exchange chromatography 

 SC Spectral counting 

 SCX Strong cation exchange chromatography 

 SDC Sodium deoxycholate 

 SDH Succinate dehydrogenase 

 SDS, Sodium dodecyl sulfate 

 SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

 SILAC Stable isotope labeling by amino acids in cell culture 

 SN Supernatant 

 SPE Solid-phase extraction 

 SRM 

 

Selected reaction monitoring 

T 
  

 T Tumor extension 
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 TCA Trichloroacetic acid 

 TEMED N,N,N’,N’ – tetramethylethylene diamine 

 TFA Trifluoroacetic acid 

 THF Tetrahydrofuran 

 TIS Timed ion selector 

 TMAs Tissue micro arrays 

 TMPTMA Trimethylolpropane trimethacrylate 

 TMT Tandem mass tags 

 TOF Time of flight 

 TPA 

 

Total protein approach 

U 
  

 UBLs Ubiquitin-like proteins 

 UE Ultrasound energy 

 UHPLC Ultra-high-performance LC 

 UniProt Universal protein resource 

 UPMC University of Pittsburgh Medical Center 

 US Ultrasound 

 UV 

 

Ultraviolet 

V 
  

 v/v Volume per volume 

 VHL Von Hippel–Lindau 

 VIM 

 

Vimentin 

W 
  

 w/v  Weight per volume 

 w/w Weight per weight 

 WHO 

 

World health organization 

X 
  

 XIC 

 

Extracted ion chromatogram 

Z 
  

 z Electrical charge 

 α-CHCA α -Cyano-4-hydroxy-cinnamic acid 
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I.1 KIDNEY CANCER 

The biological homeostasis is fundamental for organisms where the body’s cells are 

programmed to divide or die to maintain a balanced and controlled organic system. When cells 

stop responding appropriately to cell regulatory system signals it may lead to uncontrolled cell 

growth and division [1]. The continual unregulated proliferation of cells drives the development 

of tumoral masses, which can be benign neoplasms if they are limited and confined to its 

original location, or malignant if the abnormal cellular growth is capable of invading surrounding 

normal tissues and ultimately spread through the body. Malignant tumors are cancerous due to 

their ability to invade and metastasize making them so harmful [2]. Apart from the essence of 

the tumor cells, neoplasms can be classified accordingly to the type of cells from which they 

arise. Solid tumors in epithelial cells are called carcinomas, while in connective tissues 

sarcomas [2]. For the malignancies in cells from the blood and immune systems, they are 

named as leukemias and lymphomas, respectively. On the other hand, tumors can also be 

classified by the tissue/organ of origin, such as lung, breast, kidney, among others.  

Kidneys are a vital organ for body homeostasis through control of blood pressure and 

blood composition [3]. They play a role in hormone production that stimulates erythropoiesis, 

the blood’s extraneous materials filtration, electrolyte balance maintenance, and blood pressure 

regulation [4]. When abnormal pathologies arise, such as kidney cancer, integrity and organ 

function is compromised, resulting in detrimental outcomes. Kidney cancer, also known as renal 

cancer, is the 14th most common cancer worldwide which accounts for over 400,000 new cases 

every year [5]. However, a particular challenge in renal neoplasia is the vast heterogeneity of 

this cancer type. Different subtypes of renal cancer can be classified according to histological 

origins, genetic alterations, and clinical course.  

I.1.1 RENAL NEOPLASMS: CLASSIFICATION AND CHARACTERISTICS 

The classification of renal neoplasia is based on morphology, immunohistochemistry, 

cytogenetics, and molecular pathology of each tumor subtype [6,7]. In 2004, the World Health 

Organization (WHO) published the histologic classification of renal tumors [8]. Over the past 

decade, new tumor types have been discovered and recognized as distinct tumor entities 

according to their clinicopathological features, and the WHO classification was revised in 2016 

(Table I.1) [7]. 
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Table I.1- 2016 World Health Organization classification of renal neoplasms [7]. 

Renal cell tumors 

Clear cell renal cell carcinoma 

Multilocular cystic renal neoplasm of low malignant potential 

Papillary renal cell carcinoma 

Hereditary leiomyomatosis renal cell carcinoma (HLRCC)-associated renal carcinoma 

Chromophobe renal cell carcinoma 

Collecting duct carcinoma 

Renal medullary carcinoma 

MiT Family translocation carcinomas 

Succinate dehydrogenase (SDH) deficient renal carcinoma 

Mucinous tubular and spindle cell carcinoma 

Tubulocystic renal cell carcinoma 

Acquired cystic disease associated with renal cell carcinoma 

Clear cell papillary renal cell carcinoma 

Renal cell carcinoma, unclassified 

Papillary adenoma 

Oncocytoma 

Metanephric tumors 

Metanephric adenoma 

Metanephric adenofibroma 

Metanephric stromal tumor 

Nephroblastic and cystic tumors occurring mainly in children 

Nephrogenic rests 

Nephroblastoma 

Cystic partially differentiated nephroblastoma 

Cystic nephroma, pediatric type 

Mesenchymal tumors 

Mesenchymal tumors occurring mainly in children 

Clear cell sarcoma 

Rhabdoid tumor 

Congenital mesoblastic nephroma 

Ossifying renal tumor of infants 

Mesenchymal tumors occurring mainly in adults 

Leiomyosarcoma (including renal vein) 

Angiosarcoma 

Rhabdomyosarcoma 

Haemangiopericytoma 

Undifferentiated pleomorphic sarcoma 

Osteosarcoma 
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Table I.1 (cont.) 

Primitive neuroectodermal tumor (Ewing sarcoma) 

Angiomyolipoma 

Epithelioid angiomyolipoma 

Leiomyoma 

Haemangioma 

Lymphangioma 

Haemangioblastoma 

Juxtaglomerular cell tumor 

Renomedullary interstitial tumor 

Schwannoma 

Solitary fibrous tumor 

Mixed epithelial-stromal tumor family 

Adult cystic nephroma 

Mixed epithelial and stromal tumor 

 

 

Renal cell tumors are the most dominant forms of neoplasms, accounting for 90% of all 

kidney cancers [9]. It is most commonly diagnosed in patients in their early sixties afflicting 

males about twice as often as females [10]. As a heterogeneous disease, renal cell tumors can 

vary from benign renal masses [e.g. renal oncocytoma (RO)] to more indolent or aggressive 

tumors such as the renal cell carcinomas (RCC) subtypes [e.g. chromophobe RCC (chRCC), 

papillary RCC (pRCC) or clear cell RCC (ccRCC)].  

Arising from the epithelial layer of the nephron, these tumor entities display traits 

associated with particular cell types, as seen in Figure 1 [11]. While ccRCC and pRCC display 

proximal tubule traits, the cellular origin of chRCC and RO are associated with the distal 

nephron, in particular, in the intercalated cells of the connecting tubules and collecting duct 

system [11].  

ccRCC is considered the most aggressive and common RCC variant encompassing 

75% of all RCC neoplasms [12]. Histologically, is defined by the clear cytoplasm due to their 

lipid and glycogen-rich content (Figure I.2) [13]. Although, 95% of the cases are sporadic, the 

remaining 5% are associated with hereditary syndromes, such as von Hippel-Lindau disease or 

more rarely with Cowden’s syndrome, Birt-Hogg-Dubé syndrome, tuberous sclerosis complex, 

and succinate dehydrogenase-deficient RCC [14]. The molecular genetic hallmarks of ccRCC 

are mutations in VHL gene mutations, hypermethylation of VHL gene promoter, and loss of 

heterozygosity (LOH) at chromosome arm 3p. Loss of 14q, and gains of 5q and 7q, are also 

commonly observed in this variant [11]. Apart from the functional inactivation of the von Hippel–

Lindau (VHL) tumor-suppressor gene, located on 3p21, this region encompasses three 

Synovial sarcoma 
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additional genes, PBRM1, BAP1, SETD2, and prevalent mutations in these chromatin- and 

histone-regulating genes have also been reported [15].  

 

 

 

Figure I.1 – Cellular origin of RCC subtypes in the renal nephron. ccRCCs and pRCCs originate from 
proximal tubule or parietal cells (bottom left), and chRCCs and RO stem from intercalated cells of the 
distal nephron and collecting ducts (bottom right). Adapted from Lindgren et al. [11]. 

 

The second most common type of RCC is the pRCC, which accounts for approximately 

10% of the cases [12]. Although pRCC is characterized by papillary structures with a spindle-

shaped pattern, this variant presents two subtypes, type 1 and type 2, based on histological 

appearance and biological behavior. Generally, type 1 pRCC is less aggressive and displays a 

single layer of basophilic cells with scarce clear cytoplasm and hyperchromatic nuclei 

surrounding the basal membrane. In its turn, the more aggressive histological subtype 2 is more 

heterogeneous and is characterized by papillae covered by cells with abundant granular 

eosinophilic cytoplasm, with prominent nucleoli associated with areas of necrosis (Figure I.2) 

[13]. Genetic profiles also reveal some differences between the two types. Gains of 7p and 17p 

and mutations in the MET gene are typically shown in Type 1 tumors. While cytogenetic 

aberrations of type 2 tumors are associated with gains of 8q, loss of heterozygosity of 

chromosomes 1p and 9p, and mutation in CDKN2A, SETD2, and NRF2 genes [16,17].  

As a more indolent behavior, but still with the ability to metastasize, the chRCC is the 

third most common RCC subtype with an incidence of approximately 5% [12]. Large pale cells 

with reticulated cytoplasm and peniculear halos are characteristic of these tumors (Figure I.2). 
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Cytogenetic alterations account for losses in chromosomes 1, 2, 6, 10, 13, 17, and 20. At a 

molecular level, mutations in TP53 and PTEN genes have also been reported [15]. 

 

 

 
Figure I.2 – Histologic subtypes of renal tumors [18]. 

 

Lastly, renal oncocytoma is a benign renal tumor that represents 5% of renal tumors’ 

diagnosis. The appearance of RO is of round to polygonal cells with densely granular 

eosinophilic cytoplasm, and round uniform nuclei (Figure I.2) [19]. Genetic factors associated 

with these tumor types include losses of chromosome 1 and Y, rearrangement of the CCND1 

gene, as well as mutations in mitochondrial genes (COX1, COX2, MTND4, and MTCYB) [15].  

I.1.2 DIAGNOSIS, STAGING, AND GRADING SYSTEMS 

Renal cell tumors are often diagnosed incidentally during thoracoabdominal imaging 

ordered for unrelated complains due to their asymptomatic profile especially in the early stages 

[20]. Symptoms tend to appear with the progression of the disease and can be the result of local 

tumor growth, hemorrhage, paraneoplastic syndromes or metastatic evolution [20]. Usually, the 

ureteral, vascular, or thromboembolic obstruction cause flank pain which can develop into 

hematuria [20]. The physical examination of palpable abdominal masses is then complemented 

by non-invasive imaging techniques. According to the latest guidelines prepared by the 

European Association of Urology (EUA) in 2019 [9], computed tomography (CT), abdominal 
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ultrasound, and magnetic resonance imaging (MRI) are the imaging modalities used to detect 

and characterize renal masses. On the basis of imaging findings, renal masses can be 

classified as solid masses or in more atypical forms as cystic lesions. In the case of solid 

masses, the most important criterion used for differentiating malignant lesions in the presence 

of enhancement in imaging scans [21]. The diffusion of contrast agents in pathologies, like 

cancer, leans towards a bigger enhanced area due to the formation of new blood vessels of 

tumor angiogenesis [22]. On the other hand, Bosniak classification is used to classify cystic 

masses, where renal lesions are classified into five categories to predict malignancy risk 

[23,24].   

I.1.2.1 TNM classification system 

In renal masses, the most important factors in predicting the clinical behavior and 

outcome are based on tumor size and extent of invasion. Over the years, the TNM staging 

systems, which reflect the evaluation of primary tumor extension (T), regional lymph nodes 

involvement (N), and presence of distant metastases (M) have become the predominant 

grading system for RCC. In Table I.2 is represented the TMN staging system for renal cancer 

according to the American Joint Committee on Cancer (AJCC) Staging guidelines [25].  

Tumors with 4 cm or less are classified as T1a, over 4 cm but less than 7 cm are 

designed as T1b, between 7 cm and 10 cm are classified as T2a and more than 10 cm are 

designed as T2b. In T1 and T2 stages, the tumor is confined within the kidney. When tumors 

extended beyond the renal parenchyma to involve major veins, the pelvicalyceal system, or 

perinephric tissues, they are considered as T3. Staging T3 is subdivided into: T3a if tumors do 

not extend into vena cava, T3b when the extension reaches the vena cava below the 

diaphragm, and T3c when the extension reaches the vena cava above the diaphragm or 

invades the wall of the vena cava. Lastly, T4 is assessed when tumors directly invade the 

ipsilateral adrenal gland or invade beyond Gerota fascia. Stage N0 state for no regional lymph 

nodes and N1 for the involvement of regional lymph nodes. NX denotes that regional lymph 

nodes cannot be assessed. The presence of distant metastases is classified as M0 when they 

are absent or M1 for their presence. Clinical staging is then assigned to the TNM categories as 

presented in Table I.3 and Figure I.3. 

I.1.2.2 Histopathological ascertainment of tissue biopsies 

Imaging techniques are frequently used in routine clinical practice, resulting in accurate 

diagnosis in most cases. However, some pitfalls arise in the characterizations of renal masses 

through these techniques. For instance, RO cannot reliably be distinguished from malignant 

renal neoplasms through imaging approaches. In addition, inconsistencies of CT Hounsfield unit 

measurements, pseudoenhancement of simple renal cysts at CT, and the lack of a standardized 

approach for evaluating renal mass enhancement contribute to the potential misdiagnosis. In 

this case, histological diagnosis is recommended to avoid unnecessary surgery in the event of 
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benign lesions, to select patients for surveillance, and to obtain histology before ablative 

treatment [9].  

 

 

Table I.2 – TNM classification system [25]. 

 Definition Subdivision Extension 

Tumor stage (T) 

T1 
Tumor < 7 cm 

in greatest dimension 

T1a: tumor ≤ 4 cm 

Limited to the kidney T1b: tumor > 4 cm 

but ≤ 7 cm 

T2 
Tumor > 7 cm 

in greatest dimension 

T2a: tumor > 7 cm 

but ≤ 10 cm Limited to the kidney 

T2b: tumor > 10 cm 

T3 
Tumor extends into 
major veins or 
perinephric tissues 

T3a: Tumor in renal vein 
or renal sinus fat 

Not beyond Gerota’s fascia 

T3b: Tumor extends into 
the vena cava 

Not beyond Gerota’s fascia, below the 
diaphragm 

T3c: Tumor extends into 
the vena cava 

Not beyond Gerota’s fascia, above the 
diaphragm 

T4 Tumor invades beyond Gerota’s fascia 
Including contiguous extension into the 
ipsilateral adrenal gland 

Regional lymph nodes (N) 

N0 No regional lymph node metastasis 

N1 Metastasis in regional lymph node(s) 

NX Regional lymph nodes cannot be assessed 

Distant metastasis (M) 

M0 No distant metastasis 

M1 Distant metastasis 

 

 

For histopathological analysis, it is necessary the collection of renal tissue. 

Percutaneous renal tumor biopsies are minimal invasive medical procedures, with a low risk of 

complications, where the renal mass is accessed via needle-puncture of the skin [26]. 

Commonly, the needle core biopsy and the fine needle aspiration (FNA) biopsy are the most 

used methods for renal tumor tissue, however, the core biopsies are preferable over FNA 

biopsies due to their superior diagnostic yield [27]. Providing additional information, the 
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histochemical analysis performed on tissue biopsies can predict clinical outcomes based on 

numerous prognostic factors including the evaluation of i) nuclear grade, ii) sarcomatoid 

features, iii) tumor necrosis, and iv) microvascular invasion [9,28]. Grading renal tumors based 

on nuclear morphology has been recognized as a prognostic factor. Over the past years, the 

Fuhrman grading system [29] has been massively applied in pathology practice for the RCC 

grading system. However, its prognostic value has been questioned [30]. To overcome the 

difficulties in associating the former grading system, the WHO and the International Society of 

Urological Pathology (ISUP) have reached a consensus and recommended the use of the four-

tiered WHO/ISUP grading system [31]. Although the novel ISUP grading system has been 

implemented by the WHO for ccRCC and pRCC subtypes, this grading evaluation has not been 

recommended for other variants such as chRCC [32].  

 
 

Table I.3 – AJCC\ Stage groups [25]. 

Stage Tumor stage Lymph Nodes Metastasis 

I T1 N0 M0 

II T2 N0 M0 

III T1 N1 M0 

III T2 N1 M0 

III T3 N0 M0 

III T3 N1 M0 

IV T4 Any N M0 

IV Any T Any N M1 

 

 

In this system, grades from 1 to 3 are based on nucleolar prominence. Like so, tumors 

having i) inconspicuous or absent nucleoli at x 400 magnification are classified as grade 1, ii) 

inconspicuous nucleoli at x 100 magnification but distinctly visible at x 400 are classified as 

grade 2, and iii) nucleoli distinctly visible at low-power magnification (x 100) are classified as 

grade 3. The fourth grade of the WHO/ISUP grading system encompasses tumors extreme 

pleomorphic giant cells or the presence of rhabdoid and/or sarcomatoid differentiation [31]. 

Characterized by atypical spindles cells and resemblance to any form of sarcoma, sarcomatoid 

morphology can be found in all RCC subtypes and represents tumor aggressiveness with a 

worse clinical outcome [33,34]. The presence of tumor necrosis has also been associated with a 

less favorable clinical outcome in RCC [35,36]. Microvascular invasion is defined as the 

presence of small vessels within the renal parenchyma. In several studies, this parameter has 

been found associated with prognostic value [28,37,38], however, fully recommendation to use 

the microvascular invasion to prognosis RCC tumors was not achieved in the consensus 

conference [31].  
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Figure I.3 - Kidney cancer stages. Adapted from [15]. 

I.1.3 BIOMARKERS IN KIDNEY NEOPLASMS 

A specific challenge in diagnosing and prognosis renal cell tumors is the wide spectrum 

of histological subtypes with different outcomes. The proper identification of the histologic tumor 

type is crucial in clinical practice to avoid undertreatment of most aggressive forms or 

overtreatment of more indolent or even benign subtypes. Therefore, when the analysis of 

imaging scans per se reveals to be inconclusive, the use of specific markers represents a 

support in renal cell tumors’ diagnosis and further clinical decision making [39].    

I.1.3.1 Imaging markers 

On par with the detection of tumoral masses, imaging techniques can be used to the 

identification of molecular features specific for each tumor, in a non-invasive manner and 

through the mean of radioactive tracers [39]. Resulting from the combination of a chemical 

compound and a radioactive element, the radiotracers are used to track pathological conditions 

such as cancer. The most common radiotracer is the 18F-2-fluoro-2-deoxyglucose (FDG) which 

take the advantage of the high glucose metabolism rates of cancer to flag those regions, 

particularly in advance stages with metastasis [40]. However, the use of FDG on positron 

emission tomography (PET)/CT is not recommended for RCC diagnosis due to their low 

sensitivity - only 22% - for localized RCC [41]. Other explored molecules are the 124Iodine 

cG250 [42] and 18F-VM4-037 [43]. These radiotracers have been used to trace the carbonic 

anhydrase IX (CA9), a protein that has been verified to be highly and homogenously expressed 

in ccRCC [44]. However, these radioactive markers have some disadvantages such as a proper 

contrast between tumor and normal parenchyma or prolonged waiting times for an adequate 
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background visualization [45]. The molecular imaging biomarker prostate-specific membrane 

antigen (PSMA)-targeted 18F-DCFPyL is also been used to detect metastasis in RCC patients 

[46]. However, the small cohort of patients and this preliminary study, further evaluation of the 

sensitivity is required to fully image RCC with PSMA-based PET techniques. Molecular imaging 

with PET has been proven as a powerful tool to trace cancerous processes particularly in more 

aggressive forms as ccRCC or metastatic stages. Unfortunately, this technique still presents 

some limitations and a reduced capacity to stratify the wide range of RCC subtypes.    

MRI is another non-invasive technique that can be applied to characterize and assess 

renal masses [39]. However, the major obstacle of MRI implementation in clinical practice is the 

technical aspects and expertise required to consistently obtain high-quality images of kidney 

tumors [47].  

I.1.3.2 Blood-based and urine protein markers 

The initial diagnosis of renal masses is frequently based on noninvasive imaging 

techniques [12]. Nevertheless, these techniques often lack in effectively detect them in the early 

stages of the disease. Liquid biopsies such as serum and urine, also represent valuable 

sources of pathological information, being routinely implemented in the clinical practice [48]. 

The evaluation of potential biomarkers in these biological samples has been widely approached 

in biomarker discovery for many pathologies including renal cell tumors. Although the discovery 

and evaluation of potential biomarkers in these biological fluids are often challenging process 

due to the frequent very low concentration of the proteins of interest or the camouflage of such 

proteins by the high-abundant proteins [49], some efforts have been done in this field. Blood-

derivative specimens, such as serum and plasma, are very accessible clinical samples and due 

to the direct contact with disease-affected tissues, specific proteins can be secreted into the 

bloodstream, making them a valuable source for biomarker discovery. Several studies have 

been reporting potential serological biomarkers for the diagnosis of RCC [50]. To a less extent, 

some efforts have also been done in plasma samples. In Table I.4 are summarized the most 

promising protein biomarker for renal cell tumors diagnosis.  

However, none of the proposed biomarkers has been proven to be reliable and specific 

for RCC differentiation.  

The urinary fluid is also considered an attractive biological matrix for candidate soluble 

protein biomarkers, especially in renal cell tumors which take the advantage of the close contact 

and communication of the tumoral cells with the urine-forming tubular elements of the kidney 

[50]. Potential urinary biomarkers are presented in Table I.5 

Unfortunately, some technical aspects, such as the lack of reproducibility and the 

complexity of the urine, represent the major shortcomings in this fluid for biomarker discovery 

[49]. Additionally, some reported markers have also been used to evaluate other cancer types 

or kidney injuries [51,52], compromising their specificity as a diagnostic marker for RCC. 
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Table I.4 - RCC-associated protein biomarkers in blood-derivative samples. 

Protein marker Profile Ref 

Serum fluid 

20S proteasome  ↑ ccRCC vs HC [53] 

72 kDa type IV collagenase (MMP2) ↑ RCC vs HC [54] 

Arrestin-1 (ARRB1) autoantibody ↑ RCC and RO vs HC [55] 

Baculoviral IAP repeat-containing protein 5 (BIRC5)  

also known as survivin 
↑ RCC vs HC [56] 

CD276 antigen (CD276)   

also known as B7H3 
↓ ccRCC vs HC [57] 

Ceruloplasmin (CP) ↑ ccRCC vs HC [58] 

Complement C1q subcomponent subunit B (C1QB) ↑ ccRCC vs HC [58] 

Complement C1q subcomponent subunit C (C1QC) ↑ ccRCC vs HC [58] 

C-X-C motif chemokine 13 (CXCL13) ↑ ccRCC vs HC [59] 

Cytotoxic T-lymphocyte protein 4 (CTLA4) ↓ ccRCC vs HC [57] 

DnaJ homolog subfamily C member 7 (DNAJC7)  ↑ RCC vs OKI and HC [60] 

Endothelial cell-specific molecule 1 (ESM1) ↑ RCC vs HC [61] 

Heat shock cognate 71 kDa protein (HSPA8) ↑ ccRCC vs HC [62] 

Heat shock protein beta-1 (HSPB1) ↑ ccRCC vs HC [63] 

High mobility group protein B1 (HMGB1) ↑ mRCC vs HC [64] 

Hypoxia-inducible factor propyl hydroxylase-3 (PHD3) ↑ RCC vs HC [65,66] 

Intact form KRT18 (M65) ↑ mRCC vs HC [67] 

Interleukin-2 receptor subunit alpha (IL2RA)  

also known as CD25 
↑ ccRCC vs HC [57] 

Kallistatin (SERPINA4) ↓ ccRCC vs HC [58] 

Lumican (LUM) ↓ ccRCC vs HC [58] 

Matrix metalloproteinase-9 (MMP9) ↑ RCC vs HC [54] 

Osteopontin (SPP1) ↑ pRCC vs ccRCC and chRCC [68] 

Protein S100-A8 (S100A8) ↑ ccRCC vs HC [58] 

Protein S100-A9 (S100A9) ↑ ccRCC vs HC [58] 

Tumor necrosis factor receptor-associated factor 1 
(TRAF1) 

↑ ccRCC vs HC [69] 

Vascular endothelial growth factor A (VEGF) ↑ RCC vs HC [54] 

Zymogen granule protein 16 homolog b (ZG16B) ↑ ccRCC vs HC [58] 

Plasma fluid 

Carbonic anhydrase IX (CA9) ↑ ccRCC vs HC and BT [70] 

Fibronectin 1 (FN1) ↑ RCC vs HC [71] 

Hepatitis A virus cellular receptor 1 (HAVCR)  
also known as kidney injury molecule-1 (KIM-1) 

↑ ccRCC vs HC and BT 

↑ ccRCC vs HC  

[72] 

[73] 

RCC: renal cell carcinoma; ccRCC: clear cell RCC; mRCC: metastatic RCC; pRCC: papillary RCC; 
chRCC: chromophobe RCC; RO: renal oncocytoma; HC: healthy controls; OKI: other kidney injuries; 
BT: benign tumors. 
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I.1.3.3 Tissue and immunohistochemical marker 

Proper differentiation of tumor subtypes is crucial for medical decision-making. As 

aforementioned in I.1.2.2. Histopathological ascertainment of tissue biopsies section, tumoral 

tissue biopsies are usually used to support tumor classification. Since tumor-derived biomarkers 

are expected to be at higher concentrations in tumoral tissues [9], the use of 

immunohistochemical (IHC) stains is often applied for the differential diagnosis [80]. In Table I.6 

are presented the most common markers used in immunohistochemical analysis.  

 
 

Table I.5 – RCC-associated protein biomarkers in urinary samples. 

Protein marker Profile Ref 

Aquaporin-1 (AQP1) 

↑ ccRCC and 
p RCC vs 
chRCC, RO 
and HC 

[74] 

Cystatin-C (CST3) 
↑ ccRCC vs 
HC 

[75] 

Glutaredoxin-1 (GLRX) 
↑ ccRCC vs 
HC 

[75] 

Hepatitis A virus cellular receptor 1 (HAVCR) 

also known as kidney injury molecule-1 (KIM-1) 

↑ ccRCC vs 
HC 

[76,77] 

Nuclear mitotic apparatus protein 1 (NUMA1) 

also known as nuclear matrix protein 22 (NMP22) 
↑ RCC vs HC [78,79] 

Perilipin-2 (PLIN2) 

↑ ccRCC and 
p RCC vs 
chRCC, RO 
and HC 

[74] 

RCC: renal cell carcinoma; ccRCC: clear cell RC; pRCC: papillary RCC; chRCC: chromophobe RCC; 
HC: healthy controls; RO: renal oncocytoma. 

 

 

Currently, the immuneprofile-based classification of RCC is based on (i) structural 

molecules, such as keratin type II cytoskeletal 7 (KRT7), vimentin (VIM), cadherins 1 and 16 

(CDH1 and CDH16), and claudins 7 and 8 (CLDN7 and CLDN8); (ii) proteins related to 

metabolic pathways, such as alpha-methylacyl-CoA racemase (AMCAR), CA9 and parvalbumin 

(PVALB), (iii) the transcription factors mast/stem cells grow factor receptor (KIT), and (iv) other 

molecules including neprilysin (MME), paired box proteins (PAX2 and PAX8), protein S100A1 

and RCC marker [49,80,81]. Despite the IHC remains a widely used tool for renal tumors 

diagnosis, the precision of the classifications is frequently compromised by the ambiguous 

immunohistochemical results. For instance, the immune marker KRT7 stains positively for 

pRCC and generally negative for the other subtypes. However, occasional positivity has been 

also observed in ccRCC and RO entities [15]. Recently, Kim et al. [82] proposed an immune 

algorithm based on the canonical KRT7/CA9/AMACR triple panel, even so, an adjunctive panel 
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is necessary in equivocal cases. Therefore, the IHC triage in renal cell tumors is still vulnerable 

to misdiagnosis and a precise classification is still necessary.  

The unmet demand to identify molecular changes associated with the different 

phenotypes has rendered numerous proteomic studies through the research community.  Table 

I.7 summarizes the more relevant ones performed in the latest years for RCC tissue biomarker 

discovery. 

I.1.4 MEDICAL CARE 

Once the renal mass is diagnosed, medical decision-making is based on the histotypes 

and progression of the disease. Currently, surgery is the only curative treatment for localized 

renal tumors. However, due to the negative consequences often allied to surgical excision, 

active surveillance would represent a better approach when tumoral masses are limited to the 

kidney and with a threshold size of 3 cm [83]. Active surveillance is also applied when benign 

subtypes, like RO, are confirmed by IHC. In this way, with the monitorization of the tumor size 

and the IHC analysis, the urologist may decide whether to keep the surveillance or to perform 

surgical procedures instead, Figure I.4.  

 

 

Table I.6 – Selected immunohistochemical staining panel for renal neoplasms [80]. 

Protein marker ccRCC pRCC chRCC RO 

Alpha-methylacyl-CoA racemase (AMACR) -/+ + - -/+ 

Cadherin-16 (CDH16) 

also known as kidney-specific cadherin (Ksp-cadherin) 
-/+ -/+ + +/- 

Cadherin-1 (CDH1) 

also known as epithelial cadherin (e-cadherin) 
-/+ -/+ +/- +/- 

Carbonic anhydrase IX (CA9) + +/- -/+ -/+ 

Claudin-7 and -8 (CLDN7 and CLDN8) - -/+ + +/- 

Keratin, type II cytoskeletal 7 (KRT7) 

also known as CK7 
-/+ +a + Focalb 

Mast/stem cell growth factor receptor Kit (KIT)  

also known as CD117 
-/+ -/+ + -/+ 

Neprilysin (MME) 

also known as CD10 
+ + -/+ -/+ 

Paired box protein PAX-2 and PAX-8 (PAX2 and PAX8) + + +/- + 

Parvalbumin (PVALB) -/+ -/+ + + 

Protein S100-A1 (S100A1) +/- +/- -/+ + 

RCC-Markerc + + +/- - 

Vimentin (VIM) + + -/+ -/+ 

(+) usually positive; (-) usually negative; (+/-) frequently positive; (-/+) occasionally positive, a maybe 
negative in type II pRCC, b in contract with diffuse and strong immunoreactivity in chRCC, RO typically 
shows scattered focal positivity (< 5% of tumor cells staining, c monoclonal antibody against a 200 kDa 
glycoprotein expressed on the brush boarder of proximal tubules cells.    
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Table I.7 – Tissue proteomic studies in renal tumor masses. 

Protein marker Profile Ref 

Renal cell carcinoma (RCC) 

Arrestin-1 (ARRB1) ↑ RCC vs NAT [55] 

Reticulocalbin 1 (RCN1) ↑ RCC vs NAT [84] 

Clear cell RCC (ccRCC) 

10 kDa heat shock protein, mitochondrial (HSPE1) ↓ ccRCC vs NAT [63] 

14-3-3 protein zeta/delta (YWHAZ) ↑ ccRCC vs NAT [85] 

Acetyl-CoA acetyltransferase, mitochondrial (ACAT1) ↓ ccRCC vs NAT [86] 

ADP/ATP translocase 3 (SLC25A6) ↓ ccRCC vs NAT [87] 

Aldo-keto reductase family 1 member A1 (AKR1A1) ↓ ccRCC vs NAT [87] 

Alpha-enolase (ENO1) ↑ ccRCC vs NAT [63] 

AMMECR1-like protein (AMMECR1L) ↓ ccRCC vs NAT [87] 

Annexin A2 (ANXA2) ↑ ccRCC vs NAT [88] 

Annexin A5 (ANXA5) ↑ ccRCC vs NAT [87] 

Apolipoprotein A1 precursor (APOA1) ↑ ccRCC vs NAT [89] 

Calbindin (CALB1) ↓ ccRCC vs NAT [87,90] 

CD2-associated protein (CD2AP) ↑ ccRCC vs NAT [87] 

Complement component 1 Q subcomponent-binding protein, 
mitochondrial (C1QBP) 

↓ ccRCC vs NAT [91] 

Coronin-1A (CORO1A) ↑ ccRCC vs NAT [92] 

Electron transfer flavoprotein regulatory factor 1 (ETFRF1)  
also known as LYR motif-containing protein 5 (LYRM5) 

↓ ccRCC vs NAT [87] 

Ester hydrolase C11orf54 (C11orf54) ↓ ccRCC vs NAT [87] 

Fatty acid-binding protein, brain (FABP7) ↑ ccRCC vs NAT [88] 

Fatty acid-binding protein, heart (FABP3) ↓ ccRCC vs NAT [90] 

Ferritin (FTL) ↑ ccRCC vs NAT [89] 

Galectin-1 (LGALS1) ↑ ccRCC vs NAT [85,88] 

Gamma-enolase (ENO2) ↑ ccRCC vs NAT [87] 

Gelsolin (GSN) ↑ ccRCC vs NAT [90] 

Glutathione S-transferase P (GSTP1) ↑ ccRCC vs NAT [87] 

Haptoglobin (HP) ↑ ccRCC vs NAT [89] 

Heat shock protein beta-1 (HSPB1) 

also known as heat shock 27 kDa protein (Hsp27) 
↑ ccRCC vs NAT [63,89] 

Hemoglobin subunit beta (HBB) ↑ ccRCC vs NAT [89] 

HIG1 domain family member 1A, mitochondrial (HIGD1A) ↑ ccRCC vs NAT [87] 

L-lactate dehydrogenase A chain (LDHA) ↑ ccRCC vs NAT [63] 

Nicotinamide N-methyltransferase (NNMT) ↑ ccRCC vs NAT [93] 

Peptidyl-prolyl cis-trans isomerase A (PPIA) 

also known as cyclophilin A (CYPA) 
↑ ccRCC vs NAT [88] 

Perilipin-2 (PLIN2) 

also known as adipose differentiation-related protein (ADFP) 
↑ ccRCC vs NAT [92] 
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Table I.7 (cont.) 

 

Peroxiredoxin-2 (PRDX2) ↑ ccRCC vs NAT [89] 

Peroxiredoxin-6 (PRDX6) ↑ ccRCC vs NAT [87] 

Profilin-1 (PFN1) ↑ ccRCC vs NAT [85] 

Protein-glutamine gamma-glutamyltransferase 2 (TGM2) ↑ ccRCC vs NAT [87] 

Retinal dehydrogenase 1 (ALDH1A1) ↑ ccRCC vs NAT [87] 

Superoxide dismutase [Mn], mitochondrial (SOD2) ↑ ccRCC vs NAT [86] 

Thioredoxin-dependent peroxide reductase, mitochondrial 
(PRDX3) 

↑ ccRCC vs NAT [87] 

Triosephosphate isomerase (TPI1) ↑ ccRCC vs NAT [89] 

Vimentin (VIM) ↑ ccRCC vs NAT [87] 

Y-box-binding protein 1 (YBX1) ↑ ccRCC vs NAT [91] 

Papillary RCC (pRCC) 

Ferritin (FTL) ↑ pRCC vs NAT [94] 

Nicotinamide N-methyltransferase (NNMT) ↑ pRCC vs NAT [93] 

Protein S100-A11 (S100A11) ↑ pRCC vs NAT [94] 

Chromophobe (chRCC) 

Caspase-3 (CASP3) ↑ chRCC vs RO [95] 

Alpha-1-antitrypsin (SERPINA1) ↑ chRCC vs NAT [89] 

Hepatocyte nuclear factor 1-beta (HNF1B) ↓ chRCC vs RO [96] 

Leptin (LEP) 
↑ RO and chRCC and 
ccRCC vs HC 

[97] 

Nicotinamide N-methyltransferase (NNMT) ↑ chRCC vs NAT [93] 

Superoxide dismutase (SOD2) ↑ chRCC vs NAT [89] 

UV excision repair protein RAD23 homolog B (RAD23D) 

also known as p58 
↑ chRCC vs NAT [89] 

Oncocytoma (RO) 

Caspase-3 (CASP3) ↓ RO vs chRCC [95] 

Alpha-enolase (ENO1) ↑ RO vs NAT [89] 

Arrestin-1 (ARRB1) ↑ RO vs HC [55] 

Forkhead box protein I1 (FOXI1) 
↑ RO vs chRCC and 
pRCC and ccRCC 

[98] 

Hepatocyte nuclear factor 1-beta (HNF1B) ↑ RO vs chRCC [96] 

Leptin (LEP) 
↑ RO and chRCC and 
ccRCC vs HC 

[97] 

 

 

The management of medical treatment is largely dependent on an efficient diagnosis. 

The inability to differentiation between aggressive from indolent tumors represents a substantial 

pitfall for patient care. Therefore, the discovery of effective molecular markers for diagnosis and 

prognosis, especially those that are early-onset, is of utmost importance in the medical 

environment.   
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Figure I.4 - Medical decision-making algorithm for renal neoplasia. Adapted from [15]. 

 

I.2 METHODS IN PROTEOMICS 

Proteomics is the study of the proteome. The proteome is the entire set of proteins that is, or 

can be, expressed by a genome, cell, tissue, or organism at a certain time under defined 

conditions. 

The proteome results from the post-transductional changes made on the mRNA and from the 

post-translational modifications made on the proteins [99]. With the sequence of the human 

genome in 2001 [100], approximately 25,000 protein-coding genes were revealed, however, the 

‘one gene, one protein, one function’ paradigm does not explain the complex molecular biology 

and the functional phenotype of the organisms. Nowadays, it is estimated the existence of more 

than 1,000,000 individual protein species, suggesting that human biology relies on a degree of 

functional diversity and is not directly related to the number of protein-coding genes [101]. The 

splicing and alternative splicing during the transcription and the post-translational modifications 

following protein biosynthesis are the two major mechanisms of protein diversity [101]. 
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Therefore, to unveil the intricate biology of an organism, or parts of an organism such as cells, 

tissues, or organs, proteomics has become an indispensable tool in biological and biomedical 

research representing a step towards a better understanding of the molecular biology events.   

I.2.1 PROTEOMIC STRATEGIES TO UNVEIL INFORMATION FROM COMPLEX PROTEOMES 

Nowadays, to analyze the entire or just a fraction of the proteome, two main strategies, 

the top-down and the bottom-up proteomics, can be followed.  

I.2.1.1 Bottom-up proteomics 

Bottom-up approaches entail protein cleavage into peptides, usually through enzymatic 

digestion, before their introduction to the mass spectrometer and subsequent analysis. This 

strategy involves the inference of the protein based on the proteolytic peptides detected in MS 

analysis [102].  

I.2.1.2 Top-down proteomics 

Emerging as an alternative to shotgun proteomics, the top-down approach analyzes 

intact proteins, instead of digested peptides. Acting at the protein level, this strategy involves 

the direct ionization of proteins and subsequent MS analysis. Only inside the MS analyzed, the 

protein ions are submitted to fragmentation, placing the entire sequence of the protein under 

examination [103].   

If, on the one hand, the “Top Down” approach has arisen as a very promising method to 

analyses intact proteins through MS-based techniques, the proteolytic cleavage of the proteome 

through a “Bottom-Up” scheme still remains the most widely implemented through the 

proteomics community [104]. In the present work, the strategy carried out in the protein analysis 

was the bottom-up, therefore the following introduction topics will be mainly focused on this 

approach.  

Typically, the proteomics pipeline includes the following steps: (i) sample collection and 

preservation, (ii) sample treatment, which includes the collection of the proteome from the 

sample, its purification, the reduction and alkylation of the purified proteome, the cleavage of the 

proteome and (iii) the proteome analysis. In the following sections, the sample collection, 

sample preservation and sample treatment will be discussed. The proteome analysis step will 

be covered in section I.4 Data systems and analysis.    

I.2.2 SPECIMENS FOR PROTEOMICS AND THEIR PRESERVATION 

In live organisms, the proteomes expressed vary with the different types of cells and 

organs. Although the genome is unique for the organism, only a fraction of its genes is being 

expressed in each cell type. This pattern of activated genes is the cause of the inherent biology 
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of each cell type and the differentiation of tissues and organs [101]. Thus, the selection of the 

correct sample type according to the research to be done, followed by appropriate collection 

and preservation, are the first issues to be considered in any experimental design. 

I.2.2.1 Sample specimens for proteomics: from liquid to tissue biopsies 

Sample specimens used in the proteomic analysis can vary from solid tissues from 

organs to body fluids such as blood or urine. The urine and the blood-driven specimens’ serum 

and plasma, are the gold-standard specimens due to the information enclosed on them and also 

due to the minimal or non-invasive requirements for collecting them. Tissues are also a valuable 

source of etiological studies and provide distinct advantages over other biospecimens. For 

instance, no additional steps are required to achieve an operable range of protein concentration 

since their dynamic variety is more restricted than in serum and plasma. On the other hand, 

blood-driven samples have a wide dynamic range of protein concentrations [105] while the urine 

fluid may present problems due to the low protein content. Therefore, in these samples, 

additional steps to perform the proteomic analysis are required, in the case of serum and 

plasma, to deplete the most abundant proteins and in the case of urine, a step of protein 

enrichment can be required [106]. Although in a less extent, other specimens used include 

saliva, cerebrospinal fluid, tears, nasal secretion to name a few [107].  

I.2.2.2 Preservation methods: optimal cutting temperature (OCT) compound 

The integrity of the biospecimen needs to be maintained. The preservation and handling 

of samples are pivotal points to minimize the degradation of samples over time. In the case of 

tissues, one of the methods is the flash-freezing of the biological material. However, the 

morphological features of the tissues tend to be distorted with this approach. Therefore, some 

preservation methods such as (i) protein fixation with formaldehyde followed by paraffin 

embedding or (ii) unfixed tissues in polymers such as optimum cutting temperature compound 

(OCT) followed by freezing have been implemented in the collection and storage practice. In the 

past, the formalin-fixed and paraffin-embedded (FFPE) tissue blocks were widely used for 

immunohistochemical analysis, representing nowadays a massive portion of the sample 

repositories. In proteomic studies, the use of FFPE samples has been on the arena after the 

first report using shotgun-based FFPE proteome analysis [108]. However, a notable barrier for 

the investigation of those samples in proteomic analysis are the deleterious effects of formalin 

on protein structure resulting in an ineffective protein retrieval and also in the changes promoted 

by the fixation process on the protein structure [109]. Although several approaches have been 

suggested to overcome the low protein recovery from FFPE samples, the lower yields after 

extraction and the fewer proteins identified by tandem MS remains an inherent obstacle of this 

method of preservation [109]. As an alternative to FFPE the cryopreservation with OCT 

compound, which preserves the morphologic and immunobiological features of tissues for future 

studies, has been proposed [110]. In this case, and unlike the FFPE approach, the former 
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method does not involve covalent cross-linking of tissue proteins. However, the OCT compound 

is composed of polyethylene glycol (PEG) and polyvinyl alcohol (PVA) polymers which interfere 

with peptide analysis by LC-MS/MS by suppressing ion signal. Because PEG and PVA are 

soluble in aqueous solutions, the most used method to clean samples embedded in OCT 

include washing tissue biopsies with ethanol and water as reported by Loken et al. [110], and 

Zhang et al. [111]. Other alternatives comprising (i) protein precipitation with diethyl ether-

methanol [112,113] or trichloroacetic acid (TCA) [114], (ii) filter-aided sample preparation 

(FASP) of tissues [112], (iii) sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) [112] and (iv) solid-phase extraction [115,116] have also been applied in proteomic 

studies, the water-based washing method remains the most common approach to remove the 

polymer contaminates from OTC-embedded samples [108,117,118]. 

I.2.3 SAMPLE PREPARATION AND TREATMENT  

Nowadays, proteomic studies rely predominantly on mass spectrometry (MS) 

technology. However, the quality of the MS results is largely dependent on the sample 

preparation methods, since sample ionization is susceptible to buffers salts, polymers, and 

detergents [119].  

I.2.3.1 Protein extraction and solubilization 

The first step of a proteomic analysis consists of the extraction of the proteins present in 

the biological samples. Several strategies have been developed to maximize the highest protein 

yield including chemically promoted extraction, physical disruption, or the combination of both 

[120]. Different buffers can be used to cause cell disruption and protein 

denaturation/solubilization from a particular sample type. These buffers aim to break intra-

molecular forces and their composition may include (i) chaotropic agents, with ammonium 

bicarbonate as the most frequently used,  (ii) strong denaturants such as urea or guanidine, (iii) 

ionic detergents, which include sodium dodecyl sulfate (SDS) or deoxycholate (SDC), and (iv) 

non-ionic or zwitterionic detergents such as Triton X-100, NP-40, digitonin, or CHAPS which 

solubilize proteins and denature proteins [121]. Physical lysis equipment, such as 

homogenizers, bead beaters, and ultrasonication devices are also often used to aid cellular 

protein extraction.  

I.2.3.1.1.1  Protein precipitation 

In proteomic workflows a precipitation step is commonly used after protein extraction, to 

separate the proteins from other molecules and also as a way to concentrate the proteins.  

Protein precipitation (PP), is one of the methodologies frequently used to clean protein extracts 

[119]. PP occurs when the interactions between the protein and the aqueous media are altered 

due to a change of the pH or hydrophobicity or when the intramolecular interactions are 

disrupted due to the binding of salts or metals. Different reagents/solutions like TCA, 
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chloroform/methanol, methanol/ammonium acetate, ammonium sulfate, acetone, among others, 

can be used to purify proteins from complex mixtures [122]. The TCA in conjunction with 

acetone is one of the most common methods to precipitate proteins in proteomics procedures. 

Being an acid relatively weak to hydrolyze the peptide bonds of proteins, TCA is used to acidify 

the aqueous medium thus promoting the disruption of the hydrogen-bonded proteins to water 

molecules. This way, the protein-to-protein interactions are increased and thus proteins tend to 

form aggregates, becoming no longer soluble [123]. Then, the samples are centrifuged, and the 

protein precipitates are washed with acetone to remove the TCA.  

I.2.3.2 Protein fractionation 

The global characterization of the whole proteome of any sample is one of the major 

challenges in proteomics workflows. The extreme diversity and heterogeneity of the different 

protein sources allied to the vast dynamic range in their expression levels as well as the 

absolute detection limits of analytical technologies play a critical role in sample complexity [124].  

In complex samples, such as plasma and serum, due to the large dynamic range of 

protein expression, which in blood-derivate samples can be greater than 10 orders of 

magnitude, the detection of low-abundant proteins is compromised [125]. To reduce sample 

complexity, a step to compress the dynamic range of protein concentrations is mandatory. The 

depletion of the most abundant proteins (MAPs) is the most popular step and embodies a 

widely implemented approach to reduce sample complexity and improve the detection of 

proteins with lower concentrations. Depletion strategies include chromatographic affinity 

(immune or chemical) columns and chemical assisted methods.   

I.2.3.2.1 Chromatographic techniques  

One of the most common techniques to separate proteins is liquid chromatography 

(LC). Relying on the differential partitioning of the proteins between the mobile and the 

stationary phase, a variety of chromatographic modes, such as reverse-phase liquid 

chromatography (HPLC), hydrophilic interaction liquid chromatography (HILIC), and ion-

exchange chromatography (IEX) have been developed [104]. Additionally, the compound 

immobilization on the stationary phase has also been used for selective interaction [126]. In this 

mode, selectivity can be useful either to enrich the samples of a specific protein or protein 

types, such as glycoproteins or phosphoproteins, or alternatively, to deplete the sample of the 

MAPs. Immunodepleting technologies to remove MAPs have emerged through the combination 

of specific antibodies. The development of depletion columns started with the two most 

abundant proteins in the blood, the albumin, and the IgG. Nevertheless, these technologies 

have evolved increasing their capacity and several depletion columns are currently 

commercially available for the aforementioned and also other proteins [127]. Among the 

disposable columns, the Multiple Affinity Removal from Agilent has been shown as one of the 

most efficient, reproducible, and binding specific disposable columns for six high-abundant 
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proteins (albumin, IgG, antitrypsin, IgA, transferring, and haptoglobin) [128]. Although most 

commercially available kits have demonstrated an efficient depletion of MAPs, a significant 

pitfall of immunoaffinity technologies is the loss of proteins bound to MAPs [129]. To avoid the 

co-depletion of low abundant proteins, alternative methods are based on the construction of a 

combinatorial ligand library designed to capture the low-abundant proteins and decrease the 

amount of MAPs [130]. Presently, the peptide library methodology is commercialized under the 

trade name of ProteoMiner.  

I.2.3.2.2 Chemical-based depletion 

The use of the affinity kits for protein depletion has been widely implemented for sample 

preparation strategies in proteomics [125], such kits are expensive approaches precluding their 

extensively used in most laboratories. Alternatively, some common chemicals, such as 

acetonitrile, ACN, and dithiothreitol, DTT, have been proposed as cheaper, simpler, and faster 

methodologies to reduce sample complexity [131].  The use of the ACN was firstly reported by 

Kay et al. [132], which demonstrated the efficiency of the ACN-depletion strategy in high 

molecular weight proteins from a serum sample. 

Similarly, Warder et al. [133] proposed the use of the reducing agent DTT to deplete 

high abundant disulfide-rich proteins, such as albumin and transferrin, and also to equalize the 

protein content.  

Interestingly, in a comparative study, the efficacy of protein depletion with ACN and DTT 

relatively to the commercial kit ProteoMiner was assessed by 1D gel electrophoresis and MS 

analysis [131]. The results have shown that the depletion of high molecular weight (over 75 

kDa) proteins was achieved by the ACN method. The ACN extract was found rich in 

apolipoproteins and 75% of MAPs were not detected. On the other hand, precipitation disulfide-

rich proteins were promoted by the DDT method rendering an extract that was found rich in 

immunoglobulins. Overall, both ACN and DDT methods were found as a feasible alternative 

depletion method to expensive commercial tools regularly used. The ACN has demonstrated an 

efficient depletion of higher molecular proteins while DTT has provided a more efficient 

compression of the protein concentration dynamic range.    

I.2.3.3 Protein digestion 

Separation and analysis can be performed on intact proteins, the so-called top-down 

proteomics, however, significant limitations on fractionation methods remains a major drawback 

to use these strategies in MS-based proteomics [104]. Therefore, most proteomic analysis 

follow a bottom-up approach, where proteins are digested into peptides to identified and/or 

characterize de proteome [134].  
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I.2.3.3.1 Protein digestion pre-treatment: Reduction and alkylation 

Reduction and alkylation are essential steps during sample preparation for protein 

digestion, to ensure complete protein denaturation and allow the efficient cleavage of the 

peptide chains. Therefore, before protein digestion, some chemical agents are needed to break 

the disulfide bonds (reduction) and alkylation the sulfhydryl groups of cysteines, which 

participate in the process of protein folding. The reducing agent generally used is the sulfur-

containing reagent DTT which reduces the disulfide bond through thiol-disulfide exchange [135]. 

Following protein reduction, cysteine alkylation is necessary in order to prevent the reversible 

effect of sulfhydryl group reduction. Typically, iodoacetamide (IAA) is used to alkylate the free 

SH-groups through bimolecular nucleophilic substitution and blocking the restoration of the 

disulfide bonds [135]. Finally, the remaining free IAA in solution is quenched by the addition of 

more DTT or by diluting the sample solution.      

I.2.3.3.2 Protein cleavage into peptides: Trypsinization  

As aforementioned, in bottom-up proteomic strategies proteins are digested into shorter 

peptides before MS analysis. Peptide cleavage can be performed by the action of proteolytic 

enzymes or through chemical digestion. Despite the adequate selectivity of both methods, 

enzymatic digestion is by far the prevalent strategy in proteomics [136]. Usually, the hydrolytic 

break of the peptide bonds is accomplished by endoproteinases being the trypsin the most 

widely used hydrolytic enzyme. The high selectivity and specificity, which exclusively cleaves 

arginine and lysine residues at c-terminus, generating peptides with 5-40 amino acids, and 

relatively reasonable costs are the major advantages of the use of trypsin in peptide-centric 

workflows [137]. Typically performed as an overnight reaction, trypsin achieves its best 

performance under a neutral pH (ammonium bicarbonate buffer) at a temperature of 37 ºC. Low 

concentrations of some reagents, like ACN, SDS, SDC, or urea may be included to improve the 

efficacy of the digestion [119]. At the end, the addition of an acidic solution is added to stop the 

enzymatic activity and prevent its autolysis [138]. To overcome such pitfall, immobilized 

enzymatic reactors have been developed through the proteomic community [139]. In the case of 

the trypsin, this enzyme has been covalently bonded to micro/nanoparticles [140–144], or 

physically absorbed onto polymeric membranes [145,146]. Immobilized trypsin has been also 

applied to monolithic materials [147–149], microchips [150,151], and capillary columns [152]. 

Overall, trypsin immobilization has provided a powerful tool for proteolytic workflows.  

Although the high proteomic performance retrieved by the trypsin enzyme, the efficacy 

of this protease is affected by the presence of i) proline residue immediately after the cleavage 

site (in arginine and lysine residues), ii) repeated basic residues, or iii) post-translational 

modifications (e.g. methylation, acetylation) resulting in missing cleaves [119]. The occurrence 

of this missing cleavage sites leads to the formation of too large and hydrophobic peptides 

impairing their identification by MS techniques, and subsequent incomplete protein sequence 

coverage. To overcome these issues and increase the coverage of the total proteome, a 
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combination of multiple proteases has been proposed, especially with Lys-C and trypsin. The 

addition of the endopeptidase Lys-C, which also cleaves the lysine residue and under the same 

pH conditions as trypsin, overtakes some of the trypsin pitfalls yielding fewer missing values 

[153]. However, it is noteworthy to mention that the addition of multiple enzymes represents 

supplementary costs and work.    

I.2.3.3.3 Protein digestion approaches 

The digestion of the solubilized proteins within the crude or fractionated samples can be 

performed through two main methods, the i) in-gel digestion, or ii) in-solution digestion [136]. 

More recently, a third digestion approach has gain momentum, iii) in filter-assisted digestion 

[154].  

I.2.3.3.3.1  In-gel digestion 

In gel-based digestion approaches, protein digestion occurs after sample separation, 

e.g. by gel-based approaches. Being one the first sample treatment used to digest proteins, the 

SDS-PAGE firstly employs a protein fractionation stage and the complex mixture of proteins is 

separated either by their molecular weight in the one dimensional (1D) version or by their 

isoelectric point along with their molecular weight in the two dimensional (2D) variant [119]. The 

resulting gel displays the pattern of bands or spots representing the sample proteome. 

Commonly, the protein pattern is visualized by Coomassie staining which reversible binds to 

tyrosine residues and detects a protein in a concentration range from 10 to 50 ng [155]. Apart of 

being a compatible technique for MS, several other methods, including silver staining, 

fluorescent staining, or radioactivity detection, can be used to visualize in-gel matrix proteins 

[156]. After protein visualization, the typical set-up using in-gel digestion approaches undergoes 

to differential analysis of protein expression patterns and the use of enzymes for digestion. 

Since, proteins need to be fixed into the gel matrix after electrophoretic separation to avoid their 

diffusion resulting in resolution losses, all the pre-treatment, including protein reduction and 

alkylation, followed by proteolytic reaction need to be performed inside the gel matrix. 

Afterward, the resulting peptides are extracted from the polyacrylamide matrix and can be 

analyzed by MS.   

I.2.3.3.3.2  In-solution digestion 

The proteome of complex samples can also be digested in solution without any previous 

protein separation technique. In this approach, the proteins, previously solubilized, present in 

the mixture are reduced and alkylated and then submitted to enzymatic digestion. Since all 

proteins present in the mixture are broken into peptides, this approach is also referred to as 

shotgun proteomics, due to analogy to shotgun genomic sequencing [157]. Finally, the resulting 

peptides are then analyzed through MS. Some inherent advantages, like the higher number of 

proteins identified at the same time, the need for less analytical steps and the possibility to 

scale up to mixtures containing less than 10 µg or greater than 1 mg of protein, have turned out 

this approach more popular over gel-based methods [119].  
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I.2.3.3.3.3   In-filter digestion 

Alternatively, the protein digestion step has been combined with the FASP system and 

placed on top of the molecular weight cutoff (MWCO) filter [154,158]. In this strategy, the 

solubilized protein mixture was added and retained on the top of a spin filter, and then reduced 

and alkylated to subsequent digestion. Digested peptides are finally eluted from the membrane. 

The advantages of the in-filter based methods include the simplification of the workflow, with 

less protein handling, and additional cleaning steps usually needed in the two other 

approaches, are here avoided since any contaminants can be easily washed away throughout 

the MWCO filter.   

I.2.3.4 Peptide treatment 

In shotgun approaches, the ultimate goal is to obtain the whole proteome digested into 

small peptide pieces to inject them in the MS apparatus and proceed with protein identification 

and/or quantification. However, whilst in digestion assisted by a filter (FASP) the pool of 

peptides is recovered free of salts and order contaminants as urea, in in-solution approaches an 

additional step is often required at the end of the procedure to clean the peptide sample. To 

avoid complex cleaning procedures, the use of micropipette tips packed inside with silica-based 

sorbents functionalized with C18 groups after protein digestion has been employed for desalting 

purposes [159]. These on-a-tip solid-phase extraction systems, commercially available under 

the name of ZipTip®, adsorb the peptides on the sorbent by a hydrophobic interaction allowing 

to discard of the undesired contaminants.   

Peptide fractionation is frequently used in post digestion proteomics approaches. 

Several strategies have been developed to enrich the sample fraction of a specific target. For 

instance, post-translational modified peptides, such as with phosphorylations, glycosylations, 

sumoylations, and others, are present in very low abundance when compared with the other 

ones [124]. Although the detention capabilities of the current MS instruments have been 

improved over the last decades, the vast quantification of a very wide dynamic range of 

complex mixtures is still a challenge.  

I.2.3.4.1.1  Phosphopeptide enrichment  

In phosphoproteomics, a variety of techniques and strategies, mainly coupled to MS 

techniques due to their high sensitivity and accuracy, have been developed for the selective 

enrichment of the phosphopeptides [160]. In Figure I.5 are summarized the most commonly 

applied strategies for phosphopeptide enrichment.  
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Figure I.5 – The most common phosphopeptide enrichment strategies used in proteomics [160]. 

 

The inorganic ion affinity chromatography type approaches, which include the 

immobilized metal affinity chromatography (IMAC), the metal oxide affinity chromatography 

(MOAC), the inorganic salt affinity chromatography, and the co-precipitation, are based on the 

affinity interaction between the phosphate group and the metal ions. Among them, the IMAC 

consists of the immobilization of metal ions on supporting substrates, whereas the MOAC 

utilizes metal oxides instead. In the case of the inorganic salt affinity and co-precipitation, the 

affinity of the metal ion towards the phosphate group is exploited in both [160]. Including the 

strong anion exchange chromatography (SAX) and strong cation exchange chromatography 

(SCX) is the ion exchange chromatography type. The principle of this enrichment technique is 

the reversible interaction of charged species with the ionic exchange matrix, which is composed 

of cationic or anionic resin in SAX and SCX, respectively. As result, the positively charged 

groups will have a higher affinity for negatively charged molecules, as phosphopeptides, while 

the negatively charged resins for positively charged molecules [160]. The other two types are 

chemical derivatization and immunoprecipitation. In chemical derivatization, the phosphate 

group is replaced by another affinity group, usually via a β-elimination followed by a Michael 

addition of a biotin moiety for biotin-labeled peptides enrichment [161]. Immunoprecipitation is 

based on an antibody separation. Although high specificity and efficiency can be achieved to 

selectively capture tyrosine-phosphorylated residues, the lack of phosphoserine- and 

phosphothreonine-specific antibodies limit the utility of this strategy [162].  
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I.2.4 ADJUVANT METHODOLOGIES FOR SAMPLE PREPARATION 

Proteomic approaches are very long workflows with multiple sample treatment steps, 

making these approaches tedious and time-consuming. Over the last decades, growing demand 

for faster approaches has been verified and many efforts have been addressed to accelerate 

diverse steps of the proteomics pipeline [121]. For instance, higher temperatures have been 

used to accelerate denaturation/solubilization steps as well as the reaction rates of digestion 

processes. Microwave radiation, infrared energy, and high-pressure approaches have also been 

proven to accelerate the proteolytic cleavage of proteins [121]. Similarly, the ultrasound energy 

(UE) has become a powerful tool for speed up proteomics workflows [163], which will be 

commented bellow. 

I.2.4.1 Ultrasound (US) approaches 

Defined by the American National Standards Institutes, ultrasound is the sound waves 

at frequencies higher than 20 kHz, which is out of the upper audible limit of human hearing 

[164]. Depending on the effects of the ultrasonic wave when passing a liquid medium, the 

ultrasonic frequency can be divided into two main zones: i) the high frequency comprising a 

range between 2 MHz and 10 MHZ, and ii) the low frequency which varies from 20 kHz to 10 

kHz. In the former, the physical and chemical properties of the liquid media where it is used do 

not change and are widely used for medical applications while in the latter the liquid media 

where it is applied undergo some physical and chemical changes [163]. The physical 

phenomenon caused by the low frequency is known as cavitation and consists of the production 

of microbubbles in a liquid medium that violently collapse, leading to the formation of hot spots 

(e.g. extreme local temperatures and pressures). The energy released by the collapse of these 

microbubbles propagates through the media, in the form of shockwaves, provoking the 

disruption of solid surfaces [165] and the increasing of chemical kinetics. Taking advantage of 

these effects, the UE has been applied in diverse analytical processes [166] including in many 

steps of proteomic workflows [163] to shorten sample treatment time, to diminish the number of 

steps and to increase sample troughput.  

I.2.4.1.1.1  Protein extraction and solubilization 

As mention above, in section I.2.3.1.1.1  Protein extraction, the application of sonication 

can be used to enhance protein extraction and solubilization from solid matrixes. In this case, 

the use of an ultrasonic field leverages the release of the total protein content through a better 

disruption of the cell wall and overall tissue homogenization, giving this way higher yields of 

protein recovery. In fact, the effects on protein extraction when ultrasonication and heating are 

applied are similar, and so the joint use of both can significantly improve the efficiency of the 

extraction process [167].  

In proteomic workflows, the step of protein precipitation is often required to clean and 

suit the sample for downstream analysis. However, the difficulty of protein re-solubilization after 
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this process represents a major issue causing variability in protein recovery yields. Here, the 

adjuvant effects of UE during protein solubilization have also been proven, by increasing the 

amounts of protein recovery and overall reproducibility [168]. 

I.2.4.1.1.2  Protein reduction and alkylation 

The ultimate goal of protein denaturation, reduction, and alkylation is to make the 

protein more accessible for the proteolytic process during digestion. Like the denaturation and 

solubilization steps, the ultrasound energy can also be used to help the chemical reactions of 

reduction and alkylation. By accelerating the kinetics of the reactions involved in these 

processes the time consumed at this stage has been not only considerably reduced, but also 

sample handling has been simplified [169,170]. 

I.2.4.1.1.3  Protein digestion 

Protein digestion represents one of the most important steps for bottom-up strategies 

since protein identification relies on the cleavages of proteins into peptides. Although all the 

preceding steps contribute to the efficiency of the proteomics procedures, effective protein 

digestion is crucial for the formation of peptide species. Nevertheless, the typical protein 

digestion step is usually the slowest of the entire workflow. To overcome this shortcoming, the 

beneficial advantages of the US are being ever more frequently used in protein digestion steps 

as well, which greatly decreases the overall analysis time consumed in a proteomic pipeline 

[163]. The synergetic effect created by ultrasonication and the enzyme activity is being pointed 

out as an enhancement of the mass transfer processes between the enzyme-substrate system 

[171]. It noteworthy to mention that the enzymatic acceleration by an ultrasonic field has been 

proven to be efficient in the different proteomics strategies namely in i) liquid-liquid phases like 

in-solution digestion; ii) solid-liquid phases such as the in-gel approaches, in which the proteins 

are trapped in the polyacrylamide matrix and the enzyme is in solution or when the enzyme is 

immobilized in solid support and the proteins are in a liquid extract [144]; and iii) filter-aided 

approaches, in which the digestion is performed on top of a cutoff membrane where the proteins 

are retained [172]. In the case of the in-gel digestion, where the UE helps the penetration of the 

enzyme into the gel matrix, acting as a micro-syringe, the selection of a proper amplitude is of 

utmost importance. If too low, then the ultrasound would fail in an efficient delivery of the 

enzyme into the gel, an if too high, the ultrasound will destroy the gel surface and interfere with 

the downstream analysis [163]. Likewise, in procedures involving solid support, either in 

immobilized enzymes or in filter-aided approaches, the use of the UE amplitude needs to be 

carefully chosen for the degradation of the material. Another important aspect to be considered 

in UE applications is the time of the ultrasonic field since a negative effect on enzyme activity 

can be provoked in long periods of ultrasonication.     

I.2.4.1.1.4  Other applications 

Ultrasonication has also been useful in other processes of sample handling. For 

instance, in a gel-based approach, after electrophoresis and gel staining, for protein 
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visualization, spots/bands of interest must be excised, and staining reagents eliminated. The 

dye cleaning steps, which frequently consist of successive washes to remove the staining 

product, can be accelerated through the aid of UE [173,174].  Protein quantification through the 

isotopic labeling of the peptides with 18O embodies another proteomics point for UE application. 

In direct approaches, the 18O labeling is coupled with protein digestion, and through the mean of 

ultrasonication, this step can be shortened from overnight to a couple of minutes [175,176].  

I.2.4.1.1.5  Current ultrasonic tools 

Nowadays, many ultrasonic devices have emerged to empower several analytical 

workflows. In proteomics, the UE can be delivered as a direct or indirect ultrasonication. The 

former utilizes sonotrodes to apply the ultrasound wave directly dipped into the sample, while in 

the latter the ultrasonic field reaches the sample through its container’s wall, and usually utilizes 

sonoreactor systems. Concerning the main purpose of the analytical process, the ultrasonic 

systems applied must be carefully chosen.  

Sonotrodes, which are directly immersed in the solution, perform best in extraction and 

solubilization procedures, where a powerful tool must be used to aid in cell disruption and 

protein solubilization [167,177]. Nowadays, different sonotrodes typologies are commercially 

available including silica glass probes, spiral probes are even multiple probes that incorporate 

two or more probes accomplishing a higher sample treatment throughput [178]. However, a few 

critical factors must be considered for the correct application of the sonotrode-based system. 

First is the selection of the probe tip diameter along with the shape of vessel containers, since 

each tip size will perform better in a certain range of volume, and a conical-shaped will allow a 

deeper insertion of the probe avoiding aerosol and foaming formation. This way, the formation 

of zones with no cavitation (dead zone) is minimized. Another remarkable point deals with the 

constant, though at a slow rate, increasing of bulk temperature caused by high intensity 

sonotrodes. For this reason, samples usually are placed on the ice during the ultrasonic 

application, and for long ultrasonication times, a pulsed mode is recommended [163].  

One of the most common devices in scientific laboratories are the ultrasonic bath. 

Although these systems have been applied in certain proteomics tasks [169], their low energy 

intensity delivery make them inappropriate for diverse proteomic steps, specially protein 

digestion [163].  

By contrast, the sonoreactors and cup-horns are the most promising ultrasonic devices 

to use in proteomics, because they deliver indirect ultrasonication, where a sealed sample 

container can be used, and the formation of aerosols and cross-contaminations are avoided 

[163]. With these devices, ultrasonication has been widely used in either in gel-based or off-gel 

methods and even in filter assisted systems [172], covering all the different strategies of protein 

digestion. Like the sonotrodes, diverse sonoreactors with different horn sizes can be found 

[178]. Nowadays, the microplate ultrasonic horn assembly device represents the most 

outstanding tool by being able to evenly apply the UE to a 96-well plate, making the proteomics 

sample treatment to an unprecedented level [174].       
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Overall, the implementation of the UE in the proteomics pipeline has drastically 

simplified sample handling by reducing the time spent in each step from hours to minutes and 

by diminishing the number of steps.  

I.2.4.2 Extraction technologies 

The main goal of a sample treatment workflow is to prepare the sample for downstream 

analysis. In proteomics the sample preparation workflows for MS-based analysis are very 

complex and time-consuming. While the application of the UE has been useful to speed up the 

whole pipeline, other strategies have also been implemented to clean or reduce the complexity 

of the biological samples. The separation of the solute of interest from its matrix based on their 

different solubilities is commonly called as extraction. Two different classes, the liquid-liquid and 

the solid-phase extraction can be distinguished in analytical extraction processes. 

I.2.4.2.1.1  Liquid-liquid extraction (LLE) 

In LLE, the analytes of interest are extracted from one liquid to another [122]. Typically, 

an aqueous sample is added to an organic solvent resulting in the formation of the two 

immiscible phases, with the polar compounds dissolved in the aqueous phase and the apolar 

ones in the organic phase [179]. This analytical process can be used for sample cleanup and/or 

concentration, being widely used in drug extraction from aqueous matrices through the use of 

volatile organic solvents [179].  

I.2.4.2.1.2  Solid-phase extraction (SPE) 

Over the years, SPE technology has become one of the most widely implement and 

powerful tool to improve MS analysis. Based on the use of solvents and a stationary (solid) 

phase, which can appear as the format of cartridges, pipette tips, discs, magnetic beads, among 

others, the SPE chemistry is mainly categorized as reverse-phase chromatography (RPC), 

HILIC, IEX, affinity chromatography or mixed-mode [179].  

The RPC is the most widely SPE technique in analytical processes for protein or 

peptide separations. Based on the reversible hydrophobic interaction between the sample and 

the stationary phase, RPC uses a polar sample and an apolar stationary phase. Relying on that 

hydrophobicity principle, RPC is an adsorptive process that uses an organic solvent to desorb 

the analyte from the stationary phase to elute it. The stationary phase is commonly composed 

of alkyl chains, such as C4, C8, and C18, linked to porous silica particles [104]. The different 

composition of those columns will determine the retention of the analyte. For instance, while the 

C8 column type is more frequently used in intact protein, the C18 is more appropriate to 

peptides [180]. Currently, this technology is widely used in the separation of complex biological 

samples due to its high performance and resolution. For instance, the use of the RPC allows the 

sequential elution of the complex pool of digested peptides into the MS instrument. Here the 

peptide mixture is loaded into the hydrophilic column under aqueous conditions that will strongly 

adsorb the more hydrophobic peptides and elute firstly the hydrophilic ones. Afterwards, 
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through an increased organic solvent gradient, will progressively modify the adsorption affinities 

and then the peptides are sequentially eluted for further analysis [180]. The use of these alkyl-

bonded resins is also frequently used as on-a-tip SPE technologies, which are pipette tips 

similar to the conventional ones but with a sorbent packed inside. In the proteomics field, these 

technologies are used to clean the samples from salts and detergents, especially the C18-

based tip, which is used after the enzymatic digestion, just before the MS analysis. In this 

scenario, the peptides adsorbed are eluted by the addition of an organic solvent.   

On the other hand, the HILIC SPE strategy appears as the counterpart of the RPC. 

Based on the use of polar stationary, this technique has been applied to fractionate more polar 

samples before MS analysis. Here, the analyte partition relies on the mobile phase and a water-

enriched region immobilized onto the stationary phase, which is mainly made of underivatized 

bare silica or uncharged modified silica [180].  

The IEX strategy is another SPE technique which involves the electrostatic interaction 

of the charged residues on the surface of the protein and the opposite charge of the stationary 

phase. After that, protein elution encompasses an increased salt concentration gradient or by 

shifting the pH to avoid the incompatibilities between the salts and MS applications [181].  

Alternatively, to the previous SPE techniques, the selective extraction of a specific 

analyte can be performed through an affinity chromatography which uses some specific 

compounds immobilized onto the stationary phase to interact with the analyte of interest. This 

analytical technique presents a very good selectivity and can be applied in diverse steps 

throughout the proteomics pipeline. For instance, as mention above in section I.2.3.2.1 

Chromatographic techniques, this technique is regularly used coupled to specific antibodies, to 

deplete the MAPs and fractionate protein samples. Also, as described in section I.2.3.4.1.1  

Phosphopeptide enrichment, affinity chromatographic approaches have been applied to 

selectively capture phosphopeptides.  

I.3 MASS SPECTROMETRY FOR PROTEOMICS  

Over the last decades, mass spectrometry (MS) has massively grown and become a 

versatile and indispensable analytical technique in many fields of science such as chemistry, 

biochemistry, pharmacy, and medicine [182]. Going back to its origins, in the early 1900s, the 

great ascension of MS has been marked by numerous Nobel Prizes. Starting in 1906 with the 

original study of cathode rays by Joseph J. Thompson, who earned the physics prize [183], the 

first full mass spectrometer was built in 1917 by Francis W. Aston [184], who used it to elucidate 

the existence of isotopes and earned the chemistry prize in 1922 for his research [185]. Next, 

Hans G. Dehmelt and Wolfgang Paul jointly received in 1989 the physics Nobel prize for the 

development of the ion trap technique [186]. More recently, in 2002, the Nobel prize in 

chemistry was given to John B. Fenn and Koichi Tanaka, for the development of ESI and 

MALDI ionization methods, respectively [187]. 
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The quintessence of the MS is the separation of isolated ions by their masses in a gas 

phase. Consisting of a (i) sample introduction system, (ii) an ion source, (iii) a mass separator, 

(iv) a detector, and a (v) data management system, the mass spectrometer is the instrument 

used to analyze any ionizable molecule. All of these components, and their variations, will be 

outlined and discussed throughout this chapter. 

I.3.1 SAMPLE INTRODUCTION SYSTEM 

The first component of a mass spectrometer is the sample inlet. The main function of 

this compartment is not only the introduction of the sample molecules into the instrument, but 

also the decompression of the sample, which is initially at atmospheric pressure (760 Torr) into 

a very low-pressure state. Typically, mass spectrometers operate in negative pressure (e.g. 

high vacuum, ≈ 10-6 Torr) to prevent the collision of sample ions with neutral molecules, such as 

air, which would interfere with the performance of the mass spectrometer [188].  

There is a variety of samples that can be analyzed through MS technology. Varying 

from simple gases to large protein complexes, samples can be composed of single species to 

highly complex mixtures. If direct sample introduction systems, as solid probes or plates, deliver 

an acceptable efficiency in simple mixtures, the same is not accomplished when analyzing more 

complex ones. To overcome these issues, chromatographic separation techniques have been 

coupled to the MS system. Directly interfaced with the mass spectrometry, gas chromatography 

(GC) and LC are usually used to improve the efficiency of MS analysis. As described previously, 

in section I.2.3.2.1 - Chromatographic techniques, LC technique is frequently used in 

proteomics to reduce the complexity of the sample mixtures. Similarly, the GC moved forwards 

in the same direction. Accordingly, while LC is used in liquid format samples, the CG is applied 

in gaseous samples. Likewise, the combination of these separation techniques together with the 

MS is described as hyphenated methodologies, like GC-MS and LC-MS, as they add an 

additional dimension to the analytical measurement [189].   

I.3.1.1.1.1  Liquid chromatography (LC) 

In LC the analytical separation is based on a stationary and a mobile phase. Typically, 

the mobile phase, containing the sample in which is in a liquid format, permeates through the 

stationary phase which will retain the analytes present in solutions according to their chemical 

affinity. In proteomics, where the sample solution is digested peptides in aqueous solutions, the 

most common stationary phase used is a C18 packed column [104]. Conventionally, the liquid 

flows across the column under the application of high pressure (400 – 600 bar). In this case, 

this technique is usually termed as high-performance LC (HPLC, also known as its former name 

high-pressure LC), and works with columns packed with particles sized between 3 to 5 µm. 

However, over the years several efforts have been made to improve the efficiency of 

chromatographic approaches. The choice of the particle size packed inside chromatographic 

approaches has been verified to influence the efficiency of analyte separation. The separation 

efficiency is improved with the reduction of the size of the particles, however, to move forward 
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the solvent inside the column higher pressures are necessary. As consequence, the use of 

smaller particle sizes has demanded the development of the ultra-high-performance LC 

(UHPLC) instrument, which is able to resist higher backpressures (up to 1200 bar). In this case, 

the use of UHPLC has provided an improvement of resolution and sensitivity, by using packed 

columns with downsized particles of 1.7 - 2 µm, without compromising the flow rate and gradient 

length [190].  

After reducing the size of stationary phase particles to improve chromatographic 

resolution, additional approaches to miniaturize chromatographic columns at nanoscale has 

continuously emerged. The smaller inner diameter of columns (10 to 100 µm) has been 

associated with a reduction of the flow rate necessary to perform the analytical analysis and is 

described as nano-LC techniques [191]. In this sense, by reducing the flow rate in nano-LC 

approaches, less biological samples’ amounts will be needed since the analytes will be 

concentrated inside the columns and eluted in fewer volumes, consequently resulting in higher 

sensitivity as well. Also, a drastic reduction of solvent consumption is accomplished with the 

application of these nanocolumns. 

A summary with the main characteristics and operating conditions of conventional 

HPLC and UHPLC along with miniaturized column systems is present in Table I.8. 

 

. 

Table I.8 - Principal characteristics and operating conditions of conventional HPLC and UHPLC at micro 
and nano scale [192,193]. 

 HPLC UHPLC 

  microscale nanoscale 

Pressure range 400 – 600 bar up to 1200 bar 

Particle size (stationary phase) 3 – 5 µm 1.7 – 2 µm 

Internal column diameter 3 – 4.6 mm 1 – 2 mm 10 - 100 µm 

Flow rates 1 – 2 mL.min-1 0.1 – 0.5 mL.min-1 ≤ 1 µL.min-1 

 

 

Overall, the miniaturization achieved by the downsizing the size of the particles in the 

stationary phase and the reduction of the internal diameter of chromatographic columns to 

nanoscale has leveraged the LC technique by (i) allowing faster analyte separations with higher 

resolution; (ii) reducing the sample volume for the analysis; and (iii) reducing the consumption of 

solvents and consequently their inherent costs [191].  

I.3.2 IONIZATION METHODS 

In mass spectrometry, the separation and detection of the analytes require charged 

species, and therefore sample must be submitted to the ionization process, e.g., conversion of 

their analytes into ions [194]. Ions are atoms or molecules that carry one or more electrical 
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charges, either positive or negative. Ionization occurs when a neutral analyte gains protons or 

lose electrons, resulting in an impaired balance of charges of the analyte. Albeit most MS 

instruments can handle both ion modes, cationic or anionic mode, in proteomics they 

traditionally dealt with positively charged ions [195]. Generically, the ionization methods are 

classified as hard or soft procedures, as they cause molecular fragmentation or not, 

respectively. A more detailed description of the different methods to make ions is present below. 

I.3.2.1 Electron ionization (EI) 

In EI, the sample in the ionization chamber is bombarded with a beam of high-energy 

electrons (70 eV). The beam, which consists of a heated filament located inside the vacuum 

compartment, imparts an excess of energy to the analytes resulting in loss of the electrons from 

sample molecules and formation of positively charged molecular ions [194]. In this method, the 

energy delivered to the sample is in considerable excess compared to the required to ionize 

organic species (≈ 10 eV, typically), resulting in the fragmentation of the analyte into molecular 

ions. For this reason, EI is generally considered as a hard ionization procedure [195].    

I.3.2.2 Chemical ionization (CI) 

With the purpose to reduce the amount of energy delivered to the analytes and, 

consequently, limit the fragmentation of the molecules during the ionization process, led to the 

development of the first soft ionization method, the chemical ionization (CI). In CI, molecules are 

charged only with sufficient energy (≈10 eV) to generate adducted ions but insufficient to cause 

fragmentation. This fact is accomplished by the introduction of reagent gas in excess into the 

ion source chamber, which will be ionized by an electron beam, similarly to EI. Next, the 

resultant ions formed from the collision of the electrons and the molecules of the gas, will, in 

turn, collide with the neutral analyte molecules and transfer a proton, resulting in protonated 

species. In this way, the ions formed, such as [M + H]+, are directly related to the molecular 

mass [196].  

I.3.2.3 Atmospheric pressure chemical ionization (APCI) 

In the two ionization methods described above, EI and CI, the ionization process is 

performed in (high) vacuum conditions. However, the need to interface the LC with MS to 

analyze polar compounds has led to the development of ionization techniques at atmospheric 

pressure. In this way, liquid solutions are firstly evaporated at atmospheric pressures and then 

ionized, allowing the use of LC separation techniques coupled to ionization chambers. In APCI, 

liquid samples are injected into the chamber and both, analyte and LC effluent, are evaporated 

by heating. Then the resulting vapor is swept through the corona discharge needle where 

ionization starts by creating an ionizing plasma. The plasma, composed of both protonated 

solvent ions and electrons, is in turn, responsible for the ionization of the analyte molecules. 
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Basically, APCI is a variation of classical CI performed at atmospheric pressures instead of high 

vacuum conditions. By replacing the filament used to produce the electron beam, that would 

burn out the sample at such high pressures, for a corona discharge the ionization can be 

accomplished at atmospheric pressure, and then the analyte-forming protonated molecules, [M 

+ H]+, follows to a vacuum chamber and proceed to the mass analyzer [196]. 

I.3.2.4 Atmospheric pressure photoionization (APPI) 

At the beginning of the new millennium, the ultraviolet (UV) light was introduced in the 

ionizing systems as an alternative to the corona-discharged needle, resulting in the APPI 

method. With the use of the UV light, two competing ionizing processes can be verified. 

Similarly to CI and APCI which use a reagent gas, in APPI a dopant, like toluene or acetone, is 

introduced within the system. By passing through the UV source, dopant ions are formed, which 

will in turn transfer the proton to the analyte molecules, acting this way as reactive proton 

donors. The second mechanism of ionization in APPI is the direct photoionization of the 

analytes. As in APPI, the energy provided by the UV light can be high enough, ≈ 10 eV, to expel 

an electron from some analyte, such as polynuclear aromatic compounds, this technique is 

commonly used to ionize less polar species. Additionally, the background signal of LC solvents 

is reduced in this method since the energy of the UV radiation used is sufficient to ionize the 

analyte molecules but below the energy required to ionize the LC solvents as well as 

atmospheric gases [196].    

I.3.2.5 Electrospray ionization (ESI) 

ESI is another technique classified as soft ionization, as the energies involved are 

barely above those necessary to generate ions. Along with APCI and APPI, ESI is an 

atmospheric pressure compatible method [197]. Since its discovery in the late 1980s, the ESI 

has revolutionized MS, and it is now the most prominent ionization technique for polar 

molecules. Remarkably, this technique provides extremely good results in the analysis of large, 

non-volatile, chargeable molecules such as proteins, being, for this reason, the method of 

choice for proteomics studies based on LC-MS approaches [198]. In the ESI process, an 

electrically charged aerosol is formed through the application of a high voltage on the analyte 

solution dissolved in a conductive solvent. Usually, the aerosol formation is supported by a 

sheath gas which nebulizes the elute into a spray of charged droplets. The droplets formed are 

then continuously evaporated (desolvated), with a secondary flow of heated gas, leading to their 

disintegration and release of the ionized analyte into the gas phase. The disintegration of the 

ions occurs due to the increase of the electric field, caused by the desolvation, which distorts 

and develops a sharper curvature on the droplets surface, called a Taylor cone. This process is 

termed as droplet jet fission since the formation of the Taylor cone results in a stable stream of 

droplets from which the ions are released. During this process, the resulting charged gas phase 

is transferred from the atmospheric pressure environment into the vacuum system of the mass 
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analyzer [199]. As previously mentioned, downscaling procedures represent a valuable 

improvement of the different techniques. Similarly, the miniaturization of the electrospray to 

nanoscale has allowing reduce the size of the droplets formed and, moreover, the flow rate 

used. In this way, the so-called nanoelectrospray (nanoESI) variant produces droplets with less 

than 200 nm, against the 1 – 2 µm droplets formed by the conventional ESI, and, flow rates of 

20 – 50 nl min-1 [197]. Additionally, to the reduction of solvent amounts required due to the 

reduction of the flow rate, an extreme reduction of sample consumptions is achieved in nanoESI 

approaches.     

The specific technical aspects of ESI techniques, such as the liquid-based system and 

the requirement of a conductive solvent, make this ionization process compatible with reverse-

phase LC and consequently suitable for the analysis of a very large class of compounds, like 

polar molecules. With the introduction of ESI methods, the MS-based analysis has been 

expanded into biological systems where most compounds are water-soluble and polar. 

Moreover, this ionization technique has a larger molecular mass range, as it can be applied 

from small to larger molecules, such as proteins [200].  

I.3.2.6 Matrix-assisted laser desorption/ionization (MALDI) 

Along with ESI, the matrix-assisted laser desorption/ionization (MALDI) is another 

ionization method that has revolutionized the use of MS-based approaches in proteomics. 

Similarly to ESI, MALDI has a wider range of molecular masses, up to 350 kDa, in opposition to 

1 kDa from other ionization techniques. On the other hand, this technique is typically performed 

under high vacuum conditions, below 10-6 mbar. The mechanism of this method relies on the 

absorption of energy from laser light by a solid sample layer. Basically, first, the analyte is co-

crystalized with a matrix solution onto a plate surface, which is mainly made of steel [201]. 

Different matrices can be used according to their properties and the analyte of interest. For 

instance, while the α-cyano-4-hydroxycinnamic acid matrix works nicely for peptides acid, the 

2,5-dihydrobenzoic acid (DHB) matrix is more appropriate for proteins and synthetic polymers, 

albeit it can still be used for peptides as well. After sample-matrix crystallization, the plate is 

introduced inside a vacuum chamber, where the laser beam irradiates the sample causing 

evaporation and the formation of a plasma. There are two types of irradiation in MALDI, UV and 

infrared (IR) wavelengths, however, the UV lasers are by far the most wavelength radiation 

used in MALDI applications. As the matrix must be efficiently absorbed by the laser light, the 

wavelength used in MALDI also influences the choice of the matrix compound. Upon laser 

irradiation, the energy absorption by the matrix and the evaporation due to the rise of the 

temperature leads to the formation of gas-phase composed of protonated matrix ions. 

Therefore, the neutral sample analyte, which is also carried into the vapor phase, is charged by 

the matrix ions, yielding protonated molecules [M + H+]. 

Other ionization methods, such as fast atom bombardment (FAB), field desorption (FD), 

field ionization (FI), liquid introduction field desorption ionization (LIFDI), or surface ionization 
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methods, including the desorption electrospray ionization (DESI) and the direct analysis in real-

time (DART), but they have been superseded, such the case of FAB by the ESI, or their limited 

applications has resulted in a minor use in proteomics approaches [202–204].  

For protein analysis, soft ionization methods are required to ionize peptides without 

considerable fragmentation. Therefore, MALDI and ESI are the two techniques widely used to 

analyze proteins [101].  

I.3.3 MASS ANALYZERS 

The main role of the mass analyzer is to separate the ions resulting of the ionization 

process, according to their m/z values. A m/z value is a dimensionless number and represents 

the ratio of the mass of the ion (m) by the electrical charges (z) acquired by the sample during 

the ionization process. Analyzers can be classified into two main categories based on ion 

separation over time or in space. The time systems are scanning instruments where the 

operational parameters of the electric/magnetic field are changed progressively over time to 

obtain the spectra. While in the space systems the spectrum is obtained in a nonscanning mode 

as none of the operational parameters is altered during analysis [205]. Except for MALDI, which 

cannot be coupled to quadrupole analyzers due to their limited mass range, any type of ion 

source can be coupled with any type of mass analyzer.   

I.3.3.1 Quadrupole (Q) 

Quadrupole (Q) is a mass analyzer type consisting of a set of four cylindrical rods, set 

parallel to each other in a square shape. The rods, which can be made of metal or metal-coated 

ceramic, are arranged around a central axis with opposing pairs connected electrically. 

Combinations of radio frequency (RF) voltage and direct current (DC) offset voltage are used to 

generate an electric field. Ions are then separated according to their trajectories, as at a given 

RF/DC voltage only a particular m/z value will have a stable oscillating trajectory through the 

rods and reach the detector [206]. Contrary, too large or too small ions will end up colliding with 

the rods due to their unstable motion. In this way, quadrupole-type analyzers are scanning 

instruments as the operational parameters (voltage) of the electric field need to change over 

time to addresses the different stability regions of the different ion masses [207].   

I.3.3.2 Ion traps (IT) 

Similarly to quadrupole technology, ion trap (IT) instruments are based on the stability of 

the ions, but in opposite directions. While in Q analyzers only stable ions passed down the 

electric rods and the unstable species are lost, in IT all ions are retained, trapped in a stable 

trajectory, and the unstable ones are caught by the detector. In IT systems, the voltage is 

applied to the stable ions stored inside to lead them to an unstable state and eventually eject 

them from the trap onto the detector. The voltage needed to render unstable ions is dependent 
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on their m/z values, therefore the voltage applied over time is changing in order to scan all the 

ions [206]. There different types of IT according to their geometries, as described below. 

I.3.3.2.1 Quadrupole ion trap (QIT) 

To be precise, the quadrupole ion trap (QIT) instruments should be referred to as ion 

trap with tree-dimensional (3D) quadrupole field, nevertheless the QIT is the most widely used 

term being commonly accepted through the scientific community. QIT devices consist of three 

electrodes, two end caps, and a central ring, all machined to have a hyperbolic geometry inside. 

The ions produced by the external ion source get inside the analyzer compartment via the holes 

of one end cap electrode, which only allows the entrance of a controlled number of ions. Once 

inside, the constant RF voltage applied to the central ring electrode causes the ions to undergo 

trapped with a stable orbit. As the amplitude of the RF voltage is increased, the orbits of ions 

destabilize, starting with the lowest m/z. Those destabilized ions exit the analyzer cavity through 

the centrally arranged holes in the opposite end cap electrode striking the detector [208].   

I.3.3.2.2 Linear ion trap (LIT) 

The development of a linear ion trap (LIT) mass analyzer was a consequence of the 

limited number of ions that can be placed in a QIT analyzer. Consisting of hyperbolic rods 

adjacently positioned, the ions are confined inside radially by the two-dimensional RF voltage, 

and axially by DC potentials applied to end electrodes [209]. In this way, LIT mechanisms can 

trap and store a higher fraction of ions than QIT. Once inside, ions are steadily ejected towards 

detection by increasing the RF voltage. 

I.3.3.3 Fourier transform (FT) analyzers 

Another type of mass analyzer is the Fourier transform (FT) type. FT instruments are 

also based on the ion trap principle, however, in this mass analyzer type the analytical cell is 

also the detector. The transient signal is then converted into the frequency domain employing 

Fourier transformation. In this way, the m/z of each ion is measured as a function of ion 

frequency instead of ion stability [210]. Currently, FT instruments include the orbitrap and the 

ion cyclotron resonance (ICR) and as the spectra are obtained without changing the operational 

parameters, they are considered nonscanning systems.   

I.3.3.3.1 Orbitrap  

The Orbitrap mass analyzer type is composed of a central spindle-shaped electrode 

and a split outer electrode. Additionally, the operation of this type of instruments requires a 

complementary quadrupole ion trap, called C-trap due to its C-shaped form, and ultra-high 

vacuum conditions for a proper ion injection. Ions from ionization are collected in the C-trap and 

then injected into the orbitrap as high-speed pulses. As charged species and due to the 
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electrostatic field created, once inside the orbitrap, the ions acquire a trajectory composed of 

circular motion around the central electrode and an oscillatory movement along the same axis. 

The resulting motion is detected by the split outer electrode via image current (also called 

transient). Ultimately the transient signal is converted into frequencies after the FT analysis, with 

different ions being detected since their axial oscillatory movement is proportional to the m/z 

values [211].     

I.3.3.3.2 Ion cyclotron resonance (ICR) 

The FT-ICR analyzers are based on the cyclotron frequency, i.e. circular orbits, of the 

ions in a fixed magnetic field due to the Lorentz force. In these instruments, the magnetic field 

not only imposes the cyclotron motion of the ions but also acts as an ion trap, keeping the ions 

inside the analytical cell. Then, a transverse electric field must be applied to accelerate the ions 

and increase the radius of their orbits, which allows their detection by the receiver plates. As the 

cyclotron frequency is proportional to the mass of the ions, this excitation can be mass-selective 

and is usually called as resonant excitation. Upon the detection of the ions by the plates, the 

image currents are recorded and transformed into frequencies by the FT, and ultimately 

converted into m/z values [212]. 

I.3.3.4 Time of flight (TOF) analyzers 

Inherently simple systems, TOF analyzers consist of an acceleration grid and a flight 

tube. Its principle is based on ions with different m/z ratios travel from the source to the detector 

with disparate times. Essentially, TOF instruments measure the time that a particular ion takes 

to reach the detector, the mass of the ions can be calculated. Since the ionic separation occurs 

within the space of the flight tube, the electronic parameters do not need to be changed during 

the analysis, these analyzers are nonscanning systems. As consequence, ions must be 

introduced into the mass analyzer with discontinuous pulses produced by the ion source [212]. 

This principle makes this type of mass analyzer more suitable for MALDI ion sources than 

continuous ion sources like ESI. In MALDI systems, packets of ions are produced upon each 

laser pulse, which usually are added up several laser shots to increase the ions signal and give 

a mass spectrum. However, the spatial distribution and kinetic energy produced by laser-based 

ion sources are widely distributed within the resultant ion packets, which ultimately fallouts in 

loss of resolution. To overcome these pitfalls, an acceleration grid has been introduced inside 

the TOF systems. Addressing the spatial issues, this phenomenon is also called delayed 

extraction and allows the alignment and concentration of the ionized species before their 

acceleration into the flying tube [213].  

Different architectures can be found among the TOF analyzers. The simplest forms are 

the linear TOF structures where the ions move in a straight line after the ionization process 

through the field-free drift region until the detector.  However, the delayed extraction grid 

reduces, to some extent, the inhomogeneity of the energy content among the ions of packets, 
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the differences between the acquired energies of the ions still remain broadly distributed among 

them. As consequence, different arrival times will be detected for ions with the same m/z but 

with different energies. To overcome these problems, TOF analyzers have been incorporating 

reflectors to counteracting the spreading of energy effects. Reflectors, which are ion mirrors, 

create an electrical field responsible for the reversion of the ion trajectory and equalization of 

arrival times onto the detector [212].   

I.3.3.5 Multianalyzer systems 

The development of multianalyzers arises from the need to investigate not only the 

molecular mass of the ionized species but also their structure. Also called MS/MS instruments, 

the multianalyzer systems result from the combination of a first analyzer, usually used to select 

the ions of interest, and a second analyzer which is often of higher resolving power. Between 

the two mass analyzers, a fragmentation cell can be incorporated. Different formats can be 

classified into MS/MS systems, including the tandem and the hybrid instruments [214]. 

I.3.3.5.1 Tandem MS/MS instruments 

Multi-systems composed of the same type of mass analyzer are designated as tandem 

MS/MS instruments and are described below. 

I.3.3.5.1.1  Triple quadrupole (QqQ) 

Consisting of two quadrupole devices (Q1 and Q3) the triple quadrupole is also 

combined with a central component, q2. While the Q1 scan across a range of m/z values or 

selectively filter ions with a specific m/z ratio, the q2 can be used as an ion guide or as a 

collision cell to fragment the ions from Q1. Then, the product ions pass to the Q3 to be analyzed 

and to obtain the mass spectrum. The q component when used in a wide band pass mode acts 

as an ion guide where all ions are transmitted regardless of their m/z values, whereas when 

operating a collision cell, the ions from the Q1 are fragmented prior to subsequent analysis by 

the Q3 unit. As result, QqQ systems can be used either in scanning or static (as selected ion 

monitoring) [206]. 

I.3.3.5.1.2   TOF/TOF 

Two TOF analyzers can be combined and perform tandem MS. In this approach, the 

selection of the interested ions is made through an electronic gate called a timed ion selector 

(TIS) in the first TOF compartment. Then, selected ions are fragmented in a collision cell placed 

between the two TOF analyzers, and the resultant fragmented ions are analyzed by the second 

TOF analyzer [206].  

I.3.3.5.1.3  Tandem QIT and LIT 

Ions traps, like QIT and LIT, can also be set in a tandem mode. However, in these 

cases, the multiple MS analysis is not separated in space as in QqQ and TOF/TOF instruments, 
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but the multiple scans are sequentially performed using the same analyzer. Therefore, MS/MS 

data acquisition through these instruments are considered as separated in time. As result, the 

QIT and LIT tandem systems allow the analysis of multiple MS experiments, MSn, using a single 

mass analyzer device [206].  

I.3.3.5.2 Hybrid MS/MS instruments 

When different types of mass analyzers are combined these instruments are termed as 

hybrid systems.  

I.3.3.5.2.1  QTOF 

 A very versatile mass analyzer configuration is the QTOF format. In this hybrid system, 

ions coming from the ionization source are analyzed by the quadrupole unit and then 

transferred to the TOF analyzer. Also called as QqTOF, these instruments incorporate the q unit 

similarly to QqQ systems. Operating in the wide band pass format, all the ions deriving from the 

quadrupole pass through the q section and transferred to the TOF analyzer. Here the q unit acts 

as an ion guide and a full scan of the MS data is obtained. In opposition, when the quadrupole 

unit is operating as a filter and is set in a narrow band pass mode, only ions with a specific m/z 

ratio are passed into the q unit. In this scenario, the q section acts as a collision region, and the 

fragmented ions are then transferred into the TOF instrument to acquire the MS/MS data [215].     

I.3.3.5.2.2  FT-based hybrid instruments 

The combination of different types of mass analyzers is also verified in FT-based 

instruments, including the orbitrap and the ICR-FT. The most common combinations are LIT-FT 

as the LIT unit is itself an MS/MS device, which can be used for collecting all spectra or for 

selective ion collection. For instance, orbitrap mass analyzers, which are by themselves single 

analyzers, are commonly referred to as orbitrap instruments interfaced with LIT units, making 

them a hybrid instrument [212].   

I.3.3.6 Mass analyzers comparison 

Nowadays, it is very common to combine two or more analyzers to improve and extend 

the analytical capabilities of MS instruments. In daily practice, the choice of an analyzer, or most 

likely a multianalyzer, should have into consideration several aspects, including not only the 

mass resolution and accuracy but also the upper mass limit and the speed of the scan, as it 

affects the data. The resolution, or mass resolution, is the separation observed in a mass 

spectrum, while the mass resolving power is the ability of an instrument to resolve neighboring 

peaks, is commonly expressed in terms of parts per million (ppm). The accuracy of mass 

measurement is also an important aspect. Expressed in terms of millidaltons (mDa), or ppm, 

represents the numerical measure of the difference between the mass calculated and 

experimentally determined of an ion.  The maximum measurable m/z values of a given 

instrument are designed as the upper mass limit and influence the suitable mass range The 
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speed rate that each equipment can achieve to acquire a mass spectrum, measured in 

masses/unit time, is the other common parameter taken in consideration when evaluating a 

mass spectrometer the mass. In Table I.9 are outlined the most common aspects assessed in 

the MS instruments frequently used in proteomics.   

 

Table I.9 - Comparison of performance characteristics of the most commonly used MS for proteomics. 
Adapted from [103]. 

Instrument Mass resolution 
Mass 

accuracy (ppm) 
Sensitivity m/z range Scan rate 

QIT 1 000 100 – 1 000 Picomole 200 – 4 000 Moderate 

LTQ 2 000 100 – 500 Femtomole 200 – 4 000 Fast 

QqQ 1 000 100 – 1 000 Attomole 10 – 4 000 Moderate 

QqLIT 2 000 100 – 500 Femtomole 5 – 2 800 Fast 

TOF 10 000 – 20 000 < 5 Femtomole No upper limit Fast 

TOF/TOF 10 000 – 20 000 < 5 Femtomole No upper limit Fast 

QqTOF 10 000 – 20 000 < 5 Femtomole No upper limit Moderate to fast 

FT-ICR 50 000 – 750 000 < 2 Femtomole 200 – 4 000 Slow 

LTQ-
Orbitrap 

30 000 – 100 000 < 5 Femtomole 200 – 4 000 Moderate to fast 

 

I.3.4 DETECTORS 

The last compartment of a mass spectrometer is the detector. The principle of operation 

of this section is to detect and determine the abundancies of the emerging ions, resulting in 

amplified and stored signals. As the movement of the ions traveling across the mass 

spectrometer, from the source through the analyzer to the detector, constitutes an ion current, 

this section is more properly called as an ion current detector. The first step of a detector is the 

conversion of the ion current into an electric current, through the acceleration of the arriving ions 

onto a conversion dynode, resulting in a release of electrons. Along with ion detection, the 

detectors are also responsible to multiply (amplify) the signal produced by the ions. The small 

current of each ion at a particular m/z value is amplified when reaches the detector surface, 

increasing the signal attributed to that mass ratio [216].  

Although the principle of operation is fundamentally the same, detectors can be 

designed in different formats. The first and simplest electronic ion detector is the Faraday cup 

[217]. Consisting of a metal container, the ions are discharged upon their arrival and a current is 

generated. However, this format cannot amplify the signal derived from each arriving ion. To 

improve sensitivity, detectors start to incorporate a combination of amplification steps, electron 

multipliers, which come in a variety of forms, including the discrete dynode electron multiplier, 

the continuous dynode electron multiplier, and the multichannel plate detector (MCP). While the 

discrete and continuous dynode detectors are often used in scanning instruments, the MCP 
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detector is more suitable for TOF analyzers due to their high demand for rapid detection and 

amplification. Another format is the Daly detector, which uses a photomultiplier instead of an 

electron multiplier. In this type of detector, the ions coming from the analyzer sections firstly 

collide on the conversion dynode to eject the resultant electrons onto the surface of the coated 

scintillant plate to produce photons. Generated photons are, ultimately, detected and the signal 

amplified by the photomultiplier. Lastly, in FT-based instruments, the ion detection is not based 

on ion-counting approaches, as the ones previously described. In these instruments, which 

employ an image current detection, ions by passing close to a metal surface induce an electric 

current on that surface, which in turn results in an alternating (sinusoidal) electrical current. 

Different sinusoidal currents are produced by each ion, resulting in an image current where 

each frequency is proportional to its m/z value. To finish, the resultant image current must be 

deconvoluted mathematically by FT techniques, to obtain a mass spectrum [212].    

I.3.5 FRAGMENTATION STRATEGIES 

Over the past years, several strategies have been developed to avoid excessive 

fragmentation during the ionization processes. Particularly in hard ionization methods, such as 

EI, the energy imposed on the analytes is higher than the required for the formation of the 

molecular ion. As result, the molecular bonds of the analyte are dissociated, and non-desired 

fragments are obtained. This has been overcoming with the development of the soft ionization 

techniques, including the MALDI and ESI. Nevertheless, fragmentation is a desired process in 

MS/MS analysis, where a particular precursor is decomposed into smaller product ions. 

Occurring within the collision cell chamber, this process is found on the principle that once 

inside the peptide ions interact with the collision gas (usually nitrogen, helium, or argon) and 

undergo fragmentation [218]. Peptide cleavage can occur in one or more chemical bonds in the 

peptide, resulting in different fragmentation patterns as illustrated in Figure I.6A [219]. Two ion-

series are then formed, the containing the N-terminus of the ion, denoted as a-, b-, and c-ions, 

and their corresponding containing the C-terminus, denoted as x-, y-, and z-ions. As the most 

commonly applied fragmentation strategies use low collision energies (< 100 eV), fragmentation 

mainly occurs along the peptide backbone, originating preferentially b- and y-ions (Figure I.6B) 

[220]. Thus, in an MS/MS spectrum, the mass of the individual amino acid residue com be 

inferred as the difference between adjacent y- or b- ions [218].  

Although the vast majority of the instruments use low-energy collision-induced 

dissociation (CID), other types of tandem mass fragmentation include infrared multiphoton 

dissociation (IRMPD), electron transfer dissociation (ETD), and electron capture dissociation 

(ECD) [220]. In CID type, ions are accelerated into the collision cell with a provided kinetic 

energy. Inside, through the multiple interactions with the collision gas, the ions acquire, 

cumulatively, additional vibrational energy ending up in their fragmentation into the product ions. 

Contrary to CID, which uses the q intermediary section between the two mass analyzers as 

collision cells to perform the fragmentation, the IRMPD takes place within an ICR cell and 
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therefore is the fragmentation type used in FT-ICR instruments. However, its principle is very 

similar to the CID, since, upon an infrared incidence, the ions interact progressively with the 

photons until the point that the energy absorbed is high enough to induce fragmentation. Lately, 

other methods, as ETD and ECD, have been gaining momentum due to their ability to provide 

structural information of the precursor ion [220]. 

 

 

 

Figure I.6 – Peptide fragmentation A) Two ion-series based on the terminal part of the peptide can occur 
resulting in different patterns. B) Typical ions observed in low energy fragmentation mass spectrum. 
Adapted from [219]. 
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I.4 DATA SYSTEMS AND ANALYSIS 

The technological advances in MS instruments have greatly improved the ability to 

explore hundreds of proteins simultaneously. However, the analysis of a large amount of data is 

per se one of the major challenges of modern MS-based proteomics. Consequently, MS-based 

techniques have shifted from hand-adjusted potentiometers and photographic paper to 

combinatory systems of computer hardware together with sophisticated software engines. 

Concluding the MS analysis, the data systems enable not only the acquisition and processing of 

all data as well as the control of all operational processes either in each MS instrumental 

section and in integrated peripheral instruments, such as LC systems.    

I.4.1 DATA ACQUISITION AND SIGNAL PROCESSING 

The main role of data systems is to deliver a mass spectrum as output resultant from 

the electrical signals detected in the ion detection section. Consisting of a two-dimensional 

representation, a mass spectrum plots all the ionized molecules detected according to their m/z 

values and their respective intensity. The starting point of an integrated data system is data 

acquisition, followed by signal processing. During data acquisition, all the electrical data from 

the detector is captured and stored as raw data. This native data is then processed to detect 

effective peaks, i.e. specific m/z with an intensity corresponding to a given ion, present with the 

analyzed sample. In signal processing, several critical parameters, like noise reduction, peak 

detection, and monoisotopic peak determination, are the basis to deliver reliable data [221]. The 

noise present in the systems impacts the detection of the ions, therefore one of the processing 

steps is to evaluate the signal-to-noise ratio and set the threshold above the noise level to 

improve the quality of the spectra acquired [222]. After noise filtration, the detection of the peak 

is achieved through algorithms and tools related to isotope and charge state deconvolution. 

Most elements are naturally composed of different mass numbers resulting from different 

numbers of neutrons albeit having nuclei of the same atomic number. Those variants are called 

isotopes and contribute to the presence of a collection of peaks belonging to the same ionized 

molecule but incorporating different isotopes. As result, in a mass spectrum, each ion can 

present an isotopic distribution or pattern, counting the different abundances of the isotopes in 

nature. In complex samples, where is frequent the superposition of isotopic envelopes, isotopic 

distribution of a particular ion, deconvolution methods are applied to resolve these peak 

overlapping issues [223]. Focusing on grouping spectral peaks into isotopic envelopes, the 

deconvolution allows the efficient determination of the charge state and the monoisotopic mass 

necessary for accurate calculation of the mass of the corresponding ion [224]. Mass calibration 

and alignment are also technical aspects often processed in the raw data. Although calibration 

is rarely needed for mass dimension and the alignment of different LC-MS scans can be 

conveniently overcome by aligning the retention time dimension [225].      
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I.4.2 PROTEIN IDENTIFICATION 

In mass spectrometry, the resultant peptide signals with a specific m/z ratio, intensity, 

and retention time are called features. In proteomics, the features obtained in the MS and 

MS/MS spectra are used to identify the proteins present in the sample, which can be 

accomplished through mass or sequence information [226]. 

I.4.2.1 Peptide mass fingerprinting (PMF) 

PMF consists in the identification of the proteins based on the m/z values of the peptide 

ions detected in the MS1 spectra, which is uses as a fingermark of the protein. This 

identification technique is mostly used in instruments with one MS analyzer, such as in the 

MALDI-TOF mass spectrometer. In PMF, all the masses calculated from the peaks detected in 

the MS spectra, and a list of peptides masses is generated. Then, taking into consideration that 

the peptides originate from a specific enzymatic cut, such as trypsin, the resultant list can be 

compared to a theoretical mass database, composed of predictable tryptic peptides, to 

determine the identification of the protein [227].   

I.4.2.2 Peptide sequencing 

A different method to identify proteins is through peptide sequencing. In peptide 

sequencing the protein identification is made by the interpretation of the tandem MS (MS/MS) 

spectrum, being more appropriate for large-scale high-throughput analysis. Firstly, the peptide 

ions are detected in the first mass analyzing step, then precursor ions are selected to the 

second stage where they are submitted to fragmentation and subsequent analysis [227].  

Currently, different methods for selecting the precursor ions are being employed for collecting 

proteomic data.  

I.4.2.2.1 Data-dependent acquisition (DDA) 

One of the most widely used strategies for collecting data in tandem MS experiments is 

the data-dependent acquisition (DDA). In DDA, the selection of the precursors (peptide ions) for 

fragmentation is based on their occurring intensities, resulting in the top-N most abundant ions 

selected for MS/MS characterization.  This way, precursor ions are chosen and collected when 

their MS intensities exceed a pre-defined threshold, usually in small isolation windows of ≤ 1 Da 

wide throughout the entire MS scan [228]. Attempting to minimize the selection of redundant 

peptides precursors, this acquisition mode is generally coupled with a dynamic exclusion 

method that prevents the reselection of precursors with the same m/z value in a specific time 

range [229]. However, DDA-based methods reveal some pitfalls in terms of reproducibility, as 

the overlap between technical replicates is < 75% [230], even though they represent powerful 

strategies with great proteome coverage and extended dynamic range of detection [229]. 
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I.4.2.2.2 Target data acquisition 

A different acquisition mode relies on the selective selection of precursors for further 

fragmentation in MS2. As the acquisition of the precursors' drives from a pre-selection of 

specific m/z values at an elution time and subsequent exclusive fragmentation, this acquisition 

mode is defined as target data acquisition. Two main strategies can be used in target 

acquisition mode, the selected reaction monitoring (SRM), and the parallel reaction monitoring 

(PRM) [231]. In the former, the set of peptides to analyze are filtered, with a narrow isolation 

window, in the MS1 scan, submitted to fragmentation, and the resultant fragment ions are once 

again filtered, according to a specific m/z ratio, in the second MS scan. This double selection 

makes the method highly specific since the probability of two peptides having the same mass at 

both MS scans along with the exact same retention time is too low [231]. Since SRM can 

sequentially measure several fragment ions, this technique is often also referred to as multiple 

reaction monitoring (MRM) [232,233]. 

Contrasting with SRM/MRM, in PRM acquisition mode all the fragment ions resultant of 

the pre-selected precursor are simultaneously analyzed at MS2 level. Thus, in PRM the 

selection in advance of the fragment ion is exempted and the best fragment ions for peptide 

identification and quantification can be chosen posteriori, revealing higher flexibility [231].    

However, the knowledge of a peptide’s elution time and corresponding MS1 m/z value 

prior to the acquisition along with selective fragmentation, limit these approaches to pre-existent 

spectral libraries and only to the selected targets [234].  

I.4.2.2.3 Data-independent acquisition (DIA) 

An alternative method, which acquires all both MS1 and MS2 data in an unbiased 

manner, is the so-called data-independent acquisition mode. In DIA, all detectable ions, either 

with sequential isolated m/z windows or at a given time point, are selected for fragmentation. 

The selection of the precursor ions is this way independent of their abundance or m/z value 

[235].  

Since the beginning of this century, various DIA acquisition schemes have been 

implemented. Including but not limited to, the sequential window acquisition of all theoretical 

mass spectra (SWATH-MS) [236]. The principle of this method falls in the acquisition and 

fragmentation of all ionized compounds within sequential m/z windows. Other methods include 

diaPASEF from Bruker, PAcIFIC from Thermo Scientific, and SONAR from Waters [235,237].  

These acquisition modes have gained their impetus in tandem mass spectrometry as 

they provide better sensitivity and accuracy, resulting in improved reproducibility and proteome 

coverage [237]. Nevertheless, the consecutive survey of MS scans and the fragmentation of all 

ions, generate not only highly complex data sets but also the loss of the link between the 

precursor and the fragmented ions. As consequence, more elaborate processing algorithms are 

required in these experiments to fully analyze all the data.  



CHAPTER I |  General Introduction 

 Ph. D. Thesis   83 

I.4.3 PROTEIN QUANTIFICATION 

In proteomics research, the quantitative information about proteins can be evaluated as 

the total of protein content as well as for individual protein quantification. A wide range of 

methods comprising the measurement of UV at 280 nm, Bradford, bicinchoninic acid (BCA), 

and Lowry assays have been used to quantify the total protein content [238]. On the other hand, 

the individual protein quantification has been performed through the (i) enzyme-linked 

immunosorbent assay (ELISA), (ii) the western blot analysis, or more recently, (iii) via by mass 

spectrometry [239].  

I.4.3.1 MS-based quantitative methods 

Currently, protein quantification using the MS can be classified as i) relative or absolute 

quantification; or ii) label-based and label-free quantitative proteomics [240]. 

I.4.3.1.1 Relative versus absolute quantification 

Protein quantification methods relying on the determination of the exact amount of a 

protein, for instance in units of ng/mL or mol/cell, are considered as absolute quantitative 

methods, whereas relative quantification methods rely on the comparison of the specific protein 

level in different samples, resulting in quantitative measurements expressed as relative fold 

change of protein abundance [240].  

I.4.3.1.2 Label-based and label-free methodologies 

Although the intensity of the ionized peptides is correlated to their abundancies, due to 

different ionization efficiencies among the different molecules, the accurate measure of protein 

amounts cannot be inferred directly to their intensities in a mass spectrum [241]. To overcome 

such pitfalls, various quantitative has been implemented in MS-based proteomics studies. 

Typically, two main techniques, label-based and label-free, have been widely employed (Figure 

I.7). 

I.4.3.1.2.1  Label-based quantification 

In label-based strategies, stable isotope or mass tags are incorporated into proteins or 

peptides to originate a light and a heavy form with a mass shift, which should be at least 3- or 4- 

Da between samples to minimize isotopic overlapping [242]. Besides the incorporation of the 

tags, the workflow entails the mixture of the samples before MS analysis and the comparison 

between the sample is made in the same MS scan. The different isotope labels can be 

introduced in samples metabolically, chemically, or enzymatically [243].     
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Figure I.7 – Overview of (a) label-free and (b,c) label-based quantification methods. In label-based 
methods, distinction between (b) MS1 and (c) MS2 (isobaric) labeling is also represented [244]. 

 

Metabolic incorporation of amino acids with substituted stable isotopes is the main 

principle of the stable isotope labeling by amino acids in cell culture (SILAC) method. Also 

called as amino acid-coded mass tagging (AACT), this approach relies on the incorporation of 

the light and the heavy form of amino acid, such as lysine labeled with 12C or 13C, respectively, 

into two cell cultures. In SILAC, the labeling is performed on the proteins, which are then 

harvested from both cell cultures are mixed and submitted to digestion and MS analysis 

together within the same sample. Being this way, a technique very straightforward since does 

not require any chemical reactions, with minimal separate handling between samples. Even 

though, metabolic labeling has restricted multiplex capacity and also are limited to cell culture 

and cannot be applied to primary tissues or body fluids, such as clinical specimens [241]. 

Chemical tagging approaches can circumvent those limitations. In chemically labeling 

strategies, the incorporation of isotopic labels is accomplished by chemical reagents and can be 

performed at the protein or peptide levels [245]. At the peptide level, the most commonly used 

methods are the isobaric tags for relative and absolute quantification (iTRAQ) and the tandem 

mass tags (TMT) [241]. In these quantitative approaches, different samples are labeled with 

reporter groups harboring different mass, which are detected in the second scan (MS2) [245]. 
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With a multiplexing capability of 8- and 10-plex, for iTRAQ and TMT, respectively, these 

quantitative methods overcome the pitfalls of the SILAC strategies [241]. Another chemically 

labeling approach is the isotope-coded affinity tag (ICAT), which introduces a biotin tag coupled 

to a linker, via a thiol-reactive group, onto reduced cysteine residues. In this technique, the 

linker group, which is the stable isotope-labeled linker, can be employed in different samples as 

light or heavy tag, if incorporate 1H or 2H, respectively [241]. However, similar to SILAC, this 

strategy also has a lack of multi-sample analysis. Lastly, enzymatic labeling using 18O/16O has 

also been regularly applied in proteomic studies. Though this technique can be performed 

during proteolytic digestion, the incorporation of 18O into the C-terminus is more commonly 

performed in a second incubation after proteolysis and results in an introduction of a 4-Da mass 

shift between the two samples in the MS scan [241,243].  

The absolute quantification can be incorporated in these relative approaches by the 

addition of heavy-labeled peptides to the samples. With the introduction of a known 

concentration, these peptides act as internal standards on the peptide level [246]. Several 

absolute quantitative approaches have been developed, including the use of synthetic peptides 

(AQUA) [247], artificial concatemer of standard peptides (QCAT) [248], isotope-labeled full-

length target proteins (PSAQ) [249], among others.  

Even though, the restricted applicability of such labeling methods in high throughput 

cohorts of samples remains a major limitation in proteomics fields.           

I.4.3.1.2.2  Label-free quantification  

Alternatively, label-free quantification (LFQ) is another approach for protein 

quantification. LFQ can be divided in two main strategies, the spectral counting (SC) and 

intensity-based workflows (Figure I.8).  

In the first strategy, the number of MS/MS spectra identifying peptides of the same 

protein are counted and compared across multiple LC-MS/MS runs. Based on an exponentially 

modified protein abundance index (emPAI), consisting of the exponential form of the number of 

observed peptides divided by the number of theoretical peptides of a given protein minus one, 

this strategy can estimate absolute protein content in complex mixtures [250]. Along with the 

emPAI strategy, the absolute protein expression (APEX) is another methodology used for 

absolute protein quantification based on spectral counting [251]. 

On the other hand, in the second approach, quantification is based on the mass 

spectrometric signal intensity belonging to a precursor ion as determined by the extracted ion 

chromatogram (XIC) [243]. Conceptually, XIC-based quantification is determined by the area 

under the curve or peak height, during MS1, of each eluted peptide [241].  
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Figure I.8 – Comparison of (a) intensity-based and (b) spectral counting-based strategies for label-free 
quantification (LFQ) [241]. 

 

Likewise to spectral counting strategies, in spectral intensity-based methods, 

approximate measures of absolute protein abundances can be obtained through computational 

tools, including the intensity-based absolute quantification (iBAQ) [252], the Top3 [253], and 

more recently the total protein approach (TPA) [254].  

I.4.3.1.2.3  Total protein approach (TPA) 

In most LFQ methods, either based on spectral counting or intensity, to infer absolute 

protein abundance, is necessary some biochemical inputs like the determination of the total 

amount of protein analyzed or the use of protein standards [255]. Contrary to these methods, in 

the total protein approach (TPA) the absolute protein quantification is achieved without any 

specific knowledge of the sample and is standard free [254]. This method is based on two 

assumptions (i) the total MS signal in a large-scale proteomic analysis reflects the total protein 

content and (ii) the partial abundance of a given protein in the whole sample corresponds to its 

MS signal. Thus, the amount of a given protein (pi) is calculated by the following equation 

(equation (1)): 
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(1) 

Which can be further convertible into molar concentration, expressed in mol per g of 

total protein, if the molecular weight of the given protein (pi) is taking into consideration, as 

present in the following equation (equation (3)): 

 

 

(2) 

In Figure I.9 – Comparison of absolute protein quantification methods used in LFQ 

[255].is presented a schematic summarization of the absolute protein quantification 

methodologies used in LFQ.  

 
 

 

Figure I.9 – Comparison of absolute protein quantification methods used in LFQ [255]. 

 

I.4.4 BIOINFORMATIC TOOLS 

In bottom-up proteomics, where the original protein is digested into peptides before MS 

analysis, the association of those peptides with their precursor protein is fundamental. 

Therefore, several computational tools have been developed to allow the analysis of such high-

throughput data. 
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I.4.4.1 Protein identification and quantification 

Several bioinformatic solutions have been developed for large-scale and high-

throughput protein analysis. From a computational point of view, several tools have been 

developed for processing, analyzing, and managing the MS data [226]. Different software tools 

with different algorithms can be used as platforms to analyze MS-based proteomics data. 

Nevertheless, a common workflow for the bioinformatic analysis of LC-MS/MS data, present in 

Figure I.10, consists of (i) binary format data conversion; (ii) pre-processing of the mass spectra 

including denoising, baseline correction, normalization, and peak detection; (iii) collection of all 

individual peaks through feature finding; (iv) protein inference based on database searching; (v) 

protein quantification; (vi) statistical assessment and lastly; (vii) biological analysis [226].  

 
 

 

Figure I.10 – Typical bioinformatic pipeline for shotgun proteomics data. Adapted from [226]. 

 

While the three first steps are mainly processing parameters to improve the quality of 

the results, the fourth step is one of the crucial points for accurate protein identification. For 

protein inference, firstly the peptides need to be identified. Classically, in tandem MS, peptides 
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are identified by comparing the fragmented spectra, MS2 scan, against the in-silico spectra. 

This task is generally achieved through protein database search engines. As shown in Figure 

I.11, the experimental spectrum resultant from the MS analysis is compared against a 

theoretical one, and a match is called a peptide-to-spectrum match (PSM). Then, a list of 

candidate PSMs for every spectrum, with respective scores is presented as the output of the 

search engine [256]. 

 

 

Figure I.11 – Standard workflow for sequence database searching [256]. 

 

The resultant PSMs scores are then used to access the best match by the means of 

statistical assessments. The most common assessment used is the target-decoy strategy, 

which applied a decoy database composed of reversed, shuffled, or randomized protein 

sequences as negative controls to estimate the overall false discovery rate (FDR) [257]. Peptide 

sequences are then assigned usually with a 1% FDR threshold. A wealth of sequence database 

searching engines are widely used in proteomics, including Mascot, SEQUEST, X!Tandem, 

Andromeda, VEMS, among others [237].  

After peptide identification, the protein inference is accomplished by mapping the 

peptide sequences identified against available protein sequence resources, like the Universal 

Protein Resource (UniProt, www.uniprot.org) [258]. At the protein level, a second level of FDR, 

usually also with an FDR threshold of 1%. For protein families, which generally have identical 

peptide sequences, it is difficult to distinguish the presence of different isoforms. In this case, 

those proteins will be grouped together as a protein group.  

I.4.5 STATISTICAL ASSESSMENT AND BIOLOGICAL NETWORKS 

 The last steps of the data analysis pipeline encompass the statistical evaluation based 

on the proteomics strategy implemented and the rationale of the data. Thus, the ultimate goal of 

data analysis is to translate large amounts of proteomic data into biological knowledge that can 

lead to medical decisions [259].  

 

http://www.uniprot.org/
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I.4.5.1 Statistical tools 

Downstream analysis of proteomic data integrates several aspects including statistical 

evaluation. As the most popular statistical methods, the t-test, analysis of variance (ANOVA), 

and logistic regression provide a level of significance of the observed result, the so-called p-

value. The p-value measurement, often set as 0.05, 0.01 or 0.01, means that probability of 

getting by chance a false positive is of 5%, 1% or 0.1% respectively [260]. With that being said, 

two types of errors can occur in statistical approaches, the type I errors, and type II errors. The 

former represents the false positives, those situations in which the null hypothesis is 

erroneously rejected. By contrast, the latter occurs when the null hypothesis is erroneously 

accepted, originating false negatives [260]. Therefore, diverse multiple hypothesis testing 

correction methods, including the widely used permutation-based FDR and Benjamini-

Hochberg’s correction methods have been routinely used to minimize such occurences 

[259,260]. In proteomics experiments, a standard goal is to compare protein expressions 

between to samples groups, usually a disease or treatment condition versus controls [261]. 

Resulting in a differential analysis approach, the data retrieved, which is centered on statistical 

methods, as mentioned above, can be further visualized through several methods, including 

principal component analysis (PCA), clustering methods, or with a receiver operating 

characteristics (ROC) curve [260]. It is noteworthy to mention, in discovery approaches those 

procedures should be performed in an unsupervised manner, where all the input data are 

unlabelled and analysis is based on the similar attribute profiles instead of samples’ labeling 

(condition) [262].  

I.4.5.1.1 Software platforms 

In the context of big data, as MS-based data, elaborated computational tools are 

necessary to perform its analysis. Several programming languages, such as R or python, has 

been used to fulfill such high demands. However, a massive barrier often arises between those 

informatic skills and biological researchers. Thus, to translate such complex outputs into 

valuable biological data with life expectancy significance, some platforms have emerged to 

overcome those shortcomings. One of those platforms, developed by the Cox group [263] is the 

Perseus software. Constructed to have an intuitive and user-friendly interface, this 

computational platform is fitted with an arsenal of algorithms allowing the statistical and 

downstream analysis [259,263].   

I.4.5.2 Biological interpretation  

Following statistical analysis, the biological interpretation of such high-throughput 

proteomics experiments is the next challenge. Functional annotation or enrichment analyses 

have been implemented to provide biological insights into the underlying mechanisms of 

different conditions [262].  
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I.4.5.2.1 Network analysis and visualization 

Functional network generation and their visualization is a necessary tool to interpret the 

data resulting from the statistical approach. Different databases have been useful in 

systematically collect and organize biological information. For instance, while the main purpose 

of Gene Ontology (GO) [264] is to assign biological/cellular/molecular terms to the genes, in a 

hierarchically structured way, the Kyoto encyclopedia of genes and genomes (KEGG) [265] 

annotates functional pathways to the genes and the Reactome [266] is a curated database of 

human pathways and reactions. For visualizing complex networks and integrated all the 

biological information, an open-source platform, the Cytoscape software, has been successfully 

in workflow-based network analysis. As a general network tool, Cytoscape only allows the 

visualization of the data, and therefore, several plug-ins, able to import information of the 

diverse existing databases, have been developed to use the functionalities of the Cytoscape 

software. This is the case of the ClueGO plug-in which is able to integrate not only GO terms as 

well as KEGG and Reactome pathways [267]. Another example is the recent StringApp which 

incorporates the predicted protein-protein interactions [268]. 

I.5 TRANSLATIONAL AND PROTEOMICS REASEARCH 

Basic research results in general knowledge. It is performed without thinking in practical 

ends. In medical context, the bridge that overcomes the gap between the basic science and the 

patient care, has been referred as translational research [269].  

In modern biological science, more holistic approaches capable of qualitatively and 

quantitatively characterize complex biological systems are overtaken the traditional hypothesis-

driven studies. This novel approaches, referred to as “omics” approaches, have been 

increasingly adopted towards knowledge discovery which is less hypothesis-driven, where a 

formulated hypothesis is assumed, and more data-driven, where the whole biological systems 

are evaluated in a non-targeted and non-biased manner to define a premise that can be further 

tested [270]. Aiming to unveil the complexity of different biological molecules within a living 

organism, these ‘omics’-based screening technologies are commonly applied to genes, mRNA, 

proteins, and metabolites. As one of the most developed ‘omics’ technology, proteomics was 

initially coined in the mid-1990s by Marc Wilkins [271], and the firsts proteomic studies began 

with the mapping of proteins from Escherichia coli, mouse, and guinea pig by O'Farrell [272], 

Klose [273], and Scheele [274], respectively. Since then, the potential of proteomic strategies 

has growth exponentially by the wide range of applications [218]. Over the decades, these 

applications have allowed not only a deeper understanding of normal physiological processes 

but also a better knowledge of diseases, such as cancer. Focusing on the investigation of 

multiple molecules simultaneously, this approach has been also applied to biomarker discovery 

playing itself a role in screening, diagnosis, and prognosis throughout the scientific and medical 

community [275].       
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I.5.1 PROTEOMICS APPLICATIONS  

Depicting snapshots of proteins compositions of specific cells or tissues at a particular 

time point, the study of the proteomes has been fundamental to address several biological 

questions. Thus, the aim of proteomics goes beyond the identification of all proteins in a cell or 

a tissue to provide a more holistic assessment of the biochemistry in which such proteins are 

involved. (Figure I.12) [218]. 

I.5.1.1 Structural proteomics 

Regarding the types of proteomics, the proteomics studies whose main goal attempts to 

identify all proteins within a protein complex, organelle, or a specific cellular portion are known 

as structural proteomics. These types of studies generate the three-dimensional structure, 

which along with the localization of those proteins, map out the overall architecture of the cells 

[276].  

 

 

Figure I.12 – Proteomics fields, types and applications [218]. 

 

I.5.1.2 Functional proteomics 

Transiting to the characterization of those protein activities, multiprotein complexes, and 

signaling pathways, the goals entering in the domain of the functional proteomics [277]. 

Addressing towards the elucidation of the biological function of proteins and the definition of 

cellular mechanisms, the functional proteomics approaches rely on affinity strategies for protein 

or protein complexes isolation [278], knockout technologies [279], and yeast genomics studies 

[280].  
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I.5.1.2.1 Proteome mining 

One of the major applications of functional proteomics is the proteome mining, which is 

focused on the identification and validation of therapeutic targets that subsequently serve as a 

starting point for drug discovery [281].  

I.5.1.2.2 Post-translational modifications (PTMs) 

By definition, post-translational modifications (PTMs) of proteins are linked with the 

structural level, as they are denoted as any chemical changes that occur after a protein has 

been produced. However, these structural modifications are closely associated with protein 

activity and turnover being a frequent target of functional proteomics studies [282]. These 

dynamic modulations are known to be essential for signaling networks and playing a 

fundamental role in cellular physiology [283]. Catalyzed by specific enzymes, several types of 

PTMs are currently known as summarized in Figure I.13. They embrace the reversible addition 

of i) chemical groups, such as phosphate or acetate, ii) more complex molecules, such as 

carbohydrates or lipids, or ii) the covalent linkage of small proteins, like ubiquitin and ubiquitin-

like proteins (UBLs). They also include irreversible reactions like i) the modification of side chain 

residues of specific amino acids, like deamidation in asparagine and glutamine residues or 

eliminylation in phosphorylated threonine residue, and ii) cleavage of the peptide bond between 

adjacent amino acid residues of a protein [283].  

I.5.1.2.2.1  Phosphorylation 

As one of the most common PTMs, several functional proteomics studies focus on 

protein phosphorylation [218]. Catalyzed by kinases, this modification type consists of the 

transfer of a phosphate group from ATP and its reversible attachment on serine, threonine, and 

tyrosine residues of the targeted protein [283]. The phosphorylation process frequently alters 

the function of the proteins, resulting in a broad spectrum of cellular processes and states 

regulated by this mechanism. For instance, phosphorylation is involved in several signaling 

pathways where many kinases and phosphatases act as enzymes and protein subtracts, and 

thus forming mutually dependent and hierarchically regulated signaling loops and cascades 

[284].  

I.5.1.2.3 Protein-protein interaction 

Conceptually, protein-protein interactions (PPIs) are a vast and complex network, which 

plays a crucial role in cellular functions. Likewise, in phosphorylation processes, which are 

themselves a specific type of PPIs, the regulation and execution of the most biological 

processes in all organisms are modulated by PPIs. In PPI proteomics studies focus on the 

identification of those interactions and the mechanisms involved in those pathways [285]. 
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Figure I.13 – Post-translational modifications (PTMs) A) Diversity and B) reactions. For each PTM 
reaction, the nature of the amino acid most frequently modified is denotated as X and is indicated in the 
title. In purple are indicated the enzyme catalyzing the modification, in blu the cofactors potentially 
involved and in red the group added to the target protein, X*, unphosphorylated amino acid; P i, 
inorganic phosphate, PPi, inorganic pyrophosphate; NAD, nicotinamide adenine dinucleotide; coA, 
coenzyme A; Ubi, ibiquitin [283]. 
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I.5.1.3 Protein expression profiling 

Although the study of the structure of the proteome and the functional approach of its 

proteins have significantly contributed to unveil the complexity of the biology of a living 

organism, the quantitative study of protein expression continues to be the largest application of 

proteomics [218]. As the functionality and significance of the expressed proteins cannot be 

simply inferred by their presence, different MS-based quantitative proteomics are frequently 

used to address several biological questions including global protein abundance 

measurements, PTMs and also PPIs in one or more conditions [286]. Thus, the information 

retrieved from this approach is frequently used in the medical microbiology context, signal 

transduction and disease mechanisms [218]. The identification of disease-specific proteins is 

one of the major fundamental of clinical proteomics. 

I.5.2 CLINICAL PROTEOMICS 

The essence of the clinical proteomics is to address clinically relevant questions by the 

means of a proteomics analysis. Within a context of clinical studies, the goals of this approach 

are i) earlier and accurate diagnosis, ii) better evaluation of prognosis and/or prevention of 

disease, and iii) improvement of therapeutic strategies [287].   

Currently, proteomics-based clinical studies can be categorized in main strategies and 

also correlated with the acquisition methods applied (Figure I.14). For instance, in a discovery 

branch either to develop a novel diagnostic marker, prognosis factors or therapeutically targets 

the goal is to identify as many proteins as possible. In these cases, DDA and DIA as more 

encompassing technologies are applied. In contrast, in targeted approaches the goal is to 

monitor a selected panel of proteins. Consequently, higher sensitive, reproducible and 

quantitative accurate techniques, such as SRM/MRM or PRM, are preferential chosen over the 

previous one [286,288]. 

I.5.2.1 Proteomic biomarker pipeline 

In clinical discovery strategies, the main goal is to identify putative biomarkers to 

address the different clinical requests. According to the World Health Organization, a biomarker 

is any substance, structure or process that can be measured in the body or its products and 

influence or predict the incidence of outcome or disease. Thus, by definition, a biomarker is an 

objective and quantifiable characteristic of biological processes [289]. Proteins as the most 

universally affected molecules by disease state are considered valuables sources of biological 

information and the advances of the MS technologies, has improved their power and utility in 

biomarker discovery. With the increased throughput and improved precision that has been 

accomplished with MS-approaches the hypothesis-driven has been superseded by hypothesis-

generating in the discovery field, which have broadened the discovery experiments to an 

unprecedented and unbiased manner [290]. Therefore, a coherent pipeline for the development 
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of novel biomarkers has been proposed consisting in four phases, i) discovery; ii) qualification; 

iii) verification, and iv) validation (Figure I.15).  

 

 

Figure I.14 – Proteomics-based clinical approaches. A) Discovery proteomics based on data-dependent 
acquisition (DDA) and data independent acquisition (DIA) methodologies, and B) Targeted proteomics 
approaches including the single/multiple reaction monitoring (MRM) and parallel reaction monitoring 
(PRM) [286]. 

 

Following the pipeline, the candidates determined in the discovery phase are assessed 

for their clinical utility, though a targeted approach. Undergoing firstly for a qualification and 

verification phase, the list of candidates decreases ending in the last validation phase with a 

smaller panel of potential biomarker that are evaluated in hundreds to thousands of samples 

[291]. 

Another set of biomarkers types with very similar definition but clear distinct uses are 

the susceptibility/risk, prognostic and predictive biomarkers. While in the first one indicates the 

potential for developing a medical condition, prognostic biomarkers evaluate the differential 

disease outcomes, like progression or recurrences, whereas the predictive biomarkers 

discriminate those patients who will respond or not to a medical treatment or therapy [292]. In 

Table I.10 are present a representative list of biomarker discovery studies for clinical 

applications though MS-based proteomics approaches [293]. 
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Figure I.15 – Proteomics-based biomarker discovery pipeline A) Biomarker development workflow 
divided into four main phases, i) discovery, ii) qualification, iii) verification and iv) validation. For each 
phase is represented at the right panel de number of different protein targets and samples, referred as 
“Analytes” and “Samples”, respectively. Adapted from [291]. B) The spectrum of protein analysis, 
ranging from unbiased to targeted proteomics. Adapted from [294]. 
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Table I.10 – Representative list of MS-based assays for clinical applications [293]. 

Analyte MS technique Clinical purpose 

C-peptide  LC-ESI-QqQ Diabetes millitus [295] 

Thyroglobulin LC-ESI-QqQ Thyroid carcinoma [296,297] 

Alpha-methylacyl-CoA racemase LC-QqQTOF 
Papillary renal cell carcinoma 

[298] 

Vimentin LC-QqQTOF 
Clear cell renal cell 

carcinoma [298] 

Lysosomal-associated membrane protein 1 LC-ESI-QOrbitrap 
Chromophobe renal cell 

carcinoma [299] 

Angiotensin-1 (renin activity) LC-ESI-QqQ Hypertension [300] 

Insulin-like growth factor-1 LC-ESI-QTOF Growth disorders [301,302] 

ADAMTS13 activity SELDI-TOF 
Thrombotic thrombocytopenic 

purpura [303] 

Lipoprotein-associated phospholipase A2 LC-ESI-QqQ 
Cardiovascular disease risk 

[304] 

Parathyroid hormone-related peptide LC-ESI-QqQ 
Osteoporosis, osteomalacia, 

and unexplained 
hypercalcemia [305] 

Immunoglobulin light and heavy chain MALDI-TOF Plasma cell disorders [306] 

IgG subclasses LC-ESI-QqQ 
IgG4-related disease 

[307,308] 

Vitamin D binding globulin LC-ESI-QqQ Vitamin D deficiency [309] 

Serum apolipoprotein panel LC-ESI-QqQ Cardiovascular disease [310] 

Galectin-3-binding protein and scavenger 
receptor cysteine-rich type 1 protein M130  

LC-ESI-QqQ Malignant lung nodules [311] 

High-density lipoprotein particle panel LC-ESI-Orbitrap Coronary artery disease [312] 

β-Amyloid LC-ESI-QqQ Alzheimer disease [313] 
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II.1 OBJECTIVES 

Accurate diagnosis and consequential medical treatment management are of utmost 

importance in clinical practice, where patient care can be remarkably compromised based on a 

misdiagnosis. Although in clear cell carcinoma imaging and immunohistochemical techniques 

have been useful in diagnosis and subtype differentiation, some overlapped features are shared 

between subtypes, making diagnosis difficult. Although some proteomics studies have been 

performed to overcome such shortcoming, up to now, an unequivocal classification based on an 

accurate biomarker or panel of biomarkers for RCC subtype diagnosis remains elusive. Thus, 

the objectives of the present work are:  

 The search of a unique proteomic profile for each one of the different RCC tumors 

 Identification of a specific biomarker, or a panel of biomarkers, able to accurately 

diagnose each tumor type by the application of the Total Protein Approach to solid 

biopsies. 

 To translate the new mass-spectrometry biomarkers into immunohistochemistry 

biomarkers. 

 The development of new phosphoproteomics approach to find new targets for 

therapy. 

II.2 WORK PLAN 

To develop the topics projected above renal tissue biopsies were collected from patients 

diagnosed with different subtypes of RCC. In total, 27 tissue biopsies were included in the 

present study, as follows, ccRCC = 7, pRCC = 5, chRCC = 5 and RO = 5. For comparative 

purposes five normal adjacent tissues (NAT) were used as controls. Sample were provided by 

the University of Pittsburgh Medical Center (UPMC, Pittsburgh, PA, USA). 

II.2.1.1.1.1.1 Tissue collection and optimization of protein extraction from OCT-preserved solid 

biopsies: OCT Cleaning 

Tissue biopsy samples will be collected by the University of Pittsburgh Biospecimen 

Core and preserved in OCT media. In order to enable to use of OCT-embedded samples in MS-

based experiments, a first step of cleaning is added to the main experimental workflow. 

Deliverables: Implementation of a methodology to improve the OCT removal in sample 

cleaning steps. Acquisition of tissue samples OCT-free. 
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II.2.1.1.1.1.2 MS-based proteomics profiles of OTC-clean solid biopsies  

The proteome of the biopsies will be solubilized using ultrasonic energy. Then, the 

extract will be digested and submitted to a sequential extraction using Zip-Tips. The profile of 

each extract will be obtained using MALDI-TOF-MS and using bioinformatics tools. The most 

promising profile will be further analyzed using Ultra-High-Resolution LC-MS/MS. 

Deliverables: Acquisition of MALDI profiles for chRCC and RO. Identification of the list 

of proteins present in the best profile.  

II.2.1.1.1.1.3 Ultrasonic based Total Protein Approach for the discovery of new biomarkers for RCC 

pathology 

Applying the extraction method developed in WORK PACKAGE 2, the protein content of 

the biopsies will be quantified by label free-based mass spectrometry. Then the total protein 

approach will be also applied to find out biomarkers of diagnosis. Biomarkers will be validated 

using immunohistochemistry. 

Deliverables: Disclosing biomarkers of diagnosis for RCC using the Total Protein 

Approach and validation of a panel of biomarkers by immunohistochemistry.  

II.2.1.1.1.1.4 Phosphopeptide enrichment 

New nano-IMACs based on LA3+ and Ti4+ materials for peptide enrichment will be 

synthetized and characterized. Such nano-IMACs will be used for phosphopeptide enrichment 

from complex proteomes, including RCC samples. 

Deliverables: A new family of nano-IMACs sorbents. Identification of phosphorylated 

peptides characteristic to each tumor subtype. 
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ABSTRACT 

An effective three step proteomic workflow is proposed to overcome the pitfalls 

caused by polymers present in OCT-embedded tissue during preparation for mass 

spectrometry analysis. First, the OCT-embedded tissue biopsies are cleaned using 

ethanol and water, in a sequential series of ultrasonic washes in an ultrasound bath (35 

kHz ultrasonic frequency, 100% ultrasonic amplitude, 2 min ultrasonic duty time). 

Second, a fast ultrasonic-assisted extraction of proteins is done using an ultrasonic 

probe (30 kHz ultrasonic frequency, 50% ultrasonic amplitude, 2 min ultrasonic duty 

time, 1 mm diameter tip). Third, a rapid ultrasonic digestion of complex proteomes is 

performed using a microplate horn assembly device (20 kHz ultrasonic frequency, 25% 

ultrasonic amplitude, 4 min ultrasonic duty time). As proof of concept, the new workflow 

was applied to human normal and tumor kidney biopsies including chromophobe renal 

cell carcinomas (chRCC) and renal oncocytomas (RO). A successful cluster of 

proteomic profiles was obtained comprising 511 and 172 unique proteins found in 

chRCC and RO samples, respectively. The new method provides high sample 

throughput and comprehensive protein recovery from OCT samples. 

Keywords: OCT-embedded tissues; label-free quantification; mass spectrometry; 

ultrasound energy; chromophobe renal cell carcinoma; renal oncocytoma 

III.1 INTRODUCTION 

The identification and quantification of proteins in liquid or solid tumor biopsies by mass 

spectrometry (MS) is essential for optimal medical diagnosis and prognosis and may help to 

identify novel targets for therapies against disease [1–4]. In the case of solid tumors, tissue 

preservation involves the use of formaldehyde for protein fixation followed by embedding in 

paraffin; or flash-freezing, unfixed tissues in polymers such as optimum cutting temperature 

compound (OCT). Formaldehyde chemically modifies proteins resulting in lower yields after 

extraction and fewer proteins identified by tandem MS [5–7]. Likewise, polyethylene glycol 

(PEG) and polyvinyl alcohol polymers (PVA) in OCT interfere with peptide analysis by LC-

MS/MS, because of ion signal suppression caused by such polymers [8–10]. Due to the high 

solubility of PEG and PVA in aqueous solutions, most methods for removal of polymer 

contaminants from OCT-embedded samples, include washing tissue biopsies with ethanol and 

water as reported by Loken et al. [11], and Zhang et al. [12]. This remains the most common 

method to clean samples embedded in OCT [13–15]. Other approaches include (i) protein 

precipitation with diethyl ether-methanol [16,17] or TCA [18], (ii) filter-aided sample preparation 
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(FASP) of tissues [16], (iii) sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) [16] and (iv) solid-phase extraction [19,20].  

The advent of ultrasound as a tool in analytical and bioanalytical laboratories has 

gained momentum in proteomics [21]. Ultrasonic energy can be used (i) in the cleaning of 

samples [22], (ii) in accelerating digestion of complex proteomes [23], (iii) in reducing the time 

and handling necessary in tedious proteomics workflows [24] and (iv) can be scaled up for use 

in high-throughput applications [25,26]. 

In this work, we present a novel ultrasonic-based pipeline to interrogate the proteome of 

OCT-embedded tissue biopsies. To this end ultrasonic energy is used first, to speed up the 

OCT cleaning process, then to increase protein extraction and solubilization and finally to 

expedite the overall protein digestion workflow. As a proof of concept, the proteome of chRCC 

and RO tumors was evaluated by MS and compared with normal adjacent kidney tissues (NAT) 

as biological control samples. 

III.2 EXPERIMENTAL SECTION 

III.2.1 MICE TISSUE SAMPLES  

Mouse kidneys were purchased from Patricell Limited Ltd (UK).  

III.2.2 HUMAN BIOPSIES  

The human kidney tissue samples were collected by the University of Pittsburgh 

Biospecimen Core’s and the study was approved by the Institutional Review Board at the 

University of Pittsburgh (IRB # 02-077). All neoplasms contained a minimum of 90% tumor cells 

and NAT specimens were at least 90% normal cells. Data of patients enrolled in this study are 

summarized in Table III.1. 

III.2.3 OPTIMIZATION OF OCT CLEANING USING MOUSE KIDNEY SAMPLES  

Mice kidney were used as a surrogate for optimization purposes. The mice kidney were 

placed in a mortar filled with liquid nitrogen and reduced to powder using a pestle. The powder 

was divided in aliquots of approximately 10 mg each. Nine samples were preserved by 

embedding in OCT compound, ensuring that the tissues were completely covered. Three 

aliquots were frozen without OCT, and all aliquots were stored in the freezer at -60 ºC. Later, 

the OCT-embedded tissues were subjected to the OCT cleaning protocol according to the 

method proposed by Zhang et al. [12] with modifications. According to the authors, the polymers 

in the OCT compound can be removed through a series of ethanol and water washes. 

In our approach, the washing steps were done following three different treatments:  
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(i) Ultrasonic (US) bath, at 35 kHz for 2 min at 100% ultrasonic amplitude;  

(ii) US bath at 130 kHz for 2 min at 100% ultrasonic amplitude; and  

(iii) Gentle vortex agitation as control. 

Washing was performed as follows:  

(i) 1 ml 70% (v/v) ethanol at 4 ºC was added to the OCT-embedded samples, washed 

by one of the three above treatments followed by centrifugation at 4 ºC for 2 min (5,000 g). The 

supernatant was carefully removed, and the procedure was repeated once. 

(ii) The pellet was washed with 1 ml of water at 4 ºC and submitted to the same 

treatment as before followed by centrifugation at 4 ºC for 2 min (5,000 g). The supernatant was 

carefully removed, and this cleaning step was performed 5 times.  

 

 

III.2.4 OCT CLEANING OF HUMAN KIDNEY BIOPSIES  

Human kidney biopsies embedded in OCT were thawed and excess OCT was removed. 

The biopsies were cleaned using the optimum methodology obtained with mice kidney samples: 

US bath at 35 kHz for 2 min at 100% ultrasonic amplitude. At the end of the cleaning steps, the 

biopsies were frozen with liquid nitrogen and reduced to a powder.  

 

Table III.1. Description of human kidney biopsies used in the study. 

BIOPSY AGE GENDER DIAGNOSIS* 
SAMPLE 
TYPE* 

N1 50-59 Male RCC NAT 

N2 40-49 Female Papillary NAT 

N3 50-59 Female RCC NAT 

N4 70-79 Female RCC NAT 

N5 70-79 Male RCC NAT 

C6 70-79 Male RCC chRCC 

C7 60-69 Female RCC chRCC 

C8 70-79 Male RCC chRCC 

C9 50-59 Female RCC chRCC 

C10 80-89 Male RCC chRCC 

O11 80-89 Male RCC RO 

O12 60-69 Female RCC RO 

O13 60-69 Male RCC RO 

*RCC: renal cell carcinoma; NAT: normal adjacent tissue; chRCC: chromophobe renal cell carcinoma; RO: 
renal oncocytoma. 
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III.2.5 OPTIMIZATION OF PROTEIN EXTRACTION FROM MOUSE KIDNEY SAMPLES  

OCT-free tissues were extracted in 8 M urea prepared in 25 mM Ambic buffer (ratio: 

100 µL buffer to 10 mg of tissue). Protein extraction was done three times over the same 

sample, utilizing an ultrasonic processor UP50H (50 w, 30 kHz, 1 mm diameter probe tip) 

operating at 50% ultrasonic amplitude for 2 min in pulsed mode (10 sec on; 10 sec off). After 

each ultrasonic extraction, the sample was centrifuged at 10,000 g for 10 min, and then the 

supernatant was transferred to a new tube. Then the protein content from each supernatant was 

precipitated using the DOC/TCA and acetone method. Briefly, 1 µL of 2% (w/v) DOC were 

added to each 100 µL of supernatant and left on ice for 30 min. Subsequently, 25 µL of 100% 

TCA were added to the mixture and the samples left on ice for 20 min, followed by 

centrifugation at 4 ºC for 20 min (16,000 g). The supernatant was removed, and the pellets were 

washed with 200 µL of ice-cold acetone (-20 ºC), followed by centrifugation (16,000 g for 20 min 

at 4 °C). Then, 20 µL of 0.2 M NaOH were added to the protein pellet followed by a 2 min 

incubation at room temperature and addition of 80 µL of 6 M urea in 25 mM Ambic. The protein 

pellet was dissolved using four cycles of 10 sec of ultrasonic energy through an ultrasonic 

processor UP50H (50 w, 30 kHz, 1 mm diameter probe tip) operating at 50% ultrasonic 

amplitude. Five second intervals occurred between ultrasonic cycles. Finally, the total protein 

content of each supernatant (n = 3) was determined by the Bradford protein assay. 

III.2.6 PROTEIN EXTRACTION IN HUMAN KIDNEY SAMPLES  

Human biopsies with OCT removed were placed in a mortar filled with liquid nitrogen 

and reduced to powder using a pestle. Proteins where extracted from the resulting power, using 

8 M urea/ 25 mM Ambic buffer (ratio: 100 µL buffer to 10 mg of tissue). The solid-liquid 

extraction process was done under an ultrasonic field provided by an ultrasonic processor 

UP50H (50 w, 30 kHz, 1 mm diameter probe tip) operating at 50% ultrasonic amplitude for 2 min 

in pulsed mode (10 sec on; 10 sec off). The ultrasonic-assisted protein extraction procedure 

was performed twice over each sample, as described in the previous section, and then 

supernatants were combined. The protein extract was submitted to precipitation and 

quantification as described for mouse kidney samples. 

Reduction and Alkylation. Twenty µL of combined supernatants were reduced with 

addition of 2 μL of 110 mM DTT. The sample was then vortexed and incubated for 60 min at 37 

°C. The resulting cysteines were blocked with 2 μL of 600 mM IAA. The sample was vortexed 

and incubated for 45 min at room temperature in the dark followed by dilution to a final volume 

of 100 μL with 25 mM Ambic. 

III.2.7 ULTRASONICALLY ASSISTED IN-SOLUTION DIGESTION OF PROTEINS  

For protein digestion, 50 µg total protein were mixed with trypsin in a 1:20 (w/w) ratio. 

Trypsin digestion was performed in the microplate horn assembly device under the following 
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operating conditions: 25% ultrasonic amplitude, 4 min ultrasonic duty time in pulsed mode (30 

sec on, 15 sec off). Finally, formic acid was added to obtain a final concentration of 0.1% (v/v) to 

stop the enzymatic activity and the digested samples were evaporated to dryness. 

III.2.8 MALDI-TOF-MS  

To evaluate the efficiency of OCT removal during the cleaning procedure, 10 µL of 

cleaning solution were withdrawn from the supernatant after each cleaning step for analysis by 

MALDI-TOF-MS. A solution of DHB (10 mg/mL), resuspended in NaBF4 (10 mg/mL), was used 

as MALDI matrix. Samples were mixed with matrix solution in a ratio of 1:1, hand-spotted in 

duplicate on to a MALDI target and allowed to air dry. The MALDI TOF/TOF mass spectrometer 

was operated in positive ion mode using a reflectron, and spectra were acquired in the m/z 

range of 600–3500. A total of 500 spectra were acquired for each sample at a laser frequency 

of 50 Hz. A solution of 0.2 mM PEG 1000 was used as reference. 

III.2.9 NANO-LC-ESI-MS/MS ANALYSIS  

The LC-MS/MS analysis was carried out using an Ultimate 3000 nLC coupled to an 

UHR-QqTOF IMPACT HD (Bruker Daltonics) with a CaptiveSpray ion source (Bruker Daltonics). 

All samples were reconstituted to a final digested protein concentration of 0.25 µg/µL in 3% 

ACN/0.1% (v/v) aqueous formic acid. Three µL of each sample was loaded into a trap column 

Acclaim PepMap100, 5 μm, 100 Å, 300 μm i.d. × 5 mm and desalted for 5 min with 3% B (B: 

90% ACN/0.1% FA) at a flow rate of 15 μL/min. Chromatographic separation was carried out 

using an analytical column Acclaim™ PepMap™ 100 C18, 2 μm, 0.075 mm i.d x 150 mm with a 

linear gradient at 300 nL/min (mobile phase A: aqueous FA 0.1% (v/v); mobile phase B 90% 

(v/v) ACN and 0.08% (v/v) FA), 0-5 min with 3% of mobile phase B, 5-95 min from 3% to 35% of 

mobile phase B, 95-105 min linear gradient from 35% to 95% of mobile phase B, 105-115 with 

95% of mobile phase B. The total run time was 130 min. For each sample, two replicate 

injections were performed. Chromatographic separation was carried out at 35 ºC. MS 

acquisition was set to cycles of MS (2 Hz), followed by MS/MS (8–32 Hz), cycle time 3.0 

seconds, with active exclusion (precursors were excluded from precursor selection for 0.5 min 

after acquisition of 1 MS/MS spectrum, intensity threshold for fragmentation of 2500 counts). 

Together with active exclusion set to 1, reconsider precursor if the intensity of a precursor 

increases by a factor of 3, this mass will be taken from temporary exclusion list and fragmented 

again, ensuring that fragment spectra were taken near to the peak maximum. All spectra were 

acquired in the range 150–2200 m/z. 

III.2.10 DATA ANALYSIS AND STATISTICS  

Raw LC-MS/MS data were processed in DataAnalysis 4.2 and subsequently exported to 

Protein-Scape 4.0 for automated protein identification. CID-MS2 spectra were first searched 
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against the M. musculus (16,230 sequences) or H. sapiens (20,266 sequences) subset of the 

SwissProt database 57.15 (515,203 sequences; 181,334,896 residues), using the Mascot 

search engine (V. 2.3.02) with the following parameters: (i) two missed cleavage; (ii) fixed 

modifications: carbamidomethylation (C); (iii) variable modifications: oxidation of methionine, 

Acetyl (Protein N-term), Glu- > pyro-Glu (N-term E), Gln- > pyro-Glu (N- term Q), (vi) peptide 

mass tolerance up to 20 ppm, (v) fragment mass tolerance 0.05 Da and (vi) FDR adjusted to 

1%. Label-free quantification was carried out using MaxQuant software (version 1.6.0.16). All 

raw files were processed in a single run with default parameters [27,28]. Database searches are 

performed using the Andromeda search engine with the SwissProt M. musculus database as 

reference and a database of common contaminants. Data processing was performed using 

Perseus (version 1.6.2.3) with default settings [29]. In brief, protein groups LFQ intensities were 

log2-transformed to reduce the effect of outliers. Missing LFQ values were imputed using default 

parameters (with = 0.3 and down shift = 1.8). Log ratios were calculated as the difference in 

average log2 LFQ intensity values between the two conditions tested (two-tailed Student’s t-test, 

FDR 0.01 and S0 = 1.5). 

III.3 RESULTS AND DISCUSSION 

III.3.1 OPTIMIZATION OF OCT CLEANING  

To remove OCT embedding material from tissues we modified the method of Zhang et 

al. [12] by performing the cleaning process under an ultrasonic field. Figure III.1 presents the 

entire workflow that was used to optimize the ultrasonic-based OCT removal from biopsies and 

the subsequent protein extraction and digestion to peptides. Mouse kidney tissue embedded in 

OCT was used in the optimization process. The mouse kidneys were powdered using liquid 

nitrogen, as described in the experimental section, III.2.3 Optimization of OCT cleaning using 

mouse kidney samples. OCT can be removed from tissues with water [12], but some proteins 

might be lost during this process. To avoid this problem, proteins were first fixed with ethanol 

70% (v/v) under ultrasonication. Next, the OCT was removed by washing the samples with 

water in an ultrasonic field. Two conditions were tested: (i) ultrasonic (US) bath at 35 kHz, 100% 

ultrasonic amplitude, and (ii) US bath at 130 kHz, 100% ultrasonic amplitude. For comparative 

purposes, samples were cleaned for 2 min with water by gentle mixing using a vortexer. After 

each washing step an aliquot was analyzed by MALDI-TOF to check for the presence of OCT. 
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Figure III.1 - Schematic representation of OCT removal from mouse kidney. First the proteins are fixed 
by washing the tissues with ethanol 70% (v/v). Next, the OCT was removed by washing the samples 
with water under the effects of an ultrasonic field in an ultrasonic bath. Two conditions were tested: (i) 
ultrasonic (US) bath at 35 kHz, 100% ultrasonic amplitude and (ii) US bath at 130 kHz, 100% ultrasonic 
amplitude. A third condition was also performed using vortex shaking for comparison. All procedures 
were applied for 2 min. 

 

Figure III.2 depicts the spectra obtained after five water cleaning cycles for the three 

conditions. As it might be seen the spectrum of the supernatant treated with the US bath at 35 

kHz (condition I) presents OCT peaks with lower intensity than the US bath at 130 kHz 

(condition II) and vortex shaking (condition III). In fact, Fernandes et al. [30] have already 

described the use of the US bath at 35 kHz for fast and high throughput sample treatment for 

polymer characterization. 

III.3.2 OPTIMIZATION OF PROTEIN EXTRACTION  

After OCT removal, the proteins were extracted using an ultrasonic processor UP50H 

following a procedure we previously established [31] with modifications (see optimization of 

protein extraction from mouse kidney samples from experimental section). In brief, each pellet 

was extracted three times using an ultrasonic probe and the supernatants were collected for 
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new tubes, after centrifugation. The total protein content was determined for individual and 

pooled extracts by Bradford protein assay. As shown in Figure III.3A, the three procedures we 

tested showed similar protein yields regardless of the cleaning protocol. Figure III.3A shows 

also that almost all the protein content is recovered in the first cycle of extraction, 1st 

supernatant, about 87-93%. With a second cycle of extraction the amount of protein is 

increased up to 10%, while a third cycle only adds up to a 3% of the total protein recovered. For 

this reason, two cycles of homogenization were the number of extractions chosen for further 

experiments. 

 

 

Figure III.2 - MALDI-TOF-MS spectra of supernatants obtained after five water cleaning steps for each 
condition assessed.  The cleaning conditions evaluated were: (i) condition I: US bath at 35 kHz 
ultrasonic frequency, 2 min ultrasonic duty time and 100 % ultrasonic amplitude, (ii) condition II: US bath 
at 130 kHz ultrasonic frequency, 2 min ultrasonic duty time and 100 % ultrasonic amplitude, and (iii) 
condition III: vortexer, 2 min vortexing time. 

 

III.3.3 PROTEIN IDENTIFICATION  

The protein extracts were submitted to in-solution protein digestion. Trypsin digestion 

was performed with the aid of ultrasonication using a microplate horn assembly device as 

described in Jorge et al [26]. Finally, the resultant pools of peptides were analyzed by LC-

MS/MS. The analysis resulted in the identification of 1510, 1419 and 1388 unique proteins for 

samples treated with US bath 35 kHz, US bath 130 kHz and vortexer, respectively (Figure 

III.3B). This result is consistent with the larger number of unique peptides obtained when the 

cleaning protocol is done with the ultrasonic bath at 35 kHz. Almost 1000 more unique peptides 

are obtained when compared with the vortexer method Figure III.3C). This is also consistent 

with the fact that after five washing cycles, the levels of OCT removed from the samples using 
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the US bath at 35 kHz are negligible if compared to the other two conditions, thus indicating a 

more efficient removal of OCT. 

 

 

Figure III.3 – Comparison between different cleaning procedures from OCT-embedded mouse kidney 
samples. A. Amount of protein recovered per mg of tissue homogenized for each one of the three 
extracting cycles. Green: first extraction supernatant. Red: second extraction supernatant. Grey: third 
extraction supernatant. Three independent samples for each OCT cleaning procedure were evaluated. B. 
Number of (i) PSMs (Peptide Spectrum Matches), (ii) peptides, and (iii) proteins identified by LC-MS/MS 
analysis. C. Venn diagram showing the number of non-redundant peptides, both shared and unique, for 
each cleaning procedure. D. Venn diagram representing the number of overlapped proteins identified 
between condition I and condition STD. E. Volcano plot representation of the differentially expressed 
proteomes between condition I and condition STD. The red squares represent most abundant proteins 
present in blood (two-tailed, Student’s t-test, FDR 0.01, S0 = 1.5). The conditions evaluated were (1) 
cleaning procedures: (i) condition I: US bath at 35 kHz ultrasonic frequency, 2 min ultrasonic duty time 
and 100% ultrasonic amplitude, (ii) condition II: US bath at 130 kHz ultrasonic frequency, 2 min ultrasonic 
duty time and 100 % ultrasonic amplitude, and (iii) condition III: vortexer, 2 min shaking time; (2) protein 
extraction and protein digestion were the same for each one of the cleaning conditions tested. Condition 
STD: for comparative purposes, fresh frozen tissues were also assessed as standard treatment. Fresh 
frozen tissues proteins were extracted and digested with trypsin following the same conditions as the 
OCT-cleaned samples. 
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The best performance obtained with the US bath at 35 kHz may be explained by the 

fact that the cavitation bubbles generated at 35 kHz frequency are larger compared to higher 

frequencies and their collapse results in shockwaves that promote mechanical shearing and 

surface disruption, thus leading to improved tissue breakdown. On the other hand, the cavitation 

bubbles generated at 130 kHz are much smaller, and their collapse induces a higher increase in 

temperature, but they are less effective for disrupting solid surfaces [32,33]. As a matter of fact, 

when ultrasound energy is applied on an aluminum foil, the ultrasonic field generated by the 35 

kHz frequency promotes the disruption of the foil, whereas when it is treated within the 

ultrasonic field generated by the 130 kHz frequency it remains intact under visual inspection 

(Figure SM IX.1, Supplementary information). Therefore, we selected the US bath protocol at 35 

kHz ultrasonic frequency, 2 min ultrasonic duty time and 100% ultrasonic amplitude as optimum 

conditions to clean OCT embedded tissue samples.  

III.3.4 COMPARISON OF ULTRASONIC OCT-CLEANING METHOD TO FRESH FROZEN 

TISSUES  

Fresh frozen tissues are considered the gold-standard for clinical mass spectrometry-

based research and we included this preparation as an important control in this study. 

Both frozen and OCT preparations were submitted to the same protocols for protein 

extraction and protein digestion. Figure III.3D shows that the number of proteins identified was 

about 13% higher for the fresh frozen tissue. This is consistent with the results achieved by 

Zhao et al. [18] which have compared OCT-embedded and fresh frozen samples of squamous 

cell carcinoma. On the other hand, fresh frozen preserved tissues retain some blood, which 

originates a higher number of identified proteins. Such explanation has been proved by Petris et 

al. [34], who suggest that blood contaminants can be removed from tissue samples through 

filtration and sequential washings. In our case the blood present in OCT-embedded tissue 

samples is likely separated during the cleaning steps under the effects of an ultrasonic field, 

whilst the fresh frozen were not submitted to such cleaning steps. Also, this effect can be seen 

in Figure III.3A, which shows that the amount of total protein per mg of tissue is higher in the 

fresh-frozen samples than in the OCT-cleaned ones. Moreover, Figure III.3E shows as red 

squares most abundant proteins in blood with a fold change higher than 1.5 present in the fresh 

frozen samples when compared to the OCT-preserved samples. List of quantified proteins are 

provided in Table ESM IX.1 of Supplementary information.  

III.3.5 PROOF-OF-CONCEPT: IMPLEMENTATION OF ULTRASONIC OCT-CLEANING 

PROCEDURE FOR THE CLASSIFICATION OF HUMAN KIDNEY BIOPSIES  

Figure III.4 shows a schematic representation of the workflow for protein extraction from 

OCT-embedded human kidney biopsies. Ultrasonication was applied three times, once during 
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the cleaning procedure (ultrasonic bath), another time during protein extraction (ultrasonic 

probe) and finally during protein digestion (ultrasonic 96-well plate).  

 

 

Figure III.4 – Schematic representation of human renal OCT-embedded tissue analysis workflow.  The 
optimized method obtained to remove OCT (condition I: US bath at 35 kHz ultrasonic frequency, 2 min 
ultrasonic duty time and 100% ultrasonic amplitude) was applied to human biopsies.  Proteomic 
analysis was carried out by nanoLC-MS/MS. 

 

Renal biopsies diagnosed as chromophobe renal cell carcinoma (n = 5) or renal 

oncocytoma (n = 3) were interrogated by mass spectrometry. Normal adjacent tissue, NAT, (n = 

5) were used as control. Intra and inter tumor heterogeneity are presented in Figure SM IX.2 of 

Supplementary information. Once the mass spectrometry data was obtained (90 min LC-MS/MS 

runs), the samples were grouped using an unsupervised clustering algorithm. The results 

shown in Figure 5A depict classification of mass spectrometry replicates for each sample 

matched together and their clustering. These findings suggest that the proteomics profiles 

expressed by each tissue type contains a unique fingerprint, that potentially allows 

discrimination of each sample type.  

The number of proteins identified was 1798, 1276 and 1641 (Table ESM IX.2, Table 

ESM IX.3 and Table ESM IX.4 of Supplementary information), and of unique proteins was 511, 

172 and 518 for chRCC, RO and NAT type-biopsies respectively (supporting information Table 

ESM IX.5, Table ESM IX.6 and Table ESM IX.7 of Supplementary information), as seen in Figure 
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III.5B. The large number of unique proteins for each group may explain the precise clustering 

depicted in Figure III.5A.  

 

 

Figure III.5 – A. Unsupervised hierarchical cluster analysis of the proteomic profiles obtained for normal 
adjacent tissue (NAT), renal oncocytoma (RO) and chromophobe renal cell carcinoma (chRCC). B. 
Venn diagram showing the number of common and unique proteins achieved for each tissue type. 

III.4 CONCLUSIONS 

A new ultrasonic-based methodology for proteomic analysis of OCT-embedded tissues 

and biopsies was developed. The method comprised the OCT cleaning, the protein solid-liquid 

extraction and the protein cleavage steps using ultrasonication. An ultrasonic bath is used for 

cleaning purposes, then an ultrasonic probe is used for the solid-liquid extraction of proteins 

from the solid biopsies. Finally, a microplate horn assembly is used to accelerate the cleavage 

of the extracted proteome. When compared with traditional cleaning, the ultrasonic based 

method (US bath 35 kHz at 100% of ultrasonic amplitude for 2 min ultrasonic duty time) 

delivered a higher number of identifiable proteins. This method can be adapted to a microplate, 
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making it possible to obtain the proteome of 96 biopsies in one day. This approach will allow 

high-throughput proteomic interrogation of retrospective biospecimen repositories which contain 

vast numbers of valuable tissues preserved in OCT. In addition, this proof of concept study 

suggests that our proteomic protocol may allow us to successfully distinguish chromophobe 

renal cell carcinoma from renal oncocytoma which is of potential clinical value in kidney cancer 

diagnosis and therapy. 
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ABSTRACT 

A novel analytical approach is proposed to discriminate between solid biopsies 

of chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO). The 

method comprises the following steps: (i) ultrasonic extraction of proteins from solid 

biopsies, (ii) protein depletion with acetonitrile, (iii) ultrasonic assisted in-solution 

digestion using magnetic nanoparticle with immobilized trypsin, (iv) C18 tip-based 

preconcentration of peptides, (v) sequential extraction of the peptides with ACN, (vi) 

MALDI-snapshot of the extracts and (vii) investigation of the extract containing the most 

discriminating features using high resolution mass spectrometry. With this approach we 

have been able to differentially cluster renal oncocytoma and chromophobe renal cell 

carcinoma and identified 18 proteins specific to chromophobe and seven unique to 

renal oncocytoma.  Chromophobes express proteins associated with ATP function 

(ATP5I & 5E; VATE1 & G2; ADT2), glycolysis (PGK1) and neuromedin whilst 

oncocytomas express ATP5H, ATPA, DEPD7 and TRIPB thyroid receptor interacting 

protein. 

Keywords: Renal oncocytoma, chromophobe renal cell carcinoma, renal cancer, 

MALDI, profiling ESI, sequential extraction 

IV.1 INTRODUCTION 

Renal cell carcinoma is the 12th most frequently diagnosed cancer worldwide with 5% 

classified as chromophobe renal cell carcinoma (chRCC) which requires therapeutic radical or 

partial nephrectomy. Diagnosis of chRCC is complicated by morphological and histological 

features that overlap with renal oncocytoma (RO), a benign neoplasm that occurs at a similar 

frequency (5%) but has a positive prognosis and does not require aggressive treatment. For 

instance, staining for CD117, which is used to distinguish chRCC from other malignant subtypes 

of RCC, is helpless to discriminate chRCC of RO. As another example, when staining is done 

with cytokeratin 7 (CK7), a diffuse staining pattern in presented in chRCC with pale cells. Yet, in 

the eosinophilic variant of chRCC, CK7 staining is limited and very similar to RO [1–3]. Despite 

the efforts to find biomarkers to distinguish these two tumors, a unique pattern for each one 

remains to be undisclosed. Therefore, there is an urgent need for new methods that can 

effectively differentiate between these renal neoplasms.  

In biomedical research, sample treatment is considered a bottleneck in analysis due the 

large number of steps needed to make the samples ready for analysis. To overcome this 

problem, diverse extraction techniques, including solid-phase extraction (SPE), liquid-liquid 
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extraction (LLE), or protein precipitation, have been used in sample preparation of biomolecules 

of interest. Moreover, extraction procedures are currently used in biomedical analysis and 

research to simplify the matrix, clean-up the sample and/or selectively enrichment of a given 

analyte [4–10]. Among these extraction procedures, on-a-tip SPE strategies has been widely 

applied in the proteomic field, specially C18 resin packed on-a-tip. Thus, the sequential 

extraction of peptides with C18-based tips has been used to reduce proteome complexity of 

biological samples through sequential extraction of peptides followed by mass spectrometry 

interrogation with the aim of finding biomarkers of diseases [11]. Taking into consideration the 

problems and solutions described above, a methodology to elucidate differences between 

chromophobe renal cell carcinoma and renal oncocytoma has been developed as follows. First, 

the sample treatment is optimized to reduce proteome complexity using ultrasonic assisted 

protein extraction from solid biopsies. The substrates then undergo (i) protein depletion with 

acetonitrile, ACN, (ii) ultrasonic assisted in-solution digestion using magnetic nanoparticle with 

immobilized trypsin, (iii) peptide preconcentration with C18-tips and (iv) peptide sequential 

extraction with ACN [12–14]. Finally, MALDI mass spectrometry was employed to provide a 

snapshot of the tumor proteomes revealing the most discriminative features specific to chRCC 

versus RO. The extracts were further investigated using nano-HPLC and high-resolution mass 

spectrometry (nano-LC-HR-MS). This tool may be extended to any disease presenting similar 

pathological profiles but with different outcomes. The method here presented can be extended 

to large cohort of samples using the high throughput provided by the 96-well plate-based 

ultrasonic approach [15], thus holding the promise of being used in routine medical assays.  

IV.2 EXPERIMENTAL SECTION 

IV.2.1 REAGENTS  

All reagents used were HPLC or electrophoresis grade. Coomassie brilliant blue G-250, 

urea, albumin from bovine serum (BSA), Bradford reagent, iodoacetamide (IAA), ammonium 

dihydrogen-phosphate (NH4H2PO4), N,N,N’,N’ – tetramethylethylene diamine (TEMED), and 

trichloroacetic acid (TCA) were purchased from Sigma-Aldrich (Basel, Switzerland). Ammonium 

bicarbonate (Ambic), α-cyano-4-hydroxy-cinnamic acid (α-CHCA) were purchased from Fluka 

(Basel, Switzerland). Trifluoroacetic acid (TFA) was purchased from Thermo Fischer Scientific 

(Waltham, MA, USA). Ammonium persulphate (APS) and tris base were purchased from 

NZYTech (Lisbon, Portugal). Acetonitrile (ACN) and formic acid (FA) were purchased from 

Carlo Erba Reagents (Val de Reuil, France). Dithiothreitol (DTT) and 4x Laemmli SDS sample 

buffer were purchased from Alfa Aesar (Karlsruhe, Germany). 10x tris/glycine/SDS running 

buffer and precision plus protein™ standards unstained were purchased from Bio-Rad (CA, 

USA). Pierce™ C18 tips, 100 µL bed were purchased from Thermo Fisher Scientific. Peptide 

calibration standard II from Bruker (Bremen, Germany) was used as a mass calibration standard 

for MALDI-TOF-MS measurements. 
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IV.2.2 MATERIAL  

Protein digestion was done in Eppendorf safe-lock tubes of 0.5 mL volume (Hamburg, 

Germany). A vacuum concentrator centrifuge model UNIVAPO 150 ECH Speed Vac and a 

vacuum pump model UNIJET II (Munich, Germany) were used for sample drying and sample 

pre-concentration. A mini incubator from Labnet (New Jersey, USA) was used for protein 

reduction steps. Vortex models ELMI CM70M-09 SkyLine (Southern California, USA), and 

Prism™ R refrigerated microcentrifuge, VX-200 Lab vortex mixer, AccuBlock™ digital dry baths 

from Labnet (New Jersey, USA), were used throughout the sample treatment. CLARIOstar® 

high performance monochromator multimode microplate reader from BMG LABTECH 

(Germany) was used for Bradford assays. Mini-PROTEAN tetra cell and PowerPac™ basic 

power supply from Bio-Rad (CA, USA) was used for SDS-PAGE protein separation. Image gels 

were obtained using a ProPic II gel imaging (Digilab-Genomic Solutions, USA). An ultrasonic 

processor UP50H (50 W, 30 kHz, 1 mm diameter probe tip) from Hielscher Ultrasonics (Teltow, 

Germany) was used for tissue homogenization. An ultrasonic bath, model TI-H-5, from Elma 

(Singen, Germany) with control of temperature and amplitude was used to sample cleaning and 

enhance protein depletion, and a sonoreactor model UTR200 from Dr.Hielscher (Teltow, 

Germany) was used to accelerate enzymatic digestions. Acquisition of mass spectrometry data 

was done using an Ultraflex II MALDI-TOF/TOF and an UHR-QqTOF IMPACT HD from Bruker 

Daltonics (Bremen, Germany). Chromatographic separation of peptides was carried out using 

an Ultimate 3000 nLC nano-system equipped with a trap-column Acclaim PepMap100, 5 μm, 

100 Å, 300 μm i.d. × 5 mm (Thermo Fisher Scientific) and an analytical column Acclaim™ 

PepMap™ 100 C18, 2μm, 0.075mm i.d x 150mm (Thermo Fisher Scientific). 

IV.2.3 KIDNEY SAMPLES 

The human kidney tissue samples were collected by the University of Pittsburgh 

Biospecimen Core’s and the study was approved by the Institutional Review Board at the 

University of Pittsburgh (IRB # 02-077). All neoplasms contained a minimum of 90% tumor cells 

and NAT specimens were at least 90% normal cells. Data of patients enrolled in this study are 

summarized in Table IV.1.  
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IV.2.4 EXTRACTING PROTEINS FROM KIDNEY BIOPSIES  

The OCT-embedded tissues were treated as described in Jorge et al. [16]. Initially 

washed with 2 ml of 70% (v/v) ethanol at 4 ºC, submitted to ultrasound energy using an 

ultrasonic bath, 35 kHz, for 2 min, 100% amplitude, and centrifuged at 4 ºC for 2 min (5,000 g). 

The supernatants were carefully removed, and the procedure was repeated. Cell pellets were 

then washed with 2 ml of water at 4 ºC, sonicated again using an ultrasonic bath, 35 kHz for 2 

min at 100% amplitude, and centrifuged at 4 ºC for 2 min (5,000 g). Then, the supernatant was 

carefully removed, and the above steps were performed five times for each pellet. After OCT 

cleaning, each pellet was placed in a mortar and ground to a powder in liquid nitrogen using a 

pestle. The resulting powder was extracted for protein in 8 M urea/ 25 mM Ambic buffer (ratio: 

100 µL buffer to 10 mg of tissue) using an ultrasonic processor UP50H (50 w, 30 kHz, 1 mm 

diameter probe tip) operating at 50% amplitude for 2 min in a pulsed mode, 10 sec on/10 sec 

off. The samples were centrifuged at 10,000 g for 10 min and the supernatants were transferred 

to new tubes. The ultrasonic extraction procedure was repeated for the pellets and the second 

supernatant was combined with the first to produce the final protein extract. Each protein extract 

was precipitated using the DOC/TCA and acetone method. Briefly, to each 300 µL of protein 

extract, 3 µL of 2% DOC were added and left on ice for 20 min, then 75 µL of 100% TCA were 

added to the mixture and the samples were left on ice for 20 min, followed by centrifugation at 4 

ºC for 20 min (16,000 g). The supernatant was removed, and the pellets were washed with 200 

mL of ice-cold acetone (-20 ºC), followed by centrifugation (16,000 g for 20 min at 4 °C). Then, 

 

Table IV.1. Description of human kidney biopsies used in the study. 

BIOPSY AGE GENDER DIAGNOSIS* SAMPLE TYPE* 

N1 50-59 Male RCC NAT 

N2 40-49 Female Papillary NAT 

N3 50-59 Female RCC NAT 

N4 70-79 Female RCC NAT 

N5 70-79 Male RCC NAT 

C6 70-79 Male RCC chRCC 

C7 60-69 Female RCC chRCC 

C8 70-79 Male RCC chRCC 

C9 50-59 Female RCC chRCC 

C10 80-89 Male RCC chRCC 

O11 80-89 Male RCC RO 

O12 60-69 Female RCC RO 

O13 60-69 Male RCC RO 

*RCC: renal cell carcinoma; NAT: normal adjacent tissue; chRCC: chromophobe renal cell carcinoma; 
RO: renal oncocytoma. 
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20 µL of 0.2 M NaOH were added to the protein pellet, and after 2 min at room temperature, 80 

µL of 6 M urea in 25 mM Ambic were added. The proteins were solubilized using four cycles of 

10 sec ultrasound energy through an ultrasonic processor UP50H (50 w, 30 kHz, 1 mm 

diameter probe tip) operating at 50% amplitude. Finally, total protein content was determined 

using a Bradford protein assay. This extract was used further as described in the following 

sections. 

IV.2.5 ACN-BASED PROTEIN DEPLETION 

Protein depletion was assayed using extracts containing a total of 250 µg of proteins 

and two different ACN concentrations (v/v): (i) 20% or (ii) 45%. Each extract was prepared in 

triplicate. Then, samples were sonicated using an ultrasonic bath (35 kHz, 100%, 20 min) and 

the pellet formation was then observed after centrifugation at 14,000 g for 10 min, thus allowing 

the separation of the ACN-based precipitated proteins. Thus, two fractions for further study 

were obtained: the supernatant (SN) and the pellets. The SN fractions were evaporated to 

dryness. 

IV.2.6 SDS-PAGE 

To perform the electrophoresis, dried SN samples were resuspended in 55,5 µL of Milli-

Q H2O plus 18.5 µL of 4x Laemmli SDS sample buffer, whilst the pellet was dissolved in 1.9 µL 

of 4x Laemmli SDS sample buffer plus 5.7 µL of Milli-Q water. Five µL of each sample were 

loaded on a 4% acrylamide/bis-acrylamide stacking gel and 12% acrylamide/bis-acrylamide 

running gel at 1mm of thickness. Additionally, 3 µL of molecular weight marker were also 

loaded. The gels were run at 200 V, and 400 mA during 50 min and then stained overnight with 

colloidal Coomassie blue. After staining, the gels were washed with Milli-Q water until a clear 

background was achieved. Gel imaging was carried out with a ProPic II-robot using 14 ms of 

exposure time and a resolution of 70 μm. 

IV.2.7 PROTEIN QUANTIFICATION 

Prior to quantification, samples were resuspended in equal amounts of Milli-Q water 

(184 µL) and then quantified using the Bradford protein assay. Briefly, a BSA standard curve (0, 

0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 μg/μL) was generated in duplicate. In duplicate wells, 5 μL of 

samples were mixed with 250 μL of Bradford reagent. The unknown samples were diluted with 

water to an approximate concentration between 0.4 and 1 μg/μL, then 5 μL of each unknown 

were mixed with 250 μL Bradford reagent. Finally, the samples were incubated at room 

temperature for 20 min, and the absorbances measured at 590 nm through a high-performance 

monochromator multimode microplate reader.  
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IV.2.8 REDUCTION AND ALKYLATION 

IV.2.8.1 Supernatant 

Supernatant fractions were prepared from 60 µg of extract in a volume of 88 µL so that 

the SN could later be split into 6 extracts. The pH of the samples was adjusted with 1 µL of 1 M 

Ambic, to a final concentration of 12.5 mM. Then, proteins were reduced with 9 µL of DTT (110 

mM in 12.5 mM Ambic) and incubated at 37 ºC for 1 hour. The resulting cysteines were blocked 

with 9 µL of IAA (400 mM in 12.5 mM Ambic). Since iodoacetamide is light-sensitive, all tubes 

were kept in darkness for 45 min at room temperature. Free IAA was inactivated by adding 3 µL 

of DTT (110 mM in 12.5 mM Ambic) to each sample. 

IV.2.8.2 Pellet 

The pellet fractions were also reduced and alkylated. Ten µg of total protein were 

prepared in a final volume 115 µL and 1.5 µL of 1 M Ambic was added to adjust the pH to a final 

concentration of 12.5 mM. Proteins were reduced with 12 µL of DTT (110 mM in 12.5 mM 

Ambic) and incubated at 37 ºC for 1 hour. The resulting cysteines were then blocked with 12 µL 

of IAA (400 mM in 12.5 mM Ambic) in the dark for 45 min at room temperature. Finally, free IAA 

was inactivated by adding 4 µL of DTT (110 mM in 12.5 mM Ambic) to each sample. 

IV.2.9 IN-SOLUTION DIGESTION OF SUPERNATANTS AND PELLETS 

In-solution digestion was performed using homemade magnetic nanoparticles with 

immobilized trypsin [17–19]. 20 µL of 3 mg/mL of immobilized trypsin were added to each 

sample, and the samples were digested using an ultrasonic sonoreactor device at 50% 

amplitude for 2 x 2.5 min with temperature constant at 20 ºC. A magnet was subsequently used 

to immobilize the trypsin magnetic beads. The supernatant was transferred to new microtubes 

and evaporated to dryness. 

IV.2.10 PEPTIDE SEQUENTIAL ELUTION 

The samples were resuspended after digestion in 50 µL of 0.1% (v/v) TFA and then 

loaded onto Pierce™ C18 tips with a 100 µL bed for rapid sample desalting and concentrating 

peptides. First, C18 tips had to be activated by aspirating and dispensing five cycles of 50 µL of 

an 80% (v/v) ACN + 0,1% (v/v) TFA solution, and then 50 µL of a 0.1% (v/v) TFA solution (3 

cycles) before sample pipetting. The peptides were retained in the C18 tips by aspirating and 

dispensing the samples 20 cycles. Finally, the C18 tips were washed with 50 µL of 0.1% (v/v) 

TFA twice to remove the salt content, and then were sequentially eluted with 50 µL of different 

ACN concentrations (4%, 7%, 10%, 14%, 35% and 60%) by aspirating and dispensing each 
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concentration 15 cycles, from the lowest to highest concentration. All extracts were then 

evaporated to dryness. 

IV.2.11 MASS SPECTROMETRY 

Samples were resuspended in 10 μL of 0.3% formic acid (v/v) for MS analysis and 0.5 

μL of the sample was hand-spotted, in quintuplicate, onto a MALDI target plate. 1 μL of a matrix 

solution of 7 mg α-cyano-4-hydroxycinnamic acid was dissolved in 90 mM NH4H2PO4, 50% (v/v) 

ACN and 0.1% (v/v) TFA was added and allowed to air dry. The MALDI TOF/TOF mass 

spectrometer was operated in positive ion mode using a reflectron, and spectra were acquired 

in the m/z range of 600–3500. A total of 500 spectra were acquired for each sample at a laser 

frequency of 50 Hz. External calibration was performed with the [M + H]+ monoisotopic peaks of 

bradykinin 1–7 (m/z 757.3992), angiotensin II (m/z 1046.5418), angiotensin I (m/z 1296.6848), 

substance P (m/z 1758.9326), ACTH clip 1–17 (m/z 2093.0862), ACTH18– 39 (m/z 2465.1983) 

and somatostatin 28 (m/z 3147.4710).  

IV.2.12 HIERARCHICAL CLUSTERING ANALYSIS 

The corresponding raw data spectrum of each sample generated by the MS analysis 

was pre-processed with the Mass-Up v1.0.9 open source program (http://sing. ei.uvigo.es/mass-

up/) [20] using the following parameters: (i) intensity transformation (squareroot), (ii) smoothing 

(none), (iii) baseline correction (snip), (iv) standardization (total ion current), (v) peak detection 

(MALDIquant: SNR (3), half window size (60) and (vi) minimum peak intensity (0.001). Peaks 

were matched with the following parameters: (i) intra-sample matching (MALDIquant: tolerance 

(0.002)), selecting the “generate consensus spectrum” box with a percentage of presence of 

60%, (ii) inter-sample matching (MALDIquant: tolerance (0.002)). Then, an agglomerative, 

hierarchical clustering analysis was executed with the following parameters: (i) minimum 

variance (0.1), (ii) peak list (NULL ˃ for no peak filtering), (iii) cluster reference value (average), 

(iv) distance function (hamming), (v) conversion values (presence), (vi) intra-sample minimum 

presence (0), (vii) deep clustering (No). 

IV.2.13 NANO-LC-HR-MS/MS ANALYSIS 

The nanoLC-HR-MS/MS analysis was carried out using an Ultimate 3000 nLC nano-

system coupled to an UHR-QqTOF IMPACT HD (Bruker Daltonics) with a CaptiveSpray ion 

source (Bruker Daltonics). All samples were reconstituted in 50 µL of 3% ACN/0.1% (v/v) 

aqueous formic acid. 5 µL of peptides were loaded into a trap column Acclaim PepMap100, 5 

μm, 100 Å, 300 μm i.d. × 5 mm and desalted for 5 min with 3% of mobile phase B (B: 90% ACN 

0.1% FA) at a flow rate of 15 μL/min. Chromatographic separation was carried out using an 

analytical column Acclaim™ PepMap™ 100 C18, 2 μm, 0.075 mm i.d x 150 mm with a linear 

gradient at 300 nL/min (mobile phase A: aqueous FA 0.1% (v/v); mobile phase B 90% (v/v) 
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ACN and 0.08% (v/v) FA),  0-60 min from 3% to 35% of mobile phase B, 60-70 min linear 

gradient from 35% to 95% of mobile phase B, 70-80 min 95% B. Total run time was 100 min. 

For each sample, two replicate injections were performed. Chromatographic separation was 

carried out at 35 ºC. MS acquisition was set to cycles of MS (2 Hz), followed by MS/MS (8–32 

Hz), cycle time 3.0 seconds, with active exclusion (precursors were excluded from precursor 

selection for 0.5 min after acquisition of 1 MS/MS spectrum, intensity threshold for 

fragmentation of 2500 counts). Together with active exclusion set to 1, reconsider precursor if 

the intensity of a precursor increases by a factor of 3, this mass will be taken from temporarily 

exclusion list and fragmented again, ensuring that fragment spectra were taken near to the peak 

maximum. All spectra were acquired in the range 150–2200 m/z. Raw data were processed in 

DataAnalysis 4.2 and subsequently exported to Protein-Scape 4.0 for automated protein 

identification. For protein identification, CID-MS2 spectra were first searched against the H. 

sapiens (20,266 sequences) subset of the SwissProt database 57.15 (515,203 sequences; 

181,334,896 residues), using the Mascot search engine (V. 2.3.02) with the following 

parameters: (i) two missed cleavage; (ii) fixed modifications: carbamidomethylation (C); (iii) 

variable modifications: oxidation of methionine, Acetyl (Protein N-term), Glu- > pyro-Glu (N-term 

E), Gln- > pyro-Glu (N- term Q), (vi) peptide mass tolerance up to 20 ppm, (v) fragment mass 

tolerance 0.05 Da (vi) Adjust FDR 1%.  

IV.3 RESULTS AND DISCUSSION 

Figure IV.1 shows the comprehensive scheme used for the work presented herein. 

IV.3.1 OPTIMIZATION OF ACN CONCENTRATION TO SIMPLIFY THE PROTEOME 

We have previously shown that plasma samples depleted using ACN a supernatant 

reach in apolipoproteins is obtained [12]. The concentration of proteins of high molecular weight 

remaining in the supernatant decreases dramatically as the ACN concentration is increased. 

Conversely, the amount of high molecular weight proteins in the pellet increases. Because the 

samples used in this case were not plasma, but extracts obtained from tissue biopsies, we first 

performed a set of experiments to assess the effects of ACN on protein depletion. The ACN 

concentrations selected were 20% (v/v) and 45% (v/v) based on our experience with this 

sample treatment [12,21]. As can be seen in Figure IV.2A, protein depletion with 45% (v/v) ACN 

concentration renders a pellet with higher concentration of proteins reflecting their depletion 

from the supernatant. We have previously established that clustering from the supernatant 

using MALDI-based mass spectrometry protein analysis is optimized after depletion of high 

molecular weight proteins plasma samples using ACN [12]. Therefore, we chose the ACN 

concentration of 45% (v/v) for further experiments.  
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Figure IV.1 – The solid biopsies are cleaned with the aid of an ultrasonic bath. Then, the proteins are 
solid-liquid extracted with the aid of an ultrasonic probe. The proteins are depleted with ACN 45% v/v, 
and thus one supernatant and one pellet are obtained. The supernatant is withdrawn, then evaporated 
to dryness and then resuspended in 12.5 mM Ambic. The pellets were dissolved 12.5 mM Ambic. 
Proteins contained in supernatant and pellet were further reduced, alkylated and digested with the aid of 
ultrasonic energy. The peptides from the supernatant were then sequentially extracted using C18 tips 
and profiled using MALDI-based mass spectrometry. The best ACN fraction, 60% v/v was further 
interrogated using ESI-based mass spectrometry. 

 

IV.3.2 SEQUENTIAL ELUTION OF PEPTIDES 

The sequential extraction of peptides using C18-based tips in conjunction with mass 

spectrometry has been previously described as a method to discriminate among large cohorts 

of samples [11,14]. We employed this approach on the (i) supernatants and (ii) pellets after 

depletion with 45% (v/v) ACN from (i) chromophobe renal cell carcinoma (chRCC) or (ii) renal 

oncocytoma (RO) or (iii) normal adjacent tissue (NAT). The proteomes were first digested with 

trypsin and then the peptides were up-loaded in C18 tips. The peptides were sequentially eluted 

with ACN solutions (% v/v: 4, 7, 10, 14, 35 and 60) based on our previous work with plasma 

[11]. 

Protein quantification of supernatants and pellets obtained after depletion with ACN  

45% (v/v) concentration revealed that as much as 73% of the protein content remained in the 

supernatant. The total protein content of some pellets was too low for the sequential extraction 

procedure (see Figure IV.2B). For example, sequential extractions of some digested pellets 

produced poor MALDI spectra, e.g. low intensity and few m/z signals at 35% (v/v) ACN (see 

Figure IV.3A). However, a substantial peptide spectrum was obtained from the correlative 
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supernatants after digestion as shown in Figure IV.3B. Therefore, we decided to profile through 

a MALDI-MS approach the supernatants using the sequential extraction approach while 

interrogating the complete protein content of the pellets. 

 

Quintuple MALDI spectra were obtained for each fraction. The cohorts of m/z signals 

were used to analyze the samples by unsupervised clustering. The results showed that 

classification of the chRCC, RO and NAT samples clustered together was not possible at any of 

the ACN extracting concentrations tested as shown in Figure IV.4A. The best classification was 

obtained for the oncocytoma samples that were grouped using the cohorts of m/z signals 

obtained for the ACN concentrations (v/v) of 10% and 60%. It is noteworthy that the clustering 

using the pellets protein content of the pellets also failed in classifying the samples as may be 

seen in Figure IV.4A. However, comparing only the oncocytoma and chromophobe biopsies 

without NAT biopsies showed excellent discrimination using the cohorts of m/z signals obtained 

for the ACN extraction at a concentration of 60% (v/v) (see Figure IV.4B, panel 7).  

IV.3.3 REVEALING THE PROTEIN CONTENT OF THE OPTIMAL EXTRACTION FRACTION 

These data indicated that the pool of peptides obtained with 60% ACN (v/v) 

concentration was most informative in distinguishing between the renal tumor classifications.  

The entire preparation protocol was repeated using the original samples to obtain peptides from 

the ACN 60% fraction for analysis in the nano-LC-HR-MS. Eighteen proteins specific to chRCC 

and seven unique to RO were found based on this approach (see Figure IV.5).    

 

 

Figure IV.2 – (A): Influence of ACN concentration (v/v) on depletion of protein extracts from solid 
biopsies. SDS-PAGE of pellet fraction after protein depletion with (i) 20% and (ii) 45% (v/v) of ACN. 
Depletion was performed in triplicate (3 lanes for each ACN concentration) and N represents a crude 
protein extract without depletion. (B) Protein content of pellets and supernatants after depletion with 45 
% (v/v) ACN. 
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Figure IV.3 –  Representative MALDI-MS spectra obtained for the 35% (v/v) ACN sequential fraction 
from (A) pellet and (B) supernatant. Note that the ACN 35% (v/v) pellet extract does not contain 
peptides. 

 

Figure IV.4 –  Unsupervised clustering analysis of MALDI-based mass spectrometry data obtained for 
peptides from (i) the digested pellets and (ii) sequentially eluted fractions from the digested 
supernatants using C18 tips and 4%, 7%, 10%, 14%, 35% and 60% (v/v) of ACN. Clusters obtained (A) 
using the three types of solid biopsies, chromophobe, oncocytoma and NAT and (B) using only data 
from chromophobe and oncocytoma. For the latest case note the 60% ACN (v/v) concentration. 
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The chromophobe tumors expressed 5 proteins associated with canonical ATP function 

(ATP5I & 5E; VATE1 & G2; ADT2) and one classical glycolytic enzyme (PGK1). In addition, 

neuromedin was detected specific to the chromophobe tumors. It is interesting to note that 

changes in the function or expression of these molecules has been previously reported in renal 

[22–24], pancreatic [25,26] and lung [25] cancers. Oncocytomas expressed ATP5H and ATPA, 

DEPD7 and TRIPB (thyroid receptor interacting protein). It is noteworthy that both, oncocytoma 

and chromophobe are characterized by an eosinophilic cytoplasm which contains excessive 

amounts of mitochondria [27–31]. In the case of the chromophobe pathology, 5 of the proteins 

we detected were related to mitochondrial function while two ATP-related proteins were found 

specific to the oncocytomas. The complete list of proteins is presented in Figure IV.6. 

 

 

Figure IV.5 – Venn diagram (nchRCC=5, nRO=3, nNAT=5) showing the number of proteins identified for the 
60% ACN supernatant fraction by nano-LC-HR-MS/MS. Proteins are listed in Figure IV.6. 
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Figure IV.6 –  List of proteins identified for the chRCC, RO and NAT solid biopsies in the fraction eluted 
from the C18 tips using the ACN 60% (v/v) solution. Grey colored boxes indicate the presence of the 
protein. 
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IV.4 CONCLUSION 

We have developed a method using ultrasonic energy in conjunction with fast C18 tips 

sequential extraction and MALDI-snapshotting that is capable of delineating the complex 

proteomes from solid biopsies of chromophobe renal cell carcinoma and renal oncocytomas. It 

is also possible to obtain unsupervised clustering of these solid biopsies with optimal 

discrimination of the chromophobe and oncocytoma specimens using the 60% ACN extraction 

procedure. This approach yielded 18 proteins unique to chromophobe renal cell carcinoma 

versus 7 unique to oncocytoma, from a total of 67 proteins found in the fraction of interest. The 

proposed method is fast, simple and low-cost, and therefore ideal for efficient analysis of solid 

biopsies. The most informative extracts can be easily identified for further analysis by HR-MS to 

obtain deep knowledge of a large number of individual features. The method proposed last 14 

hours for one sample, from the beginning of the sample treatment to the MALDI analysis. 

However, with the high throughput provided by the 96-well plate-based ultrasonic approach [15], 

the total time needed would be reduced from 14 h per sample to 96 samples in 14 h, this is 

approx. 9 min per sample. This approach holds the promise of discriminating between an 

indolent renal neoplasms and aggressive kidney tumors that are otherwise difficult to classify 

using current immunocytochemical methods and could have an impact on the diagnosis and 

therapy of these patients.  
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ABSTRACT 

Background: The anatomical and histological similarities of malignant 

chromophobe renal cell carcinoma (chRCC) and benign renal oncocytoma (RO) 

compromise the accuracy of their diagnosis. To understand functional and molecular 

consequences of biological aberrations and establish a potential discriminative protein 

panel of these two tumour types, we present a label-free quantitative proteomic 

approach to discriminate clinical tissue biopsies diagnosed as chRCC and RO versus 

normal adjacent tissue (NAT). 

Methods: The label-free quantitative proteomic analysis was performed by 

comparing protein abundances of frozen OCT-embedded human renal tissue biopsies 

diagnosed with chRCC (n = 5) and RO (n = 5). NAT specimens (n = 5) were used as 

control. 

Results: Proteomic analysis of these two tumour types revealed a common 

dysregulation of biochemical pathways involving energy metabolism and mitochondrial 

activity. Mitochondrial pathways were dominant in RO, while phagosome maturation 

displayed greater representation in chRCC. A panel of 109 proteins was used to 

discriminate between chRCC and RO and both from NAT. 

Conclusions: Two different approaches are proposed to discriminate between 

chRCC, and RO based on protein expression profiles. One approach utilizes clustering 

of the entire proteome, and the other employs a selected panel of proteins with 

significant power of differentiation. 

Keywords: OCT-embedded tissues; label-free quantification; mass spectrometry; 

chromophobe renal cell carcinoma; renal oncocytoma 

V.1 INTRODUCTION 

Renal cell carcinoma (RCC) is a disease typically involving abnormal cell growth in the 

epithelial cells of the proximal convoluted tubules of the kidney (clear cell renal cell carcinoma) 

which accounts for 400,000 new cases of adult kidney cancer worldwide each year [1]. 

However, the RCC classification comprises a variety of tumour types with distinct histological 

and cytological phenotypes [2]. Chromophobe renal cell carcinoma (chRCC) and renal 

oncocytomas (RO) are two RCC classifications that constitute approximately 10% of all renal 

tumors [3]. They share similar anatomical origins and histological characteristics, making it 

difficult to determine their diagnostic classification [4]. Nonetheless, it is critical to discriminate 
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between these tumors as they result in markedly different clinical outcomes and require distinct 

therapeutic protocols [4]. Specifically, oncocytoma is a clinically benign neoplasm which often 

originates from the kidney collecting ducts and can be treated conservatively while 

chromophobe renal carcinoma is a malignant tumour also arising in distal kidney nephrons but 

that must be aggressively treated to prevent dire consequences for the patient [3]. Therefore, 

new diagnostic methods and protocols designed to rapidly and definitively differentiate between 

these tumour types are needed by the nephrology, pathology and oncology communities [5]. 

Recent information obtained from transcriptomic studies, including differential 

expression profiling, in particular, has been used to develop multi-RNA biomarker panels for the 

identification of a variety of challenging tumors [6,7]. Also, the information retrieved from such 

profiling studies can be used as large-scale orthogonal validation of proteins identified by mass 

spectrometry.  

Recently, we developed a fast, inexpensive, high sample throughput, ultrasonic-based 

methodology to extract, identify and quantify the proteome of solid renal biopsies prepared in 

optimum cutting temperature (OCT) substrate, including chromophobe, oncocytoma and 

adjacent normal tissue biopsies [8]. In the present work, we perform a deep bioinformatics 

analysis to identify a cohort of proteins that can distinguish RO and chRCC from NAT (normal 

adjacent tissue) and at the same time RO from chRCC. Furthermore, we use RNA transcripts to 

validate the proteins identified by mass spectrometry and immunohistochemical analysis on 

tissue micro-array (TMA) to validate novel biomarkers candidates. 

V.2 EXPERIMENTAL SECTION 

V.2.1 STUDY DESIGN AND SAMPLING 

The present work utilized high resolution mass spectrometry to analyse the proteomes 

of 15 flash-frozen, OCT-embedded, human renal tissue biopsies from chromophobe renal cell 

carcinoma (chRCC, n = 5) and renal oncocytoma (RO, n = 5) including normal adjacent renal 

tissue (NAT, n = 5). The human kidney tissue samples were collected by the University of 

Pittsburgh Biospecimen Core and the study was approved by the Institutional Review Board at 

the University of Pittsburgh (IRB # 02-077). All neoplasms contained a minimum of 85% tumour 

cells. Data of patients enrolled in this study are summarized in Table SM IX.1 of Supplementary 

information. 

V.2.2 PROTEOMIC ANALYSIS  

Biopsies were handled as described in Jorge et al. [8]. Briefly, tissues were first cleaned 

of OCT and then proteins extracted with the aid of an ultrasonic bath (model TI-H-5 from Elma, 

Singen, Germany) and an ultrasonic probe (UP50H from Hielscher Ultrasonics, Teltow, 

Germany), respectively. Next, protein digestion was carried out over four minutes using an 
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ultrasonic microplate horn assembly device (QSonica, Newtown, CT, USA). The extracts 

containing the digested proteomes were subsequently analysed by a label-free nanoLC-HR-

MS/MS approach (UHR-QqTOF IMPACT HD from Bruker Daltonics, Bremen, Germany).  

V.2.3 DATA ANALYSIS AND STATISTICS  

Relative label-free quantification was carried out using MaxQuant software V1.6.0.16. 

All raw files were processed in a single run using defaults settings [9,10]. Database searches 

were performed using Andromeda search engine with the UniProt-SwissProt Human database 

as a reference and a contaminants database of common contaminants. Data processing was 

performed using Perseus (version 1.6.5.0) with default settings [11,12]. In brief, reverse hits, 

and proteins only identified by site were removed from the protein list, and LFQ intensities were 

log2-transformed to reduce the effect of outliers. Protein groups were filtered based on a 

minimum presence of 70% in at least one group. Pearson correlation was performed on filtered 

LFQ values. Missing LFQ values were imputed through generation of random numbers that 

were drawn from a normal distribution (width = 0.5 and down shift = 1.8). PCA was performed 

on the filtered and imputed LFQ intensity data. Log ratios were calculated as the difference in 

average log2 LFQ intensity values between the two conditions tested in volcano plots (two-tailed 

Student’s t-test, FDR = 0.01 and S0 = 0.1). Differential expression analysis was performed on z-

scored log2 LFQ intensities through a multiple-sample test (ANOVA test with an 1% of 

permutation-based FDR filter and preserving randomization for technical replicates). 

Unsupervised hierarchical clustering was performed based on Euclidean distance.  

V.2.4 TRANSCRIPTOMIC ANALYSIS 

Transcriptome analysis was performed on these specimens using established methods 

for frozen tissues [13,14]. Briefly, excess OCT was dissected away on a block of dry ice, the 

specimens were homogenized in ice cold lysis buffer and then RNA purification was performed 

using the Qiagen RNeasy Mini- kit (Qiagen, Valencia, CA). RNA underwent extensive QC to 

confirm quality, yield and diversity and then was subjected to in vitro transcription producing 

biotin-labelled cRNA followed by hybridization on Human Exon 1.0 ST arrays according to the 

manufacturers protocol (Affymetrix, Santa Clara, CA). Following washing, staining and scanning 

(Affymetrix Fluidics 450, Scanner 3000 7G), signal intensities were calculated using the 

Affymetrix Expression Console MAS 5.0 software. 

V.2.5 IMMUNOHISTOCHEMISTRY (IHC) ANALYSIS 

A TMA was constructed using 4 cores of RO (n =30), chRCC (n = 12) and 1 core of 

NAT (n = 20). IHC was performed using Abcam, Rabbit monoclonal antibodies for proteins: 

Hexokinase 1/HK-1 [clone EPR10134 (B)] and lysosome associated membrane protein-

1/LAMP-1 (clone: EPR4204). Granular cytoplasmic staining of any intensity was considered as 
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positive. Granules were scored as (0 = negative, 1 = focal, 2 = moderate, 3 = abundant) for HK-

1 and (0 = negative; D = diffuse, A = apical, F = focal) for LAMP-1. Percent positivity of the cells 

was also recorded. 

V.2.6 DATA AVAILABILITY 

Detailed data presented in results are provided in supplementary material as Table SM 

IX.1 –. Description of human kidney biopsies used in the study.; Table ESM IX.8 – List of 

pathways enriched in the chRCC and RO tumors when compared to NAT specimens; Table 

ESM IX.9 – List of proteins with significant differential abundance between chRCC and RO 

tissues and Table ESM IX.10 – List proteins with significant differential abundance between 

each tumour and NAT. The mass spectrometry proteomics raw data have been deposited to the 

ProteomeXchange Consortium via the PRIDE [15] partner repository with the dataset identifier 

PXD022018. 

V.3 RESULTS AND DISCUSSION 

V.3.1 TUMOUR CLASSIFICATION BY PCA AND CLUSTERING  

The identification of differentially expressed proteins across the three renal phenotype 

classifications (RO, chRCC, NAT) resulted in a high-resolution principal component analysis 

(PCA, Figure V.1A) with each specimen class uniquely segregated in distinct clusters. It is 

interesting to note that the chRCC and RO tumour groups displayed overlapping characteristics 

of the component 1 variable but both tumour clusters remained distinct from each other. 

Furthermore, the normal adjacent tissue cluster based on other principal components. Figure 

V.1B displays the hierarchical clustering obtained from the chromatogram data (90 min. 

chromatographic runs) which reinforced the PCA results and also validated the hierarchical 

clustering reported by us previously [8]. It should be noted that the present results include two 

additional biopsies from which the proteome was extracted, digested and analysed 

approximately two years later than the other 13 samples. Figure V.1C displays the 

reproducibility of the mass spectrometry biological replicates by Pearson correlation along with 

a multi-scatter plot. Pearson correlations ranged from 0.82 to 0.99 for chRCC, from 0.72 to 0.98 

for RO and from 0.85 to 0.98 for NAT. The Pearson coefficient was higher when the tumors 

were compared to each other (0.65 - 0.90), in contrast to comparison with NAT (0.48 - 0.73).  

V.3.2 A PROTEOMIC INVESTIGATION INTO MECHANISMS TRIGGERING CHRCC AND RO 

NEOPLASMS COMPARED TO NAT. 

An advantage of high-resolution mass spectrometry is that large numbers of proteins 

can be simultaneously identified, quantified and compared across multiple samples to 
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interrogate important differences in protein content and expression. The chRCC versus NAT 

and the RO versus NAT label-free quantification shown in Figure V.2A and Figure V.2B as 

volcano plots revealed a similar number of differentially expressed proteins in each comparison 

(chRCC vs NAT = 393; RO vs NAT = 419). In Figure V.2C the most differentially expressed 

proteins found in each tumour type are provided (top-10 increased and top-10 decreased, 

chRCC vs NAT and RO vs NAT).  

 

 

Figure V.1 – Classification of the proteomes. Two instrumental replicates were run for each biopsy 
resulting in 30 chromatograms that identified a total of 1610 proteins. Of these proteins, a total of 882 
were obtained in at least one group (ChRCC, RO, or NAT) with a reproducibility between 70% to 100% 
of all chromatograms. A) Principal component analysis (PCA) of chRCC, RO, and NAT group samples. 
B) Unsupervised hierarchical clustering of biopsy tissues’ proteome based on all molecular features 
detected by MS. C) Quality assessment of MS data: the color-coded Pearson correlation of biological 
(n=5, each condition) and technical (n=2, each sample) replicates along with protein normalized label-
free quantification (LFQ) scatterplot matrix represent the reproducibility. 

 

V.3.2.1 Common features between chRCC and RO 

The similarity of both chRCC and RO tumors was reflected in the large number of 

proteins commonly found deregulated (Figure V.2A and Figure V.2B). Our results suggest that 

multiple proteins directly associated with the creatine phosphokinase high energy transfer 

pathway were overexpressed in both renal tumour types compared to normal tissues. Among 

such proteins, cytosolic creatine kinase B (CKB) and mitochondrial creatine kinase S (CKMT2) 

were found. Another protein involved in metabolism and energy flux that showed increased 

expression in both classes of tumors in this study was the V-type ATPase 166 kDa subunit a 
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isoform 4 (ATP6V0A4). Proteins involved in signal transduction and cytoskeletal remodulation 

were also found dysregulated among tumour subtypes. We found markedly increased protein 1-

phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCG2) and galectin-3 

(LGALS3) in both renal tumour types compared to normal kidney tissue. The similar profile of 

these two tumors was also verified in down-regulated proteins as the majority of the top ten 

proteins under expressed were found in both tumors to be the same.  

In addition to the analysis of individual protein expression profiles, we carried out a 

comprehensive ClueGo network analysis [16] of the cumulative MS protein results in order to 

identify functional pathways enriched in the chRCC and RO tumors when compared to NAT 

analysis. This is shown in Figure V.2D and the complete list of pathways is provided in Table 

ESM IX.8 of Supplementary information. The network analysis identified the TCA cycle as one of 

the most overexpressed pathways in both tumour types. The deregulation of the TCA cycle was 

revealed by the overexpression of several proteins localized in the mitochondria of both tumour 

types compared to NAT. For example, isocitrate dehydrogenase [NAD] subunit alpha (IDH3A) 

and beta (IDH3B) along with dihydrolipoyllysine-residue acetyltransferase component of 

pyruvate dehydrogenase complex (DLAT) proteins were found among the highest 

overexpressed proteins in both specimens 

V.3.2.2 Differential features between chRCC and RO 

The functional pathway analysis showed divergent features between chRCC and RO. 

The lysosome component was found significantly dysregulated in chRCC samples. 

Mitochondrial networks were significantly dysregulated in RO biopsies with greater 

representation of mitochondrial biogenesis pathway, mitochondrial protein import pathway 

among other mitochondrial pathways shown in Figure V.2D and in Table ESM IX.8 of 

Supplementary information. The oxidative phosphorylation pathway was found also dysregulated 

on RO (Figure V.2D).  

V.3.3 PROTEINS DYSREGULATED BETWEEN CHRCC AND RO 

Direct comparison of protein abundance between chRCC and RO tissues revealed a 

total of 168 differently expressed proteins (Table ESM IX.8 of Supplementary information). The 

abundances of these proteins were standardized across all specimens based on z-scores and 

subjected to an unsupervised hierarchical clustering analysis (see Figure V.3A), which clearly 

stratifies all biopsy types. From these proteins, we found that 109 were deregulated between 

both neoplasia and at the same time between each neoplasia and NAT (Figure V.3B). The 

results are presented in Figure V.3C and Figure V.3D for chRCC and RO, respectively. The 109 

proteins were subjected to a functional analysis using the ClueGo network. The enriched 

pathways and their differences in the chRCC and RO are depicted in Figure V.4.  
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Figure V.2 – Protein expression profiles tumor vs. NAT. Volcano plots illustrating the significant 
difference (FDR = 0.01, S0 = 0.1) of protein expression levels between A) chromophobe renal cell 
carcinoma (chRCC) and NAT samples group, and B) renal oncocytoma (RO) and NAT samples group. 
C) Top 10 upregulated proteins and Top 10 down-regulated proteins for chRCC and RO when 
compared with NAT levels. D) Representation of a subset of differentially regulated pathways with a p-
value < 0.05. Full colored bars represent pathways for chRCC biopsy samples and diagonal stripped 
bars represent pathways for RO. Blue, red and grey colored denote pathways with at least 50% of 
downregulated proteins, at least 50% of protein upregulated and equally deregulation of proteins (up 
and down), respectively. The significance of each term was calculated as -log (term p-value corrected 
with Bonferroni step-down). The full protein name is given in the abbreviation section. 
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Figure V.3 – Differentiation between chRCC and RO abundances. A) Heatmap representation and 
unsupervised hierarchical cluster depicting the proteins (n = 168) with significant changed levels 
(ANOVA, FDR = 1%) between tumor groups, chRCC against RO. Color scale reports the Z-Score of 
log2 transformed of normalized LFQ intensity values. B) Comparison of dysregulated pattern of the 
differential proteins. Proteins pattern were firstly achieved by comparison to control levels (NAT) 
resulting in a dysregulated pattern, then intrinsic pattern was compared between tumors. Red and 
white colored squares represent the number of proteins with opposite and similar deregulated trend, 
respectively. Blue diamond shape and circle embody the number of differential proteins characteristic, 
i.e. only deregulated, to chRCC and RO, respectively. C and D) Plot representation of fold change (FC) 
profiles for tumor-specific proteins for chRCC and RO, respectively. Pink boxes highlight the four 
proteins with opposite expression pattern for each tumor subtype. The list of proteins can be found in 
Table ESM IX.10 of Supplementary information 
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V.3.4 ORTHOGONAL VALIDATION OF PROTEINS IDENTIFIED BY MASS SPECTROMETRY 

V.3.4.1 mRNA validation 

To validate the proteins identified by mass spectrometry we use mRNA identification as 

an orthogonal validation method. Figure V.5A shows that of the list of 882 proteins that are 

present in 70% of patients of at least one group (chRCC, RO, NAT), 808 proteins matched the 

corresponding transcript. Thus, remarkably, in terms of validation of proteins, the 92% overlap 

with transcriptomic data.  

V.3.4.2 Immunohistochemistry validation 

IHC was applied on a TMA to validate novel candidate biomarkers. Figure V.5B displays 

the immnunostaining of HK1 and LAMP1 in chRCC, RO and NAT. Figure V.5C and Figure V.5D 

present the score and pattern evaluation of the IHC results. In HK1 a cut-off of 2 or above score 

and > 90% cells positivity results in a sensitivity of 96.7% and a specificity of 91.7% for 

distinguishing RO from chRCC, while diffuse LAMP1 staining has 91.7% sensitivity and 100% 

specificity for distinguishing chRCC from RO.  

V.4 DISCUSSION 

Our results delineate multiple proteins and pathways that are similarly affected in both 

chromophobe and oncocytoma specimens, as shown in Figure V.2. These overlapping findings 

likely underlie their common neoplastic behaviours despite their different prognoses. On the 

other hand, differences in protein expression and pathways between these two tumors and 

normal tissue can provide insight into the potential drivers of malignancy, aggressiveness, and 

invasiveness related to the chRCC phenotype.  

From an initial panel of 168 proteins differentially expressed between both tumour 

types, a set of 109 proteins have been found to be significantly different between both neoplasia 

and at the same time significantly different between them and the NAT. Such proteins are 

presented in Figure V.3C and Figure V.3D and in Table ESM IX.10 of Supplementary information. 

Interestingly, some have been also reported in literature as chRCC or RO biomarkers, as 

indicate in Table V.1, what gives further confidence in the data reported in this manuscript. The 

109 set of proteins were further analysed to elucidate the intrinsic biological mechanisms 

underlying each renal tumour subtype, which might be crucial for their distinct outcomes. This is 

shown in Figure V.4, which reflects the most dysregulated pathways in both neoplasia.  

Thus, we have found overexpressed phagosome maturation in the chRCC tumors. This 

finding has been reported in literature previously and suggests that autophagy provides an 

adaptative mechanism for chRCC to compensate for high metabolic substrate demand [17]. 

Also, during phagosome maturation, V-type ATPases are trafficked to the phagosome resulting 
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in acidification of the internal medium, while RAS related proteins are recruited to fuse the 

phagosome and lysosome [18]. As a matter of fact, we found in chRCC overexpression of V-

type ATPases and RAS related proteins. We hypothesise that the overexpression of RAS-

related proteins in chRCC suggests the involvement of MAP kinase signalling in this neoplasia 

[19]. 

 

 

Table V.1. Proteins proposed as biomarkers found also described in literature. 

Gene name Protein name 
Expression profile* 

Ref* 
Our study Lit. 

Deregulated in chRCC 

KRT7 Keratin, type II cytoskeletal 7 up up 
2018 Drendel;  

2016 Ng 

LAMP1 Lysosome-associated membrane glycoprotein 1 up up 2018 Drendel 

RHCG Ammonium transporter Rh type C up up 2017 Lindgren 

PYGB Glycogen phosphorylase, brain form up up 2018 Drendel 

HSPB1 Heat shock protein beta-1 up up 2010 Yusenko 

ANXA2 Annexin A2 up up 2018 Drendel 

SCARB2 Lysosome membrane protein 2 up up 2018 Drendel 

LAMP2 Lysosome-associated membrane glycoprotein 2 up up 2018 Drendel 

RAB14 Ras-related protein Rab-14 up up 2018 Drendel 

RAB7A Ras-related protein Rab-7a up up 2018 Drendel 

CA2 Carbonic anhydrase 2 up up 2010 Yusenko 

ALDOA Fructose-bisphosphate aldolase A up up 2018 Drendel 

Deregulated in RO 

MRPL1 39S ribosomal protein L1, mitochondrial up up 2018 Drendel 

MUT Methylmalonyl-CoA mutase, mitochondrial up up 2018 Drendel 

PRDX3 
Thioredoxin-dependent peroxide reductase,  

mitochondrial 
up up 

2018 Drendel;  

2010 Yusenko 

APOO Apolipoprotein O up up 2017 Kurschner 

ATP5H ATP synthase subunit d, mitochondrial up up 
2018 Drendel;  

2010 Yusenko 

HADHA Trifunctional enzyme subunit alpha, mitochondrial up up 2010 Yusenko 

UQCRC2 Cytochrome b-c1 complex subunit 2, mitochondrial up up 2015 Joshi 

HADHB Trifunctional enzyme subunit beta, mitochondrial up up 2018 Drendel 

LDHB L-lactate dehydrogenase B chain down down 2010 Yusenko 

GSTP1 Glutathione S-transferase P down down 2017 Kurschner 

HSPB1 Heat shock protein beta-1 down down 2010 Yusenko 

ANXA2 Annexin A2 down down 2017 Kurschner 

Lit. literature 
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These molecules are critical regulators of intracellular protein trafficking, and disruption of this 

pathway has been associated with tumour proliferation and metastasis [19]. We have found also 

elevated levels of lysosomal related proteins in chRCC compared to RO. The process of 

autophagy is linked with the lysosomal activity, involving cytolytic degradation that results in the 

production of free amino acids, that can also serve as metabolic substrate to meet high energy 

demands [20]. Furthermore, our data is consistent with data previously described by Drendel et 

al. [21] and also at the RNA level by Lindgren et al. [22]. The potential for invasive and 

metastatic behaviour in chromophobe tumors may be reflected by the differences in the 

activation of molecules and pathways that regulate cell motility in chRCC versus RO, as it is 

shown in Figure V.4. For instance, it is well known that RO uses to be non-invasive, and in line 

with this fact we have found downregulated in oncocytoma the Rho-GTPase activate IQGAPs 

pathway. The IQGAP proteins modulate microtubule function associated with cell adhesion and 

the Rho-GTPase pathway play a role in cancer cell motility [23].  

 

 

Figure V.4 – Protein enriched functional analysis. The 109 key proteins described in Fig. 3C, Fig. 3D 
and in Table ESM IX.10 of Supplementary information were searched against GO terms, Reactome and 
KEGG databases to make the protein enriched functional analysis. Blue to red color represents the 
percentage of proteins found down or up- regulated, respectively, in each pathway, when each tumor is 
compared with NAT. Circle size infers the significance of each pathway calculated as -log (term p-value 
corrected with Bonferroni step-down). 

 

On the other hand, it is worth to mention that 31 proteins belonging to mitochondria are 

found overexpressed in oncocytoma. This result is in agreement with data reported by Mayr et 

al. [24] who suggest that oncocytoma complex I from oxidative phosphorylation (OXPHOS) is 

not functional due to several gene mutations but highlights that the proteins related to the other 

OXPHOS complexes are overexpressed. Also, accumulation of mitochondria is a landmark of 

oncocytoma [25–27]. In line with these findings, several mitochondrial related pathways were 

found up-regulated in oncocytomas (Figure V.4).  
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Further validation as well as the potential utility of the approach here developed for the 

pathology, is shown via immunohistochemistry with proteins LAMP1 and HK1 (Figure V.5B). 

Within chRCC tumor cells, LAMP1 protein has shown a diffuse cytosolic staining while within 

RO a different staining pattern, apical or focal, was present in majority cases. These findings 

are in agreement with Drendel et al. [21] who have seen an enrichment of the LAMP1 protein in 

both, LC-MS/MS approach and IHC analysis. Additionally, the higher levels of HK1 in RO tissue 

biopsies were confirmed by IHC results.  

 

 

Figure V.5 – Protein validation. A) Proteins identifications were validated by mRNA transcriptomics. 
Venn diagram present the high confidence the proteomic data, where 808 of identified proteins (92%) 
were confirmed by mRNA. B) Immunohistochemistry expressions of hexokinase 1 (HK1) and lysosome 
associated membrane protein-1 (LAMP1) in chromophobe renal cell carcinoma (chRCC), renal 
oncocytoma (RO) and normal adjacent tissues (NAT). C) and D) represent in bar diagrams the 
expressions of HK1 and LAMP1, respectively. Granular cytoplasmic staining of any intensity was 
considered as positive. Granules were scored as (0 = negative, 1 = focal, 2 = moderate, 3 = abundant) 
for HK1 and (apical/focal, diffuse, negative) for LAMP1. 

 

Thus, these proteins found dysregulated via mass spectrometry were also able to 

differentiate both neoplasms via IHC.  

In conclusion, we have found a panel of 109 proteins that helps to distinguish chRCC 

from RO and both from NAT. HK1 and LAMP1 have been validated by IHC, being found both as 

promising biomarkers to differentiate ROs and chRCCs. Some of such proteins have been 
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already described in literature and some others are here presented for the first time. Also, the 

proteomics study revealed that mitochondrial networks were dominant in RO, while phagosome 

maturation displayed greater representation in chRCC, thus paving the way to focus on these 

pathways as potential sources of biomarkers for diagnosis and prognosis in future works. 

Moreover, the large number of proteins identified as biomarkers candidates in this study 

represents a fertile protein library for further stratification of chRCC and RO via IHC. Finally, 

these findings open new avenues to potentially use the urinary proteome as a source of 

information to diagnose chRCC and RO.  
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ABSTRACT 

Renal cell carcinoma is a heterogeneous disease comprising several distinct 

subtypes including clear cell, papillary, and chromophobe. However, those renal 

neoplasms demonstrate histo-morphologic overlapped features, including with the 

benign renal oncocytoma, leading to frequent misdiagnosis. Therefore, novel 

biomarkers able to subclassified them are needed for clinical practice.  

In the present work, we propose to use for the first time the total protein 

approach (TPA) to identify an effective panel of proteins and their concentration ranges 

to diagnose and characterize diverse RCC subtypes. 

A proteomics tumor profiling was performed on biopsies of seven clear cell, five 

papillary, and five chromophobes subtypes. Five benign oncocytomas and five normal 

adjacent tissues were also included. Label-free quantification was performed on 

proteomes extracted from renal tissue biopsies and the LFQ values were transformed 

into TPA values for absolute quantitative analysis.    

The analysis of the proteome of 27 renal tissue biopsies has revealed a total of 

850 differentially expressed proteins between renal neoplasms and normal adjacent 

tissues. Based on TPA concentrations, a 24 panel, composed of the six proteins with 

the highest significant differential expression for each tumor subtype, was achieved 

which can be used to classify the biopsies. 

In a near future, we envision the TPA based pathology as the next step in solid 

biopsy-based cancer diagnosis and prognosis. 

VI.1 INTRODUCTION 

Renal cell carcinoma (RCC) is the most frequent cancer diagnosed in the adult kidney 

in the world [1,2]. Arising from the epithelium of renal tubules, RCC is a heterogeneous disease 

comprising several subtypes, being the clear cell RCC (ccRCC) subtype the most prevalent [3]. 

This subtype accounts for approximately 75% of all cases and is followed by papillary RCC 

(pRCC) with approximately 10% and chromophobe RCC (chRCC) with approximately 5% of the 

cases [4]. Another frequently diagnosed renal neoplasm, with approximately 5% of the renal 

masses diagnosis, is the benign renal oncocytoma (RO) [4]. Less predominant subtypes include 

medullary, collecting duct, mucinous tubular and spindle cell carcinoma, and MiTF family 

translocation renal cell carcinoma [5,6]. Such heterogeneity results in a complex disease in 

which individual RCC subtypes carry distinct clinical outcomes and, most importantly, therapies. 

According to the 2012 ISUP classification and the 2016 WHO classification [7], the cytogenetic 
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profile of ccRCC is characterized by VHL gene mutations, hypermethylation of VHL gene 

promotor, and loss of heterozygosity (LOH) at 3p25. Mutations in PBRM1, BAP1, and SETD2 

have also been linked to this disease [8–10]. To diagnostic ccRCC, the most useful and 

practical immunohistochemical (IHC) profile comprises the strong nuclear marker PAX-8, the 

typical membranous staining of carbonic anhydrase IX (CA9), and the traditionally used 

vimentin protein [7]. Epithelial markers such as EMA, cytokeratins AE1-AE3, and CAM are also 

used [7]. On the other hand, pRCC is classified into two subtypes, type 1 and type 2, as firstly 

proposed by Delahunt et al. [11]. These two subtypes have been reported with different 

cytogenetic alterations and gene mutations [12]. While pRCC type 1 typically shows 

chromosomal gains of 7, 12q, 16p 17 and 20 and losses of 9p with mutations in the MET gene, 

pRCC type 2 has been associated with losses of 1p and 9p and genetic aberrations in 

CDKN2A, SETD2, and NRF2 genes [12]. IHC profiles revealed to be positive for cytokeratins 

(AE1-AE3, CAM 5.2, HMWCK), racemase, vimentin, and CD10 in pRCC, and CK7 is more 

frequently expressed in type 1 than type 2.  The chRCC subtype is characterized by several 

chromosomal losses such as in chromosomes 1, 2, 6 10, 13, 17, and 21 [12]. The genetic 

profile has been associated with mutations in TP53 and PTEN [12]. Morphologically, is 

characterized by huge pale cells with reticulated cytoplasm, diffuse cytoplasmic Hale’s iron 

colloid staining, and prominent cell membrane [13]. The RO subtype is associated with some 

cytogenetic changes, including losses of chromosomes 1 and Y, rearrangements of CCND1, 

and mutations in genes of complex I of mitochondrial OXPHOS, such as COX1, COX2, MTND4 

MTCYB [12]. IHC panel includes vimentin, CK 7, CD117, and E-cadherin [7]. Although RCCs 

can be classified on the basis of immunohistological characteristics, some overlapped features 

are common between subtypes, making diagnosis difficult. For instance, the presence of CK7 is 

characteristic for pRCC and generally negative for ccRCC and RO. However, cases with focal 

positivity are also described in these two subtypes [12].  Therefore, further research to find a 

way for effective RCC subtyping is necessary. As summarized above, immunohistochemical 

(IHC) assays are widely used for diagnosis of cancers, as tumor specific antigens are 

expressed de novo or deregulated in tumor tissues [14]. However, IHC is dependent of the 

availability of the appropriate antibodies and the number of antibodies tested in a single assay is 

limited.  

Mass spectrometry (MS)-based proteomics has become a valuable approach to identify, 

quantify, and characterized large numbers of proteins in solid and liquid biopsies, as 

demonstrated by Gilbertson et al. [15] who have blindly compared the determination of amyloid 

fibril protein in amyloidotic tissues by IHC and MS techniques. Overall, a positive concordance 

was achieved between the two techniques, however, whilst the IHC- based approach has a 

diagnostic accuracy of 76%, the MS-based approach has it of 94%. In MS-based proteomic 

approaches, different strategies can be used to evaluate the expression of the proteome, 

however, the label-free LC-MS approaches are gaining momentum. The advantages of label-

free techniques, over labeling approaches, include i) no limitation of the number of experiments 

that can be compared; ii) higher dynamic range of quantification, and iii) less time-consuming 
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steps [16]. Thus, significant changes can be measured across an entire proteome and can be 

compared in a large cohort of samples.  

Recently, Wiśniewski et al. [17] proposed the total protein approach (TPA) as a label- 

and standard- free method for absolute protein quantitation of proteins using large-scale 

proteomic data. The method relies on the assumption that the total MS signal from all identified 

proteins in the dataset reflects—in a biochemical sense—the total protein and the MS signal 

from a single protein corresponds to its abundance in the studied sample. Remarkably, this 

approach has been applied in other proteomic studies, confirming its accuracy and utility [18–

20]. 

In RCC tumors, many MS-based proteomic studies using label-free quantification have 

been applied to decipher their molecular landscape [21]. One of the early studies to outline 

differences in protein levels among different subtypes of RCCs was carried out by Valera et al. 

[22]. In this study, several subtypes were addressed using a 2DE/MS approach. Since then, and 

with the advances of mass spectrometry technology, the conventional gel-based proteomic 

approaches have been replaced by gel-free strategies, including labeled-based quantitative 

studies used to evaluate the differential expression between the proteomes [23–25]. Likewise, 

other studies have applied a label-free quantitative proteomic analysis in RCC samples [26–28]. 

As the most frequent tumor subtype, the ccRCC is the most common histotype investigated 

throughout the scientific research community [21]. Nevertheless, the high heterogeneity of the 

RCC tumors and the shared features among the subtypes, a clear differentiation between them 

is still needed.  

In this work, we successfully used for the first time the TPA quantitative proteomic 

approach to identify an effective panel of proteins and their concentration ranges to diagnose 

and characterize diverse RCC subtypes. 

VI.2 EXPERIMENTAL SECTION 

VI.2.1 STUDY DESIGN AND SAMPLING 

The present work utilized high-resolution mass spectrometry to analyze the proteomes 

of 27 flash-frozen, OCT-embedded, human renal tissue biopsies from clear cell renal cell 

carcinoma (ccRCC, n = 7), papillary renal cell carcinoma (pRCC, n = 5), chromophobe renal cell 

carcinoma (chRCC, n = 5) and renal oncocytoma (RO, n = 5) including normal adjacent renal 

tissue (NAT, n = 5). The human kidney tissue samples were collected by the University of 

Pittsburgh Biospecimen Core and the study was approved by the Institutional Review Board at 

the University of Pittsburgh (IRB # 02-077). All neoplasms contained a minimum of 85% tumor 

cells. Data of patients enrolled in this study are summarized in Table SM IX.1 of Supplementary 

information. 
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VI.2.2 PROTEOMIC ANALYSIS  

Biopsies were handled as described in Jorge et al. [29] Briefly, tissues were first 

cleaned of OCT and then proteins extracted with the aid of an ultrasonic bath (model TI-H-5 

from Elma, Singen, Germany) and an ultrasonic probe (UP50H from Hielscher Ultrasonics, 

Teltow, Germany), respectively. Next, protein digestion was carried out over four minutes using 

an ultrasonic microplate horn assembly device (QSonica, Newtown, CT, USA). The extracts 

containing the digested proteomes were subsequently analyzed by a label-free nanoLC-HR-

MS/MS approach (UHR-QqTOF IMPACT HD from Bruker Daltonics, Bremen, Germany). 

VI.2.3 DATA ANALYSIS AND STATISTICS  

Relative label-free quantification was carried out using MaxQuant software V1.6.0.16. 

All raw files were processed in a single run using default settings [30,31]. Database searches 

were performed using Andromeda search engine with the UniProt-SwissProt Human database 

as a reference and a contaminants database of common contaminants. Data processing was 

performed using Perseus (version 1.6.5.0) with default settings [32,33]. In brief, reverse hits, 

and proteins only identified by site were removed from the protein list, and LFQ intensities were 

log2-transformed to reduce the effect of outliers. Protein groups were filtered based on a 

minimum presence of 70% in at least one group. Pearson correlation was performed on filtered 

LFQ values. Missing LFQ values were imputed through the generation of random numbers that 

were drawn from a normal distribution (width = 0.5 and down shift = 1.8). PCA was performed 

on the filtered and imputed LFQ intensity data. Log ratios were calculated as the difference in 

average log2 LFQ intensity values between the two conditions tested in volcano plots (two-tailed 

Student’s t-test, FDR = 0.01 and S0 = 0.1). Differential expression analysis was performed on z-

scored log2 LFQ intensities through a multiple-sample test (ANOVA test with a 1% of 

permutation-based FDR filter and preserving randomization for technical replicates). 

Unsupervised hierarchical clustering was performed based on Euclidean distance.  

Absolute protein quantification was calculated using the total protein approach (TPA) as 

described by Wiśniewski et al. [17]. Briefly, protein concentration was calculated as follows 

(equation (3)): 

 

VI.2.4 IMMUNOHISTOCHEMISTRY (IHC) ANALYSIS 

Tissue Micro Arrays (TMAs) were constructed using 4 cores of ccRCC (n = 40), pRCC 

(n = 26), RO (n = 30), chRCC (n = 12), unclassified renal cell carcinoma [rhabdoid RCC (n = 

 

(3) 
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29), sarcomatoid RCC (n = 43)] and 1 core of NAT (n = 20). IHC was performed using mouse 

monoclonal antibody (clone 2C5A3, Abcam) for PLIN2 protein. Membranous or droplet like 

staining of any intensity was considered as positive. Percent positivity of tumor cells was scored 

as (0 = Negative; 1:1-10%; 2: > 10-50%; 3: > 50%). All TMA cores were scored, and average 

was taken to give a final score. 

VI.3 RESULTS AND DISCUSSION 

VI.3.1 RENAL SAMPLES 

The proteomes of 27 human specimens, 22 diagnosed with renal tumors and 5 NAT 

samples, were interrogated by high-resolution mass spectrometry in duplicate. Data 

corresponding to patients diagnosed as ccRCC (n = 7), pRCC (n = 5), chRCC (n = 5), RO (n = 

5) is provided in Table SM IX.1 of Supplementary information. NAT (n = 5) tissue samples were 

used as a control to determine protein expression deregulations in each tumor subtype.  

VI.3.2 PROTEOMIC PERFORMANCE  

MS analysis of tissue biopsies was performed in duplicate resulting in 54 LC-MS/MS 

runs. Figure VI.1A shows the reproducibility of technical and biological replicates in each 

sample group. Pearson correlations ranged from 0.65 to 0.97. Worth to note, technical 

replicates presented a correlation higher than 0.94 for all tumor subtypes studied, being the 

papillary subtype the less homogeneous in terms of biological variability. These results are in 

agreement with the well-known characteristics of this cancer subtype. A total of 2547 proteins 

were identified across all tissue biopsies and Figure VI.1B depicts the number of proteins 

identified in each tumor subtype. To ensure the robustness of the identified proteins for 

quantification, only proteins with a reproducibility higher than 70% in at least one tumor subtype 

were considered for further analysis. A final set of 1234 proteins fulfilled the previous criterion 

and they were used for quantification.  

VI.3.3 PROTEIN QUANTIFICATION  

Relative protein quantification of the selected set of proteins (1234) was done by label-

free quantification using the MaxQuant software. Correlation by principal component analysis 

(PCA) of all samples is presented in Figure VI.1C, which shows that tumor proteomes are 

different enough to clearly differentiate between RCC subtypes and each one of them from 

NAT.  

Absolute quantification of proteins was calculated based on raw intensities using the 

total protein approach, TPA, method proposed by Wiśniewski et al. [17]. Figure VI.1D shows the 

dynamic range of protein abundances expressed in TPA-based concentrations achieved in this 
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study, spanning around seven orders of magnitude. This is in line with previous studies reported 

on the TPA approach to solid biopsies [18].  

 

 

Figure VI.1 – Data statistical analysis. A. Person correlation of biological and technical replicates per 
tumor type and NAT, e.g.: 1.1 and 1.2 correspond to sample 1 replicate1 and sample 1 replicate 2 
respectively. B. Number of proteins identified per tumor type and NAT. C. Principal component analysis, 
PCA, using the set of proteins as described in the text (1234). D. Distribution of TPA-based protein 
concentrations (mol/gr total protein) with the common proteins described in literature as potential ccRCC 
markers (red dots). 

VI.3.4 LABEL-FREE RENAL CELL CARCINOMAS PROTEIN-BASED SIGNATURES  

To assess significantly upregulated or downregulated proteins in each tumor type within 

the selected set of proteins (1234), a multi-sample test (ANOVA with a permutation-based FDR 

< 1% filter) was applied. Expression levels were found to be statistically different for 850 

proteins between sample groups. As shown in Figure VI.2A, the unsupervised clustering 

analysis performed on such dysregulated proteins clearly divide the samples into two groups, 

one comprising ccRCC and pRCC and another one comprising chRCC, RO and NAT.  

Taking into consideration the 850 proteins statistically different a search was done to 

undisclosed biomarkers capable of diagnosis each tumor type. A schematic representation of 

the candidate biomarker panel selection workflow is shown in Figure VI.2B. The comparison of 
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protein abundances between sample groups undisclosed a set of proteins that allows to 

distinguish each tumor subtype (ANOVA, p < 0.01). Such panels comprise 81 proteins for 

ccRCC; 60 proteins for pRCC; 25 proteins for chRCC and 39 proteins for RO. The proteins are 

summarized in Table ESM IX.11 of Supplementary information.  

 

 

Figure VI.2 – Significant differential expression in RCC. A. Unsupervised hierarchical clustering analysis 
of 850 differential proteins (ANOVA, FDR < 1%). B. Statistical proteomic workflow applied to select 
significant protein to discriminate the four RCC subtypes, ccRCC, pRCC, chRCC and RO. 

 

VI.3.5 TPA-BASED CONCENTRATION RANGE FOR DIAGNOSTIC PROTEINS 

Next the TPA approach was used to transform the LFQ values of the protein panels 

selected as depicted in Figure VI.2B and shown in Table ESM IX.12 of Supplementary information 

in concentration values. Then for each tumor type we selected the group of 6 proteins 

presenting the highest differential concentrations levels. Such proteins are presented in Figure 

VI.3.  
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Figure VI.3 – TPA-based concentration of top 24 proteins with the highest significant differential 
expression between tissue biopsies. Absolute protein concentration expressed in pmol/mg was 

calculated through the TPA method [34]. 

 

VI.3.6 EVALUATING THE TPA APPROACH WITH DATA RETRIEVED FROM LITERATURE.  

As proof-of-concept the ccRCC diagnostic proteins found with our TPA-based approach 

were compared with those ones already described in the literature. Thus, of circa 90 proteins 

described as putative diagnostic markers, 46 matched our own ones.  

 

 

Table VI.1 – Protein list of common deregulated proteins achieved in literature and our data. 

Protein name Gene name 
ccRCC/NAT 
expression 

Ref. 

Acetyl-CoA acetyltransferase, mitochondrial ACAT1 down [27] 

Alcohol dehydrogenase [NADP(+)] AKR1A1 down [35] 

Retinal dehydrogenase 1 ALDH1A1 up [35] 

Fructose-bisphosphate aldolase ALDOA up [28] 

Aminopeptidase N ANPEP down [36] 
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Table VI.1 (Cont.) 

Annexin A4 ANXA4 up [37] 

Annexin A5 ANXA5 up [35] 

Aquaporin-1 AQP1 down [38] 

Carbonic anhydrase 9 CA9 up [39] 

Calbindin CALB1 down [35,40] 

Macrophage-capping protein CAPG up [41] 

Cofilin-1 CFL1 up [28] 

Coronin-1A CORO1A up [26] 

Dipeptidase 1 DPEP1 down [38] 

Alpha-enolase ENO1 up [22,25,42] 

Gamma-enolase ENO2 up [35,41] 

Fatty acid-binding protein, brain FABP7 up [43,44] 

Gelsolin GSN up [40] 

Glutathione S-transferase P GSTP1 up [35] 

Heat shock protein beta-1 HSPB1 up [22,25,41] 

Plastin-2 LCP1 up [41] 

L-lactate dehydrogenase A chain LDHA up [23,25] 

Galectin-1 LGALS1 up [24,43] 

Major vault protein MVP up [23] 

Nucleoside diphosphate kinase A NME1 up [41] 

Nicotinamide N-methyltransferase NNMT up [23,28,41,45] 

Profilin-1 PFN1 up [24,28] 

Pyruvate kinase PKM PKM up [46,47] 

Perilipin-2 PLIN2 up [23,26,48] 

Peptidyl-prolyl cis-trans isomerase A PPIA up [43] 

Peroxiredoxin-4 PRDX4 up [41] 

UV excision repair protein RAD23 homolog B RAD23B up [22] 

Histone-binding protein RBBP7 RBBP7 up [41] 

Reticulocalbin-1 RCN1 up [49] 

Protein S100-A10 S100A10 up [50] 

Protein S100-A11 S100A11 up [50,51] 

Plasma protease C1 inhibitor SERPING1 up [23] 

Serpin H1 SERPINH1 up [52] 

ADP/ATP translocase 3 SLC25A6 down [35] 

Protein-glutamine gamma-glutamyltransferase 2 TGM2 up [35] 

Triosephosphate isomerase TPI1 up [22] 

Tubulin alpha-1B chain TUBA1B up [41] 

Thymidine phosphorylase TYMP up [23,41] 

Vimentin VIM up [35,42,53]; 

14-3-3 protein zeta/delta YWHAZ up [24] 
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Figure VI.4 – Protein abundances of a set of protein described in literature. In the dashed square are 
marked proteins widely used in immunohistochemical diagnosis. Statistical analysis was performed 
using pairwise Mann Whitney test (* p <= 0.005; ** p <= 0.001; *** p <= 1.00e-03; p <= 1.00e-04). 

 

VI.3.7 VALIDATION OF PLIN2 PROTEINS BY IMMUNOHISTOCHEMISTRY 

PLIN2 protein was evaluated by IHC (Figure VI.5). The majority of the ccRCC were 

positive for PLIN-2 whereas pRCC, chRCC and RO were negative. A few rhabdoid and 

sarcomatoid RCC cases showed focal (< 10%) positivity with a score of 1. PLIN2 staining score 

of 2 or 3 (> 10% positivity) has a sensitivity of 90% and specificity of 100% for distinguishing 

ccRCC from other renal neoplasms. 

VI.4 DISCUSSION 

For many pathological conditions such as cancer, mass spectrometry-based analysis of 

solid and liquid biopsies has become an indispensable tool to diagnose and to prognose. The 

advent of high-resolution mass spectrometry in conjunction with powerful software has allowed 

a step forward from biomarker discovery towards personalized medicine. The diagnosis of RCC 

still presents some challenges to pathologists because there is no consensus about which 

biomarkers must be used for diagnosis and prognosis all different variants of this neoplasia. In 

addition, there is an urgent need to find urine or blood biomarkers of this disease, so the 

chirurgic intervention to obtain a solid biopsy for cancer diagnostic can be overcome. In the 
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pursuing of the aforementioned challenges, we interrogate the proteome of 27 RCC samples 

comprising the main four subtypes using high resolution mass spectrometry. 

 

 

Figure VI.5 – Immunohistochemistry expressions of PLIN2 in A) clear cell RCC, B) papillary RCC, C) 
chRCC, D) oncocytoma, E) rhabdoid RCC and F) sarcomatoid RCC. G) and F) represent, in bar 
diagrams, the number of cases and the percentage of cases positively stained for PLIN2, respectively. 
Percent positivity of tumor cells was scored as (0 = Negative; 1: 1-10%; 2: > 10-50%; 3: > 50%). 

 

Figure VI.1A presents the quality of the mass spectrometry data obtained by comparing 

the biological and technical replicates expressed as person correlations. It might be seen that 

technical replicates have a similarity higher than 97%, showing the excellent performance of this 

technique. In terms of biological replicates, it can be seen that pRCC presents the higher 

proteome variability between biopsies whilst the NAT presents the higher homogeneity. These 

results are in agreement with literature, as it is well known that a hallmark of pRCC is the large 

variability in the morphological expressions of this type of RCC [54]. Once it was verified the 

quality of the mass spectrometry data, the proteome expressed by each RC tumor subtype was 

compared using a PCA model, which is shown in Figure VI.1C. The PCA analysis suggests that 

the proteomes of the ccRCC and pRCC subtypes are more similar between them than with the 
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proteomes expressed by chRCC and RO. This finding is further confirmed by the clustering 

presented in Figure VI.2A, which shows two clusters, one constituted by ccRcc and pRCC and 

the other one by chRCC, RO and NAT. These results are consistent with the different cellular 

origin of ccRCC and pRCC subtypes on the one hand and with the chRCC and the RO 

subtypes on the other one. Thus, the first two originate from proximal tubule cells and the 

second two originate from intercalated cells of the distal nephron and collecting ducts. 

Interestingly, the most benign, subtype, RO, matches closer to NAT than any other subtype. 

The use of mass spectrometry LFQ-based values as depicted in Figure VI.2B allowed 

us to identify a total of 850 differentially expressed proteins between groups. Further analysis of 

these 850 proteins address a number of proteins that specifically identify each RC subtype 

versus all other subtypes and NAT. Next, we transformed the LFQ values of this proteins in 

TPA-based concentrations [34], so a value in pmol of protein / mg of total protein are obtained. 

Using the TPA values and statistics, large sets of unique proteins constituting also unique 

panels to identify each tumor subtype were disclosed (Figure VI.2B). These proteins are present 

in all tumor subtypes, but the range of concentrations found are unique for each one, and so 

such proteins can be certainly used to classify the biopsies.  

As a proof-of-concept, we have compared the 81 proteins found as unique for ccRCC 

with those reported in literature as depicted in table 1. Remarkably 46 of our suggested 

biomarkers have been described in literature as well. For instance, TYMP, PLN2 and CORO1A 

proteins have been already proposed as putative markers for ccRCC. TYMP protein is 

associated with pro-angiogenic and anti-apoptotic effects in cancer cells [55,56], and higher 

levels of TYMP in RCC tissue versus non-neoplastic kidney tissues have been described [57]. 

Such findings are in agreement with our study, which shows TYMP as one of the most up-

regulated proteins in ccRCC, as shown in Figure VI.3. The same finding was obtained for 

PLIN2, known to be highly expressed in clear cells [23,26,48]. PLIN2 regulates lipids 

metabolism and storage and positively correlates with HIF-2α which drives cell proliferation and 

survival [58,59]. Accordingly, we were also able to confirm the highly expression of HIF-2α. As a 

last example, the levels of COROA1 protein were also found exclusively upregulated in clear 

cell tumors (Figure VI.3). COROA1 is crucial for cytoskeleton modulation. High levels of this 

protein have been reported in renal cancer cells with tumor-infiltrating lymphocytes [26].  

In traditional immunohistochemistry, the positive stain of CA9 and the negative stain of 

AMACR and KRT7 are hallmarks of clear cell subtype. Also, when AMACR and KRT7 stains are 

positive the subtype is identified as pRCC [60]. Remarkably, our results confirm the utility of 

CA9 in ccRCC diagnosis (Figure VI.4C). Also, high AMACR and KRT7 levels were confirmed for 

pRCC (Figure VI.4C). As another example, immunoreactivity of VIM is also widely used in RCC 

diagnosis, as its stain pattern stands positive for the diagnostic of both ccRCC and pRCC and 

negative for chRCC. Interestingly, our results confirm these findings since VIM protein levels 

were found over expressed in ccRCC and pRCC versus NAT while in chRCC they were found 

slightly lower than in NAT (Figure VI.4C).  
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The advantage of TPA-based pathology stands in the possibility of quantifying hundreds 

of proteins at the same time, thus allowing to unequivocally diagnostic RCC cancer subtypes. 

The sample treatment is easy to reproduce, and modern mass spectrometry allows to quantify 

the proteins of an extract of any solid biopsy in just 15 min. Thus, in this work each RCC cancer 

subtype is hallmarked with a large set of unique proteins, which we show correlated with data 

available in literature and with the standard proteins used in current immunohistochemistry 

practice to diagnostic RC cancer subtypes. The correlation of our data with literature and classic 

immunohistochemistry corroborates the utility of the TPA based approach to unequivocally 

establish panels of proteins and their concentrations ranges to diagnostic renal carcinomas. In 

particular for PLIN2, TYMP, COROA1, and CA9, in diagnosing clear cell carcinoma. 

Additionally, the AMACR protein has also shown to be useful for the papillary subtype. 

IHC analysis was used to validate the promising proteins achieved with the TPA-based 

methodology. Our preliminary data suggests that PLIN2 may emerge as a sensitive and specific 

marker for ccRCC strengthen the utility of TPA based methods for biomarker discovery.  

We envision TPA based pathology as the next step in solid biopsy-based cancer 

diagnosis and prognosis and we anticipated this methodology is going to be implemented in all 

hospitals within the next 10 years. 

ACKNOWLEDGMENTS 

PROTEOMASS Scientific Society is acknowledged by the funding provided to the 

Laboratory for Biological Mass Spectrometry Isabel Moura. Authors acknowledge the funding 

provided by the Associate Laboratory for Green Chemistry LAQV which is financed by national 

funds from FCT/MEC (UID/QUI/50006/ 2020). H. M. S. is funded by the FCT 2015 Investigator 

Program (IF/00007/2015). S. J. thanks FCT/MEC (Portugal) for her research contract as PhD 

student with the grant SFRH/BD/120537/2016. This project utilized the University of Pittsburgh 

Hillman Cancer Center shared resource facility (Cancer Genomics Facility) supported in part by 

award P30CA047904 (Dr. LaFramboise).  



CHAPTER VI |  Towards TPA-based pathology 

194   Susana Jorge 

REFERENCES 

[1]  Kidney cancer statistics | World Cancer Research Fund 

https://www.wcrf.org/dietandcancer/cancer-trends/kidney-cancer-statistics (accessed Jul 

21, 2020). 

[2]  Ferlay, J et al., Estimating the global cancer incidence and mortality in 2018: 

GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144, 1941–1953. 

[3]  Cairns, P., Renal cell carcinoma. Cancer Biomarkers, 2011, 9, 461–473. 

[4]  van Oostenbrugge, TJ et al., Diagnostic Imaging for Solid Renal Tumors: A Pictorial 

Review. Kidney Cancer, 2018, 2, 79–93. 

[5]  Srigley, JR et al., Uncommon and recently described renal carcinomas. Mod. Pathol., 

2009, 22, S2–S23. 

[6]  Crumley, SM et al., Renal cell carcinoma: Evolving and emerging subtypes. World J. 

Clin. Cases, 2013, 1, 262–275. 

[7]  Hes, O et al., The 2012 ISUP Vancouver and 2016 WHO classification of adult renal 

tumors: changes for common renal tumors. Diagnostic Histopathol., 2016, 22, 41–46. 

[8]  Varela, I et al., Exome sequencing identifies frequent mutation of the SWI/SNF complex 

gene PBRM1 in renal carcinoma. Nature, 2011, 469, 539–542. 

[9]  Peña-Llopis, S et al., BAP1 loss defines a new class of renal cell carcinoma. Nat. 

Genet., 2012, 44, 751–759. 

[10]  Dalgliesh, GL et al., Systematic sequencing of renal carcinoma reveals inactivation of 

histone modifying genes. Nature, 2010, 463, 360–363. 

[11]  Delahunt, B et al., Papillary renal cell carcinoma: a clinicopathologic and 

immunohistochemical study of 105 tumors. Mod. Pathol., 1997, 10, 537–544. 

[12]  Hsieh, JJ et al., Renal cell carcinoma. Nat. Rev. Dis. Prim., 2017, 3, 17009. 

[13]  Yusenko, M V., Molecular pathology of chromophobe renal cell carcinoma: A review. Int. 

J. Urol., 2010, 17, 592–600. 

[14]  Kaliyappan, K et al., Applications of immunohistochemistry. J. Pharm. Bioallied Sci., 

2012, 4, 307–309. 

[15]  Gilbertson, JA et al., A comparison of immunohistochemistry and mass spectrometry for 

determining the amyloid fibril protein from formalin-fixed biopsy tissue. J. Clin. Pathol., 

2015, 68, 314–317. 

[16]  Bantscheff, M et al., Quantitative mass spectrometry in proteomics: a critical review. 

Anal. Bioanal. Chem., 2007, 389, 1017–1031. 



CHAPTER VI |  Towards TPA-based pathology 

Ph. D Thesis   195 

[17]  Wiśniewski, JR et al., A “Proteomic Ruler” for Protein Copy Number and Concentration 

Estimation without Spike-in Standards. Mol. Cell. Proteomics, 2014, 13, 3497–3506. 

[18]  Wiśniewski, JR et al., Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and 

Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane 

Transporters. J. Proteome Res., 2015, 14, 4005–4018. 

[19]  Wiśniewski, JR et al., In-depth quantitative analysis and comparison of the human 

hepatocyte and hepatoma cell line HepG2 proteomes. J. Proteomics, 2016, 136, 234–

247. 

[20]  Wiśniewski, JR et al., The Impact of High-Fat Diet on Metabolism and Immune Defense 

in Small Intestine Mucosa. J. Proteome Res., 2015, 14, 353–365. 

[21]  Chinello, C et al., The proteomic landscape of renal tumors. Expert Rev. Proteomics, 

2016, 13, 1103–1120. 

[22]  Valera, VA et al., Protein Expression Profiling in the Spectrum of Renal Cell Carcinomas. 

J. Cancer, 2010, 1, 184–196. 

[23]  Siu, KWM et al., Differential Protein Expressions in Renal Cell Carcinoma: New 

Biomarker Discovery by Mass Spectrometry. J. Proteome Res., 2009, 8, 3797–3807. 

[24]  Masui, O et al., Quantitative Proteomic Analysis in Metastatic Renal Cell Carcinoma 

Reveals a Unique Set of Proteins with Potential Prognostic Significance. Mol. Cell. 

Proteomics, 2013, 12, 132–144. 

[25]  White, NMA et al., Quantitative proteomic analysis reveals potential diagnostic markers 

and pathways involved in pathogenesis of renal cell carcinoma. Oncotarget, 2014, 5, 

506–518. 

[26]  Atrih, A et al., Quantitative proteomics in resected renal cancer tissue for biomarker 

discovery and profiling. Br. J. Cancer, 2014, 110, 1622–1633. 

[27]  Zhao, Z et al., Label-free quantitative proteomic analysis reveals potential biomarkers 

and pathways in renal cell carcinoma. Tumor Biol., 2015, 36, 939–951. 

[28]  Neely, BA et al., Proteotranscriptomic Analysis Reveals Stage Specific Changes in the 

Molecular Landscape of Clear-Cell Renal Cell Carcinoma. PLoS One, 2016, 11, 

e0154074. 

[29]  Jorge, S et al., Development of a Robust Ultrasonic-Based Sample Treatment To 

Unravel the Proteome of OCT-Embedded Solid Tumor Biopsies. J. Proteome Res., 

2019, 18, 2979–2986. 

[30]  Cox, J et al., MaxQuant enables high peptide identification rates, individualized p.p.b.-

range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol., 2008, 

26, 1367–1372. 

[31]  Tyanova, S et al., The MaxQuant computational platform for mass spectrometry-based 



CHAPTER VI |  Towards TPA-based pathology 

196   Susana Jorge 

shotgun proteomics. Nat. Protoc., 2016, 11, 2301–2319. 

[32]  Tyanova, S et al., The Perseus computational platform for comprehensive analysis of 

(prote)omics data. Nat. Methods, 2016, 13, 731–740. 

[33]  Tyanova, S et al., Perseus: A Bioinformatics Platform for Integrative Analysis of 

Proteomics Data in Cancer Research. In Methods in Molecular Biology; 2018; Vol. 1711, 

pp. 133–148. 

[34]  Wiśniewski, JR., Label-Free and Standard-Free Absolute Quantitative Proteomics Using 

the “Total Protein” and “Proteomic Ruler” Approaches. In Methods in Enzymology; 

Academic Press Inc., 2017; Vol. 585, pp. 49–60. 

[35]  Sun, CY et al., Proteomic analysis of clear cell renal cell carcinoma. Identification of 

potential tumor markers. Saudi Med. J., 2010, 31, 525–532. 

[36]  Raimondo, F et al., Comparative membrane proteomics: a technical advancement in the 

search of renal cell carcinoma biomarkers. Mol. Biosyst., 2015, 11, 1708–1716. 

[37]  Weißer, J et al., Quantitative proteomic analysis of formalin–fixed, paraffin–embedded 

clear cell renal cell carcinoma tissue using stable isotopic dimethylation of primary 

amines. BMC Genomics, 2015, 16, 559. 

[38]  Raimondo, F et al., Protein profiling of microdomains purified from renal cell carcinoma 

and normal kidney tissue samples. Mol. BioSyst., 2012, 8, 1007–1016. 

[39]  Tostain, J et al., Carbonic anhydrase 9 in clear cell renal cell carcinoma: A marker for 

diagnosis, prognosis and treatment. Eur. J. Cancer, 2010, 46, 3141–3148. 

[40]  Lichtenfels, R et al., Systematic Comparative Protein Expression Profiling of Clear Cell 

Renal Cell Carcinoma. Mol. Cell. Proteomics, 2009, 8, 2827–2842. 

[41]  Kim, DS et al., Panel of Candidate Biomarkers for Renal Cell Carcinoma. J. Proteome 

Res., 2010, 9, 3710–3719. 

[42]  Morgan, TM et al., Imaging the Clear Cell Renal Cell Carcinoma Proteome. J. Urol., 

2013, 189, 1097–1103. 

[43]  Raimondo, F et al., Proteomic analysis in clear cell renal cell carcinoma: identification of 

differentially expressed protein by 2-D DIGE. Mol. Biosyst., 2012, 8, 1040. 

[44]  Jones, EE et al., MALDI imaging mass spectrometry profiling of proteins and lipids in 

clear cell renal cell carcinoma. Proteomics, 2014, 14, 924–935. 

[45]  Lebdai, S et al., Identification and validation of TGFBI as a promising prognosis marker 

of clear cell renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig., 2015, 33, 69.e11-

69.e18. 

[46]  Johann, DJ et al., Combined Blood/Tissue Analysis for Cancer Biomarker Discovery: 

Application to Renal Cell Carcinoma. Anal. Chem., 2010, 82, 1584–1588. 



CHAPTER VI |  Towards TPA-based pathology 

Ph. D Thesis   197 

[47]  Yao, Y et al., Metabolism-related enzyme alterations identified by proteomic analysis in 

human renal cell carcinoma. Onco. Targets. Ther., 2016, 9, 1327. 

[48]  Song, Y et al., Data-Independent Acquisition-Based Quantitative Proteomic Analysis 

Reveals Potential Biomarkers of Kidney Cancer. PROTEOMICS - Clin. Appl., 2017, 11, 

1700066. 

[49]  Giribaldi, G et al., Proteomic identification of Reticulocalbin 1 as potential tumor marker 

in renal cell carcinoma. J. Proteomics, 2013, 91, 385–392. 

[50]  Oppenheimer, SR et al., Molecular Analysis of Tumor Margins by MALDI Mass 

Spectrometry in Renal Carcinoma. J. Proteome Res., 2010, 9, 2182–2190. 

[51]  Gabril, M et al., S100A11 is a potential prognostic marker for clear cell renal cell 

carcinoma. Clin. Exp. Metastasis, 2016, 33, 63–71. 

[52]  Qi, Y et al., SERPINH1 overexpression in clear cell renal cell carcinoma: association 

with poor clinical outcome and its potential as a novel prognostic marker. J. Cell. Mol. 

Med., 2018, 22, 1224–1235. 

[53]  Guo, T et al., Rapid mass spectrometric conversion of tissue biopsy samples into 

permanent quantitative digital proteome maps. Nat. Med., 2015, 21, 407–413. 

[54]  Marsaud, A et al., Dismantling papillary renal cell carcinoma classification: The 

heterogeneity of genetic profiles suggests several independent diseases. Genes, 

Chromosom. Cancer, 2015, 54, 369–382. 

[55]  Mori, S et al., Thymidine phosphorylase suppresses Fas-induced apoptotic signal 

transduction independent of its enzymatic activity. Biochem. Biophys. Res. Commun., 

2002, 295, 300–305. 

[56]  Bijnsdorp, I V. et al., Thymidine phosphorylase in cancer cells stimulates human 

endothelial cell migration and invasion by the secretion of angiogenic factors. Br. J. 

Cancer, 2011, 104, 1185–1192. 

[57]  Takayama, T et al., High Levels of Thymidine Phosphorylase as an Independent 

Prognostic Factor in Renal Cell Carcinoma. Jpn. J. Clin. Oncol., 2006, 36, 564–569. 

[58]  Qiu, B et al., HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum 

Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discov., 2015, 5, 652–667. 

[59]  Mylonis, I et al., Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. 

Cells, 2019, 8, 214. 

[60]  Alshenawy, HA., Immunohistochemical Panel for Differentiating Renal Cell Carcinoma 

with Clear and Papillary Features. Pathol. Oncol. Res., 2015, 21, 893–899. 



CHAPTER VI |  Towards TPA-based pathology 

198   Susana Jorge 



 

 

CHAPTER VII.  

Phosphopeptide enrichment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Susana Jorge, Gonçalo Martins, José L. Capelo, William LaFramboise, Rajiv 

Dhir, Carlos Lodeiro, Hugo M. Santos* 

 

 

Work in progresso 

 

 



 

 

 



CHAPTER VII |  Phosphopeptide enrichment 

 Ph.D. Thesis   201 

ABSTRACT 

Phosphoproteins are estimated to be 30% of the entire proteome, playing a 

significant role in regulating several biological processes including, signaling networks. 

To analyze protein phosphorylation, mass spectrometry-based techniques have 

become the preferred tool. However, the low concentration of phosphopeptides 

represents a significant limitation. To overcome such obstacles, ion metal affinity 

chromatography, IMAC, is currently used. In this work, we synthesized new nano-sized 

IMACs from a polystyrene matrix. These polystyrene matrices were also evaluated 

using a 23 experimental design to unravel the optimum conditions to create the 

nanomaterial in a specific range of sizes. Metals used for the IMACs were titanium and 

lanthanum. Phosphopeptide enrichment efficiency of the new proposed material was 

assessed on a protein model, α-casein. A total of 99 phosphopeptides were identified 

for α-casein protein. Both IMACs proved to be efficient for phosphopeptide enrichment; 

however, further optimization is needed to achieve quantitative phosphopeptide 

recovery from complex samples and different biological conditions. 

VII.1 INTRODUCTION 

Phosphorylation is a post-translational modification (PTM) that plays a crucial role in 

many biological functions, and its deregulation is considered a hallmark of many human 

diseases, including cancer. Therefore, a comprehensive analysis of phosphorylated proteins 

and the signaling networks they are involved in is fundamental for understanding the related 

biological processes. Currently, high-throughput proteomics analysis is performed by mass 

spectrometry-based techniques. However, at a molecular level, the identification of 

phosphorylated peptides within complex mixtures pose a considerable technical challenge, as 

only around 30% of the entire proteome is estimated to be affected by this PTM. Currently, 

several approaches, including immunoprecipitation, affinity purification, and strong cation 

exchange chromatography, have been developed and used to pre-concentrate the low 

abundant phosphopeptides [1]. However, these enrichment techniques, in addition to being 

expensive and time-consuming, their applicability has only been proven in peptides containing 

phosphotyrosine [2]. Currently, the most commonly used alternative for phosphoproteomics 

analysis involves chromatography. Immobilized metal affinity chromatography (IMAC) or metal 

oxide affinity chromatography (MOAC) are two strategies based on the immobilization of with 

metal ions, such as Fe3+, Ga3+, or Ti4+, or metal oxides, usually TiO2, respectively, which have 

coordination capabilities and high preference for phosphate group that successfully enrich 

sample fractions with phosphopeptides [1]. However, some limitations including i) nonspecific 
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absorption of nonphosphorylated peptides containing multiple acidic amino acids, and ii) a 

phosphopeptide bias due to specific targeting amino acid sequences for each method [3,4]. To 

overcome such shortcomings the use of lanthanide ions such as La3+, Eu3+, Te3+, and Ho3+, has 

been proposed for selective phosphopeptide enrichment has been proposed [5–8]. Though 

these new materials have shown an increase in peptide recovery when compared to the 

conventional IMAC, the amount and ratio of phosphopeptides recovered remain unclear. Here, 

we propose the synthesis of a new material using monodisperse polystyrene nanoparticles (Ps-

NPs) coordinated with lanthanide ions to increase the specificity and ratio of phosphopeptide 

enrichment. In this way, the high stable chemical properties of the Ps-NPs along with the large 

ratio of exposed surface area to volume and the hydrophilic surface that minimizes nonspecific 

adsorption, these nanomaterials also benefit from the strong phosphate binder ability of the 

lanthanide ions which provide, in addition, more coordination sites for phosphopeptide binding 

compared to any other transition-metal already used.   

VII.2 EXPERIMENTAL SECTION 

VII.2.1  REAGENTS 

All reagents used, were of maximum purity available without any further purification. 

Ammonium persulfate (APS), polyvinyl alcohol (PVA), glycidyl methacrylate (GMA), 

trimethylolpropane trimethacrylate (TMPTMA), 2,2'-Azobis(2-methyl-propionitrile) (AIBN), 

acetone, titanium chloride and lanthanum chloride heptahydrate were purchased form Sigma-

Aldrich. Sodium dodecyl sulphate (SDS), toluene and formaldehyde were purchased from 

Panreac. Styrene, 1-pentanol, tetrahydrofuran (THF) HCl and methanol were purchased from 

Carlo Erba Reagents. Ethylenediamine was purchased from Scharlau. Ethanol, acetonitrile 

(ACN), trifluoroacetic acid (TFA), phosphoric acid were purchased from Alfa Aesar. MilliQ-H2O 

(18.2 MΩ.cm @ 25 °C) was produced in a Simplicity Water Purification system from Millipore.  

VII.2.2 TWO-LEVEL FACTORIAL DESIGN (23) OPTIMIZATION 

Initially, different factors belonging to the synthesis of the monodisperse polystyrene 

nanoparticles (Ps-NPs) were optimized. Three reagents, APS, SDS, and styrene, were 

evaluated as two-levels (minimum or maximum), resulting in a 23 experimental design. The 

variables studied along with their values are shown in Table VII.1.  
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VII.2.3  SYNTHESIS OF POLYSTYRENE NANOPARTICLES  

VII.2.3.1 Synthesis of Ps-NPs 

The synthesis of monodisperse polystyrene nanoparticles was adapted from He et al. 

[9] and Zhou et al. [1]. A total of 8 experiments resultant of the two-level factorial design (23 = 8) 

were carried out in triplicate. For each experiment, the amount of APS and SDS was dissolved 

in water (48.3 mL for experiments 1 - 4, and 42 mL for experiments 5 – 8). The mixture was 

sonicated in an ultrasonic bath at 35 kHz for 10 min at 100% amplitude. The solution was then 

transferred to a round-bottom flask and heated to 80 ºC. After reaching 80 ºC, the styrene and 

1-pentanol solution was continuously added by a pump at a flow rate of 250 µL/min. Afterward, 

the reaction system was maintained at 80 ºC for one h. The concentration of Ps-NPs present 

was calculated by drying 1 mL of solution and weighing the precipitate. At the end of the 

reaction, the size of the produced nanoparticles was analyzed by dynamic light scattering (DLS) 

using a Zetasizer (Malvern) equipment. 

 

 

VII.2.3.2 Synthesis of poly(GMA-co-TMPTMA) 

Next, a 15 mL solution containing 450 mg of Ps-NPs and 1% (w/w) PVA and 0.25% 

(w/w) SDS was prepared and sonicated for 1 min using an ultrasonic bath at 100% ultrasonic 

amplitude and 35 kHz ultrasonic frequency. Afterward, this solution was transferred to a three-

necked round-bottom flask.  Then, an oil-phase solution containing 6.7 mL of GMA, 6.7 mL of 

TMPTMA, 140 mg of AIBN, and 16.6 mL of toluene in 150 mL of 1% (w/w) PVA and 0.25% 

(w/w) SDS solution. The oil-phase solution was emulsified by magnetic agitation at 1200 rpm for 

15 min. Afterward, the emulsion was added to the seeds solution and sonicated for 1 min using 

 

Table VII.1 – 23 factorial design experimental matrix. 

Experiment 
Variables 

APS  SDS  Styrene + 1-pentanol 

1 - 0.004 g - 0.2 g - 0.7 + 0.01 mL 

2 + 0.04 g - 0.2 g - 0.7 + 0.01 mL 

3 - 0.004 g + 2 g - 0.7 + 0.01 mL 

4 + 0.04 g + 2 g - 0.7 + 0.01 mL 

5 - 0.004 g - 0.2 g + 7 + 0.1 mL 

6 + 0.04 g - 0.2 g + 7 + 0.1 mL 

7 - 0.004 g + 2 g + 7 + 0.1 mL 

8 + 0.04 g + 2 g + 7 + 0.1 mL 
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an ultrasonic bath at 100% ultrasonic amplitude and 35 kHz ultrasonic frequency to obtain a 

milk-like emulsion. Finally, the mixture was stirred at 200 rpm for 20 h at 30 ºC. Then the 

temperature was raised to 70 ºC, and the reaction was kept for another 24 h with stirring. Next, 

the solution was transferred to centrifugal tubes and washed seven times, with 20 mL of 50% 

(v/v) THF/ 50% (v/v) acetone. The solution was centrifuged between washes at 8500 g for 10 

min, and the washing solution was discarded. Washed NPs were dried, resulting in a white 

powder. 

VII.2.3.3 Synthesis of poly(GMA-co-TMPTMA-NH2) 

Seven mg of the white powder resulting from the previous step was mixed with 150 mL 

of ethylenediamine. The reaction was conducted for 3 h, at 80 ºC with constant stirring. The 

solution was transferred to centrifugal tubes and washed five times with 30 mL of 50% (v/v) 

ethanol. The washing solution was centrifuged at 8500 g for 10 min between washes. The 

resulting particles were allowed to dry. 

VII.2.3.4 Coupling of phosphonate groups onto the NP 

To functionalize the NP, 7 g of the compound obtained were dissolved in 100 mL of 

water. Next, 5.1 mL of phosphorous acid, 10 mL of 37% HCl and 8 mL of formaldehyde was 

added to the solution. The reaction was submitted to 100 ºC at 100 rpm with stirring. After 24 h, 

the solution was transferred to centrifugal tubes and washed five times with 30 mL of 50% (v/v) 

ethanol. The washing solution was centrifuged at 8500 g for 10 min between washes, and at the 

end, the solution was dried to obtain a light-yellow colored powder (pre-IMAC).   

VII.2.3.5 Lanthanides and Ti4+ immobilization  

The pre-IMAC (m = 100 mg) was incubated with 20 mL of the chosen metal (0.09 M in 

20% (v/v) HCl) for 8 h at RT under constant stirring (200 rpm). Afterward, the solution was 

transferred to centrifugal tubes and washed five times with 10 mL of 30% (v/v) of ACN and 0.1% 

(v/v) of TFA. The washing solution was centrifuged at 8500 g for 10 min between washes, and 

the washing solution discarded. Finally, 10 mL of 30% (v/v) of ACN and 0.1% (v/v) of TFA was 

added to 100 mg of IMACs.  

Overall, the reaction scheme is represented in Figure VII.1. 

VII.2.4 STANDARD PROTEIN DIGESTION 

A protein standard, α-casein was initially used to test the efficiency of the nano-IMACs 

produced. Each standard protein solution was prepared to a final concentration of 1 mg/mL in 

25 mM AMBIC containing 0.001% (w/v) SDS. 
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VII.2.4.1 Protein reduction and alkylation 

Disulfide bonds were reduced and alkylated as described in Jorge et al. [10]. Briefly, 40 

µl of standard protein solution was reduced with 4 µL of 110 mM DTT and incubating for 45 min 

at 37 ºC. Then, the resulting cysteines were blocked with 4 µL of 400 mM IAA at RT for 45 min. 

The samples were diluted to a final volume of 200 µL with 25 mM AMBIC / 2% (v/v) ACN. 

VII.2.4.2 Protein digestion 

Samples were digested in-solution by the ultrasonic method as previously described 

[10].  

VII.2.5 PHOSPHOPEPTIDE ENRICHMENT 

Phosphopeptide enrichment was carried out using a in house gel-loading spin-tip 

assembly. Briefly, C8 membrane disks (1 mm diameter) were place into a gel-loading tip and 

washed with 20 µL of methanol. Then, 50 µL of slurry IMAC (10 mg/mL) were added onto the 

gel-loading tip until reaching a packed column of 5 mm height. Between each addition, the tip 

column was centrifuged at 200 g for 2.5 min. The resulting IMAC spin tips were equilibrated with 

50 µL of loading buffer (80% (v/v) ACN / 6% (v/v) TFA) and centrifuged at 200 g for 2.5 min, 

twice. 100 µL of digested protein sample (20 µg) was added to the IMAC spin tip and 

centrifuged at 20 g for 10 min. The IMAC column was washed by centrifugation at 100 xg for 3 

min firstly with 50% (v/v) ACN / 0.5% (v/v) TFA / 200 mM NaCl buffer and then with 50% (v/v) 

ACN / 0.5% (v/v) TFA buffer. Phosphopeptides were eluted with 20 µL of 80% (v/v) ACN / 2% 

(v/v) TFA, and recovered in a centrifugal tube containing 35 µL of 10% (v/v) FA after 

centrifugation at 100 xg for 3 min. In the end, 3 µL of FA was added to the recovered sample to 

lower the pH. Before MS analysis, samples were purified by zip-tip.    

VII.2.6 NANO-LC-ESI-MS/MS ANALYSIS  

The LC-MS/MS analysis was carried out using an Ultimate 3000 nLC coupled to an UHR-

QqTOF IMPACT HD (Bruker Daltonics) with a CaptiveSpray ion source (Bruker Daltonics). 

Phosphopeptide fraction were resuspended in 15 µL of 3% ACN/0.1% (v/v) aqueous formic 

acid. Seven µL of each sample was loaded into a trap column Acclaim PepMap100, 5 μm, 100 

Å, 300 μm i.d. × 5 mm and desalted for 5 min with 3% B (B: 90% ACN/0.1% FA) at a flow rate of 

15 μL/min. Chromatographic separation was carried out using an analytical column Acclaim™ 

PepMap™ 100 C18, 2 μm, 0.075 mm i.d x 150 mm with a linear gradient at 300 nL/min (mobile 

phase A: aqueous FA 0.1% (v/v); mobile phase B 90% (v/v) ACN and 0.08% (v/v) FA), 0-5 min 

with 3% of mobile phase B, 5-90 min from 3% to 35% of mobile phase B, 90-100 min linear 

gradient from 35% to 95% of mobile phase B, 100-110 with 95% of mobile phase B. The total 

run time was 130 min. For each sample, two replicate injections were performed. 

Chromatographic separation was carried out at 35 ºC. MS acquisition was set to cycles of MS (2 
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Hz), followed by MS/MS (8 – 32 Hz), cycle time 3.0 seconds, with active exclusion (precursors 

were excluded from precursor selection for 0.5 min after acquisition of 1 MS/MS spectrum, 

intensity threshold for fragmentation of 2500 counts). Together with active exclusion set to 1, 

reconsider precursor if the intensity of a precursor increases by a factor of 3, this mass will be 

taken from temporary exclusion list and fragmented again, ensuring that fragment spectra were 

taken near to the peak maximum. All spectra were acquired in the range 150–2200 m/z. Raw 

data were processed in DataAnalysis 4.2 and subsequently exported to Protein-Scape 4.0 for 

automated protein identification. For protein identification, CID-MS2 spectra were first searched 

against the Other Mammalia (46,036 sequences) subset of the SwissProt database 57.15 

(515,203 sequences; 181,334,896 residues), using the Mascot search engine (V. 2.3.02) with 

the following parameters: (i) two missed cleavage; (ii) fixed modifications: carbamidomethylation 

(C); (iii) variable modifications: oxidation of methionine, Acetyl (Protein N-term), Phosphorylation 

(ST),  Phosphorylation (Y), (vi) peptide mass tolerance up to 20 ppm, (v) fragment mass 

tolerance 0.05 Da (vi) Adjust FDR 1%.  

VII.3 RESULTS AND DISCUSSION 

VII.3.1 POLYSTYRENE SYNTHESIS OPTIMIZATION 

The synthesis of polystyrene seeds started with a polymerization step via thermal-

initiated free radical formation. A 23 experimental design was executed to optimize this first step 

of the production of the Ps-NPs, resulting in eight different experiences. The factors under 

optimization were the APS as the initiation of the polymerization reaction, the SDS as the 

surfactant, and the styrene as a functional monomer. The amount of the three reagents are 

described in Table VII.1., For each batch, three replicates were assessed in terms of size, 

population size, and polydispersity. The results are displayed in Table VII.2. 

The size, percentage of the population, and polydispersity (PDI) along with PS seeds 

concentration are some critical attributes to obtain nano-IMACs [11]. To this end, the size of PS 

seeds was chosen between 20-70 nm, as the swelling step will increase the particles' size.  

Seeds with sizes representing more than 90% of the population together with PDI inferior to 0.3 

(0 for totally monodisperse to 1 for totally polydisperse) were selected. Taking these thresholds 

into consideration, experiments 1, 3, and 5 were excluded. Regarding the concentration of 

nanoparticles, presented in Table VII.2, the critical concentration was established above 40 

mg/mL, producing material for three independent syntheses. 

As might be seen in Table VII.2, only experiments 6, 7, and 8 meet the criteria for 

further use in IMAC preparation. It is noteworthy to mention that the concentration was slightly 

lower for the same amount of monomer styrene (7 mL) when the minimal amount of APS was 

used (experiment 7). Also, in experiments 1, 3, and 5, where a minimal amount of initiator was 

used, the produced seeds were polydisperse, suggesting the importance of initiator 
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concentration to fine-tune the size and monodispersity of the particles. For experiments 6 and 8, 

both had rendered comparable results, 39 ± 1 nm (PDI 0.21 ± 0.01) and 43 ± 5 nm (PDI 0.28 ± 

0.03), respectively. However, population size % was discreetly higher in experiment 6 (99.3 ± 

0.3%) than experiment 8 (92 ± 8%). Overall, the reproducibility of experiment 6 was higher; 

therefore, justifying its use for further steps. 

 

 

Figure VII.1 – Immobilized lanthanide ions and Ti4+ nano-IMACs synthesis. This scheme was adapted 
from [9] and [1].   
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VII.3.2 SYNTHESIS OF IMAC 

The addition of a flexible linker attached to the PS seeds was achieved via a swelling 

step, which is critical for the final size of the IMACs. After seed swelling, the reactional mixture 

involves a functionalization step with phosphate groups followed by the metal's immobilization; 

in this work, lanthanum and titanium were tested. Figure VII.2 shows a representative SEM 

image of the lanthanum IMAC 

 

 

Table VII.2 – Size, population, and PDI of PS seeds of each experiment. 

Experiment 
Size  

(nm) 

Population  

Size (%) 
PDI 

Concentration 

(mg/mL) 

Selective 

criteria 

1 132 ± 116 94 ± 5 0.3 ± 0.2 -n.d. Excluded* 

2 18.7 ± 0.4 100 ± 0 0.09 ± 0.00 9 ± 2 Excluded* 

3 1.8 ± 0.1 56 ± 6 0.4 ± 0.1 - n.d. Excluded* 

4 13.6 ± 0.9 96 ± 3 0.23 ± 0.01 22 ± 4 Excluded* 

5 1473 ± 1729 98 ± 4 0.31 ± 0.07 - n.d. Excluded* 

6 39 ± 1 99.3 ± 0.8 0.21 ± 0.01 105 ± 33 Included 

7 49.6 ± 0.9 100 ± 0 0.20 ± 0.00 69 ± 10 Included 

8 43 ± 5 92 ± 8 0.28 ± 0.03 110 ± 3 Included 

n.d. = not defined. * = Failed parameters are marked as darker squares. Inclusion parameters: particle size 
< 70 nm; population size > 90%; PDI < 0.3; critical concentration > 40 mg/mL  

 

 

 

Figure VII.2 – SEM image of lanthanum IMAC produced. 



CHAPTER VII |  Phosphopeptide enrichment 

 Ph.D. Thesis   209 

VII.3.3 PHOSPHOPEPTIDE ENRICHMENT 

Phosphopeptide enrichment of α-casein digest was caried out using the Ti4’ and La3+ 

IMACs. The number of unique peptides recovery by the two IMAC was very similar, 79, and 76 

unique phosphopeptides in Ti4+IMAC and La3+IMAC, respectively. This result was noteworthy 

higher when compared to the 18 or 20 phosphopeptides as expected according to Zhou et al. 

and Yu et al., suggesting a significant improvement of these new materials in phosphopeptide 

enrichment. With the MS analysis, it was also assessed the presence of two proteoforms of 

protein used, the α-casein 1 and α-casein 2. In fact, the existence of α-casein 1 (24.5 kDa) and 

α-casein 2 (26 kDa) has been described elsewhere, and with our technology in combination with 

the use of high-resolution mass spectrometry we were able to identify both isoforms in our 

study. In Figure VII.3 is represented the recovery of phosphopeptides using the two IMAC 

species 

With this experiment, the two types of IMAC have recovered similar number of 

phosphopeptides, Ti4+ IMAC = 50 and La3+ IMAC = 48 for α-casein 1 and Ti4+ IMAC = 28 and 

La3+ IMAC = 27 for α-casein 2. Overall, approximately 70% of the phosphopeptides were 

commonly identified in both IMACs species. A phosphopeptide preference was observed 

between the two IMACs for both proteins since only about 20% of the adsorbed peptides were 

non-phosphorylated.  

To evaluate the efficiency of the phosphopeptide binding of both IMACs, the flow-

through fraction was also analyzed (Figure VII.4). As might be seen in the Venn diagrams 

represented in Figure VII.4, some phosphopeptides were not trapped by the IMAC nanoparticle.  

Although the majority of the phosphopeptides were retained in the enriched fraction, a 

significant portion of those peptides were still missed in the flow-through. The phosphopeptide 

fraction, fraction 1, was analyses by MS (Figure VII.5). Additionally, the flow through was 

passed through the Ti4+IMAC materials twice, resulting in fraction 2 and 3, Figure VII.5. As 

might be seen, a considerable amount of peptide signals was still detected in the succeeding 

fractions. Consequently, the quantification of such phosphopeptides is compromised and 

additional optimization of the IMAC pre-concentration conditions, including peptide-IMAC ratio, 

is still required to guarantee quantitative recovery of phosphopeptides. 
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Figure VII.3 – Analysis of the number of phosphopeptides and nonphosphopeptides identified using 
titanium and lanthanum IMACs nanoparticles for the enrichment of α-casein 1 and 2 proteins. 
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Figure VII.4 – Comparison of the number of phosphopeptides identified captured by the IMAC and 
eluted in the flow-through fractions for both titanium and lanthanum IMACs nanoparticles and for the 
enrichment of both α-casein proteins. 

 

 

Figure VII.5 – MS/MS Total ion current (TIC) chromatogram of phosphopeptide enrichment fractions 
using Ti4+nano-IMAC. The peptide pool resultant from the digestion of the α-casein was passed through 
of the nano-IMAC, fraction 1 resulted from the first enrichment. Then the flow-through was passed once 
again through the sorbent twice, resulting in fraction 2 and 3. 
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VII.4 CONCLUSIONS AND FUTURE WORK 

Protein phosphorylation is reversible and one of the most important post-translational 

modifications. MS-based techniques have become the most convenient, high throughput, and 

efficient approach for proteomics studies. Being also the leading choice for post-translational 

modification (PTM) proteomics analysis due to their high sensitivity and accuracy. However, the 

detection and identification of phosphoproteins by MS is still a challenging task, mainly due to 

their low abundance, lower ionization efficiency compared with non-phosphorylated proteins, 

and suppression caused by the abundant non-phosphopeptides. Several sample treatments 

approaches have been proposed to overcome such pitfalls, including phosphopeptide 

enrichment using IMACs. Here we proposed a new synthesis and family of nano-IMAC 

materials based on titanium (Ti4+) and lanthanum (La3+) metal ions.  The maximal amount of the 

initiator APS and the monomer styrene combined with the minimal amount of the surfactant 

SDS was chosen as the ideal condition of monodisperse polystyrene nanoparticles. The two 

classes of IMAC revealed similar efficiency, resulting in a total of 79 and 76 phosphopeptides 

identified by Ti4+IMAC and La3+IMAC, respectively. Some phosphopeptides have shown a metal 

preference for binding; nevertheless, approximately 70% of the peptides identified were shared 

by both nanomaterials. Although a significant improvement was achieved with both nano-IMAC 

materials, a quantification gap was verified as a portion of phosphopeptides were still flushed 

away in the flow-through. As perspectives for the future, optimization of the IMAC material, and 

enrichment conditions are needed in order to ensure single-shot quantitative recovery of 

phosphopeptides from complex samples and in different biological conditions for true-

quantitative phosphorylation analysis.  
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VIII.1 CONCLUSIONS 

• A novel ultrasonic-based pipeline was accomplished to interrogate the proteome of 

OCT-embedded tissue biopsies. The best condition achieved for the OCT cleaning was the use 

of US bath 35 kHz at 100% of amplitude for 2 min of ultrasonic duty time. Along with the OCT 

cleaning step the workflow comprised the solid-liquid protein extraction and the protein cleavage 

steps under the effects of an ultrasonic field. This methodology was later used as the standard 

one and then applied to all renal tissue biopsies interrogated in this doctoral thesis.   

• A new analytical approach able to discriminate between solid biopsies of chRCC and 

RO was proposed. Based on a peptide sequential extraction hyphenated to MALDI-based 

profiling, the method comprised i) ultrasonic extraction of proteins from solid biopsies; ii) protein 

depletion with acetonitrile; iii) ultrasonic assisted in-solution digestion using magnetic 

nanoparticles with immobilized trypsin; iv) C18 tip-based preconcentration of peptides; v) 

sequential extraction of the peptides with acetonitrile, and; vi) MALDI-snapshotting of the 

extracts. Using the 60% ACN extraction, this methodology was capable of delineating the 

complex proteomes of each tumor subtype. An unsupervised clustering of these samples 

rendered a discriminative tool for chromophobe and oncocytoma specimens holding the 

promise of clinical differentiation between a malignant tumor and benign neoplasm. Also, this 

approach may be extended to any disease presenting similar pathological profiles but with 

different outcomes.  

• A label-free quantitative proteomic analysis using high resolution mass spectrometry to 

discriminate tissue biopsies diagnosed with chRCC and RO was also presented. Based on 

protein expression profiles a successful differentiation of chRCC, RO and NAT was obtained 

after the application of an unsupervised clustering analysis, suggesting that those neoplasms 

are different enough to efficiently classify them and distinguish from normal tissue. In addition, a 

selected panel of 109 proteins was found with significant power of differentiation. Two proteins 

belonging to the proposed panel of biomarkers candidates, the HK1 and the LAMP1, are 

proposed as novel immunohistochemistry biomarkers to differentiate chRCC, RO and NAT. The 

large cohort of differentially expressed proteins opens new avenues for immunohistochemistry, 

as confirmed by the validation of LAMP1 and HK1 proteins. 

• Biochemical pathways involving energy metabolism were revealed dysregulated in 

chRCC and RO. However, chRCC displayed a specific association with phagosome maturation, 

while RO had a greater representation of mitochondrial pathways. 

•  A TPA-based comprehensive study, including three RCC subtypes, the clear cell, the 

papillary and the chromophobe, along with the benign renal oncocytoma, was developed. The 

analysis, through a label free quantification approach, of the whole proteome of each tumor type 
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rendered 850 differentially expressed proteins between samples. After transformation into 

absolute protein concentrations through the total protein approach (TPA) method, a top 24 

protein panel was able to differentiate each tumor subtype, displaying their utility for clinical 

diagnosis. In this work, The TPA quantitative proteomic approach was used for the first time to 

identify an effective panel of proteins and their concentration ranges to diagnose and 

characterize diverse renal neoplasms.  

• The use of the TPA approach was found promising in rendering potential biomarkers for 

immunohistochemistry as demonstrated with PLIN1 via pathological analysis. 

• A new family of nano-IMACs sorbents, using two different metals, was designed for 

phosphopeptide enrichment. The nano-sized IMACs revealed an improvement of efficacy 

allowing the recovery a total of 99 phosphopeptides. However, the absolute recovery of the 

phosphopeptides in just one fraction was not achieve, missing some phosphopeptides in the 

flow-through.  
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VIII.2 FUTURE PERSPECTIVE 

Regarding the developments made in renal neoplasms diagnosis it is expected soon the 

validations of more protein biomarkers candidates through IHC analysis (a work which is 

currently being done by the pathology team of Dr. Rajiv Dhir, at the University Pittsburg Medical 

Center). The validation of such immunobiomarkers will help to develop an effective and proper 

protein panel to accurately differentiate not only the renal neoplasms studied in this thesis but 

also other subtypes. Therefore, we expect a revolution in the area of cancer renal pathology on 

the near future. Also, the implementation of our TPA approach to other type of neoplasia will 

open a new field or research to pathology in general.  

The use of mass spectrometry either in short runs (15 min) with the latest TIMS-TOF 

technology or the use of the fast SRM or the MRM techniques will slowly, but constantly, be 

implemented in the pathology departments as a faster way to diagnostic solid biopsies. 

Furthermore, the potential link between the biomarkers found in solid biopsies with the ones 

present in urine is expected to help to avoid or to reduce the need for solid biopsies to diagnose 

and prognose cancer, as we visualize urine as the ultimate gold sample for diagnosis.  

The advent of paper-based technology for diagnosis will also allow point-of care medical 

diagnosis. The new biomarkers found will allow the easy development of these devices. 

The deep proteomics analysis of data retrieved from the samples used in this work 

reveals the promise of disclosing new information of the mechanisms undelaying tumorigenesis 

of the clear cell and the papillary RCC subtypes.   A better understanding may also bring the 

possibility of finding new therapeutic targets. In this sense, the work in phosphorylation is 

expected to be key, as we expect to be able to quantitatively recover more than 90% of the 

phosphoproteome through the new immobilized lanthanide ions nano-IMAC and and Ti4+ nano-

IMAC. 
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VIII.3 THESIS OUTPUT  

VIII.3.1 PEER-REVIEWED MANUSCRIPTS PUBLISHED IN INTERNATIONAL 

SCIENTIFIC JOURNAL 

2. Title: Ultrasonic-assisted extraction hyphenated to MALDI-based profiling holds the 

promise of distinguish renal oncocytoma from chromophobe renal cell carcinoma 

Authors: Susana Jorge, Kevin Pereira, Hugo López-Fernández, William A. LaFramboise, 

Rajiv Dhir, Javier Fernández-Lodeiro, Carlos Lodeiro, Hugo M. Santos, José Luis Capelo.  

Journal: Talanta, 2020, 206, 120180. Impact factor (2019): 5.339. Rank position (2019): 

11/86, Q1, 87.791%. 

https://doi.org/10.1016/j.talanta.2019.120180.  

Presented in Chapter IV 

1. Title: Development of a robust ultrasonic-based sample treatment to unravel proteome of 

OCT-embedded solid tumor biopsies 

Authors: Susana Jorge, José Luis Capelo, William A. LaFramboise, Rajiv Dhir, Carlos 

Lodeiro, Hugo M. Santos.  

Journal: Journal of Proteome Research, 2019, 18 (7), 2979-2986. Impact factor (2019): 

4.074. Rank position (2019): 12/77, Q1, 85.065%. 

https://doi.org/10.1021/acs.jproteome.9b00248  

Presented in Chapter III 

VIII.3.2 MANUSCRIPTS IN PREPARATION 

2. Title: Towards TPA-based pathology 

Authors: Susana Jorge, José Luis Capelo, William A. LaFramboise, Rajiv Dhir, Jacek R. 

Wiśniewski, Carlos Lodeiro, Hugo M. Santos.  

In preparation 

Presented in Chapter VI 

1. Title: The proteome of tumour biopsies as a tool to distinguish chromophobe renal cell 

https://doi.org/10.1016/j.talanta.2019.120180
https://doi.org/10.1021/acs.jproteome.9b00248
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carcinoma and renal oncocytoma 

Authors: Susana Jorge, José Luis Capelo, William A. LaFramboise, Rajiv Dhir, Carlos 

Lodeiro, Hugo M. Santos.  

In preparation 

Presented in Chapter V 

VIII.3.3 PARTICIPATION IN NATIONAL AND INTERNATIONAL CONFERENCES 

Oral communications  

1. Title: Underlying proteomic signatures to distinguish chromophobe renal cell carcinoma 

and renal oncocytoma 

Authors: Susana Jorge, José Luis Capelo, William A. LaFramboise, Rajiv Dhir, Carlos 

Lodeiro, Hugo M. Santos.  

Congress: 6th International Caparica Conference on Analytical Proteomics (ICAP 2019). 

July 8th-11th, 2019. Capuchos – Caparica, Portugal 

Poster presentations  

9. Title: Role of Hexokinase-1 and LAMP-1 immunohistochemistry to differentiate 

oncocytoma and chromophobe renal cell carcinoma from other renal neoplasms 

Authors: Swati Satturwar, Dimitrios Korentzelos, Susana Jorge, Gabriela Quiroga-Garza, 

Sheldon Bastacky, Hugo, M. Santos, Jose L. Capelo, Rajiv Dhir 

Will be present at: USCAP 110th Annual Meeting, March 13-18th, 2021, virtual meeting, 

USA 

8. Title: Renal cell tumors diagnosis towards TPA-based pathology 

Authors: Susana Jorge, J.L. Capelo, William LaFramboise, Rajiv Dhir, Jacek R. 

Wiśniewski, Carlos Lodeiro, H.M. Santos.  

Congress: 3rd International Conference NOVAhealth Chronic Disease and Infection. 

October 8th, 2020. Virtual meeting, Portugal.  

7. Title: Translating tumor proteome to accurately diagnose chromophobe renal cell 
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carcinoma and renal oncocytoma 

Authors: Susana Jorge, Rajiv Dhir, William LaFramboise, Carlos Lodeiro, J.L. Capelo, 

H.M. Santos.  

Congress: 3rd International Caparica Christmas Conference on Translational Chemistry 

(IC3TC 2019). December 2nd-5th, 2019. Costa da Caparica, Portugal. 

6. Title: Deciphering differences between chromophobe renal cell carcinoma and renal 

oncocytoma through an integrative proteogenomics analysis 

Authors: Susana Jorge, Rajiv Dhir, William LaFramboise, Carlos Lodeiro, J.L. Capelo, 

H.M. Santos.  

Congress: IV NOVAhealth Genetics Workshop, March 21st, 2019. Lisbon, Portugal 

5. Title: Pinpointing protein differences between chromophobe renal cell carcinoma and 

renal oncocytoma 

Authors: Susana Jorge, Rajiv Dhir, William LaFramboise, Carlos Lodeiro, J.L. Capelo, 

H.M. Santos.  

Congress: XXI Encontro Luso-Galego de Química, November 21st-23rd, 2018. Porto, 

Portugal 

4. Title: Unique protein signatures unravel chromophobe renal cell carcinoma and renal cell 

oncocytoma 

Authors: Susana Jorge, Carlos Lodeiro, J.L. Capelo, H.M. Santos, Rajiv Dhir, William 

LaFramboise.  

Congress: 30th Annual UPMC Hillman Cancer Center Scientific Retreat. June 20th – 

22th, 2018. University of Pittsburgh, Greensburg, USA 

3. Title: Overcoming OCT drawbacks for renal tissue proteomics 

Authors: Susana Jorge, Rajiv Dhir, William LaFramboise, Carlos Lodeiro, J.L. Capelo, 

H.M. Santos.  

Congress: XII EUPA CONGRESS Translating genomes into biological functions. June 

16th – 20th, 2018. Santiago de Compostela, Spain 

2. Title: The need to distinguish chromophobe renal cell carcinoma and renal oncocytoma: a 

mass spectrometry-based proteomic approach using OCT-embedded tissues 
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Authors: Susana Jorge, Rajiv Dhir, William LaFramboise, Carlos Lodeiro, J.L. Capelo, 

H.M. Santos.  

Congress: 2nd Edition of the Instruct Training course: “From protein structure to biological 

function through interactomics – an integrated view”. February 5th – 9th, 2018. UC-Biotech, 

Cantanhede, Portugal 

1. Title: Enhancing protein recovery from OCT-embedded tissues for mass spectrometry 

proteomics analysis 

Authors: Susana Jorge, Rajiv Dhir, William LaFramboise, Elisabete Oliveira, Javier 

Fernandéz-Lodeiro, Carlos Lodeiro, J.L. Capelo, H.M. Santos.  

Congress: 2nd International Caparica Christmas Conference on Translational Chemistry 

(IC3TC 2017). December 4th-7th, 2017. Capuchos – Caparica, Portugal 

Awards  

1. Excellent Shotgun Presentation Award  

Congress: 6th International Caparica Conference on Analytical Proteomics (ICAP 2019). 

July 8th-11th, 2019. Capuchos – Caparica, Portugal 

Title: Underlying proteomic signatures to distinguish chromophobe renal cell carcinoma 

and renal oncocytoma 
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IX.1  SUPPLEMENTARY MATERIAL CHAPTER III 

IX.1.1 SUPPLEMENTARY FIGURES 

 

Figure SM IX.1 Effects of ultrasound frequency on an aluminum foil.  The two pieces of aluminum foil 
were submitted to an ultrasonic field generated by an US bath for two min at 100% of ultrasonic 
amplitude, but with the two different ultrasonic frequencies, A) 35 kHz and B) 130 kHz 

 

 

Figure SM IX.2 – Coefficient of variation (CV%) of the technical replicated of mouse kidney samples 
treated with US bath 35 kHz. The coefficient of variation (CV%) of all quantified proteins were plotted 
according to their abundance. Proteins with CV´s <5% are colored in blue and those with CV’s between 
5 to 10% in green. Only one protein was found with a CV > 10%, colored in purple. 
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Figure SM IX.3 – Inter and intra-tumor heterogeneity based on the proteins identified in each sample. A) 
Venn diagram showing the chromophobe intra-tumor heterogeneity of the proteins identified in the five 
biopsies. B) Venn diagram showing the oncocytoma intra-tumor heterogeneity of the proteins identified 
in the three biopsies. C) Venn diagram showing the heterogeneity of the five normal adjacent tissue 
samples. D) Diagram showing the proteome inter-heterogeneity between chRCC, RO and NAT (The 
proteins consistently detected in 100% of the samples, 419 chRCC, 600 RO and 526 NAT, were used to 
generate the Venn diagram D). 

 

IX.1.2 ELECTRONIC SUPPLEMENTARY TABLES 

Table ESM IX.1 –  Protein groups of fresh frozen and OCT mice samples 

Table ESM IX.2 – Proteins identified in chRCC tumor samples. The 12 proteins with the highest levels of 
enriched expression in kidney1 are highlighted in green. 

Table ESM IX.3 – Proteins identified in RO tumor samples. The 12 proteins with the highest levels of 
enriched expression in kidney1 are highlighted in green.  

Table ESM IX.4 – Proteins identified in NAT samples. The 12 proteins with the highest levels of enriched 
expression in kidney1 are highlighted in green. 

Table ESM IX.5 – Unique proteins identified in chRCC tumor samples.  

Table ESM IX.6 - Unique proteins identified in RO tumor samples.  

Table ESM IX.7 – Unique proteins identified in NAT samples. 
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IX.2 SUPPLEMENTARY MATERIAL CHAPTER V 

IX.2.1 SUPPLEMENTARY TABLES 

 

IX.2.2 ELECTRONIC SUPPLEMENTARY TABLES 

Table ESM IX.8 – List of pathways enriched in the chRCC and RO tumors when compared to NAT 
specimens;  

Table ESM IX.9 – List of proteins with significant differential abundance between chRCC and RO tissues  

Table ESM IX.10 – List proteins with significant differential abundance between each tumour and NAT 

IX.3 SUPPLEMENTARY MATERIAL CHAPTER VI 

IX.3.1 ELECTRONIC SUPPLEMENTARY TABLES 

Table ESM IX.11 – LFQ values of proteins’ panel 

Table ESM IX.12 – TPA values of proteins’ panel 

 

Table SM IX.1 –. Description of human kidney biopsies used in the study. 

BIOPSY AGE GENDER DIAGNOSIS* 
SAMPLE 
TYPE* 

N1 54 Male RCC NAT 

N2 49 Female Papillary NAT 

N3 58 Female RCC NAT 

N4 72 Female RCC NAT 

N5 70 Male RCC NAT 

C6 73 Male RCC chRCC 

C7 67 Female RCC chRCC 

C8 71 Male RCC chRCC 

C9 58 Female RCC chRCC 

C10 81 Male RCC chRCC 

O11 80 Male RCC RO 

O12 69 Female RCC RO 

O13 63 Male RCC RO 

O14 62 Female RCC RO 

O13 55 Female RCC RO 

*RCC: renal cell carcinoma; NAT: normal adjacent tissue; chRCC: chromophobe renal cell carcinoma; RO: 
renal oncocytoma. 


