
remote sensing

Article

FFAU—Framework for Fully Autonomous UAVs

Dário Pedro 1,2,3,* , João P. Matos-Carvalho 4,5 , Fábio Azevedo 5,6 ,
Ricardo Sacoto-Martins 2,3,5 , Luís Bernardo 3,7 , Luís Campos 1,
José M. Fonseca 2,3 and André Mora 2,3

1 PDMFC, 1300-609 Lisbon, Portugal; luis.campos@pdmfc.com
2 Centre of Technology and Systems, UNINOVA, 2829-516 Caparica, Portugal;

ricardo.martins@beyond-vision.pt (R.S.-M.); jmf@uninova.pt (J.M.F.); atm@uninova.pt (A.M.)
3 Electrical Engineering Department, FCT, NOVA University of Lisbon, 2829-516 Caparica, Portugal;

lflb@fct.unl.pt
4 COPELABS, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;

joao.matos.carvalho@ulusofona.pt
5 Beyond Vision, 2610-161 Ílhavo, Portugal; fabio.azevedo@beyond-vision.pt
6 Electrical and Computing Engineering Department, FEUP, University of Porto, 4099-002 Porto, Portugal
7 Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
* Correspondence: dario.pedro@pdmfc.com

Received: 16 September 2020; Accepted: 22 October 2020; Published: 28 October 2020
����������
�������

Abstract: Unmanned Aerial Vehicles (UAVs), although hardly a new technology, have recently gained
a prominent role in many industries being widely used not only among enthusiastic consumers,
but also in high demanding professional situations, and will have a massive societal impact over
the coming years. However, the operation of UAVs is fraught with serious safety risks, such as
collisions with dynamic obstacles (birds, other UAVs, or randomly thrown objects). These collision
scenarios are complex to analyze in real-time, sometimes being computationally impossible to solve
with existing State of the Art (SoA) algorithms, making the use of UAVs an operational hazard
and therefore significantly reducing their commercial applicability in urban environments. In this
work, a conceptual framework for both stand-alone and swarm (networked) UAVs is introduced,
with a focus on the architectural requirements of the collision avoidance subsystem to achieve
acceptable levels of safety and reliability. The SoA principles for collision avoidance against stationary
objects are reviewed and a novel approach is described, using deep learning techniques to solve the
computational intensive problem of real-time collision avoidance with dynamic objects. The proposed
framework includes a web-interface allowing the full control of UAVs as remote clients with a
supervisor cloud-based platform. The feasibility of the proposed approach was demonstrated
through experimental tests using a UAV, developed from scratch using the proposed framework.
Test flight results are presented for an autonomous UAV monitored from multiple countries across
the world.

Keywords: UAV; framework; drones; collision avoidance; resilience; artificial intelligence; machine
learning; neuronal network; deep learning

1. Introduction

We live in the ‘era’ of Unmanned Aircraft Systems (UAS), an all-encompassing term that includes
the aircraft or the UAV, the ground-based controller (the person or software agent operating the
machine), and the communications systems connecting the two [1]. Furthermore, new solutions
are being proposed, allowing one to interconnect the different components of this system using
cloud-oriented architecture [2].

Remote Sens. 2020, 12, 3533; doi:10.3390/rs12213533 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7273-8862
https://orcid.org/0000-0001-9409-7736
https://orcid.org/0000-0001-7582-4467
https://orcid.org/0000-0002-3454-4466
https://orcid.org/0000-0002-3384-9997
https://orcid.org/0000-0001-7173-7374
https://orcid.org/0000-0003-1354-4739
http://dx.doi.org/10.3390/rs12213533
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/12/21/3533?type=check_update&version=3

Remote Sens. 2020, 12, 3533 2 of 23

Today, the UAVs are revolutionizing the world and businesses in a way that hardly anyone could
have ever imagined [3,4]. This rapid evolution of UAVs and more importantly their commercial
application in an ever-larger spectrum of scenarios, increases the need for safer and more reliable
solutions [5–8]. At the same time, the incremental developments of sensing technologies (e.g., thermal,
multispectral, and hyperspectral) in multiple areas may change parts of society by creating new
solutions and applications [9–13].

In order to safely deploy UAVs in an urban environment, UAVs must reach the same level of
reliability and safety as cars [14]. This level of safety and reliability must be assured regardless of the
operation conditions and occurrence of unexpected events. This leads to the obvious conclusion that,
just as for other autonomous vehicles, it is required to develop a collision avoidance architecture that
is agnostic of the environment constrains, and is capable of finding solutions to unexpected events
in real-time. The lack of such robust architectures has led to multiple disasters in the past [15–21],
which will naturally increase with the expected exponential growth in the number of UAVs that will be
deployed (both by consumers and companies). In this paper, a robust architecture, part of a complete
Framework for Fully Autonomous UAVs (FFAU) is proposed along with complete implementation
(both software and hardware) that satisfy the functional and technical requirements of the proposed
architecture. The increased safety of the proposed framework allows new and interesting usage
scenarios such as the long distance remote control of UAVs. Furthermore, a novel Dynamic Collision
Avoidance algorithm is proposed, which utilizes a Convolutional Neural Network (CNN) to extract
features from video frames, and a Recursive Neural Network (RNN) that takes advantage of the video
temporal characteristics capable of estimating if there is an incoming collision, such as the one depicted
in Figure 1. This figure illustrates two frames from a video, retrieved from the ColANet dataset [22],
that presents a kid kicking a ball into a UAV.

(a) Free path.

Incoming
object

(b) Incoming collision.

Figure 1. Novel Dynamic Collision Avoidance Detection. The images represent two frames from the
same video, where a boy kicks a ball into a UAV.

Remote Sens. 2020, 12, 3533 3 of 23

There are quite a few attempts to integrate UAVs into an architecture that links different UAVs
modules and a cloud platform. The architecture presented in [23] covers three main topics: Air traffic
control network, cellular network, and the Internet. The layered architecture provides services for
different UAV applications, such as surveillance or search and rescue. The paper does not present
any implementation of the proposed architecture and only outlines general concepts of the IoD
(Internet-of-Drones), which later had a partial implementation [2]. Neither papers gave much
importance to a key factor: The UAV itself. Contrarily, this paper analyzes in greater depth the
UAV functional blocks without disregarding the equally important cloud connection.

A model of UAV usage in natural disasters was presented by Apvrille [24]. It helps rescuers find
victims after a disaster. The proposed system addresses the development of autonomous UAV missions
based on onboard image processing rather than controlling the UAV over the cloud or offloading
computation to a remote server.

Mahmoud et al. proposed a model for collaborative UAVs [25] that maps cloud computing
resources to the UAVs’ resources. Additionally, essential services and customized services were
proposed, as the option to access UAVs resources over the Internet and control their mission.
A high-level description of the system architecture, components, and services are presented, but it lacks
detail on the implementation and results. Continuing this work, a Resource-Oriented Architecture
(ROA) approach that represents the resources and services of UAVs was developed [26,27]. A prototype
was implemented using an Arduino that emulates a UAV and its resources. However, this approach is
very distant from a true experimental prototype and does not represent a sufficient proof of concept of
real UAVs, and therefore does not demonstrate the feasibility of the approach.

Out of the scope of this related work are detailed descriptions of some concepts which the authors
consider to be prior knowledge both in the areas of Robotics and Cloud, such as MAVLink protocol [28],
Robotic Operation System (ROS) [29], Back-End (BE) [30], Web Application (WA) [30], docker [31],
and kubernetes [32,33].

The rest of this paper is structured in the following sections: Section 2 introduces a framework
for the safe operation of UAVs. The main novelties of this framework are collision avoidance and
cloud blocks, which are detailed respectively in Sections 3 and 4 respectively. Section 5 describes
the experimental testing of concrete implementation (both software and hardware) of the proposed
framework, and analyzes the data collected, which validates our approach and implementation.
The paper presents its main conclusions and possible future research work in Section 6.

2. Framework for Fully Autonomous UAVs

This paper proposes the architecture depicted in Figure 2. The core elements are implemented on
top of the ROS framework and make use of its abstractions and message passing systems to implement
all necessary features [29]. The communication between blocks is done throughout ROS topics using
the publisher/subscriber paradigm. The cloud platform, named Beyond Skyline, is a cloud platform
that mimics a UAV Radio Command with the advantage that the pilot can control a UAV remotely
through the internet. The pilot and the UAV need only an internet connection to the platform.

Multiple software components are necessary for the development of a desirable (i.e., safe and
reliable) UAV system. The ROS libraries were used for the modules running in the UAV, since it allows
high flexibility and easier integration of future additional features. Moreover, it provides several
off-the-shelf nodes that can be adjusted or reused to fit new purposes. The remainder of this section
uses some of the terms intrinsic to ROS to explain each component represented in Figure 2. Additional
details can be found alongside the source-code (at https://gitlab.pdmfc.com/drones/ros1/heifu).

https://gitlab.pdmfc.com/drones/ros1/heifu

Remote Sens. 2020, 12, 3533 4 of 23

BEYOND-SKYLINE

Perception
Ø Odometry
Ø Point Clouds
Ø GNSS Localization
Ø Barometers
Ø Positioning Fusion
Ø Image PreProcessing

Collision Aware
Planner

Communication
Handler Com

m
and

M
ultiplexer

UAV
Controller

Dynamic Collision
Avoidance

Plan Handler +
Controllers

Sensor Data

Te
le

m
et

ry

Plan Point Clouds

Plan

Feedback

Reactive Cmd

Velocity Cmd

Plan Cmd

Cmd

UAV

Image

Figure 2. Architecture of the framework for fully autonomous Unmanned Aerial Vehicles (UAVs).

2.1. Perception

Perception is the core block of the presented architecture. It encapsulates a set of functionalities
that can be broken down into several nodes (usually one per each sensor), and higher-level nodes take
input data from those that are directly handling the physical sensors.

The nodes that handle sensors directly are the following:

• Camera Node: Receives data from the camera and publishes it in a sensor image message format.
This looks like a rather simple node, but it can be extremely complex. ROS passes images in
its own message format, but many developers use images nodes bundled with different image
processing libraries such as OpenCV [34];

• Odometry Node: This node can estimate the UAV position relative to its starting point. This can
be done by using the UAV motion sensors data, performing estimations via visual odometry,
or by using any sort of fusion algorithm that mixes methods. The data from this node is published
on a message format denominated navigation odometry messages;

• IMU Node: The Inertial Measurement Unit (IMU) is responsible for handling the IMU sensors
(accelerometer, gyroscope, magnetometer, and barometer) and periodically publishes sensor IMU
messages to the ROS network;

• GNSS Node: Obtains data from the Global Navigation Satellite System (GNSS) and periodically
publishes navigation messages on the ROS network.

In each node, filtering algorithms can be applied before publishing the data on the ROS network.
It is important to filter erroneous readings from sensors and avoid polluting the top-level nodes with
noise. Thus, on top of the first set of perception nodes, additional nodes can be developed, which use
the filtered data. Some examples are positioning nodes [35], 3D nodes [36] (using structure from
motion), or depth images to point cloud nodes [37].

2.2. Collision Aware Planner

The Collision Aware Planner (CAL) module is responsible for establishing a safe path. This module
receives one or multiple coordinates and generates a path between those coordinates, taking into
account the data from the perception layer (obstacles point-clouds). In a long autonomous mission,
the CAL creates a trajectory between the two waypoints of the global mission. These trajectories are its
output and consist of an array of georeferenced trajectory waypoints.

There are multiple forms to approaching the planning problem, as described by Galceran et al. [38].
The majority of SoA algorithms assume that the world can be modeled as a simple planar surface.
Hert et al. [39] applied 2D knowledge to the 3D environment and some other methods to approach

Remote Sens. 2020, 12, 3533 5 of 23

navigating with obstacle avoidance. Another method consists on interpolating the goal points given by
the user and setting escape callbacks that enter in play whenever an obstacle is detected [40]. Section 3
will add additional detail regarding this topic. The CAL produces a trajectory that is a sequence of
points with distance tolerances and updates the plan handler.

2.3. Plan Handler

Based on the CAL output, the plan handler interpolates the trajectory points with movement
constraints and command actions. The plan handler node receives as input the joint state data from the
UAV actuator’s encoders and an input set point. It uses a generic control feedback loop mechanism,
typically a PID controller, to control the output. Since the number of joints of a UAV is usually simple,
it is possible to create a standard action controller to translate the trajectory produced by this CAL into
commands for the UAV controller.

2.4. Command Multiplexer

Prioritizing safety and control topics is a mandatory precaution in nowadays’ UAVs. Safety requires
one to be able to automatically switch from autonomous behavior to manual control when pushing
any button of a remote controller. Therefore, all input sources must be multiplexed into a single
convergence point that communicates with the hardware controller.

The Command Multiplexer (CM) subscribes to a list of topics, which are publishing commands
and multiplexes them according to a priority criteria. The input with the highest priority controls the
UAV, becoming the active controller. The active controller can be changed by timeout (no response
from an input) or topic locking (some inputs might be locked, being discarded). In practice, the node
will take multiple input topics from different issuers and output the messages of the issuer with the
highest priority (blocking the others). This is particularly useful when the UAV is flying autonomously
and the pilot wants to take control of the UAV. Any command of the pilot will make him the active
controller if the pilot is set with the highest priority.

2.5. Dynamic Collision Avoidance

The Dynamic Collision Avoidance (DCA) node is a novelty that distinguishes the FFAU from
SoA frameworks, by improving safety. The core idea is that it implements the logic associated with
unplanned actions that require immediate attention. For instance, if someone throws an object at the
UAV while it is executing an autonomous mission, this node is responsible for forcing the UAV to
change its trajectory and avoid the obstacle.

To accomplish this, it receives the live video stream information from the perception block
and when an incoming collision is detected, it sends commands to the CM with high priority. On the
proposed DCA algorithm, a set of Deep Neural Networks (DNN) are combined to achieve this result.

The collision avoidance algorithms require the UAV positioning to be coupled with image
processing, since the motion drift caused by inertia can easily lead the DCA node to miscalculate a safe
trajectory around an incoming object.

This paper introduces a novel DCA node for moving object detection and a collision avoidance
algorithm that uses data from a standard camera, fully described in Section 3. The node is optional to
the architecture and will only handle incoming collisions.

2.6. Communication Handler

In order to communicate with this framework, a communication module translates ROS
publisher/subscriber into websockets. By doing this, it is possible to control a fleet of UAVs from any
distance from the Beyond Skyline platform (the developed Beyond-Skyline platform can be accessed
by the link—https://beyond-skyline.com/). The module also handles the handover between WiFi,
4G, and 5G. This is done by creating a stream in all available communication channels and by always

https://beyond-skyline.com/

Remote Sens. 2020, 12, 3533 6 of 23

using the one with the best connectivity. When the UAV is authenticated, it receives a dedicated
channel to stream video and audio data using the Real-time Transport Protocol (RTP) [41].

3. Collision Avoidance

Creating a path planning from location A to location B, while simultaneously avoiding obstacles
and reacting to environment changes are simple tasks for humans but are not so straightforward for a
UAV. These tasks present challenges that each UAV needs to overcome to become fully autonomous.
A UAV uses sensors to perceive the environment (up to some degree of certainty) and to build or
update its environment map. To determine motion actions that lead to the desired goal location, it can
use different decision and planning algorithms. In the process of path planning, the UAV’s kinematic
and dynamic constraints should be considered.

Shortest paths discovery is used to solve problems in different fields, from simple spatial route
planning to the selection of an appropriate action sequence that is required to reach a certain goal.
Since the environment is not always known in advance, this type of planning is often limited to the
environments designed in advance and described accurately enough before the planning process. It is
possible to calculate routes in fully known or partially known environments, as well as in entirely
unknown environments where sensed information is used to define the desired UAV motion.

Planning in known environments is an active research area and presents a foundation for more
complex scenarios where the environment is not known a priori. This section presents an overview of
the most common path planning approaches applicable to UAVs.

In this work, the problem of collision avoidance is divided into two categories:

• Static collision sc—Represents collisions between the UAV and any obstacle that moves
considerably slower than the UAV. It is considered that by using the world as a referential,
an object will produce a static collision if it is moving slower than 5% the UAV maximum
speed vmax;

• Dynamic collision dc—Represents collisions between the UAV and any obstacle that is moving
faster than the computing of point clouds for the path planner to plan a safe path in avoiding
the collision. It is considered that by using the world as a referential, an object will produce a
dynamic collision if it is moving faster than 5% vmax.

Denoting the object current speed as vo, the two collision categories can be formulated as:{
sc ∈ vo 6 0.05 · vmax

dc ∈ vo > 0.05 · vmax
(1)

It is important to note that the heuristic of 5% maximum speed is not critical because the Static
Collision Avoidance (SCA) algorithm, used in the framework by the CAL block, can handle obstacles
that are moving at faster speeds (from 0% to 25% of its maximum speed) without being eluded into
erroneous paths. In the same way, the dynamic collision avoidance algorithm handles all sorts of
collisions, even if the path planner fails to detect a static object and does not generate a trajectory that
avoids the obstacle.

3.1. Static Collision Avoidance

As stated by Marr in [42], most of the structures in the visual world are rigid or at least nearly so.
This statement is the starting point for most of the collision avoidance algorithms. The core concept is
that the planner should try to create a plan that maximizes the distance to obstacles while heading
towards the waypoint.

A vast number of methods have been proposed to automate air traffic Conflict Detection and
Resolution (CDR) [43]. Most of the methods can be separated by: Dimensions of state information
(vertical, horizontal, or three-dimensional, 3D), dynamic state propagation method (nominal, worst case,

Remote Sens. 2020, 12, 3533 7 of 23

or probabilistic), conflict resolution method (planned, optimized, force field, or manual), maneuvering
dimensions (speed change, lateral, vertical, or combined maneuver), and multiple aircraft conflicts
management (pairwise or global).

This section focuses specifically on multi-rotor UAV solutions using real-time obstacle avoidance
algorithms with the most common sensorial configurations, namely monocular cameras [44],
LiDARs [45,46], stereo cameras [45], or a combination [45].

Global shutter cameras can provide a snapshot of the environment for a given instant and
generate dense 3D depth information, with an RGB color map to each point in space, which enables the
possibility of detecting distant objects. The main disadvantage of using this solution is the dependency
on the conditions of the visual environment and the necessary computing power for processing.
Besides that, its range accuracy decreases with range squared [47]. There are other solutions [44,48–50]
that use monocular cameras and radars to generate 3D maps to prevent collisions with static structures.

The obstacles can be represented on a map by a simple point cloud containing the measurements
given by range or depth sensors. However, this is memory expensive and is processing and
computationally costly, which can compromise real-time requirements. Data clustering can be used for
reducing this cost, resulting in a sparser representation. Another disadvantage of this representation
method is that it is hard to distinguish between free and unknown spaces. Using a point cloud as input,
the memory space required for storing map information can be reduced using voxel-based techniques,
like Octomaps [51] or GPU Voxels [52]. Other ways of representing occupancy maps are analyzed and
summarized in [53].

For a better understanding of all the presented concepts, Figure 3 depicts a Hexacopter UAV,
simulated using Gazebo [54] and ROS. In this example, the UAV processes the environment using
a depth camera and filling an octree from Octomaps. Afterwards, a destination waypoint is added
and the path planned for the UAV is represented with the UAV model with higher transparency
(Figure 3d). The path planning with environment awareness was done with methods based on the
traditional Probabilistic Roadmap (PRM) [55], and Rapidly-exploring Random Tree (RRT) [56].

Another obstacle avoidance algorithm is presented in [57]. In this case, the vehicle is considered as
a sphere, which simplifies the collision-free paths calculations and constructs a safety volume around it.
Whenever an obstacle enters the safety volume, it constructs an ellipsoid volume around the obstacle
and searches for a point that allows a free path. This is calculated from the current position to the
escape point, ensuring no collisions through a defined distance from the escape point on the direction
to the way-point. If no safe path is found, it increases the ellipse radius (a certain number of times)
and performs another search. If no free path is found until a maximum ellipse radius, the UAV will
alert the pilot and remain in the same position until the pilot takes control.

This method has the advantage of allowing an uninterrupted flight for avoiding the obstacle
while having considerable low processing without a necessity to recalculate the trajectory considering
arbitrary avoidance points.

Having this line of thought, Sabatini et al. [58] implemented an obstacle avoidance ellipsoid-
shaped safety zone around obstacles, taking into account the UAV’s dynamics. For example, when the
UAV is moving at high velocity and/or acceleration, the time to find an alternative path and the
distance to the obstacle are the major inputs of the cost function, as they are the main parameters to be
considered in critical situations.

Remote Sens. 2020, 12, 3533 8 of 23

(a) Initial position on Simulator. (b) Initial position on Path Planner.

(c) End position on Simulator. (d) End position on the Path Planner.

Figure 3. Hexacopter navigation on a simulated environments with Static Collision Avoidance
awareness, using Framework for Fully Autonomous UAVs (FFAU).

3.2. Dynamic Collision Avoidance

To avoid a collision with a dynamic obstacle (such as an animal) or an incoming object (such
as a thrown ball), a UAV needs to detect and execute a safe maneuver to avoid them. Perception
latency is the time used to perceive the environment and process the captured data to generate control
commands [59–61]. The higher the relative speed between the UAV and object, the more critical the
role of perception latency becomes.

Compared to SCA algorithms, the DCA algorithms have not been much explored, which makes
the task much harder. There are a few works such as the one from Poiesi and Cavallaro [62] where
multiple image processing algorithms that estimate the time of collision of incoming objects are
explored. The detection is accurate, but the algorithm takes approximately 10 seconds to process each
frame (on an Intel i7-10750H Hexa-Core), making the solution not applicable in real-time scenarios.
In addition, Faland et al. [63] delved into the event cameras to generate a computing efficient sensing
pipeline that was capable of avoiding a ball thrown towards a quadcopter at speeds up to 9 m/s similar
to the work done in [60]. However, these types of cameras are not common on commercial UAVs.

In this article, a novel solution that uses Deep Learning (DL) is proposed. In order to simplify
the task, the problem was divided into three blocks. The first block is the Feature Extraction (FE),
which utilizes a CNN to generate feature vectors for the video frames. The second block handles
the video temporal information (stream) with RNNs and the input of multiple SEQ feature vectors.
Finally, the third block receives the result of the last RNN and uses a Feedforward Neural Network
(FNN) to output a decision, which can be the collision detection or an escape trajectory. The proposed
architecture is represented in Figure 4. These blocks will be further detailed in the following subsections.
Implementations, visualization functions, and further information can be found at https://github.
com/dario-pedro/uav-collision-avoidance/tree/master/train-models.

https://github.com/dario-pedro/uav-collision-avoidance/tree/master/train-models
https://github.com/dario-pedro/uav-collision-avoidance/tree/master/train-models

Remote Sens. 2020, 12, 3533 9 of 23

Temporal

FE

(SEQ+1)!"

FE

(SEQ)!"

FE

(SEQ−1)!"

. . .

FE

1#!

FE

0!"

Features

𝑅𝑁𝑁!

𝑅𝑁𝑁"

𝑅𝑁𝑁#

Decision

. . .

FE

(SEQ+2)!"

Figure 4. Proposed dynamic collision avoidance neural networks architecture.

3.2.1. Feature Extraction

The FE is applied on each frame and generates a feature vector. For this, a CNN is used, namely a
MobileNetV2 (MNV2) [64]. The architecture is based on an inverted residual structure where the input
and output of the traditional residual block are thin bottleneck layers opposite to residual models
that use expanded representations in the input and uses lightweight depth-wise convolutions to filter
features in the middle expansion layer [64]. This model was selected because at the moment, it achieves
the best trade-off between accuracy and computation for a low-power processor as the present in
UAVs [64–66], achieving 72.8% top-1 accuracy on ImageNet with only 2.2 M parameters. The model
receives a 224× 224× 3 image and returns as output a 7× 7× 1280 matrix, which is converted into a
1280 feature vector by applying a 2D Global Average Pooling [67].

3.2.2. Temporal Correlation and Decision

The temporal correlation of the features data extracted from each frame is obtained by applying
a RNN. In this paper, a 3-depth blocks Long Short Term Memory (LSTM) architecture is proposed,
which receives a sequence ϕ of 25 input vectors, representing around 1 second of video at a 25 frame
rate (the average video framerate of the selected dataset, the ColANet). The first layer has eight LSTMs,
the second and the third has two LSTMs each. Both three layers are followed by dropout and batch
normalization. Moreover, the last RNN layer is connected into a FNN with four neurons that are finally
connected to two output neurons.

In a live scenario, the architecture is executed using a sliding window approach where the feature
queue always contains the last 25 features vectors and is fed into the RNN. Whenever a new video
frame is available, the frame is processed by the FE and the new feature vector is added to the features
queue by shifting the previous values. Furthermore, the result of the RNN and FNN for a set of 25

Remote Sens. 2020, 12, 3533 10 of 23

feature vector array is the prediction for the last frame. Algorithm 1 presents the necessary sequential
actions to process a new video frame, where it is assumed that all models have been previously loaded.

Algorithm 1: Dynamic Collision Avoidance—processing the latest video frame.

SEQ_LEN = 25
features_queue = deque (maxlen=SEQ_LEN) # Double −ended queue

def dcaProcessFrame (videoFrame) :
R e s i z e image t o cnn i n p u t s i z e
img = video_frame . r e s i z e (2 2 4 , 2 2 4 , 3)

ML l i b s p r e d i c t f u n c t i o n s o u t p u t s a r r a y s
cnn_pred = cnn_model . p r e d i c t (img) [0]

S h i f t add t h e image f e a t u r e s t o t h e f e a t u r e s queue
features_queue . append (cnn_pred)

Check i f enough images have been s e e n
i f (len (features_queue) >= SEQ_LEN) :

rnn_pred = rnn_model . p r e d i c t (features_queue) [0]
return decision_model . p r e d i c t (rnn_pred) [0] # r e t u r n r e s u l t

e lse :
return 0 # r e t u r n no c o l l i s i o n

The processing is optimized when compared with solutions such as conv3d [68], which apply
convolutions to a 3D space. In the proposed architecture, only the last frame needs to be processed by
the CNN and introduced with a shift into a queue that is passed to the RNN. Afterward, the RNN and
FNN are triggered, which will output a prediction.

3.2.3. Training and Results

To train the proposed architecture, the dataset ColANet (at https://colanet.qa.pdmfc.com/) was
used [22], which contains around 100 videos that result to 18,872 images. This is a video dataset of
collisions and has the possibility to output a classification target (collision or no collision) or a regression
target. To simplify, in this paper the training and results are oriented to the classification problem.
However, using the proposed architecture, working on the regression problem just requires the
addition of four additional output neurons and target each output for an avoidance axis. The machine
learning frameworks Tensorflow and Keras were used to facilitate the construction and training of
such networks [69].

Initially, the MNV2 model was obtained using Tensorflow by using the transfer learning
approach [70], with the weights pre-trained on the ImageNet dataset, which is a large dataset of
1.4 M images and 1000 classes of web images [71]. ImageNet has a fairly arbitrary research training
dataset with categories like plane and eagle, but this base of knowledge helps in feature extraction
tasks and the general world perception is transferred.

Firstly, the layer of MNV2 to be used for FE is chosen. The last classification layer (on “top”,
like most diagrams of machine learning models go from bottom to top) is not useful. Instead, it is
common practice to use the last layer before the flatten operation. This layer is called the “bottleneck
layer”. Bottleneck features retain much generality as compared to the final/top layer. This can be done
by loading a network that does not include the classification layers at the top, which is ideal for FE.

Afterward, all layers are frozen before compiling the model, which prevents weights from being
updated during training. Then, a classification block is added, which is composed of a global average
pooling 2D layer to convert the features to a single 1280-element vector per image, and a dense layer

https://colanet.qa.pdmfc.com/

Remote Sens. 2020, 12, 3533 11 of 23

to convert these features into a single prediction per image. It is not necessary to add an activation
function because this prediction will be treated as a raw prediction value. Positive numbers predict
‘collision’, negative numbers predict ‘no collision’. This last classification layer was trained to give
some knowledge of the objective goal, using a binary cross-entropy loss and an Adam optimizer [72]
with a 1× 10−4 learning rate and a 1× 10−6 decay rate. For the classification problem in study, the loss
can be depicted as Equation (2),

J(w) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] , (2)

where w refers to the model parameters (weights), N are the number of images, yi is the target label,
and ŷi is the predicted label. The accuracy metric is given by Equation (3):

accuracy(y, ŷ) =
1
N

N

∑
i=0

1(ŷi = yi). (3)

The training results of the added classifier is illustrated in the first 20 epochs of Figure 5 (before
fine-tuning). At the end of the 20 epochs, using only single frames information, the model managed to
predict collisions with 62.02% accuracy (validation accuracy). Afterward, a fine-tuned version of the
MNV2 base model was trained. To do this, all layers were unfrozen. It is important to note that the first
step is mandatory, because if a randomly initialized classifier is added on top of a pre-trained model
and attempt to train all layers jointly, the magnitude of the gradient updates will be too large (due to
the random weights from the classifier) and the pre-trained model will forget what it has learned (the
transferred knowledge). The training results of the fine-tuned FE are the last 20 epochs of Figure 5 and
achieved a final validation accuracy of 74.18%. On the last epochs, the difference between training
and validation started to increase, which indicates the beginning of over-fitting, and for that reason,
no further epochs were trained.

The fine-tuning of the MNV2 network gives a model that is highly oriented to the collision
classification problem. On one hand, this is good because it allows the CNN to prioritize some
features, but on the other hand it is bad because it generalizes less (potentially leading to overfitting
data), giving more importance to features present in the dataset. For this reason, the training of the
RNN+FNN blocks will be presented in two versions. The first version uses the MNV2 with pre-trained
weights from ImageNet. The second version uses the MNV2 with pre-trained weights from ImageNet
and fine-tuned in the ColANet dataset.

Initially, the RNN+FNN blocks are trained with feature data from the CNN which has not been
fine-tuned with ColANet data. In order to prepare the data for the second block, some constraints
must be added:

1. The input data must be an array of SEQ length. A value of 25 was considered in this paper,
however any value between 20 and 50 yielded similar results;

2. The generated sequences must only contain frames from a single video. To work with video data
on GPUs is not a trivial task and generating video sequences adds an overhead. The dataset is
seen by the model as a continuous stream of data, and this constrain must be enforced to avoid
having the model learning jumps between videos (false knowledge);

3. The last frame target label is the target for the entire sequence.

The Adam optimizer [72] with a 1 × 10−4 learning rate and 1 × 10−6 decay rate was used.
The training result of the RNN with the FNN classification layer with the transferred FE weights and
fine-tuned FE can be found at Figure 6 respectively.

Remote Sens. 2020, 12, 3533 12 of 23

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy
Start Fine Tuning

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training Loss
Validation Loss
Start Fine Tuning

Figure 5. Training Feature Extraction (FE) based on MobileNetV2 model. On the first 20 epochs,
only output neurons are trained. Afterwards, the entire model is fine tuned.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training Loss
Validation Loss

(a) Using ImageNet weights.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training Loss
Validation Loss

(b) Using fine-tuned weights.

Figure 6. Training evolution graph of the Dynamic Collision Avoidance (DCA) model with the FE.

The results of all the models are summarized in Table 1. It is possible to conclude that it is a valid
approach for the DCA problem, but some additional developments and tests should be conducted.
The image data trained CNN produced a score of 74.18% accuracy on unseen data, whereas the RNN
managed to use temporal features from an untrained MNV2 and reached an accuracy of above 87%.
This leads to the belief that temporal information has more importance in the collision avoidance
problem, or even in any video related classification problem. Comparing the results on Table 1, it is
concluded that the DCA model scores are quite similar. This suggests that in the worse case, the

Remote Sens. 2020, 12, 3533 13 of 23

fine-tune of the MNV2 increased the values by pointing a worse RNN+FNN into the right direction,
but on the top results when the key is generalization, it did not make much difference. The ColANet is
a rather recent dataset and still has a low number of UAV collision videos (less than 100). This makes
the training task harder due to the tendency of the model to overfit. As the number of available videos
increases, the models will generalize better and produce better results.

Table 1. Dynamic collision avoidance models’ comparison results.

Metrics FE1 MobileNetV2 FE2 MobileNetV2 Fine-Tuned DCA Model Using FE1 DCA Model Using FE2

Training Accuracy 66.17% 84.76% 85.94% 85.76%
Validation Accuracy 62.02% 74.18% 86.43% 87.14%

The algorithm was deployed in a Jetson Nano on the DCA module of the proposed FFAU.
The Jetson Nano managed to run the entire algorithm pipeline at an average of 182 ms, proving that it
is a valid solution for SoA UAVs.

For the model to estimate the collision probability, instead of a classification problem, the last two
neurons of the FNN would perform a regression for each axis.

4. Beyond Skyline

To integrate all UAVs in a platform, the Beyond Skyline platform was developed. It is
a cloud-based platform that allows UAVs to be remote controlled. This platform has five
main functionalities:

• Communication in real-time with the UAVs, receiving telemetry, video data, and transmitting
commands;

• Actuate over these UAVs by uploading missions, with designated waypoints;
• Orchestrate a swarm missions with multiple UAVs;
• Collect and analyze data produced by several UAVs during each flight, with the possibility of

replaying a given flight/mission;
• Parallel running computational heavy Artificial Intelligence (AI) algorithms facilitating

user decisions.

The platform is the final piece of the overall architecture presented in Figure 2, which envisions
a safe long distance control of multiple autonomous UAVs. This platform is composed by a BE,
a relational database for non-temporal data (such as the UAV identities and users with permissions
for that UAV), a time-series database for high rate temporal data (such as UAV flight telemetry),
a Media-Gateway server for incoming video from the UAV, and finally a WA.

In the developed platform, the BE was developed in NestJS, the relational database in MySQL,
the time-series database in InfluxDB, the Media-Gateway server using WebRTC, and the WA in Angular
8. The BE also implements service layers in order to simplify further integration with external APIs.
All components are developed as docker images, which are then run in Kubernetes, making this
approach easy to scale.

Whenever a UAV is switched on, it tries to establish a connection to the BE using websockets via
5G, WiFi, or 4G (by this order).

5. Field Tests Results

In order to fully demonstrate the safety and reliability features of the proposed framework,
a custom hexacopter was developed, which was named Hexa Exterior Intelligent Flying Unit (HEIFU),
and is illustrated in Figure 7. The hexacopter layout was chosen due to his inherent higher safety
characteristics over the more common quadcopters. Hexacopters offer a significant advantage due to
its six propellers. Even if one of those propellers fail, the other five can keep the UAV flying. This means

Remote Sens. 2020, 12, 3533 14 of 23

that a motor failure does not mean the UAV will crash, damaging the equipment attached to it. Even if
two propellers fail, although the UAV will not be able to fly, there is a chance that it remains stable
enough to reach the ground safely.

Figure 7. Hexa Exterior Intelligent Flying Unit (HEIFU)—Custom developed hexacopter (left: Full shot
of the UAV; right: Printed circuit board with the components).

The HEIFU weighs 6.5 kg with a battery and has an hovering time of around 35 min (without extra
payload). It is composed of a PixHawk running Ardupilot, a Jetson Nano running Ubuntu 18.04 with
ROS Melodic creating a bridge to Mavlink messages. Furthermore, a GPS-RTK Zed-F9P was integrated
to enhance positioning, which provides 2 cm precision accuracy while under RTK corrections and
40 cm without. The positioning precision is of utter importance when the UAV is being controlled
from a far distance (i.e., more than 4 km, when the pilot starts losing sight of the UAV). The modules
presented in the previous sections are running in the Jetson Nano and the Communication Handler is
capable of using WiFi, 3G, 4G, or 5G links within the UAV.

The communications performance between the UAV and platform was ascertained by analyzing
the Round Trip Time (RTT). It was considered the time from the client on Beyond Skyline WA at the
right side of Figure 8, to the UAV.

BEYOND-SKYLINE 1

6

2

3

4

5

Figure 8. Round trip time tests setup.

A complete RTT is the time it takes to complete the following six steps:

1. The client, from the WA, sends a counter number and the name of the destination UAV for the
RTT topic. The timestamp associated with this message is saved;

2. The BE receives, analyzes the message structure and permissions, and sends this number to the
UAV. Furthermore, a timestamp is added to the message;

3. The UAV receives the message;

Remote Sens. 2020, 12, 3533 15 of 23

4. The UAV re-sends a copy of the received message;
5. The BE receives this message and sends it to all connected clients that have permission to receive

information from this UAV. Additionally, it calculates the RTT between the server and UAV by
using the timestamp registered in step 2;

6. The server receives this message, verifies its value, creates a new timestamp from which it
decreases the one saved in step (1) and calculates the RTT. It increments the counter and repeats
from step (1).

The UAV flight capabilities were tested near Lisbon. The WA interface iterated over the RTT
measurements in a vertical mission where the UAV took-off and went to 120 m altitude and then
descended to the ground at 4 ms−1 autonomously, starting a landing routine at 10 m with a descending
speed of 1 ms−1. This was planned in the Beyond Skyline Mission Builder, which is illustrated in
Figure 9. The UAV mission was repeated 15 times on the same day, with the WA controller running in
different cities across the world. The summarized results are depicted in Table 2. The takeoff time of
each flight was recorded and is presented in the second column of the table. Moreover, the average
RTT (RTT) and standard deviation σRTT are presented for the different links. The table is sorted by the
RTT and it is composed of nine columns, which are the location where the user was located, the time
the autonomous mission started, the total RTT, the RTT UAV-BE, RTT BE-WA, the total σRTT BE-WA,
σRTT UAV-BE, σRTT BE-WA, and the 99th percentile.

Figure 9. Round Trip Time (RTT) tests missions planning on the Beyond Skyline web-interface.

Remote Sens. 2020, 12, 3533 16 of 23

Table 2. RTT between the UAV and the Beyond Skyline platform analyzed by varying the web application location.

Location Day Time RTT (ms) H RTT UAV-BE (ms) RTT BE-WA (ms) σRTT (ms) σRTT UAV-BE (ms) σRTT BE-WA (ms) 99th Percentile (ms)

PT Lisbon 09h34 86.31 72.69 13.61 18.10 17.10 5.41 124.99
PT Caparica 15h20 89.69 62.75 26.95 24.46 19.67 12.93 150.00
PT Porto 12h57 91.63 65.39 26.24 19.81 17.76 6.36 140.20
ES Segovia 12h00 116.69 66.08 50.61 41.63 29.36 29.95 320.04

UK London 12h11 134.49 65.11 69.38 19.83 16.89 10.46 184.89
PT Beja 12h48 135.24 67.39 67.86 32.70 21.69 23.64 204.95
BE Brussels 15h50 147.08 60.82 86.26 29.32 15.96 24.90 270.31

NO Oslo 13h44 162.67 67.70 94.97 21.63 17.96 14.05 229.61
DE Bestwig 16h58 162.90 72.01 89.65 24.63 17.54 17.40 220.35
FR Nice 11h21 176.92 67.24 109.53 19.92 16.78 11.64 229.81
GR Corfu 11h43 211.67 68.49 143.18 46.27 16.69 40.30 329.75
AE Abu Dhabi 12h39 247.00 67.60 179.41 29.10 16.78 23.23 330.54
IT Pisa 15h39 249.64 64.70 184.94 84.00 16.00 82.08 594.03

US Los Angeles 17h20 259.86 70.92 188.94 23.21 16.39 18.01 310.21
AU Sydney 09h17 431.58 80.06 351.52 41.54 18.44 36.72 560.57

Remote Sens. 2020, 12, 3533 17 of 23

Discussion of Results

The common link on the tests was the connection between the UAV and BE. The RTT was stable
on this link, varying between ≈61 and 80 ms. The difference is in the link between the BE and WA.
When the user was closer to the BE facilities, the RTT was ≈13 ms (from Lisbon), and when it was
approximately 18,000 km away, it took ≈352 ms (from Sydney). In aviation, the maximum RTT delay
from a flying handling perspective is of approximately 300 ms [73]. Wang et al. tested the latency
influence on pilots [74] and suggest that with up to 360 ms of delay the task can be accomplished.

By looking at the results on Table 2, it is also possible to conclude that connectivity is a key factor
in the performance of the visualization part. In Portugal, four tests were performed from different
locations. Lisbon and Caparica were the closest locations to the server and achieved similar results
to Porto, which is in the north of the country. Additionally, Beja and Porto are approximately the
same distance from the test site, and Porto presented better performance. Figure 10a presents the RTT
readings in relation to the UAV altitude relative to the takeoff. The X-axis presents approximated
intervals of altitude using the data from the test realized with the WA in Lisbon. A RTT measurement
request was done every 250 ms, but the number of measurements varies with the environment
conditions (the wind might affect the speed of the UAV).

In Figure 10 it is possible to observe the variation of RTT measurements with the UAV relative
altitude. It is possible to conclude that on the test location the relative altitude does not have a clear
correlation with the RTT, presenting a similar performance on any altitude. Table 3 presents the
conditional RTT by the altitude intervals Lisbon test, where this conclusion is also possible to verify.
The same analyses were performed for all tests, obtaining similar results. An airborne communication
relay was tested in [75], and also presented no variability latency from 5 to 15 m.

0

50

100

150

200

250

300

350

400

0 15 37 61 85 112 120 105 85 70 55 40 25 10 5 0

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Takeoff Relative Altitude (m)

Lisbon
Caparica
Porto
Beja
50 per. Mov. Avg. (Lisbon)
50 per. Mov. Avg. (Caparica)
50 per. Mov. Avg. (Porto)
50 per. Mov. Avg. (Beja)

(a) Full measurements.

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Takeoff Relative Altitude(m)

Lisbon
Caparica
Porto
Beja
Segovia
Brussels
Oslo
London
Bestwig
Nice
Corfu
Abu Dhabi
Pisa
Los Angeles
Sydney

(b) Splitted by intervals.

Figure 10. RTT in function of the UAV take off relative altitude.

Table 3. Variation of round trip time in function of the UAV relative altitude by intervals, using the
Lisbon measurements data.

Altitude Interval (m) <20 20–40 40–60 60–80 80–100 >100

RTT (ms) 85.75 84.73 82.27 88.80 86.92 89.32

The graph of Figure 11 illustrates the RTT Cumulative Distribution Function (CDF). Most of
the tests present similar curves, with the exception of Corfu and Pisa, where there was a higher RTT
variance. From the UAV control point of view, reliable low latency is more important than the average
delay. The UAV control algorithms have to be designed to tolerate a delay that is defined by the
maximum delay in the channel and fit the Ultra Reliable Low Latency Communications (URLLC)
requirements [76]. In this paper, the 99% percentile is considered as a measurement of the URLLC
performance of the measured channels. In Figure 11 it is also possible to conclude that the connectivity

Remote Sens. 2020, 12, 3533 18 of 23

on the WA side is more important than the distance itself. The 99th percentile is lower in Sydney than
in Pisa.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Pr
ob

ab
ili

ty

Round Trip Time (ms)

Lisbon
Caparica
Porto
Beja
Segovia
Brussels
Oslo
London
Bestwig
Nice
Corfu
Abu Dhabi
Pisa
Los Angeles
Sydney

Figure 11. RTT Cumulative Distribution Functions (CDF).

As far as the authors know these are innovative test results and there is no similar analysis that
can be directly compared. Nevertheless, some related works correlations are discussed. A 4G remote
control of a ground vehicle between antipodes was tested in [77], but no quantitative results were
displayed and the tests indicate around a 1 s delay and the necessity of Secure Socket Shell (SSH)
tunnels. In [78] a cloud-based application for UAVs was developed and tested, which indicates the
proposed FFAU is scalable. If no cellular communication is available, it is also possible to use the
WiMax connectivity [79].

Finally, it is presented a RTT heat map on Figure 12. The colleagues doing the test were asked to
pilot the UAV from the application and asserted that it felt like a real-time experience, and they could
do it without difficulties.

Avg. RTT

250

86

(ms)

Figure 12. Average RTT in the tested of countries in Europe.

The collision avoidance algorithms have also been tested, but no significant data has been saved
for quantitative analysis. In future, the authors will work on this topic, perform additional tests,
and identify some metrics that will allow comparison with algorithms in literature.

Remote Sens. 2020, 12, 3533 19 of 23

6. Conclusions and Future Work

In this work, a framework for fully autonomous UAVs was proposed. The authors believe that
safety and reliability are the two key factors for UAVs’ autonomous navigation. Thus, the collision
avoidance problem was explored in depth and a novel solution for dynamic obstacle avoidance,
composed of DNNs blocks was proposed, showing a high accuracy on the classification problem
using the ColANet dataset. In this article, the first version of the proposed module was developed,
targeting the collision classification task. The network was presented in a way that is simple to adapt
to the escape vectors regression task.

All the modules presented in the framework for remote and fully autonomous UAVs were
developed and integrated in a custom hexacopter, connected to a cloud-based platform, named Beyond
Skyline. The proposed architecture enabled remote control of UAVs via Internet, in a portable, extensible,
open-source platform that manages containerized workloads and services, which facilitated scalability,
configuration, and automation. The actions were sent thought the platform, while safety was enforced
by the FFAU, providing constant feedback and telemetry to the pilot, which could take control of the
autonomous UAV when desired.

A communication testbed was developed and the framework was tested by receiving the UAV
telemetry from different locations around the world, registering connectivity metrics. The results
proved that with a standard Internet connection, it is possible to pilot or manage UAVs remotely,
regardless of the location. Moreover, with the proposed framework, sending missions to the UAVs
was safe and allowed real-time monitoring.

This work will be continued with further developments on the modules presented in this paper.
As guidelines for future work, the list below enumerates some of the main topics that will provide
novel contributions:

• Optimized DCA. The DCA module can be explored in greater depth, as this area still have many
unsolved problems. The dataset must be amplified and the proposed algorithm needs to be
optimized to run faster. The concept can be optimized by exploring different features extractors,
variations on the sequence size with which the RNN is ran and different types of RNN;

• Testing the DCA algorithm on real UAVs in autonomous missions;
• Edge multi-tenant computing. Whenever a UAV is flying in a different country, the BE and

WebRTC server should be instantiated in the proximity, minimizing the RTT, providing better
control of the UAVs;

• Framework modules variants. Different implementations of the proposed framework should be
developed, allowing a performance evaluation and comparison.

Author Contributions: Conceptualization, D.P.; Funding acquisition, L.M.C.; Investigation, D.P., J.P.M.-C., F.A.,
R.S.-M., L.B. and A.M.; Resources, L.M.C.; Software, D.P., J.P.M.-C., F.A. and R.S.-M.; Supervision, L.C., J.M.F. and
A.M.; Validation, D.P., J.P.M.-C., L.B. and L.C.; Writing—original draft, D.P. and J.P.M.-C.; Writing—review &
editing, D.P., J.P.M.-C., F.A., R.S.-M., L.B., L.C., J.M.F. and A.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the European Regional Development Fund (FEDER), through the Regional
Operational Programme of Lisbon (POR LISBOA 2020) and the Competitiveness and Internationalization
Operational Programme (COMPETE 2020) of the Portugal 2020 framework [Project 5G with Nr. 024539 (POCI-01-
0247-FEDER-024539)]. This project has also received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 783221. The JU receives support from the European Union’s Horizon 2020 research and innovation
programme and Austria, Belgium, Czech Republic, Finland, Germany, Greece, Italy, Latvia, Norway, Poland,
Portugal, Spain, Sweden. This work was also supported by Portuguese Agency “Fundação para a Ciência e a
Tecnologia” (FCT), in the framework of project UIDB/00066/2020.

Acknowledgments: The authors would like to thank the Beyond Vision Research Group and PDMFC Research
and Development Team. Furthermore, the authors would like to thank a set of colleagues that helped testing the
platform from different points around the world, namely India, Kike, Didier, Diogo, Vale, Kate, Miguel, Haris,
Rita, André, Gonçalo, Max and Oz.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2020, 12, 3533 20 of 23

References

1. Patias, P. Introduction to Unmanned Aircraft Systems. Photogramm. Eng. Remote. Sens. 2016, 82, 89–92.
[CrossRef]

2. Koubaa, A.; Qureshi, B.; Sriti, M.F.; Javed, Y.; Tovar, E. A service-oriented Cloud-based management system
for the Internet-of-Drones. In Proceedings of the 2017 IEEE International Conference on Autonomous Robot
Systems and Competitions, ICARSC 2017, Coimbra, Portugal, 26–28 April 2017. [CrossRef]

3. Alvarez-Vanhard, E.; Houet, T.; Mony, C.; Lecoq, L.; Corpetti, T. Can UAVs fill the gap between in situ
surveys and satellites for habitat mapping? Remote Sens. Environ. 2020, 243, 111780. [CrossRef]

4. Navarro, A.; Young, M.; Allan, B.; Carnell, P.; Macreadie, P.; Ierodiaconou, D. The application of Unmanned
Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens. Environ.
2020, 242, 111747. [CrossRef]

5. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.;
Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research
Challenges. IEEE Access 2019, 7, 48572–48634. [CrossRef]

6. Weibel, R.E.; Hansman, R.J. Safety Considerations for Operation of Unmanned Aerial Vehicles in the National
Airspace System; MIT International Center for Air Transportation: Cambridge, UK, 2005 .

7. Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspdectral with high
spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep
convolutional neural network with CRF. Remote Sens. Environ. 2020, 250, 112012. [CrossRef]

8. Meinen, B.U.; Robinson, D.T. Mapping erosion and deposition in an agricultural landscape: Optimization of
UAV image acquisition schemes for SfM-MVS. Remote Sens. Environ. 2020, 239, 111666. [CrossRef]

9. Bhardwaj, A.; Sam, L.; Akanksha; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in
glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [CrossRef]

10. Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review.
Remote Sens. 2019, 11, 1443. [CrossRef]

11. Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/
Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens.
2019, 11, 1240. [CrossRef]

12. Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and
future research outlook. Remote Sens. 2020, 12, 1491. [CrossRef]

13. Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and
prospects. Remote Sens. 2020, 12, 948. [CrossRef]

14. Rödel, C.; Stadler, S.; Meschtscherjakov, A.; Tscheligi, M. Towards autonomous cars: The effect of autonomy
levels on Acceptance and User Experience. In Proceedings of the Automotive UI 2014—6th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications, in Cooperation with
ACM SIGCHI, Seattle, WA, USA, 17–19 September 2014. [CrossRef]

15. Caron, C. After Drone Hits Plane in Canada, New Fears About Air Safety. 2017. Available online: https:
//www.nytimes.com/2017/10/17/world/canada/canada-drone-plane.html (accessed on 19 May 2019).

16. BBC. Drone’ Hits British Airways Plane Approaching Heathrow Airport. 2016. Available online: https:
//www.bbc.com/news/uk-36067591 (accessed on 19 May 2019).

17. Canada, C. Drone That Struck Plane Near Quebec City Airport Was Breaking the Rules|CBC News. 2017.
Available online: http://www.cbc.ca/news/canada/montreal/garneau-airport-drone-quebec-1.4355792
(accessed on 19 May 2019).

18. BBC. Drone Collides with Commercial Aeroplane in Canada. 2017. Available online: https://www.bbc.
com/news/technology-41635518 (accessed on 19 May 2019).

19. Goglia, J. NTSB Finds Drone Pilot at Fault for Midair Collision with Army Helicopter. 2017.
Available online: https://www.forbes.com/sites/johngoglia/2017/12/14/ntsb-finds-drone-pilot-at-fault-
for-midair-collision-with-army-helicopter/ (accessed on 19 May 2019).

20. Rawlinson, K. Drone Hits Plane at Heathrow Airport, Says Pilot. 2016. Available online: https://
www.theguardian.com/uk-news/2016/apr/17/drone-plane-heathrow-airport-british-airways (accessed on
19 May 2019).

http://dx.doi.org/10.14358/PERS.83.2.89
http://dx.doi.org/10.1109/ICARSC.2017.7964096
http://dx.doi.org/10.1016/j.rse.2020.111780
http://dx.doi.org/10.1016/j.rse.2020.111747
http://dx.doi.org/10.1109/ACCESS.2019.2909530
http://dx.doi.org/10.1016/j.rse.2020.112012
http://dx.doi.org/10.1016/j.rse.2020.111666
http://dx.doi.org/10.1016/j.rse.2015.12.029
http://dx.doi.org/10.3390/rs11121443
http://dx.doi.org/10.3390/rs11101240
http://dx.doi.org/10.3390/rs12091491
http://dx.doi.org/10.3390/rs12060948
http://dx.doi.org/10.1145/2667317.2667330
https://www.nytimes.com/2017/10/17/world/canada/canada-drone-plane.html
https://www.nytimes.com/2017/10/17/world/canada/canada-drone-plane.html
https://www.bbc.com/news/uk-36067591
https://www.bbc.com/news/uk-36067591
http://www.cbc.ca/news/canada/montreal/garneau-airport-drone-quebec-1.4355792
https://www.bbc.com/news/technology-41635518
https://www.bbc.com/news/technology-41635518
https://www.forbes.com/sites/johngoglia/2017/12/14/ntsb-finds-drone-pilot-at-fault-for-midair-collision-with-army-helicopter/
https://www.forbes.com/sites/johngoglia/2017/12/14/ntsb-finds-drone-pilot-at-fault-for-midair-collision-with-army-helicopter/
https://www.theguardian.com/uk-news/2016/apr/17/drone-plane-heathrow-airport-british-airways
https://www.theguardian.com/uk-news/2016/apr/17/drone-plane-heathrow-airport-british-airways

Remote Sens. 2020, 12, 3533 21 of 23

21. Tellman, J.; News, T.V. First-Ever Recorded dRone-Hot Air Balloon Collision Prompts Safety Conversation.
2018. Available online: https://www.postregister.com/news/local/first-ever-recorded-drone-hot-
air-balloon-collision-prompts-safety/article_7cc41c24-6025-5aa6-b6dd-6d1ea5e85961.html (accessed on
19 May 2019).

22. Pedro, D.; Mora, A.; Carvalho, J.; Azevedo, F.; Fonseca, J. ColANet: A UAV Collision Avoidance Dataset.
In Technological Innovation for Life Improvement; Springer: Cham, Switzerland, 2020.

23. Gharibi, M.; Boutaba, R.; Waslander, S.L. Internet of Drones. IEEE Access 2016, 4, 1148–1162. [CrossRef]
24. Apvrille, L.; Tanzi, T.; Dugelay, J.L. Autonomous drones for assisting rescue services within the context

of natural disasters. In Proceedings of the 2014 31th URSI General Assembly and Scientific Symposium,
URSI GASS 2014, Beijing, China, 16–23 August 2014. [CrossRef]

25. Mahmoud, S.; Mohamed, N. Collaborative UAVs cloud. In Proceedings of the 2014 International Conference
on Unmanned Aircraft Systems, ICUAS 2014, Orlando, FL, USA, 27–30 May 2014. [CrossRef]

26. Mahmoud, S.; Mohamed, N. Broker architecture for collaborative UAVs cloud computing. In Proceedings of
the 2015 International Conference on Collaboration Technologies and Systems, CTS 2015, Atlanta, GA, USA,
1–5 June 2015. [CrossRef]

27. Mahmoud, S.; Mohamed, N.; Al-Jaroodi, J. Integrating UAVs into the Cloud Using the Concept of the Web
of Things. J. Robot. 2015, 2015, 631420. [CrossRef]

28. Introduction. 2005. Available online: https://mavlink.io/en/ (accessed on 19 May 2019).
29. ROS. Powering the World’s Robots. 2007. Available online: https://www.ros.org/ (accessed on 19 May 2019).
30. La, H.J.; Kim, S.D. A service-based approach to designing cyber physical systems. In Proceedings of the 9th

IEEE/ACIS International Conference on Computer and Information Science, ICIS 2010, Yamagata, Japan,
18–20 August 2010. [CrossRef]

31. Combe, T.; Martin, A.; Di Pietro, R. To Docker or Not to Docker: A Security Perspective. IEEE Cloud Comput.
2016, 3, 54–62. [CrossRef]

32. Cloud Native Computing Foundation. What Is Kubernetes—Kubernetes. 2019. Available online: https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/ (accessed on 27 October 2020).

33. Acuña, P.; Acuña, P. Kubernetes. In Deploying Rails with Docker, Kubernetes and ECS; Apress: New York, NY,
USA, 2016. [CrossRef]

34. Bowman, J.; Mihelich, P. Camera Calibration—ROS Wiki. 2014. Available online: http://wiki.ros.org/
camera_calibration (accessed on 27 October 2020).

35. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME-Basic Eng. 1960,
82, 35–45. [CrossRef]

36. Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from
ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SFM) point
clouds. Remote Sens. 2012, 4, 1392. [CrossRef]

37. Keselman, L.; Woodfill, J.I.; Grunnet-Jepsen, A.; Bhowmik, A. Intel(R) RealSense(TM) Stereoscopic Depth
Cameras. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

38. Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61,
1258–1276. [CrossRef]

39. Hert, S.; Tiwari, S.; Lumelsky, V. A terrain-covering algorithm for an AUV. Auton. Robot. 1996, 3, 91–119.
[CrossRef]

40. Azevedo, F.; Oliveira, A.; Dias, A.; Almeida, J.; Moreira, M.; Santos, T.; Ferreira, A.; Martins, A.; Silva, E.
Collision avoidance for safe structure inspection with multirotor UAV. In Proceedings of the 2017 European
Conference on Mobile Robots, ECMR 2017, Paris, France, 6–8 September 2017. [CrossRef]

41. Paul, S.; Paul, S. Real-Time Transport Protocol (RTP). In Multicasting on the Internet and Its Applications;
Springer: Boston, MA, USA, 1998. [CrossRef]

42. Marr, D. Visual information processing: The structure and creation of visual representations. Philos. Trans.
R. Soc. Lond. Ser. B Biol. Sci. 1980, 290, 199–218. [CrossRef]

43. Kuchar, J.K.; Yang, L.C. A Review of Conflict Detection and Resolution Modeling Methods. IEEE Trans.
Intell. Transp. Syst. 2000, 1, 179–189. [CrossRef]

https://www.postregister.com/news/local/first-ever-recorded-drone-hot-air-balloon-collision-prompts-safety/article_7cc41c24-6025-5aa6-b6dd-6d1ea5e85961.html
https://www.postregister.com/news/local/first-ever-recorded-drone-hot-air-balloon-collision-prompts-safety/article_7cc41c24-6025-5aa6-b6dd-6d1ea5e85961.html
http://dx.doi.org/10.1109/ACCESS.2016.2537208
http://dx.doi.org/10.1109/URSIGASS.2014.6929384
http://dx.doi.org/10.1109/ICUAS.2014.6842275
http://dx.doi.org/10.1109/CTS.2015.7210423
http://dx.doi.org/10.1155/2015/631420
https://mavlink.io/en/
https://www.ros.org/
http://dx.doi.org/10.1109/ICIS.2010.73
http://dx.doi.org/10.1109/MCC.2016.100
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
http://dx.doi.org/10.1007/978-1-4842-2415-1_3
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.3390/rs4051392
http://dx.doi.org/10.1109/CVPRW.2017.167
http://dx.doi.org/10.1016/j.robot.2013.09.004
http://dx.doi.org/10.1007/BF00141150
http://dx.doi.org/10.1109/ECMR.2017.8098719
http://dx.doi.org/10.1007/978-1-4615-5713-5_16
http://dx.doi.org/10.1098/rstb.1980.0091
http://dx.doi.org/10.1109/6979.898217

Remote Sens. 2020, 12, 3533 22 of 23

44. Kovacs, L. Visual Monocular Obstacle Avoidance for Small Unmanned Vehicles. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV,
USA, 26 June–1 July 2016. [CrossRef]

45. Hrabar, S. An evaluation of stereo and laser-based range sensing for rotorcraft unmanned aerial vehicle
obstacle avoidance. J. Field Robot. 2012, 29, 215–239. [CrossRef]

46. Merz, T.; Kendoul, F. Beyond visual range obstacle avoidance and infrastructure inspection by an
autonomous helicopter. In Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, San Francisco, CA, USA, 25–30 September 2011. [CrossRef]

47. Hrabar, S. 3D path planning and stereo-based obstacle avoidance for rotorcraft UAVs. In Proceedings
of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Nice, France,
22–26 September 2008. [CrossRef]

48. Magree, D.; Mooney, J.G.; Johnson, E.N. Monocular visual mapping for obstacle avoidance on UAVs. J. Intell.
Robot. Syst. Theory Appl. 2014, 74, 17–26. [CrossRef]

49. Yang, Z.; Gao, F.; Shen, S. Real-time monocular dense mapping on aerial robots using visual-inertial fusion.
In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–
3 June 2017. [CrossRef]

50. Li, C.J.; Ling, H. Synthetic aperture radar imaging using a small consumer drone. In Proceedings of the
IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Vancouver, BC, Canada,
19 July 2015. [CrossRef]

51. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

52. Hermann, A.; Drews, F.; Bauer, J.; Klemm, S.; Roennau, A.; Dillmann, R. Unified GPU voxel collision
detection for mobile manipulation planning. In Proceedings of the 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4154–4160.

53. Burgard, W.; Bennewitz, M.; Tipaldi, D.; Spinello, L. Introduction to Mobile Robotics: Techniques for 3D
Mapping. 2019. Available online: http://ais.informatik.uni-freiburg.de/teaching/ss14/robotics/slides/
17-3dmapping.pdf (accessed on 19 May 2019).

54. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sendai, Japan, 28 September–2 October 2004. [CrossRef]

55. Kavraki, L.E.; Svestka, P.; Latombe, J.; Overmars, M.H. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

56. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report; Computer
Science Department, Iowa State University: Ames, IA, USA, 1998.

57. Hrabar, S. Reactive obstacle avoidance for rotorcraft UAVs. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011. [CrossRef]

58. Sabatini, R.; Gardi, A.; Richardson, M.A. LIDAR Obstacle Warning and Avoidance System for Unmanned
Aircraft. Int. J. Mech. Aerosp. Ind. Mechatronics Eng. 2014, 8, 718–729.

59. Gallup, D.; Frahm, J.M.; Mordohai, P.; Pollefeys, M. Variable baseline/resolution stereo. In Proceedings
of the 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Anchorage, AK, USA,
23–28 June 2008. [CrossRef]

60. Mueggler, E.; Forster, C.; Baumli, N.; Gallego, G.; Scaramuzza, D. Lifetime estimation of events from
Dynamic Vision Sensors. In Proceedings of the IEEE International Conference on Robotics and Automation,
Seattle, WA, USA, 26–30 May 2015. [CrossRef]

61. Andrew, A.M. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2001.
[CrossRef]

62. Poiesi, F.; Cavallaro, A. Detection of fast incoming objects with a moving camera. In Proceedings of the
British Machine Vision Conference, London, UK, 4–7 September 2017. [CrossRef]

63. Falanga, D.; Kim, S.; Scaramuzza, D. How Fast Is Too Fast? the Role of Perception Latency in High-Speed
Sense and Avoid. IEEE Robot. Autom. Lett. 2019, 4, 1884–1891. [CrossRef]

64. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [CrossRef]

http://dx.doi.org/10.1109/CVPRW.2016.114
http://dx.doi.org/10.1002/rob.21404
http://dx.doi.org/10.1109/IROS.2011.6048249
http://dx.doi.org/10.1109/IROS.2008.4650775
http://dx.doi.org/10.1007/s10846-013-9967-7
http://dx.doi.org/10.1109/ICRA.2017.7989529
http://dx.doi.org/10.1109/APS.2015.7304729
http://dx.doi.org/10.1007/s10514-012-9321-0
http://ais.informatik.uni-freiburg.de/teaching/ss14/robotics/slides/17-3dmapping.pdf
http://ais.informatik.uni-freiburg.de/teaching/ss14/robotics/slides/17-3dmapping.pdf
http://dx.doi.org/10.1109/iros.2004.1389727
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/IROS.2011.6048312
http://dx.doi.org/10.1109/CVPR.2008.4587671
http://dx.doi.org/10.1109/ICRA.2015.7139876
http://dx.doi.org/10.1016/S0143-8166(01)00145-2
http://dx.doi.org/10.5244/c.30.146
http://dx.doi.org/10.1109/LRA.2019.2898117
http://dx.doi.org/10.1109/CVPR.2018.00474

Remote Sens. 2020, 12, 3533 23 of 23

65. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
Design. In Proceedings of the The European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018.

66. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

67. Boureau, Y.L.; Ponce, J.; Lecun, Y. A theoretical analysis of feature pooling in visual recognition.
In Proceedings of the ICML 2010—27th International Conference on Machine Learning, Haifa, Israel,
21–24 June 2010.

68. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3D
convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015. [CrossRef]

69. Shanmugamani, R. Deep Learning for Computer Vision: Expert Techniques to Train Advanced Neural Networks
Using TensorFlow and Keras; Packt Publishing Ltd.: Birmingham, UK, 2018. [CrossRef]

70. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
[CrossRef]

71. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115,
211–252. [CrossRef]

72. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

73. de Vries, S.C. UAVs and Control Delays; TNO Rep.; TNO: The Hague, The Netherlands, 2005.
74. Wang, F.; Qi, S.; Li, J. An Analysis of Time-delay for Remote Piloted Vehicle. MATEC Web Conf. 2017,

114, 04012. [CrossRef]
75. Guo, W.; Devine, C.; Wang, S. Performance analysis of micro unmanned airborne communication relays for

cellular networks. In Proceedings of the 2014 9th International Symposium on Communication Systems,
Networks and Digital Signal Processing, CSNDSP 2014, Manchester, UK, 23–25 July 2014. [CrossRef]

76. Popovski, P.; Stefanovic, C.; Nielsen, J.J.; de Carvalho, E.; Angjelichinoski, M.; Trillingsgaard, K.F.; Bana, A.S.
Wireless Access in Ultra-Reliable Low-Latency Communication (URLLC). IEEE Trans. Commun. 2019, 67,
5783–5801. [CrossRef]

77. Burke, P.J. 4G Antipode: Remote Control of a Ground Vehicle From Around the World. IEEE J. Miniaturization
Air Space Syst. 2020, early access. [CrossRef]

78. Itkin, M.; Kim, M.; Park, Y. Development of cloud-based UAV monitoring and management system. Sensors
2016, 16, 1913. [CrossRef] [PubMed]

79. Dusza, B.; Wietfeld, C. Performance evaluation of IEEE 802.16e mobile WiMAX for long distance control of
UAV swarms. In Proceedings of the 2010 IEEE International Conference on Wireless Information Technology
and Systems, ICWITS 2010, Honolulu, HI, USA, 28 August–3 September 2010. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICCV.2015.510
http://dx.doi.org/10.1007/978-1-4842-4261-2_3
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1051/matecconf/201711404012
http://dx.doi.org/10.1109/CSNDSP.2014.6923909
http://dx.doi.org/10.1109/TCOMM.2019.2914652
http://dx.doi.org/10.1109/JMASS.2020.3018400
http://dx.doi.org/10.3390/s16111913
http://www.ncbi.nlm.nih.gov/pubmed/27854267
http://dx.doi.org/10.1109/ICWITS.2010.5611937
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Framework for Fully Autonomous UAVs
	Perception
	Collision Aware Planner
	Plan Handler
	Command Multiplexer
	Dynamic Collision Avoidance
	Communication Handler

	Collision Avoidance
	Static Collision Avoidance
	Dynamic Collision Avoidance
	Feature Extraction
	Temporal Correlation and Decision
	Training and Results

	Beyond Skyline
	Field Tests Results
	Conclusions and Future Work
	References

