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Abstract 

Currently, global energy requirements rely heavily on fossil fuels, the primary 

contributors to global warming and severe climate changes. It is imperative to 

decarbonize the energy supply sector, by utilizing an alternative, clean and 

sustainable energy source, like hydrogen, that can be generated from renewable 

resources, such as solar energy. The aim of this dissertation was the construction of 

a new biophotocatalytic system using non-photosynthetic anaerobic bacteria 

coupled with semiconductor metal sulfide nanoparticles, for light-driven H2 

production. In this system, nanoparticles act as light-harvesting material, enabling 

the microorganism to capture and absorb sunlight energy, using it for H2 generation. 

In the present work, four bacteria Citrobacter freundii, Clostridium acetobutylicum, 

Desulfovibrio vulgaris and Desulfovibrio desulfuricans were used as biocatalysts with 

self-produced cadmium sulfide (CdS) nanoparticles to produce hydrogen. The 

performance of these biohybrids was further compared with the control system 

Escherichia coli-CdS. Moreover, new semiconductor combinations were tested, by 

loading cocatalysts metals tungsten (W), nickel (Ni) and molybdenum (Mo) into CdS. 

The D. desulfuricans-CdS biohybrid was demonstrated to be the best photocatalytic 

system for light-driven H2 production from the four biohybrids proposed and E. 

coli-CdS control system.  D. desulfuricans-CdS system presented a remarkable H2 

production both in the presence and absence of the electron mediator methyl 

viologen (MV), with 46.0±4.8 and 31.7±8.1 µmol of H2, respectively, after 45 and 142 

h of light irradiation. The D. desulfuricans-CdS performance was improved by adding 

cocatalysts, especially Mo, that allowed the increase of H2 production rate from 

34.0±0.8 to 130.8±9.3 µmol gdcw
-1h-1, without MV. Finally, D. desulfuricans-CdS-MoS2 

was successfully immobilized in calcium alginate beads and a batch photoreactor for 

H2 production was constructed. These results show the high potential of D. 

desulfuricans-CdS-MoS2 biohybrid photosystem for an efficient and clean hydrogen 

production. 

Keywords: Hydrogen production, photocatalysis, non-photosynthetic bacteria, 

self-photosensitization, biogenic nanoparticles, cocatalysts 
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Resumo 

Atualmente, as necessidades energéticas globais dependem fortemente da 

utilização de combustíveis fósseis, os principais responsáveis pelo aquecimento global e 

alterações climáticas severas. É imperativo descarbonizar o setor de abastecimento de 

energia, utilizando uma fonte de energia alternativa, limpa e sustentável, como o 

hidrogénio, que pode ser gerado a partir de um recurso renovável: energia solar. O 

objetivo desta dissertação consistiu na construção de um novo sistema bio-fotocatalítico 

utilizando bactérias anaeróbias não-fotossintéticas acopladas a nanopartículas 

semicondutoras de sulfureto metálico, para produção de H2, usando luz como fonte de 

energia. Neste sistema, as nanopartículas atuam como semicondutor para captar a 

energia solar, transferindo-a para o microrganismo que a utiliza para gerar H2. No 

presente trabalho, as quatro bactérias Citrobacter freundii, Clostridium acetobutylicum, 

Desulfovibrio vulgaris e Desulfovibrio desulfuricans foram utilizadas como 

biocatalisadores em conjunto com nanopartículas de sulfureto de cádmio (CdS), 

produzidas pelas mesmas, para a produção de hidrogénio. O desempenho destes 

biohíbridos foi posteriormente comparado com o sistema de controlo, Escherichia 

coli-CdS. Para além disso, novas combinações de semicondutores foram testadas, 

acoplando os metais co-catalisadores: tungsténio (W), níquel (Ni) e molibdénio (Mo) ao 

CdS. O biohíbrido D. desulfuricans-CdS demonstrou ser o melhor sistema fotocatalítico 

para a produção de H2 através da luz, dos quatro biohíbridos propostos e do sistema 

controlo E. coli-CdS. O sistema D. desulfuricans-CdS apresentou uma produção 

significativa de H2 tanto na presença como na ausência do mediador de eletrões metil 

viologénio (MV), com 46,0±4,8 e 31,7±8,1 µmol de H2, respetivamente, após 44 e 142 h 

de irradiação de luz. O desempenho de D. desulfuricans-CdS foi melhorado com a adição 

de co-catalisadores, principalmente com Mo, que permitiu o aumento da taxa de 

produção de H2 de 34,0±0,8 para 130,8±9,3 µmol gdcw
1h1, sem MV. Finalmente, o sistema 

D. desulfuricans CdS-MoS2 foi imobilizado, com sucesso, em esferas de alginato de cálcio 

e foi construído um foto-reator em batch para produção de H2. Estes resultados 

demostraram o elevado potencial do fotossistema biohíbrido D. desulfuricans-CdS-MoS2 

para produção eficiente e limpa de hidrogénio. 

Palavras-chave: produção de hidrogénio, fotocatálise, bactérias 

não-fotossintéticas, auto-fotossensibilização, nanopartículas biogénicas, 

co-catalisadores 
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Chapter 1: Introduction 

 

The increase of global energy demand, due to growth of world's population 

coupled with the rise of living standards, has become one of the major challenges 

of 21st century1,2. Currently, 85.5% of worldwide energy requirements are fulfilled 

by fossil fuels, a non-sustainable energy source with a massive environmental 

impact3. The utilization of fossil fuels involves its combustion that, in turn, results 

in greenhouse gases emissions (mainly CO2), the major cause of global warming 

and extreme climate changes. Therefore, it is essential to decarbonize energy 

supply by using an alternative, sustainable and renewable energy source.1–4 

Hydrogen is a clean and versatile energy carrier, that can be easily stored 

and transported over long distances and periods of time1,5,6. It presents a broad 

spectrum of applications: from fuel source for transportation and energy storage 

(for power and heat generation), to an important chemical feedstock in several 

industrial processes (such as methanol and ammoniacal production to petroleum 

and metals refinery) (Figure 1.1.).4–8 Hydrogen is often recognized as the ideal fuel 

since it is a clean energy source (its combustion yields only water) and because 

of its high energy content (~142 kJ g-1), which is three times greater than 

hydrocarbon fuels energy8–11.  
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Figure 1.1.- Hydrogen - energy sources and applications. Adapted from8. 

 

Although, H2 production is still primarily based on fossil fuels resources 

(particularly from natural gas and coal), it can also be generated from renewable 

sources (Figure 1.1.).8,11,12 Solar energy is an inexhaustible, non-polluting and the 

most abundant energy resource, thereby making solar hydrogen production an 

attractive option towards a low-carbon and sustainably energy economy13–15. 

Thus, biological hydrogen production from solar energy is one approach that has 

been investigated. 

 

1.1. – Biological solar hydrogen production 

Solar-driven H2 production is naturally performed by specific photosynthetic 

organisms (e.g. algae and cyanobacteria), under anaerobic conditions16. 

Hydrogen photoproduction is attained by diverting the photogenerated 

electrons obtained via photosynthesis towards hydrogenases (Hases)16–19, that 

catalyze the reversible conversion of two protons and electrons into H2 (Equation 

1.1.)20: 

2 𝐻+ + 2 𝑒−↔ 𝐻2                    ( 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏. 𝟏. ) 
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Since photosynthetic organisms prioritize survival strategies rather than 

converting sunlight for chemicals production, the efficiency of solar hydrogen 

production is very low for those species21. Additionally, the photosynthetic 

process achieves its saturation at solar intensities considerably below the full flux 

(~20 % of solar intensity), a cellular mechanism that helps preventing 

photodamage of the photosynthetic system21,22. Furthermore, the inhibition of 

Hases in presence of O2 as well as the need of diffusional electron donors (e.g. 

ferredoxins) to allow electron transfer for PSI (photosystem I) to Hases, are major 

drawbacks in scalability of solar-driven H2 production via biological route16–18. 

Therefore, an alternative method for H2 production is required to overcome these 

limitations, like semi-artificial photosynthesis systems. 

1.2. – Semi-artificial photosynthesis systems 

Semi-artificial photosynthesis is an innovative hybrid strategy that aims to 

combine the excellent light-harvesting efficiency of synthetic materials, with the 

high specificity of biocatalytic machinery (enzymes or microorganisms), for 

solar-to-chemicals conversion17,21,23. In this photosynthetic biohybrids, the 

inorganic semiconductor is used to absorb and capture solar energy, whereas the 

biological component catalyzes its subsequent conversion to chemical energy.21–

24 Hence, several semi-artificial photosynthesis systems have been developed for 

H2 production (Figure 1.2.).  

Figure 1.2.- Schematic representation of semi-artificial photosynthesis for H2 

production. Created with Biorender.com. 
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The majority of the biohybrids created for hydrogen photoproduction 

employed light-harvesting materials with hydrogenases as biocatalysts (Figure 

1.2)25. One example of hydrogenase studied in semi-artificial photosynthesis is 

[NiFeSe]-Hase from Desulfovibrio vulgaris Hildenborough bacterium26–28. 

[NiFeSe]-Hase has been integrated in a lead halide perovskite solar cell26, as well 

as coupled with synthetized PSI monolayer photocathode27, for solar water 

splitting purposes. Moreover, this enzyme had also been combined with indium 

(III) trisulfide (In2S3) semiconductor particles for visible light-driven H2 

production28. 

However, the inherent enzyme instability and the costly and 

time-consuming manipulations involved (e.g. isolation and protein purification), 

have restrict their commercial application17,21,24. Thus, to overcome these 

limitations, photosynthetic biohybrids systems have recently started to be 

developed using whole-cells as biocatalysts (Figure 1.2.). Microorganisms are not 

only a more versatile catalyst – synthetizing more complex products (due to their 

diverse biosynthetic pathways) with high specificity and efficiency, – but are also 

more stable than isolated enzymes. Additionally, the self-repair and reproductive 

nature of microorganisms enables cell hybrids prospects for scalability.17,22,24  

Initial studies of whole-cell biohybrids explored the potential of different 

bacteria such as Clostridium butyricum, Rhodopseudomonas capsulata and 

Rhodospirillum rubrum as biocatalysts for photocatalytic H2 production. These 

organisms were then coupled with a semiconductor, namely titanium oxide (TiO2) 

or bismuth oxide (Bi2O3), in presence of a redox mediator (that transfer electrons 

from semiconductors to bacteria)29–31. Recently, microbial hybrid systems 

employing genetically engineered Escherichia coli with anatase TiO2 as 

semiconductor or E. coli conjugated with TiO2 nanoparticles, have also been 

developed for light-driven H2 production, using an electron shuttle as well32–34. 

Moreover, a similar approach was investigated using electroactive Shewanella 

oneidensis bacterium and water-soluble photosensitizers to produce H2 and 

reduce fumarate, pyruvate, and CO2 to formate19. However, in this methodology 

a direct interaction between cells and light-harvesting materials does not occur, 
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thus requiring an electron-mediator.17 Moreover, these biohybrid systems 

integrate chemically-produced semiconductors, whose synthesis often requires 

complex and energy-intensive techniques35–38. Alternatively, a recent and 

interesting strategy of semi-artificial photosynthesis has been developed: 

Self-photosensitization of non-photosynthetic bacteria. 

 

1.3. – Self-photosensitization of non-photosynthetic bacteria 

In this new approach the biohybrids systems are constructed by 

photosensitizing non-photosynthetic microbes with self-produced metal 

semiconductor nanoparticles, for solar-to-chemical production, using visible light 

as energy source (Figure 1.3.).21,39  

Figure 1.3.- Schematic representation of self-photosensitization of 

non-photosynthetic bacteria strategy for solar-to-chemical production. Created with 

Biorender.com. 

 

Non-photosynthetic organisms can harbor pathways for more diverse and 

complex products, than photosynthetic ones, due to its efficient and alternative 

CO2 fixation and reduction pathways40–42. Moreover, nanostructured materials 

recently emerged as attractive light-harvesting semiconductors for 

photosynthetic biohybrid systems22,43. Nanoparticles (NPs) present a high 

potential as light harvester due to their: 1) visible-light absorption capacity and 
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tuneability of charge separation, 2) increased surface-to-volume ratio (providing 

a larger area for photocatalytic reactions to occur), 3) ease of interaction with 

biological systems (due to their similar dimensions) and 4) biocompatibility with 

biocatalysts22,24,43,44. Thus, incorporating nanomaterials into living organisms has 

the potential to enhance or even enable completely new functions of biological 

systems21,45.  

Hence, this innovative strategy has been designed for solar-to-chemical 

applications, particularly for CO2 reduction and H2 production: 

 

1.3.1.- Biohybrid systems for light-driven CO2 reduction  

In 2016, Sakimoto and coworkers pioneered this approach in a landmark 

study where they use non-photosynthetic bacteria Moorella thermoacetica and 

its biologically produced cadmium sulfide (CdS) nanoparticles, to enable 

photosynthesis of acetic acid from CO2. In this system, CdS NPs self-precipitated 

on the cell surface of M. thermoacetica, allowing nanoparticles to act as an 

efficient light-harvesting semiconductor. CdS nanoparticles not only captured 

solar energy, but also delivered electrons directly to acetogen bacterium, 

enabling CO2-to-acetate conversion (via Wood-Ljungdahl pathway) by 

biocatalyst. This strategy took advantage of natural detoxification mechanisms of 

M. thermoacetica for toxic metals, to induce CdS precipitation, that required the 

addition of a sulfur source, namely cysteine, to generate the NPs.39 Thus, this 

biohybrid represented a cost-effective, self-repair and replicating system for 

selective CO2 photoreduction, without the need of a redox mediator and also an 

environmentally friendly method for semiconductor generation39,46.  

Inspired by this concept, other CdS-biohybrids systems have been 

developed for light-driven CO2 reduction, to produce a high diversity of valuable 

chemicals17,23,43. The model methanogen and anaerobic microbe Methanosarcina 

barkeri coupled with its self-produce CdS nanoparticles was employed as the 

catalytic machinery for direct CO2 conversion to methane47. Another example is 

the photosynthetic bacterium Rhodopseudomonas palustris (R. paulustris) and its 

CdS bio-generated nanoparticles used for CO2 fixation. Under visible light, R. 
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palustris-CdS biohybrid generated additional reducing equivalents (NADPH), that 

not only promoted the increase of biomass and photosynthetic efficiency, but 

also the production of valuable multi-carbon compounds, namely carotenoids 

and biodegradable thermoplastic poly-b-hydroxybutyrate (PHB)48. Additionally, 

Kumar and coworkers developed a tandem biohybrid system by integrating a 

consortium of four different electroactive bacteria (Clostridium ljungdahlii, 

Acetobacterium woodii, Moorella thermoacetica and Pseudomonas aeruginosa) 

with CdS biologically synthetize for CO2 photoreduction. The main product 

formed by this system was acetic acid, but methanol, ethanol, propionic, butanoic 

and hexanoic acids were also generated49. 

 

1.3.2.- Biohybrid systems for light-driven H2 production 

The biohybrid systems were barely explored for H2 production, where 

Escherichia coli was the only microorganism used as biocatalyst to create these 

systems (Figure 1.4.). Wang et al. reported the enhancement of hydrogen 

production of non-photosynthetic E. coli by inducing self-precipitation of CdS 

nanoparticles on its surface (Figure 1.4. A)50. In their follow-up work, they 

integrated a heterojunction light harvester composed by AgInS2/In2S3 

nanoparticles on the surface of E. coli for light-driven H2 production also (Figure 

1.4. B). In2S3 NPs were biologically produced by E. coli (triggered by the addition 

of In3+ and cysteine), whereas AgInS2 were anchored on In2S3 via in-situ ion 

exchanged (under mild conditions)51.  

Furthermore, Wei and coworkers genetically engineered E. coli cells through 

in situ biosynthesis of CdS NPs, by using a surface-display heavy metal-binding 

protein, for H2 generation (Figure 1.4. C). PbrR is a membrane-bound protein with 

cysteine residues, that selectively absorbs both lead and cadmium ions, thereby 

allowing the generation of CdS nanoparticles on the outer membrane of E. coli 

cells. Additionally, to extend its aerobic use, the E. coli-CdS hybrid system was 

also encapsulated with biomimetic silica, to protect the O2-sensitive recombinant 

hydrogenase (Figure 1.4. D)52. 
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Figure 1.4.- Self-photosensitization of Escherichia coli for H2 photoproduction 

(state-of-art) with CdS50 (A) and AgInS2/In2S2 nanoparticles51 (B). Engineered E. coli-CdS 

system with a surface-display system (C) and encapsulated in biomimetic silica52 (D). 

Created with Biorender.com. 

 

Therefore, these works demonstrated the potential of photosensitizing 

microorganisms for H2 production, thus opening a new window of research 

prospects to further explore this approach. For example, a wider range of 

microbes could be used as biocatalysts in biohybrid system, particularly those 

relevant to fuel/chemical production17. Furthermore, other light-harvesting 

materials (or combination of them), to drive electrons to cells, can also be studied 

to enhance H2 production by self-photosensitized microorganisms17,44. However, 

these strategies have never been investigated in the scope of photosensitizing 

microorganisms for light-driven H2 production, thus we proposed potential 

non-photosynthetic microorganisms and new semiconductor combinations to 

create biohybrids systems: 
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1.3.3.- Potential non-photosynthetic microorganisms to create 

biohybrids systems 

Sulfate reducing bacteria (SRB) is a major and diverse group of anaerobic 

microorganisms, that are characterized by a high level of hydrogenases and have 

been reported to produce H2 from formate (in absence of sulfate)53–56. 

Additionally, since these organisms generate sulfide as a major metabolic product 

from sulfate respiration, they are thus very efficient in self-production of metal 

sulfide nanoparticles57. Desulfovibrio vulgaris and Desulfovibrio desulfuricans 

belong to SRB and present a high potential as biocatalysts for biohybrid system: 

Desulfovibrio vulgaris Hildenborough is a well-studied 

Gram-negative bacterium with its genome sequenced, that has been used 

as model organism to study the energy metabolism and metal ion 

bioremediation of SRB58. D. vulgaris presents seven hydrogenases and has 

been reported to produce H2 with high productivity54–56,59. The 

membrane-associated [NiFeSe] hydrogenase of D. vulgaris is a strong 

candidate for biological H2 production due to its high catalytic rates and 

resistance to oxygen inactivation55,60,61. Additionally, recent studies 

demonstrated that D. vulgaris has the ability to produce biogenic metallic 

nanoparticles: particularly platinum (Pt) and palladium (Pd) NPs (that were 

used as catalysts for removal of pharmaceutical compounds) and iron 

sulfide nanoparticles (FeS NPs), (that enable the extracellular electron 

uptake by the bacterium from electrodes)62,63.  

Desulfovibrio desulfuricans is a Gram-negative bacterium that 

presents five hydrogenases and has the ability to produce H2 through 

fermentative metabolism54,56. In an interesting study of 2011, D. 

desulfuricans was chosen as model organism to study electron transfer 

processes in microbes and the role of palladium nanoparticles. Thus, D. 

desulfuricans was not only able to biologically synthetize the Pd NPs 

(bound to the cell membrane), but also to directly transfer electrons to a 

glassy-carbon electrode (through the self-produced nanoparticles). It was 

also hypothesized that cytochromes and hydrogenases were involved in 
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electron transfer to the electrodes64. Moreover, other articles used D. 

desulfuricans electroactive biofilms to enhanced current production in 

Microbial Fuel Cells (MFC), where it was also reported the ability of D. 

desulfuricans  to transfer directly electrons to an electrode (anode) by 

nano-pili structures65 or via cytochrome c66.  

Additionally, fermentative microorganisms such as Citrobacter freundii and 

Clostridium acetobutylicum have a great potential for H2 production and thus are 

promising biocatalysts for biohybrid system: 

Citrobacter freundii is a Gram-negative bacterium and facultative 

anaerobic microorganism that belongs to Enterobacteriaceae family67,68. C. 

freundii is able to produce H2 under dark fermentation from a wide range 

of organic compounds (from sugars like glucose and sucrose to lactate)67–

70. Citrobacter species have also been found and isolated from anode 

biofilms of MFC and reported as electrogenic (that is microorganisms 

capable of carrying out extracellular electron transfer)71–73. 

Clostridium genus is a large and diverse group of Gram-positive, 

spore forming and strictly anaerobic bacteria74,75. Clostridium species, just 

like Citrobacter freundii, can produce H2 through dark fermentation from a 

broad spectrum of substrates: from simple carbohydrates (like glucose and 

sucrose) to degradation of more complex carbohydrates (i.e., cellulose, 

biomass) derived from industrial wastes or agricultural residues74–76. 

Clostridium acetobutylicum contains two monomeric [FeFe] and one [NiFe] 

hydrogenases77. Recently, the existence of cell appendages on C. 

acetobutylicum that can connect the bacterium to an electrode, has been 

reported for the first time, which can be an important factor in electron 

transfer processes78.  

Therefore, all these microorganisms have the potential to be used as 

biocatalysts to create new biohybrid systems. 
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1.3.4.- Potential semiconductors combinations to create biohybrid 

systems 

Another approach to enhance H2 production by biohybrid consists in the 

improvement of the abiotic part of the system, the light-harvesting 

semiconductor. Several strategies have been employed to enhance its 

photocatalytic performance for H2 production, notably by loading cocatalysts on 

the semiconductor79–81(Figure 1.5.). Cocatalysts can enhance the activity and 

stability of the semiconductor by 1) enhancing light-harvesting capacity, 2) 

providing active host sites for photocatalytic processes (e.g. H2 evolution reaction 

in water splitting), 3) by promoting the separation of photoexcited electrons and 

holes and 4)  by suppressing the inherent photo-corrosion (Figure 1.5.)79–83.  

Figure 1.5.- Roles of cocatalysts in photocatalytic H2 production. Created with 

Biorender.com 

Noble metals (e.g.: Au, Ag, Pd, Pt) are widely used as cocatalysts to increase 

H2 production, specially Pt, but its high-costs and limited-reserves are a major 

drawback for large-scale applications80,84. Recently, earth-abundant transition 

metal dichalcogenides (TMDs) elements, including molybdenum (Mo), tungsten 

(W) and nickel (Ni), have been considered as an attractive substitute for 
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nobel-metal-based catalysis, since TMDs also present an efficient catalytic activity 

and are less expensive and more eco-friendly than nobel metals79,80,82–86 

Sulfide semiconductors have been widely used for H2 photocatalysis due to 

their highly efficient light absorption and fast charge carrier mobility, both 

characteristic of sulfide79. Thus, TMD sulfides have been employed in combination 

with CdS semiconductor, to improve H2 production under visible light, resulting 

in different and interesting binary CdS-based photocatalytic materials79. These 

new structures are constructed via chemical-synthesis. Molybdenum disulfide 

(MoS2) is the most studied and frequently used TMD cocatalyst for H2 

photocatalytic production83,87. In 2008, Zong et. al reported for the first time that 

loading MoS2 on CdS enhanced significantly H2 photoproduction by CdS, under 

visible light irradiation. The authors also found that CdS/MoS2 presented higher 

H2 production rates than CdS loaded with noble metals (including Pt), under the 

same reaction conditions88. Moreover, several CdS/MoS2 nanocomposites with 

excellent photocatalytic H2 production performances have also been developed. 

These systems usually involved CdS nanostructures (e.g.: nano -particles, -roads 

and -wires) loaded with MoS2 nanosheets, which enhanced cadmium sulfide 

stability and catalytic performance87,89–92.  

Similarly, to Mo, cocatalysts W and Ni have also been loaded on CdS surface. 

In their follow-up work, Zong et al. hypothesized that since MoS2 and WS2 are 

both members of TMD compounds and have an extremely similar crystal 

structure, WS2 could be a promising cocatalyst for H2 evolution, which was 

verified due to its excellent catalytic performance towards H2 formation93. 

Additionally, several reports describe the creation of CdS/WS2 nanocomposites, 

mostly using WS2 nanosheets loaded on CdS, for H2 photoproduction94–96. 

Relatively to Ni, works involving CdS or CdS nanostructures (NPs and nanowires) 

conjugated with NiS nanoparticles have also been reported for H2 evolution 

under visible light97–100. 
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1.4. – Objective 

The main goal of this work was the development of a new biophotocatalytic 

system, based on self-photosensitization of non-photosynthetic anaerobic 

bacteria with metal sulfide nanoparticles, for solar-hydrogen production. Thus, 

the construction of a new biohybrid system with a higher efficiency than the 

previously reported was intended, which involved the following steps: 

1) Selection of best microorganism as biocatalyst for H2 photoproduction: 

For this purpose, four non-photosynthetic anaerobic microorganisms 

Citrobacter freundii, Clostridium acetobutylicum, Desulfovibrio vulgaris and 

Desulfovibrio desulfuricans were selected based in their potential for H2 

production. 

2) Selection of best semiconductor as light-harvesting material for H2 

photoproduction 

Monovalent (CdS) and CdS-binary nanocomposites (WS2, MoS2 and NiS2) 

were studied as light-harvesting material 

3) Immobilization of selected biohybrid system in calcium alginate beads 

4) Development of a photocatalytic process for light-driven H2 production 
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Chapter 2: Material and Methods 

 

2.1. – Microorganisms and growth conditions 

In this work different anaerobic bacteria were studied as biocatalyst for the 

creation of the photocatalytic system, namely two sulfate reducing bacteria (SRB) 

and three fermentative organisms (including Escherichia coli). 

All flasks that contained the medium used for anaerobic growth, were 

previously purged with nitrogen (N2) for at least 20 min and latter sealed and 

autoclaved, to achieve anaerobic conditions.  

 

2.1.1. - Growth of sulfate reducing bacteria  

The SRB used in this study were Desulfovibrio desulfuricans (ATCC 27774) 

and Desulfovibrio vulgaris Hildenborough (ATCC 29579). D. desulfuricans and D. 

vulgaris were grown anaerobically in medium Postgate C in presence of lactate, 

as carbon source and sulfate as electron acceptor. The composition of the 

medium Postgate C is described in Table 2.1. The SBR were grown at 37ºC for 20 

h. An inoculum of 10 % (v/v) was used. 

 

 

 

2 
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Table 2.1.- Composition of medium Postgate C. 

Compound             g L-1 Label 

NH4Cl 1 Scharlau 

KH2PO4 0.5 Panreac 

CaCl2•2H2O 0.06 Merck 

MgCl2•7H2O 0.06 Roth 

Yeast extract 1 Scharlau 

FeSO4•7H2O 0.0071 Fluka 

Trisodium citrate•2H2O 0.3 Panreac 

Ascorbic acid 0.1 Sigma 

Sodium thioglycolate 0.1 Sigma 

Sodium sulfate (17.6 mM) 2.5 Panreac 

Sodium lactate (40 mM) 7.2 mL (from 5.6 M) Panreac 

Resazurin (160 µmol L-1) 1.6 mL (from 100 mg L-1) Sigma 

   

pH = 7.2 ± 0.2   

Resazurin is an anaerobic indicator which is colorless in the absence of O2 

and turns pink when it is in contact with oxygen (Table 2.1.).  

 

2.1.2. - Growth of fermentative organisms 

The fermentative organisms studied in this work were Citrobacter freundii 

(DSM 24394), Clostridium acetobutylicum (DSM 792) and the model organism 

Escherichia coli (NZY5α) (NZYTech). 

C. freundii stored was grown aerobically in tryptic soy broth (TSB) medium 

(30 g L-1) (Merck), overnight at 37 ºC on a rotary shaker (150 rpm). E. coli was also 

cultivated under aerobic conditions for overnight at 37ºC, 150 rpm, but in 

Luria-Bertani broth (LB) medium (25 g L-1) (NZYTech). 
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C. acetobutylicum was grown anaerobically on Peptone Yeast Glucose (PYG) 

broth medium, at 37 ºC for 24 h. The composition of medium PYG is illustrated in 

Table 2.2. 

Table 2.2. - Composition of medium PYG. 

1 Salt solution constitution: CaCl2•2H2O (0.25 g L-1), NaCl (10 g L-1) (Sigma), MgSO4•7H2O 

(0.5 g L-1) (Sigma), KH2PO4 (1g L-1) (Panreac), K2HPO4 (1 g L-1) (Panreac) and NaHCO3 (10 g L-1) 

(Alfa Aesar). 

 

2.2. – Synthesis of biohybrid cells-semiconductor system 

2.2.1 - Construction of biohybrid system with monovalent 

semiconductor (CdS) 

To produce biologically the monovalent semiconductor cadmium sulfide, it 

is necessary to provide cadmium to the grown bacterial culture, that will react 

with the hydrogen sulfide (H2S) generated by the bacteria, allowing the formation 

of CdS.  

Composition  g L-1 Label 

Tryptone 10 Biokar 

Yeast extract 10 Scharlau 

Salt solution1 40 mL  

Sodium thioglycolate 0.5  Sigma 

L-cysteine (4.1 mM) 0.5  Roth 

D-glucose (28 mM) 5 Sigma 

Sodium sulfide (1 mM) 0.2 Panreac 

Resazurin (160 µmol L-1) 1.6 mL (from 100 mg L-1) Sigma 

   

pH = 7   
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D. desulfuricans and D. vulgaris were grown in a specific medium to allow 

the production of biological CdS, designated by medium BioCdS. This medium 

was similar to medium Postgate C (Table 2.1.) except in: i) did not contain 

phosphate (KH2PO4), to prevent chemical precipitation of Cd as cadmium 

phosphate ii) had a slighter higher sulfate amount (20 mM instead of 17.6 mM 

present in medium Postgate C) and iii) medium BioCdS was supplement with two 

metal cofactors: 1 µM of nickel (as nickel chloride) (Sigma) and 1 µM of selenium 

(as sodium selenite solution) (Fluka). The pH of the medium was adjusted to 

6.6±0.2, which allows the precipitation of cadmium as cadmium sulfide, since CdS 

is not soluble at a pH higher than 4101. 

Thus, SRB grown on Postgate C medium were used to inoculate 50 mL of 

medium BioCdS (10 % (v/v) of inoculum) and incubated at 37 ºC for 17 h. In the 

end of the exponential phase, cadmium chloride (CdCl2) (Fluka) was added slowly 

to the culture (to make sure that metal would be retain on cells). Then, the culture 

was incubated with cadmium for 3 h at 37 ºC to assure that all Cd precipitated as 

cadmium sulfide. As a result, a biohybrid system is formed, constituted by the 

bacteria and the generated CdS. 

C. freundii, C. acetobutylicum and E. coli followed an identical procedure of 

SRB bacteria to generate biologically CdS. C. freundii previously grown aerobically 

were used to inoculate an anaerobic flask containing 50 mL of medium 

denominated by Citro (Table 2.3.). Similarly, E. coli grown aerobically was 

transferred to 50 mL of anaerobic LB medium supplemented with L-glucose (27.8 

mM) and L-cysteine (4.1 mM). C. acetobutylicum cultivated anaerobically were 

once again inoculated in 50 mL of medium PYG. All three bacteria were incubated 

at 37 ºC in static conditions. Then, cadmium chloride was added to bacteria 

cultures and incubated with cells for 3 h at 37 ºC. 

 C. freundii, E. coli and C. acetobutylicum use L-cysteine as sulfur source 

originating the hydrogen sulfide needed for CdS biogeneration. 
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Table 2.3. - Composition of medium Citro. 

Composition g L-1 Label 

Tryptone 5 Biokar 

Yeast extract 5 Scharlau 

Sodium thioglycolate 0.1 Sigma 

Ascorbic Acid 0.1 Sigma 

FeSO4•7H2O 0.0071 Fluka 

L-cysteine (4.1 mM) 0.5 Roth 

D-glucose (27.8 mM) 5 Sigma 

MgSO47H2O (2 mM sulfate) 0.5 Sigma 

Resazurin (160 µmol L-1) 1.6 mL (from 100 mg L-1) Sigma 

   

pH = 7.4   

 

2.2.2. - Construction of biohybrid systems with divalent 

semiconductors 

Several biohybrid systems were also constructed using the combination of 

CdS semiconductor with other metals (cocatalysts): molybdenum (Mo), tungsten 

(W) and nickel (Ni), resulting in the divalent semiconductors CdS-MoS2, CdS-WS2 

and CdS-NiS, respectively.  

Hence, CdCl2 was added to bacteria culture followed by the addition of the 

second metal: Na2MoO4 (Carlo Erba), Na2WO4 (Fluka) or Cl2Ni•6H2O (Sigma), that 

was also added slowly to cells. The resulting biohybrid systems were incubated at 

37ºC for 3 h.  
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2.3. – Photoproduction of H2 by biohybrid system 

The photocatalytic assays were performed anaerobically on 11 mL glass 

flask, with a working volume of 6.5 mL and magneto inside. These flasks were 

sealed with anaerobic stoppers and purged with nitrogen during 10 min. The 

assays were conducted using a photocatalytic solution composed by 20 mM 

Tris-HCl anaerobic buffer (pH=7.6) supplemented with HCl-cysteine (3.2 mM) 

(Merk) that acted as reducing agent and resazurin (0.8 µM) as anaerobic indicator. 

Additionally, HCl-cysteine (12.3 mM) (Merck) was added to the flasks as sacrificial 

electron donor (SED).  

The photocatalytic assay initiated with the addition of the biohybrid system 

to the photocatalytic solution. Thus, 22.5 mL of the system was collected, washed 

with anaerobic 20 mM Tris-HCl buffer containing HCl-cysteine, centrifuged (5800 

rpm, 10 min) and resuspended on the anaerobic buffer and added to the 

photocatalytic flask. The biohybrid system were then exposed to a light source. 

Headspace samples of the photocatalytic flasks were periodically collected to 

measure the hydrogen content. 

The effect of Cd concentration (0.5 to 4 mM), presence of electron shuttle 

(0.5 mM of methyl viologen), sacrificial electron donor (0 to 28 mM of cysteine), 

concentration of cocatalysts (ranging from 0.001 to 1.5 mM) and light source 

(violet LEDs and solar simulator) was evaluated. Control experiments for H2 

production, were also carried out: 1) inactivated biohybrid system irradiated with 

light, where cells were killed by autoclave (120 ºC, 30 min), 2) biohybrid system 

under dark condition (where flasks were cover with aluminum paper to protect 

the system from light) and 3) CdS-free cells irradiated with light. 

Experiments were carried at least in triplicate and all values are expressed as 

means ± standard deviation. 
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2.4. – Characterization of light sources 

The photocatalytic system was exposed to two different illumination 

sources: LEDs and a solar simulator.  

Relatively to LEDs, the photocatalysis flasks were incubated on a glass vessel 

covered with aluminum paper that contained a circular violet LED inside. The 

vessel was place under stirring plate and at 4 ºC to maintain the temperature of 

reaction on 30 ºC (Figure 2.1. A). The two violet LEDs tested emitted visible light 

at λ= 445 nm, but with different irradiances: 0.042 mW cm-2 (Figure 2.1. B) and 

3.6 mW cm-2 (Figure 2.1. C). 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. - LED as light source. Setup of LEDs for the photocatalytic experiments 

(A). The two violet LED sources with 0.042 mW cm-2 (B) and 3.6 mW cm-2 (C) of irradiance. 

 

The solar simulator consisted of a 300 W Xenon lamp (Sirius-300P, Zolix) 

with an irradiance of 21 W cm-2 (200-450 nm). The flasks were stirred magnetically 

and the temperature was maintained at 25 ºC by a refrigerated bath (Figure 2.2).  

Figure 2.2. - The assay setup using the solar simulator as light source. 
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The energy supplied by the light source must be superior to the CdS band 

gap (Eg=2.4 eV), to allow electron conduction in the semiconductor79. The violet 

LEDs emit light at λ= 445 nm that corresponds to an energy value between 2.52 

and 2.84 eV, which is enough to excite electron on CdS.  

 

2.5. – Determination of hydrogenase activity of whole-cells 

The hydrogenase activity of whole-cells was also determined, using the 

bacterial cells anaerobically grown as described in section 2.2.1.  

The assays were conducted on an anaerobic 11 mL vial. The reaction mix 

was constituted by 5 mL of Tris-HCl anaerobic buffer (50 mM, pH=7.6), 0.5 mL of 

methyl viologen (0.5 mM) and 0.5 mL of dithionite (5 mM). Dithionite is a reducing 

agent that will reduce the methyl viologen. The reduced MV transfers electrons 

to cells, allowing H2 production. The assay started with the addition of cells (that 

were previously centrifuged at 4400 rpm for 10 min and resuspended in 0.5 mL 

of anaerobic buffer). Headspace samples were collected to measure the hydrogen 

content. 

 

2.6. – Characterization of biohybrid systems 

The characterization of the biohybrid systems was performed by scanning 

electron microscopy and energy dispersive spectroscopy (SEM-EDS). 

 

2.6.1. - Preparation of the biohybrid system samples for SEM-EDS 

Five mL of the biohybrid systems were collected, centrifuged (4400 rpm, 10 

min) and washed with Tris-HCl buffer (20 mM, pH= 7.2). This step was repeated 

for 2 times. The system was then fixed with 1 mL of fixative solution (constituted 

by 2.5 % (w/v) glutaraldehyde and 2 % (w/v) formaldehyde in Tris-HCl buffer) and 

incubated at 4 ºC overnight. To remove the fixative solution, the biosystem was 

washed and resuspended in 1 mL of buffer and incubated for 10 min at room 

temperature (this step was repeated for 3 times). Subsequently, the systems were 
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fixed with 1 % (w/v) osmium, for 1 h at -4 ºC and washed with Tris-HCl buffer 

followed by room temperature incubation, as described above. The samples were 

dehydrated through 1 mL of graded ethanol series (30, 50, 75, 90, 100 % of 

ethanol (v/v)) for 10 min in each solution. Samples were frozen in liquid nitrogen 

and lyophilized.  

 

2.6.2. - SEM-EDS of biohybrid system 

Photosystems samples were placed onto an Al stub using double-sided 

carbon tape. A thin film of Au/Pd was deposited on their surface using a Quorum 

Technologies model Q150T ES. The samples were then viewed with a FEG-SEM 

JEOL JSM7001F and for SEM-EDS a light elements Si (Li) detector by Oxford, 

model INCA250, was used. 

 

 

2.7. – Immobilization of biophotocatalytic system 

The immobilization of biohybrid system was also conducted by entrapment 

in calcium alginate beads. 

The biohybrid system (22 mL) was recovered by centrifugation (4400 rpm, 

10 min) and resuspended in 2 mL of anaerobic water. Then, 20 g L-1 of sodium 

alginate (Sigma), was added slowly to the system. Subsequently, 

biohybrid-sodium alginate suspension was added by drop by drop using a 

syringe, to a calcium chloride solution (0.5 M) (Panreac) for cross-linking to form 

spherical biohybrid-calcium alginate beads (Figure 2.3.)102–104. Beads stayed for 15 

min in CaCl2 solution for curing. The cured beads were collected and used in the 

photosynthetic assays.  
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Figure 2.3. - Immobilization of biohybrid system in calcium alginate beads (setup). 

Created with BioRender.com. 

 

2.8. – Photoreactor for H2 production 

A batch reactor for H2 production was developed using the best biohybrid 

system.  

Hydrogen production was carried out in a designed glass column reactor 

(inner diameter= 5.5 cm, height= 35 cm and volume= 750 mL) with violet LEDs 

strips (λ= 445 nm, 3.6 mW cm-2, (Figure 2.1. C)) attached to the vessel exterior 

(Figure 2.4.).   

The reactor operated with a working volume of 400 mL, at 40 ºC and was 

magnetically stirred (Figure 2.4.). Thus, 350 mL Tris-HCl anaerobic buffer with 

HCl-cysteine was added to the reactor and purged with N2, to assure anaerobic 

conditions. 2 L of biohybrid system was concentrated in 50 mL of anaerobic buffer 

and added to the reactor. The electron shuttle (0.5 mM of MV) and sacrificial 

electron donor (30 mM of cysteine) were also added to the reactors. Headspace 

samples were periodically collected to measure the H2 content. 

 



Chapter 2: Materials and Methods 
 

25 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. - Schematic illustration of batch reactor. Bioreactor (1), LEDs (2), 

temperature sensor (3), magnetic stirred and stir plate (4), sample ports (5). Created with 

Biorender.com.  

 

2.9. – Analytical methods 

Cell growth was monitored by measuring optical density at 600 nm (OD600) 

with Ultrospec 10 Cell Density Meter (Biochrom). Biomass were determined by 

measuring dry cell weight (dcw), obtained at overnight incubation at 60ºC, and 

correlated with OD600 values. One-unit value of OD600 corresponded to 0.31 gdcw 

L-1 for both D. desulfuricans and D. vulgaris, 0.36 gdcw L-1 for C. freundii and 0.34 

gdcw L-1 for E. coli.   

The H2 content in the headspace of the photocatalytic flaks was determined 

using a Trace GC 2000 gas chromatograph (Thermo Corporation) equipped with 

a MolSieve 5A 80/100 column (Althech) and a thermal conductivity detector 

(TCD). Nitrogen was used as carrier gas at a flow rate of 10 mL min-1. To study H2 

production, a H2 calibration curve was traced (Figure A1., Table A1.). For this 

purpose, a photocatalytic flask with a working volume of 6.5 mL was injected 

successively with a known volume of H2 (from 20 to 2000 µL) and the 
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correspondent GC areas were obtained. The equation of real gases was used to 

determinate the number of moles of H2:  

𝑃𝑉 = 𝑛𝑅𝑇 

where P = 1 atm, R=0.082057 atm•L•mol-1•k-1, T= 298 K and V was the H2 volume 

injected (µL) in the photocatalytic flask. 

Thus, the resulting calibration curve enable the obtention of the following 

equation (Figure A1., Table A1.): 

𝐻2(𝜇𝑚𝑜𝑙) = 4 × 10
−6 × 𝐺𝐶 𝐴𝑟𝑒𝑎,         𝑅2 = 0.998 

To determine the specific hydrogen production rate (µmol gdcw
-1 h-1), a linear 

regression was trace on a plot with H2 production (µmol gdcw
-1) per time (h), where 

the slop was the specific H2 production rate. The same method was applied to 

calculate the whole-cell hydrogenases activities (Figure A2.). 

Hydrogen production and apparent quantum yields (AQY) were determined 

based on the photocatalytic reaction of H2 production by the biohybrid systems 

(Equation 2.1.): 

2 𝐶𝑦𝑠𝑡𝑒𝑖𝑛𝑒 + 2 ℎ𝑣
𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚−𝐶𝑑𝑆
→            𝐶𝑦𝑠𝑡𝑖𝑛𝑒 + 𝐻2    (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐. 𝟏. )   

where photons are represents by hv.   

Thus, the H2 production yield was calculated by the following equation 

(Equation 2.2.):  

 𝐻2 𝑌𝑖𝑒𝑙𝑑 (%) = ( 𝐻2 /(
𝐶𝑦𝑠𝑡𝑒𝑖𝑛𝑒

2
)) × 100               (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐. 𝟐. ) 

 The apparent quantum yield (AQY) was determined using the Equation 

2.347,50: 

𝐴𝑄𝑌 (%) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑒𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝐻2 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
× 100 

 

     𝐴𝑄𝑌 (%) =
2×𝐶𝐻2×𝑁𝐴 
𝑃×𝐴×𝑡×𝜆

ℎ×𝑐

× 100                                    (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐. 𝟑. ) 
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where CH2 (in moles) is the H2 produced during the irradiation time (t, in seconds), 

NA is Avogadro's number (6.022×1023), P is the power density of energy source 

(W cm-2), A is the irradiation area (cm2), λ is the wavelength of light (m), h is Planck 

constant (6.63×10-34 J s) and c is speed of light (3×108 m s-1). The irradiation area 

(A) was assumed to be the entire surface of the flask (16.6 cm2), even though 

there was scattering and reflection losses due to the curved sidewalls of the 

tubular reaction flasks. 
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Chapter 3: Results and Discussion 

The design of a biophotocatalytic system for hydrogen production was 

carried out. The system was composed by non-photosynthetic anaerobic bacteria 

as biocatalyst and self-produced cadmium sulfide nanoparticles (CdS). The CdS 

precipitates on the bacterial cell surface acting as a semiconductor to drive 

electrons from the energy source (visible light) to the bacteria, culminating in 

hydrogen production (Figure 3.1.). 

Furthermore, the system also included a sacrificial electron donor (SED), that 

donates electrons (reduction) to quench the holes generated by CdS after photon 

absorption. An electron transfer mediator, methyl viologen (MV) may be used to 

facilitate the electron transfer to the cell’s hydrogenases (Figure 3.1.). 

Figure 3.1. - Schematic representation of the biophotocatalytic system for H2 

production from visible light. The system is composed by non-photosynthetic anaerobic 

bacteria (biocatalyst) and CdS biologically produced (semiconductor). Created with 

Biorender.com. 

3 
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Cadmium sulfide is considered one of the most prominent semiconductors 

due to its excellent photocatalytic properties and visible-light response, thereby 

making CdS a suitable light-harvesting material for the presented system79,105. 

Sacrificial electron donors are molecules that are oxidized in the 

photocatalytic process, thus filling the electron-holes in the semiconductor106,107. 

Hence, SED not only enhances the semiconductor stability (by suppressing 

photocorrosion caused by the holes), but also prevents the recombination of the 

photogenerated electron-holes.  As a result, it allows a more efficient electron 

transfer from semiconductor to the catalyst107–109. These electron donors have to 

fulfill the following 2 criteria: 1) to have an appropriate electron potential (that 

has to be inferior to the semiconductors potential) and 2) be irreversibly oxidized 

into an inert molecule (that does not interfere with the electron transfer 

process)106. Cysteine is an aminoacid with a thiol side chain that confers it high 

reactivity110. On the other hand, cystine is the oxidation product of two cysteine 

molecules (Equation 3.1.)111.  

2 𝑐𝑦𝑠𝑡𝑒𝑖𝑛𝑒 →  𝑐𝑦𝑠𝑡𝑖𝑛𝑒 +  2 𝐻+ + + 2 𝑒−    (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟏. ) 

 

The exact value of standard oxidation-reduction potential of 

cystine/cysteine is challenging to calculate (due to thiol group reactivity), and two 

values are proposed in the literature, namely -0.22 V and -0.34 V, which were 

determined by different methods111,112. Nevertheless, the EVB of CdS is 1.90 eV, 

which is higher than the E0' cystine/cysteine, thus cysteine can be oxidized by the 

holes in CdS semiconductor113. Therefore, HCl-cysteine was used as sacrificial 

electron donor in the proposed biohybrid system.  

Electron shuttles are organic molecules that can undergo reversible redox 

reactions, thereby having the ability to act as electron carriers114,115. Viologens are 

di-quarternized 4,4'-bipyridyl salts that present unique properties, particularly: 

three reversible and stable redox states, efficient electron-accepting capability 

and distinct color changes between viologens species116–118. Methyl viologen 

(MV) is one of the most studied viologen derivates. Therefore, MV2+ (the colorless 

di-cation specie) can undergo two stable and reversible reduction reactions, 
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resulting in MV•+ (a radical cation with an intense violet blue color) and MV 

formation (the neutral specie that is yellow-brown colored) (Figure 3.2)116–118. 

MV2+ has a pH-independent one electron reduction potential (E'
0=-440 mV vs. 

normal hydrogen electrode, NHE), stable and long-lived radicals and is also 

soluble in water119,120.  

Figure 3.2. -The three reversible redox states of methyl viologen (MV).116 

 

Thus, MV was used as electron shuttle in the biohybrid system. The MV2+can 

receive electrons from the semiconductor, whereas MV•+ can further transfer the 

electrons to the cells119. As a result, methyl viologen can accelerate the electron 

transfer of CdS NPs to cell's hydrogenases, increasing the efficiency of H2 

production by the photocatalytic system. This electron transfer is possible 

because the MV redox potential (-440 mV) is lower than the redox potential of 

hydrogenases (-414 mV), allowing MV to supply electrons for the H2 production 

(Equation 3.2., Equation 1.1.)20,119. 

 

𝑀𝑉 → 𝑀𝑉2+ + 2𝑒−         𝐸0 = −440 𝑚𝑉       (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟐. ) 

2 𝐻+ + 2𝑒− → 𝐻2           𝐸0 = −414 𝑚𝑉        (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏. 𝟏. ) 

 

 

3.1. – Selection of best biocatalyst for H2 photoproduction 

 The biocatalyst required for the biohybrid system must fulfill 2 criteria: 1) 

be able to produce H2 and 2) present the ability to not only synthesize cadmium 

sulfide NPs, but also accept electrons from the semiconductor. Thus, 4 

microorganisms were considered for biocatalysts: the fermentative organisms 
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Citrobacter freundii and Clostridium acetobutylicum and the sulfate reducing 

bacteria Desulfovibrio vulgaris and Desulfovibrio desulfuricans.  

The optimal conditions for H2 production for each system was determined 

and compared between systems, to select the best biocatalyst for H2 

photoproduction.  Moreover, the performance of these biohybrid systems were 

further compared with the model organism Escherichia coli.  

The photocatalytic assays were performed under LEDs light (with 0.042 mW 

cm-2 of irradiance).  

 

3.1.1.- Biohybrid Citrobacter freundii-CdS system 

3.1.1.1. - Creation of Citrobacter freundii-CdS system 

The effective synthesis of CdS by C. freundii in the presence of 1 mM of Cd 

was demonstrated by the change of medium color that becomes yellowish after 

Cd addition, which it is an indicative of CdS formation (CdS presents a yellow 

color37) (Figure 3.3.). The complete removal of Cd from solution was confirmed 

by ICP analysis. 

 

 

 

 

 

 

 

 

 

Figure 3.3. - Difference of color in medium inoculated with Citrobacter freundii, in 

absence of Cd (A) and with 3 h of incubation with 1 mM of Cd (B). 
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The SEM images showed the presence of nanoparticles on the C. freundii 

surface whereas in control cells (grown C. freundii without the addition of Cd), no 

precipitate was observed (Figure 3.4 A, B.). SEM-EDS proved that the 

nanoparticles were composed by cadmium and sulfur, proving that cadmium 

precipitated as cadmium sulfide (Figure 3.4 C.). The metals used in sample 

preparation (Os, Au and Pd) were also detected (Figure 3.4. C.). 

The CdS precipitates in C. freundii cells formed large extracellular 

aggregates, that were not uniformly distributed between cells (Figure 3.4. B.). 

These results demonstrated the effective creation of C. freundii-CdS system. 

 

  

 

 

 

Figure 3.4.- Characterization of Citrobacter freundii-CdS. SEM images of 

Citrobacter freundii (A) and Citrobacter freundii-CdS biohybrid (B). EDS analysis of 

precipitated nanoparticles (C). The inset image shows the area where it was performed 

EDS. 
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3.1.1.2. - H2 production profile of Citrobacter freundii-CdS system 

To assess H2 production by C. freundii -CdS system a series of photocatalytic 

assays were performed to determine the optimal conditions, to obtain the highest 

H2 production.  

It was observed that the Citrobacter freundii-CdS system in presence of MV 

was able to produce 5.4±1.3 µmol of H2 after 143 h of light exposure, with a 

specific H2 production rate of 7.8 µmol gdcw
-1 h-1 (Figure 3.5.). 

Control experiments, in presence of MV, were also carried out to confirm H2 

production by biohybrid system. As showed in Figure 3.5., H2 production was not 

detected under dark conditions and with C. freundii without the self-produced 

CdS. However, inactivated cells-CdS system presented a minimal H2 production 

of 0.4±0.1 µmol of H2 after 143 h (Figure 3.5.). Cadmium sulfide has an intrinsic 

photocatalytic H2-production activity, which can explain the generation of H2 

when cells were inactivated79,121,122. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. - Hydrogen photoproduction profile by Citrobacter freundii-CdS and 

its respective controls. Error bars indicate the standard deviations of the average values. 
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Hence, these experiments confirmed that H2 production is only possible in 

the presence of Citrobacter freundii and self-produced CdS nanoparticles when 

the system was exposed to a light source. 

 

3.1.1.3. - Effect of Cd concentration in H2 production by Citrobacter 

freundii-CdS system 

To investigate the impact of cadmium concentration on H2 production, 

different Cd concentrations (from 0.5 to 4 mM) were used to synthetize the C. 

freundii biohybrids (Figure 3.6.). 

The H2 production of biohybrids constructed with concentrations from 0.5 

to 3 mM of Cd were similar (~3.5 µmol), whereas with 4 mM of Cd the H2 

generated decreased (Figure 3.6.). Higher Cd concentration could be toxic to 

cells123, decreasing the biocatalyst activity, leading consequently to a lower H2 

production. 

Figure 3.6. - Effect of Cd concentration on H2 production by Citrobacter 

freundii-CdS. Data from 44 h. The error bars indicate standard deviation of the average 

values. 

Thus, Cd concentration does not seem to have a pronounced effect on H2 

production performance by the C. freundii-CdS system, except when employing 

higher Cd concentrations (>3 mM). 
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3.1.1.4. - Effect of electron shuttle (MV) in H2 production by 

Citrobacter freundii-CdS system 

To study the influence of electron mediator in H2 production performance 

of C. freundii-CdS, photocatalytic assays in the presence and absence of MV were 

carried out. Photosystem was constructed using 1 mM of Cd (Figure 3.7.). 

C. freundii-CdS system presented a higher H2 production in the presence of 

MV (5.4±1.3 µmol) than in absence of the electron shuttle (2.1±0.5 µmol), after 

142 h of light irradiation (Figure 3.7. A.). The specific H2 production rate of 

biohybrid system was 7.8 and 1.8 µmol gdcw
-1 h-1, with and without MV, 

respectively.  A higher photocatalytic activity in the presence of electron mediator 

MV, was also verified for the other developed biohybrid systems19,33,34,52. Since 

the role of MV in this system is to facilitate electron transfer between 

semiconductor to cell hydrogenases, the enhancement of H2 performance in the 

presence of this electron shuttle is expected. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. - Effect of MV in H2 production by Citrobacter freundii-CdS system. 

The error bars indicate the standard deviations of the average values. 
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Therefore, the presence of MV enhances H2 production performance of C. 

freundii-CdS system. 

 

3.1.2. - Biohybrid Clostridium acetobutylicum-CdS system 

Although C. acetobutylicum could present a great potential as biocatalyst 

for the creation of biohybrid system, we were not able to biologically produce 

CdS particles with this microorganism, which are required to build the 

photocatalytic system. As illustrated in Figure 3.8., the medium did not turn the 

characteristic yellow color of CdS, after the addition of 1 mM of Cd. Hence, it was 

hypothesized that C. acetobutylicum did not generated enough sulfide to 

precipitate CdS.  

  

 

  

 

 

 

 

 

Figure 3.8. - Color of medium inoculated with Clostridium acetobutylicum before 

(A) and after (B) the addition of 1 mM of Cd. 

 

Thus, the construction of a biohybrid system for H2 production using 

Clostridium acetobutylicum as biocatalyst was not attained. 
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3.1.3. - Biohybrid Desulfovibrio vulgaris-CdS system 

3.1.3.1. - Creation of Desulfovibrio vulgaris-CdS system 

As showed in Figure 3.9., medium become yellowish after the addition of 1 

mM of Cd, thereby demonstrating the ability of D. vulgaris to biologically 

synthetize CdS.  

 

 

 

 

  

  

 

 

Figure 3.9. - Difference of color in medium inoculated with Desulfovibrio vulgaris, 

in absence of Cd (A) and with 3 h of incubation with 1 mM of Cd (B). 

 

The characterization by SEM-EDS of the developed Desulfovibrio 

vulgaris-CdS biohybrid system was carried out (Figure 3.10). In grown D. vulgaris 

where Cd was not introduced (control cells), it was not detected any metal 

precipitates (Figure 3.10. A). Conversely, when Cd was added to bacteria, 

nanoparticles were generated on D. vulgaris cells surface (Figure 3.10 B.). These 

NPs were in fact CdS precipitates, as demonstrated by EDS analysis (Figure 3.10 

C.) and seems to be evenly distributed between all bacterial cells (Figure 3.10 B.). 
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Figure 3.10.- Characterization of Desulfovibrio vulgaris-CdS. SEM images of 

Desulfovibrio vulgaris (A) and Desulfovibrio vulgaris-CdS biohybrid (B). EDS analysis of 

precipitated nanoparticles (C). The inset image shows the area where it was performed 

EDS. 

 

Therefore, it has been proven that D. vulgaris can self-produce the CdS 

nanoparticles require for biohybrid system construction (Figure 3.10.). However, 

D. vulgaris-CdS system constructed with 1 mM of Cd in presence of MV presented 

a residual H2 production (1.6±0.8 µmol) after 137 h of light exposure (Figure 

3.11.). 
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Figure 3.11. - Hydrogen photoproduction of Desulfovibrio vulgaris-CdS (1 mM of 

Cd, in presence of MV). Error bars indicate the standard deviations of the average values. 

 

 

3.1.3.2. - Effect of Cd concentration in H2 production by Desulfovibrio 

vulgaris-CdS system 

Since H2 production by D. vulgaris-CdS were substantially low with 1 mM of 

Cd (Figure 3.11.), it was hypothesized that the cadmium concentration used was 

not the most suitable and the optimal Cd concentration to construct this 

biohybrid. Therefore, different Cd concentrations were tested to create D. 

vulgaris-CdS system namely 0.5, 1, 2, 3 and 4 mM of Cd, in the presence of MV 

(Figure 3.12.). 

Overall, the biohybrid systems still presented a very low H2 production, 

regardless Cd concentration employed (Figure 3.12.). Nevertheless, D. 

vulgaris-CdS constructed with 3 mM of Cd generated 1.6±0.3 µmol of H2 after 44 

h of irradiation, that was superior to systems created with the remaining Cd 

concentrations (where all produced less than 1 µmol of H2) (Figure 3.12.). 
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Figure 3.12. - Effect of Cd concentration on H2 production by Desulfovibrio 

vulgaris-CdS. Data from 44 h. The error bars indicate standard deviation of the average 

values. 

 

Therefore, the optimal Cd concentration determined for D. vulgaris-CdS 

system was 3 mM of Cd.  

 

 

3.1.3.3. - Effect of electron shuttle in H2 production by Desulfovibrio 

vulgaris-CdS system 

The influence of electron mediator in H2 production by D. vulgaris-CdS was 

investigated. Thus, photocatalytic assays were performed in the presence and 

absence of MV. Biohybrid was constructed using 3 mM of Cd (Figure 3.13.). 

Interestingly, D. vulgaris-CdS had a higher H2 production without MV 

(9.9±1.2 µmol) than with electron shuttle (2.4±0.9 µmol), after 141 h of LEDs light 

exposure (Figure 3.13.). The specific H2 production rate in presence and absence 

of MV of biohybrid was 2.1 and 9.2 µmol gdcw
-1h-1, respectively.  
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Figure 3.13. - Effect of MV in H2 production by Desulfovibrio vulgaris-CdS system. 

The error bars indicate the standard deviations of the average values. 

 

As aforementioned, electron shuttle assists the electron transfer process 

between CdS and cell hydrogenases. Therefore, MV was likely to present one of 

the following effects: i) enhance H2 photoproduction, or ii) have a neutral impact 

on biohybrid performance. Thus, if MV presented a neutral impact it would be 

expected that D. vulgaris-CdS system with and without MV would have the same 

H2 production profile, contrarily to the results obtained (Figure 3.13.). Further 

studies should be performed to assess D. vulgaris-CdS behavior towards electron 

mediator MV. 

  

3.1.4. - Biohybrid Desulfovibrio desulfuricans-CdS system 

3.1.4.1. - Creation of Desulfovibrio desulfuricans-CdS system 

The synthesis of CdS by Desulfovibrio desulfuricans was obtained in the 

presence of 1 mM of Cd, as showed in Figure 3.14., by the color change of 

medium to yellow, after the addition of Cd. 
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Figure 3.14. - Difference of color in medium inoculated with Desulfovibrio 

desulfuricans, in absence of Cd (A) and with 3 h of incubation with 1 mM of Cd (B). 

 

SEM images demonstrated the precipitation of nanoparticles on D. 

desulfuricans cell surface, in presence of Cd (Figure 3.15. B). On contrary, in grown 

D. desulfuricans where cadmium was not added (control cells), SEM image did 

not reveal any precipitate (Figure 3.15. A). EDS analysis showed that the 

nanoparticles were composed by cadmium and sulfur, thereby proving that Cd 

precipitated in form of cadmium sulfide (Figure 3.15. C). The CdS nanoparticles 

forms agglomerates in cells surface of D. desulfuricans and it seems to be more 

concentrated in some cells compared with others (Figure 3.15. B). Therefore, these 

results showed the effective construction of D. desulfuricans-CdS system. 
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Figure 3.15.- Characterization of Desulfovibrio desulfuricans-CdS. SEM images of 

Desulfovibrio desulfuricans (A) and Desulfovibrio desulfuricans-CdS biohybrid (B). EDS 

analysis of precipitated nanoparticles (C). The inset image shows the area where it was 

performed EDS. 

 

 

3.1.4.2. - H2 production profile of Desulfovibrio desulfuricans-CdS 

system 

To study H2 production by D. desulfuricans-CdS system, several 

photocatalytic assays and control experiments were performed, in presence of 

MV.  

The system D. desulfuricans-CdS/MV was able to produce 45.2±1.2 µmol of 

H2 after 120 h of light exposure, with a specific H2 production rate of 131 µmol 

gdcw
-1 h-1 (Figure 3.16.). 
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Moreover, H2 production was not detected under dark conditions and with 

D. desulfuricans without the biologically synthetized CdS semiconductor (Figure 

3.16.). However, inactivated D. desulfuricans-CdS system had a slight H2 

production (0.5±0.2 µmol) after 120 h, similarly to what found for C. freundii-CdS 

system, that is probably due to intrinsic CdS photocatalytic activity (Figure 3.16.).  

 

Figure 3.16. - Hydrogen photoproduction profile by Desulfovibrio 

desulfuricans-CdS and its respective controls. Error bars indicate the standard deviations 

of the average values. 

 

Thus, these experiments demonstrated that D. desulfuricans is only able to 

produce H2 in the presence of its biological CdS precipitates when the biohybrid 

is exposed to an energy source, generating a considerable amount of hydrogen 

in these conditions. 
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3.1.4.3. - Effect of Cd concentration in H2 production by Desulfovibrio 

desulfuricans-CdS system 

The influence of Cd concentration on H2 production by biohybrid system 

was investigated. The concentrations used to synthesize the D. desulfuricans 

semiconductor were: 0.5, 1, 2, 3 and 4 mM of Cd, in presence of MV (Figure 3.17.). 

D. desulfuricans-CdS presented the highest H2 production with 2 and 3 mM 

of Cd, reaching ~20 µmol of H2 after 22 h of light exposure (Figure 3.17.). In 

presence of lower Cd concentrations (<1 mM), the cells probably do not generate 

enough semiconductor for an efficient light-harvesting process. Conversely, Cd 

concentrations higher than 3 mM decreased the biohybrid activity, possibly due 

to toxicity (Figure 3.17.). 

 

 

 

 

 

 

 

 

Figure 3.17. - Effect of Cd concentration on H2 production by Desulfovibrio 

desulfuricans-CdS. Data from 22 h. The error bars indicate standard deviation of the 

average values. 

 

Therefore, the optimal Cd concentrations for D. desulfuricans-CdS system 

were 2 and 3 mM. Hence, further experiments using biocatalyst Desulfovibrio 

desulfuricans were all performed with 3 mM of Cd. 
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3.1.4.4. - Effect of electron shuttle in H2 production by Desulfovibrio 

desulfuricans-CdS system 

To investigate the impact of electron mediator in H2 production by 

Desulfovibrio desulfuricans-CdS, photocatalytic experiments were performed in 

presence and absence of MV (Figure 3.18.). 

D. desulfuricans-CdS/MV produced a considerable amount of H2 (56.1±5.1 

µmol) after 142 h, with a specific H2 production rate of 418.3 µmol gdcw
-1

 h-1 

(Figure 3.18.). The H2 production of biohybrid started to stabilize after 45 h of 

light exposure (at 46.0±4.8 µmol of H2), that could be related to depletion of 

sacrificial electron donor. In absence of MV, the system had also a significant H2 

production with 31.7±8.1 µmol, but it did not reach a plateau (Figure 3.18.). The 

specific H2 production rate of D. desulfuricans-CdS without electron shuttle was 

48.9 µmol gdcw
-1

 h-1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. - Effect of MV in H2 production by Desulfovibrio desulfuricans-CdS 

system. The error bars indicate the standard deviations of the average values. 

 

Thus, D. desulfuricans-CdS generated a substantial H2 amount in presence 

of MV. However, the system also produced H2 without the assistance of an 
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electron mediator, proving that cells can accept electrons directly from CdS 

semiconductor. 

 

3.1.5. - Biohybrid Escherichia coli-CdS system 

3.1.5.1. - Creation of Escherichia coli-CdS system 

Since Escherichia coli was the only biocatalyst investigated for H2 

production through self-photosensitization with NPs strategy (Figure 1.4.)50–52, 

we constructed a E. coli-CdS biohybrid as a control system and compared with 

the new photocatalytic systems developed. 

Thus, Escherichia coli was also able to synthesize CdS semiconductor in 

presence of 1 mM of Cd, as illustrated by the color difference of medium (that 

turned to a yellowish CdS color after the addition of Cd) (Figure 3.19.). 

 

 

 

 

 

 

 

 

 

Figure 3.19. - Difference of color in medium inoculated with Escherichia coli, in 

absence of Cd (A) and with 3 h of incubation with 1 mM of Cd (B). 

 

SEM images showed that nanoparticles are only formed on the surface of E. 

coli cells when cadmium is added to bacteria, (Figure 3.20.). The CdS NPs are 

distributed between all cells with different intensities (some bacteria precipitates 

are more concentrated than others) (Figure 3.20 B.). Hence, these results 

demonstrated the effective creation of E. coli-CdS system. 
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Figure 3.20.- Characterization of Escherichia coli-CdS. SEM images of Escherichia 

coli (A) and Escherichia coli-CdS biohybrid (B).  

 

 

 

3.1.5.2. - H2 production profile of Escherichia coli-CdS system 

To assess H2 production performance of Escherichia coli-CdS system, a 

series of photocatalytic assays were conducted to determine the optimal 

conditions to achieve higher H2 production. 

E. coli-CdS/MV system produced 9.1±1.8 µmol of H2 after 137 h of light 

exposure, with a specific H2 production rate of 9.3 µmol gdcw
-1 h-1 (Figure 3.21.).  

Relative to control experiments, performed in presence of MV, both E. 

coli-CdS under dark conditions and grown E. coli without the self-produced 

semiconductor, did not produce H2. Conversely, inactivated E. coli-CdS system 

had a residual H2 production of 1.2±1.8 µmol after 145 h (Figure 3.21.), like 

inactivated C. freundii-CdS and D. desulfuricans-CdS systems.  
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Figure 3.21. - Hydrogen photoproduction profile by Escherichia coli-CdS and its 

respective controls. Error bars indicate the standard deviations of the average values. 

 

Therefore, these experiments confirmed that H2 production is only possible 

when Escherichia coli is associated with CdS semiconductor, when system was 

exposed to a light source. 

 

 

3.1.5.3. - Effect of Cd concentration in H2 production by Escherichia 

coli-CdS system 

To study the effect of cadmium concentration on biohybrid H2 production, 

different Cd concentrations were tested to synthetize E. coli semiconductor 

(Figure 3.22.). 

E. coli-CdS systems constructed with 0.5 and 1 mM of Cd achieved highest 

H2 production with ~3.5 µmol, after 47 h under LED lights. On the contrary, higher 

Cd concentrations (>1 mM) resulted in lower H2 production (Figure 3.22.).  
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Figure 3.22. - Effect of Cd concentration on H2 production by Escherichia coli-CdS. 

Data is from 47h. The error bars indicate standard deviation of the average values. 

 

The increased of Cd concentration also led to lower H2 production 

performances of C. freundii and D. desulfuricans biohybrids systems, but only for 

concentrations higher than 4 mM (Figure 3.6., Figure 3.17.). In the case of E. 

coli-CdS system developed by Wang et. al50, they also tested different Cd 

concentrations to induce NPs precipitation on E. coli cell surface. The optimal Cd 

concentration found for that system was 0.3 nM, where higher concentrations 

resulted in the decrease of cell density50. Additionally, it has been reported that 

CdS nanoparticles induce several stress responses systems and morphology 

changes in E. coli cells124,125.  

Hence, higher Cd concentrations seems to be toxic to E. coli cells. Thus, 

lower concentrations appear to be more appropriate to construct the 

biophotocatalytic system using E. coli as biocatalyst.  
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3.1.5.4. - Effect of electron shuttle in H2 production by Escherichia 

coli-CdS system 

The impact of electron shuttle in H2 production by E. coli-CdS was studied. 

Thus, photocatalytic assays were performed with E. coli-CdS system with the 

optimal Cd concentration (1 mM of Cd) in presence and absence of MV (Figure 

3.23.). 

E. coli-CdS/MV system had a hydrogen production of 9.1±1.8 µmol, whereas 

in absence of electron mediator biohybrid only produced 3.0±0.5 µmol of H2, 

after 137 h of light exposure (Figure 3.23.). The specific H2 production rate with 

and without MV was 9.3 and 2.9 µmol gdcw
-1 h-1, respectively. 

Figure 3.23. - Effect of MV in H2 production by Escherichia coli-CdS system. The 

error bars indicate the standard deviations of the average values. 

 

Biohybrid systems developed by Wang et al., namely using E. coli and 

self-produced CdS and Ag/In2S3, a main electron donor (glucose) was required 

for H2 production50,51. Moreover, in engineering E. coli surface-display system, 

created by Wei and coworkers, MV was needed for H2 photoproduction52. In this 

study, E. coli-CdS system presented only a modest activity for light-driven H2 

production in the absence of glucose (Figure 3.23.). 
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3.1.6. - Comparison between the proposed biocatalysts-CdS systems 

for H2 photoproduction 

To sum up, from the potential four biocatalysts tested and the E. coli control 

system, three of them were able to both generate CdS nanoparticles and produce 

H2: C. freundii-CdS, D. vulgaris-CdS, D. desulfuricans-CdS and E. coli-CdS 

biohybrid systems (Table 3.1.).  

The most efficient photocatalytic system was the one where D. desulfuricans 

was used as biocatalysts, where H2 production was superior both in the presence 

and absence of MV, when compared with the other systems (Table 3.1.). Relative 

to C. freundii-CdS, D. vulgaris-CdS and E. coli-CdS biohybrids, they produced H2 

in the same magnitude. C. freundii-CdS and E. coli-CdS systems reached a higher 

H2 production in the presence of MV, whereas D. vulgaris-CdS generated higher 

H2 amounts without MV (Table 3.1.). 

  Table 3.1.- Hydrogen production and H2 production rates of biohybrid systems 

(from light) and whole-cells (from dithionite-reduced MV). 

 

The high efficiency of D. desulfuricans-CdS system is probably related with 

the high hydrogenase activity present in this organism. Thus, hydrogenase activity 

of the four organisms was determined using MV reduced with excess of dithionite 

as electron donor (Table 3.1.), (Figure A2.). 

D. desulfuricans cells showed a high hydrogenase activity followed by E. 

coli and C. freundii with the values 280, 3.7 and 1.6 µmol gdcw
-1 min-1, respectively, 

 

Biocatalyst 

Biohybrid systems + light 

(µmol gdcw
-1) 

Biohybrid systems + light 

(µmol gdcw
-1 h-1) 

Whole-cells 

(µmol gdcw
-1 min-1) 

 +MV  -MV +MV  -MV +MVred 

C. freundii  827±193 327±75 7.8±0.5 1.8±0.0 1.6±0.1 

D. vulgaris 315±121 1289±162 2.1±0.2 9.2±0.1 293±7 

D. desulfuricans  12384±1130 6984±1798 418±26 49±1 280±9 

E. coli   1199±234 394±72 9.3±0.5 2.9±0.1 3.7±0.1 
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which agrees with the relative values of the photosynthetic H2 production rates 

obtained with biohybrid systems from light (Table 3.1.) (Figure A2 A-C.). D. 

desulfuricans is characterized by a high level of hydrogenases54, most of which 

are present in the periplasm and are thus likely to be more efficient in receiving 

electrons directly from CdS nanoparticles than intracellular hydrogenases. 

 Moreover, D. vulgaris presented a high hydrogenase activity of 293 µmol 

gdcw
-1min-1 (Table 3.1.) (Figure A2 D.). This finding is in accordance with the high 

number of hydrogenases and the great catalytic rate of [NiFeSe] enzyme of D. 

vulgaris54,60,61. The two SRB microorganisms studied D. desulfuricans and D. 

vulgaris have a very similar hydrogenases activity (Table 3.1.). However, as 

mentioned before, D. desulfuricans-CdS biohybrid had the highest H2 production 

between all biohybrid systems, which strongly suggests that the much lower H2 

production obtained with D. vulgaris-CdS biohybrid is related with electron 

transfer process from CdS semiconductor to cells.  

 Therefore, the best and most suitable biocatalyst for light-driven H2 

production between the proposed four biocatalysts is Desulfovibrio 

desulfuricans. Hence, the following studies were only performed using D. 

desulfuricans-CdS biohybrid system with 3 mM of Cd. 

 

3.1.7. - Effect of sacrificial electron donor in H2 photoproduction  

Since D. desulfuricans was the selected biocatalyst to construct the 

biohybrid and also the only system that achieved a plateau after 45 h of light 

irradiation (Figure 3.18.), the effect of sacrificial electron donor, HCl-cysteine, in 

H2 production was tested. Hydrogen photoproduction by D. desulfuricans-CdS 

was evaluated under different amounts of HCl-cysteine: 0, 59, 99 and 182 µmol. 

The experiments were carried out in presence of MV (Figure 3.24.).  

Without the cysteine, biohybrid only produced 5.1 µmol of H2 (Figure 3.24.), 

showing that biohybrid system requires the sacrificial electron donor to operate. 

The assays performed with 59, 99 and 182 µmol produced 34.6±1.2, 50.1±4.2 and 

79.9±8.1 µmol of H2, respectively, after 44 h of light irradiation (Figure 3.24.) and 



                  Chapter 3: Results and Discussion 
 

55 

 

then H2 production stabilized. SED allows the continuous cycle of electron transfer 

from CdS nanoparticles to hydrogenases by quenching the electron holes from 

semiconductor; without this hole scavengers the cycle is interrupted and 

hydrogen production ceases.  

It was observed that H2 production increased with the increase in cysteine 

amount (Figure 3.24.), indicating that SED also accelerates the generation of H2. 

The increase of H2 production with the increase of cysteine has been reported in 

other studies47,126. The hydrogen yields for 59, 99 and 182 µmol of cysteine were 

117%, 101% and 88%, respectively (Equation 2.1., Equation 2.2.). A slight amount 

of H2 (5.1 µmol) was produced without the addition of the sacrificial electron 

donor, which explains the H2 yield superior to 100%. 

Hence, these results demonstrated that the biohybrid system requires a 

sacrificial electron donor to function, confirming that the cessation of H2 

production observed under LED illumination is caused by cysteine depletion. 

 

 

Figure 3.24. - Effect of SED in H2 production by Desulfovibrio desulfuricans-CdS 

system. The error bars indicate the standard deviations of the average values. 
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3.2. – Selection of best semiconductor combination for 

biohybrid H2 photoproduction 

Although CdS nanoparticles are an excellent semiconductor for light-driven 

H2 production, they also present low photo-stability and high recombination rate 

of photo-induced electron-hole pairs, when exposed to visible light for a long 

time79,80. Hence, three earth-abundant metals (tungsten, nickel and molybdenum) 

were used as cocatalysts in Desulfovibrio desulfuricans-CdS biohybrid system, to 

improve H2 production. To our knowledge, this is the first time that cocatalysts 

were used in a self-photosensitization photocatalyst system.  

Thus, the construction of D. desulfuricans-CdS-WS2, D. 

desulfuricans-CdS-NiS and D. desulfuricans-CdS-MoS2 were performed and the 

impact of cocatalysts in H2 production was studied.  Since D. desulfuricans-CdS 

without MV generated a significant amount of H2 (31.7±8.1 µmol) (Figure 3.18.), 

the studies from now on were only performed with the biocatalyst without the 

electron shuttle. The photocatalytic assays were performed under LEDs light (with 

0.042 mW cm-2 of irradiance).  

 

 

3.2.1.- Effect of cocatalyst concentration in H2 photoproduction by 

Desulfovibrio desulfuricans-CdS system 

To assess the effect of cocatalysts in H2 production, different concentrations 

of W, Ni and Mo were used to construct the binary CdS-based semiconductor of 

D. desulfuricans-CdS biohybrid (Figure 3.25.). Hydrogen production by the 

systems loaded with cocatalysts were compared with D. desulfuricans with 3 mM 

of Cd (control experiment). Hydrogen content was measured after 44 h of light 

exposure (Figure 3.25.): 
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Figure 3.25. - Effect of cocatalyst concentration in H2 production by Desulfovibrio 

desulfuricans-CdS, for 44 h. H2 production profile by biohybrid system with different 

concentrations of tungstate (A), nickel (B) and molybdenum (C) and its respective impact 

in medium color (after cocatalyst addition). Error bars indicate the standard deviations of 

the average values. 
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The addition of tungsten did not change medium color, thus presenting the 

characteristic yellow color of CdS (Figure 3.25 A.). Moreover, the maximum of H2 

generated with D. desulfuricans-CdS loaded with tungsten was 10.5±2.4 µmol 

(using 0.5 mM of W), which was in the same magnitude of H2 generated by the 

control experiment (7.7±1.7 µmol) (Figure 3.25 A.). Therefore, the addition of 

tungsten did not have a great impact in H2 production of biohybrid system.  

As illustrated in Figure 3.25 B., the addition of nickel to D. desulfuricans-CdS 

provoked a change of color in the medium. The media turned progressively 

darker with the increase of cocatalyst concentration, acquiring a black color 

(characteristic of nickel sulfide127), at higher Ni concentrations (>0.1 mM) (Figure 

3.25 B.). The maximum H2 production was achieved with D. desulfuricans-CdS 

composed with 0.1 mM of Ni, generating 17.4±1.9 µmol of H2 (Figure 3.25 B.), 

that was higher than H2 production by system without cocatalyst (7.7±1.7 µmol). 

Additionally, systems loaded with lower Ni concentrations (<0.1 mM) and 0.3 mM, 

were able to produce H2, conversely to higher Ni concentrations where residual 

H2 were generated (Figure 3.25 B.). Therefore, these results indicate that Ni can 

enhance H2 production (in presence of lower cocatalyst concentrations), 

suggesting that higher amounts of Ni could be toxic to cells or that the acquired 

black color of medium hinders the access of light by biohybrid.  

D. desulfuricans-CdS-MoS2 biohybrids were constructed with a wide range 

of Mo concentrations: from 0.001 to 1 mM (Figure 3.25 C.). The medium 

inoculated with D. desulfuricans and Cd suffer a color change in presence of 

higher concentrations of Mo (>0.03 mM), developing a gradually intense orange 

color with the increase of cocatalyst concentration (Figure 3.25 C.). Notably, 

molybdenum disulfide (MoS2) presents a brown color128, thereby the obtained 

orange color is possibly the result of the yellowish color acquired from CdS 

conjugated with the brown of MoS2. All biohybrid systems loaded with Mo, 

registered a superior H2 production than D. desulfuricans-CdS (7.7±1.7 µmol), 

regardless of Mo concentration used.  D. desulfuricans-CdS with 0.03 mM of Mo 

presented the highest and an impressive H2 production of 30.2±1.8 µmol, that 

was almost 4 times higher than the H2 generated by the control experiment 
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(Figure 3.25 C.). Thus, it has been demonstrated that molybdenum is an excellent 

cocatalyst for the proposed photocatalytic system to enhance H2 production. 

In summary, the addition of the cocatalysts improved H2 photoproduction 

of Desulfovibrio desulfuricans-CdS system, but with different magnitudes (Figure 

3.25.). From the three cocatalysts tested, molybdenum had the greatest impact 

on biohybrid H2 production, followed by nickel and tungsten.   

 

 

3.2.2.- Characterization of Desulfovibrio desulfuricans-CdS loaded 

with cocatalysts 

Since the effectiveness of loading cocatalysts in the biohybrids was proven 

(Figure 3.25.), the systems D. desulfuricans-CdS-WS2, D. desulfuricans-CdS-NiS 

and D. desulfuricans-CdS-MoS2 were characterized by SEM (Figure 3.26.). 

In D. desulfuricans with 3 mM of Cd (the control system), CdS precipitated 

on cells surface with great intensity, covering all D. desulfuricans bacteria (Figure 

3.26 A.). Conversely, biohybrid with 1 mM of Cd presented less CdS precipitates, 

which were concentrated in just a couple of cells (Figure 3.15 B.). Thus, the 

increase of Cd concentration (from 1 to 3 mM) allowed not only the increase of 

CdS precipitates, but also its even distribution among D. desulfuricans cells. These 

findings could be the reason why photocatalytic system with 3 mM of Cd is more 

efficient than biohybrid constructed with 1 mM of Cd (Figure 3.16., Figure 3.18.). 

Moreover, SEM images of biohybrid systems loaded with tungsten (Figure 

3.26 B.), nickel (Figure 3.26 C.) and molybdenum (Figure 3.26 D.), shows CdS 

precipitates on cell surface with high intensity, similarly to the control system 

(Figure 3.26 A.). Therefore, it was hypothesized that cocatalysts aggregates/forms 

a complex with cadmium sulfide nanoparticles, originating precipitates of 

CdS-NiS (Figure 3.26 B.), CdS-WS2 (Figure 3.26 C.) and CdS-MoS2 (Figure 3.26 D.) 

on Desulfovibrio desulfuricans surface. 
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Figure 3.26. - Characterization of Desulfovibrio desulfuricans-CdS with cocatalysts. 

SEM images of Desulfovibrio desulfuricans-CdS (A), D. desulfuricans-CdS-WS2 (B), D. 

desulfuricans-CdS-NiS (C) and D. desulfuricans-CdS-MoS2 (D) biohybrids. 

 

3.2.3.- H2 production profile of Desulfovibrio desulfuricans-CdS 

loaded with optimal cocatalysts concentrations 

 

A H2 production profile for D. desulfuricans-CdS-WS2, D. 

desulfuricans-CdS-NiS and D. desulfuricans-CdS-MoS2 systems was obtained and 

compared with D. desulfuricans-CdS (control system) (Figure 3.27.).  The 

biohybrids were constructed using 3 mM of Cd conjugated with the optimal 

cocatalyst concentration previously determined, particularly 0.5, 0.1 and 0.03 mM 

for W, Ni and Mo, respectively (Figure 3.25.).  
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D. desulfuricans-CdS with 0.03 mM of Mo had the highest H2 production 

with 49.7±1.3 µmol of H2 after 147 h of irradiation with a specific H2 production 

rate of 130.8 µmol gdcw
-1h-1 (Figure 3.27., Table 3.2.). Moreover, biohybrid loaded 

with 0.1 mM of Ni generated 40.6±0.6 µmol of H2 (whit a specific H2 production 

rate of 87.2 µmol gdcw
-1h-1), whereas D. desulfuricans-CdS with 0.5 mM W 

produced 32.1±2.5 µmol of H2 at a specific rate of 57.4 µmol gdcw
-1h-1. D. 

desulfuricans-CdS, in turn, had a H2 production of 21.9±3.4 µmol with a specific 

H2 production rate of 34.0 µmol gdcw
-1h-1 (Figure 3.27., Table 3.2.).  

Hence, the systems loaded with cocatalysts all presented superior H2 

performances than D. desulfuricans-CdS, the control system (Figure 3.27.). The 

addition of cocatalysts not only allowed the generation of higher amounts of H2, 

but also enhanced the rate of its production, thereby systems with cocatalysts 

achieved higher H2 content in a shorter period time (Table 3.2.). 

 

Figure 3.27. - Hydrogen photoproduction profile of D. desulfuricans-CdS (3 mM of 

Cd) loaded with cocatalyst (W, Ni or Mo). The cocatalysts concentrations were 0.5 mM 

for W, 0.1 mM for Ni and 0.03 mM for Mo. The error bars indicate the standard deviations 

of the average values. 
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Table 3.2.- Effect of cocatalysts (W, Ni and Mo) in H2 production by Desulfovibrio 

desulfuricans-CdS after 147 h of light irradiation. 

Conditions H2 (µmol) 
Specific H2 production rate 

(µmol gdcw
-1 h-1)     

Cells-CdS 21.9±3.4 34.0±0.8 

Cells-CdS-WS2 32.1±2.5 57.4±2.1 

Cells-CdS-NiS 40.6±0.6 87.2±2.6 

Cells-CdS-MoS2 49.7±1.3 130.8±9.3 

 

Since D. desulfuricans-CdS loaded with 0.03 mM of Mo presented the 

highest H2 production, further studies were all conducted with this biohybrid 

system. 

 

3.3. – Effect of light source on biohybrid system H2 

performance 

To investigate the impact of light source on H2 production by biohybrid 

system, D. desulfuricans-CdS and D. desulfuricans-CdS-MoS2 were exposed to 

different illumination sources (Figure 3.28.). The energy sources tested were two 

violet LEDs that emitted visible light at the same wavelength (λ=445 nm) with 

irradiances (I) of 0.042 and 3.6 mW cm-2 and a solar simulator (Xenon lamp). The 

violet LED with an irradiance of 0.042 mW cm-2 have been the standard light 

source used in the previous photocatalytic assays. 

D. desulfuricans-CdS was able to double its H2 production from 21.9±3.4 to 

43.9±3.6 µmol in 147 h, by exposing the system to a LED light of higher intensity 

(I=0.042 and 3.6 mW cm-2, respectively) (Figure 3.28 A.). The specific H2 

production rate of systems exposed to LEDs of 0.042 and 3.6 mW cm-2 were 34.0 

and 70.5 µmol gdcw
-1h-1, correspondingly (Table 3.3.). Thus, the increase of LED's 
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light intensity allowed the increase of H2 production of D. desulfuricans-CdS 

system by increasing its rate of H2 production.   

Moreover, D. desulfuricans-CdS-MoS2 under LED of higher intensity (I=3.6 

mW cm-2) generated 57.1±6.1 µmol of H2 in only 43 h, reaching a plateau due to 

cysteine depletion. Conversely, the H2 production by biohybrid system exposed 

to LED of I=0.042 mW cm-2 never stabilized, producing 49.7±1.3 µmol of H2 for 

147 h (Figure 3.28 A.). On the other hand, D. desulfuricans-CdS-MoS2 under solar 

simulator light reached a H2 maximum production of 61.9±8.6 µmol in only 4 h 

and stabilized (Figure 3.28 B.). The specific H2 production rate of systems under 

LED of I=3.6 and 0.042 mW cm-2 were 513.6 and 130.8 µmol gdcw
-1h-1, respectively, 

whereas for biohybrid exposed to Xenon lamp light was 3223.0 µmol gdcw
-1h-1 

(Table 3.3.). 

Figure 3.28.- Effect of light source in H2 photoproduction by Desulfovibrio 

desulfuricans-CdS-MoS2 under LEDs (with irradiances of 3.6 and 0.042 mW cm-2) (A) and 

solar simulator (B). The Error bars indicates the standard deviations of average values. 
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Table 3.3.- Effect of light sources (LEDs and solar simulator) in H2 production by 

Desulfovibrio desulfuricans-CdS-MoS2. 

Conditions  H2 (µmol) 
Specific H2 production rate 

(µmol gdcw
-1 h-1) 

Cells-CdS (I=0.042) 21.9±3.4 34.0±0.8 

Cells-CdS (I=3.6) 43.9±3.6 70.5±1.9 

Cells-CdS-MoS2 (I=0.042) 49.7±1.3 130.8±9.3 

Cells-CdS-MoS2 (I=3.6) 57.1±6.1 513.6±11.5 

Cells-CdS-MoS2 (solar 

simulator) 
61.9±8.6 3223.0±117.0 

 

Hence, the increase of light source intensity (namely with LED of I=3.6 mW 

cm-2 and solar simulator) enables the increase of H2 production rate (since more 

energy was supplied to the system), allowing the biohybrid to achieve its 

maximum H2 production (limited by SED depletion) quicker. Similarly, other 

biophotocatalytic systems also verified an enhancement of H2 production with 

the increase of light intensity19,50. Therefore, the energy source provided for 

photocatalytic assays has a great impact on H2 photoproduction by biohybrid 

systems. 

 

The apparent quantum yield (AQY) of D. desulfuricans-CdS and D. 

desulfuricans-CdS-MoS2 systems under LEDs illumination (with λ=445 nm and 

irradiance of 0.042 and 3.6 mW cm-2) was determined, assuming that all emitted 

light was harvested by the system which underestimates the AQY (Equation 2.3.). 

The AQY of D. desulfuricans-CdS system was calculated using the first 147 and 

139 h, under LED lights of 0.042 and 3.6 W cm-2 and with 99 µmol of cysteine. 

Under these conditions the biohybrid was able to produce 21.9 and 43.9 µmol of 

H2 with LED of irradiance of 0.042 and 3.6 W cm-2, correspondingly. The AQY of 

D. desulfuricans-CdS-MoS2 was calculated using the first 147 and 43 h, where 
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system produced 49.7 and 57.1 µmol when exposed to LED of 0.042 and 3.6 W 

cm-2, respectively.  

D. desulfuricans-CdS exposed to LED of 0.042 and 3.6 mW cm-2 of irradiation 

presented an AQY of 3.2 and 0.1 %, correspondingly (Table 3.4.). Moreover, an 

AQY of 7.3 and 0.3 % was achieved with D. desulfuricans-CdS-MoS2 under LED of 

0.042 and 3.6 mW cm-2, respectively (Table 3.4.). The AQY of D. 

desulfuricans-CdS-MoS2 exposed to LED of 0.042 mW cm-2 was higher than most 

biohybrid systems with self-produced semiconductor nanoparticles39,47,50,51,126 

and superior to AQY of plants or algae (0.2-1.6 %129).   

Table 3.4.- AQY of Desulfovibrio desulfuricans-CdS and Desulfovibrio 

desulfuricans-CdS-MoS2 under LEDs lights (I=0.042 and 3.6 mW cm-2). 

 

 

 

 

 

 

 

3.4. – Immobilization of biohybrid system  

The major bottleneck in biohydrogen (BioH2) production is its low yield and 

H2 production rate in large-scale processes130–132. One of the main causes of 

ineffective industrial BioH2 production is due to biocatalyst wash-out during 

continuous processes130,131. The use of immobilized cells, instead of suspended 

cells, can be an attractive approach to address this issue. Cell immobilization 

techniques present many advantages, including: 1) the increase of biocatalyst 

stability, 2)  the extension of microbial activity during continuous processes, 3) 

the prevention of wash-out, allowing biocatalyst recovery and reutilization and 4) 

    Biohybrid system 
     LED irradiance 

    (mW cm-2) 
AQY (%) 

D. desulfuricans-CdS 
I= 0.042  3.2 

I= 3.6 0.1 

D. desulfuricans-CdS-MoS2 
I= 0.042  7.3 

I= 3.6 0.3 
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easier product separation, which reduces processing costs, making scale-up 

bioprocess possible130–133. 

Cell entrapment is the simplest and most frequently used method for 

biohydrogen-producing microorganisms’ immobilization131,132. In this technique 

cells are entrapped inside a rigid support matrix (to prevent cell release into 

reaction medium), where the material is porous enough to allow the diffusion of 

substrates and products. Thus, the gel matrix not only creates a protective barrier 

around the biocatalysts, but also ensure its prolonged use and stability131,132. 

 Several materials have been considered for cell immobilization purposes. 

Gel-forming polymers from natural sources have gained much attention due to 

their biodegradability, renewability, biocompatibility and non-toxicity properties, 

specially alginate hydrogels102,134. Additionally, calcium alginate beads are easy to 

prepare, low-cost and provide mild conditions for cell immobilization, thereby 

presenting a high potential for industrial applications102,132,134,135.   

Therefore, Desulfovibrio desulfuricans-CdS-MoS2 was immobilized by an 

entrapment technique using calcium alginate beads. In Figure 3.29., is illustrated 

D. desulfuricans-CdS-MoS2 biohybrid system in suspension vs. immobilized in 

calcium alginate beads. Calcium alginate beads without biohybrid system is 

colorless (Figure 3.29 B.), that acquires the characteristic yellowish color in 

presence of D. desulfuricans-CdS-MoS2 (Figure 3.29 C.).  

 

Figure 3.29.- Desulfovibrio desulfuricans-CdS-MoS2 system in suspension (A) vs. 

immobilized (C) in calcium alginate beads (B).  
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The H2 production profile of D. desulfuricans-CdS-MoS2 system immobilized 

in calcium alginate beads was performed and compared with the system in 

suspended cells, under LEDs light of 0.042 mW cm-2 of irradiance (Figure 3.30.). 

D. desulfuricans-CdS-MoS2 system immobilized produced 53.3±1.4 µmol of 

H2 in 140 h of irradiation, with a specific H2 production of 83.0 µmol gdcw
-1h-1. The 

biohybrid in cell suspension (control system), in turn, generated 47.4±5.7 µmol of 

H2 at a specific H2 production rate of 123.5 µmol gdcw
-1h-1 (Figure 3.30.). Although 

both systems generated similar H2 amounts, the immobilized biohybrid initially 

presented a lower specific H2 production rate, but H2 production continued for 

longer and did not stabilize, contrary to cell suspension system (Figure 3.30.). The 

initial slower H2 production rate of entrapped D. desulfuricans-CdS-MoS2 may be 

due to a probably decrease of biohybrid activity during the immobilization 

process or because of diffusional problems (light are less accessible inside the 

bead). On the other hand, the activity of the immobilized photocatalytic system 

seems to be extended (the biocatalyst is possibly more protected and stable) 

(Figure 3.30.). 

Figure 3.30. - Hydrogen photoproduction profile of Desulfovibrio 

desulfuricans-CdS-MoS2 immobilized in calcium alginate beads vs. in suspension. Error 

bars indicate the standard deviations of the average values. 
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Hence, not only D. desulfuricans-CdS-MoS2 was successfully immobilized 

in calcium alginate, but it also produced significant H2 amounts. The entrapment 

of biohybrid system have a great importance in large-scale applications. 

 

3.5. – Development of photocatalytic process for light-driven 

H2 production 

A batch photoreactor for H2 production by Desulfovibrio 

desulfuricans-CdS-MoS2 system was constructed. Moreover, methyl viologen (0.5 

mM) was added to the reactor, for a quick detection of H2 production in the 

photoreactor. 

Figure 3.31 A. shows the reactor immediately after the addition of D. 

desulfuricans-CdS-MoS2 (presenting the characteristic yellow color of biohybrid 

system). In only 1 h 30 min (after photocatalytic system addition), the bioreactor 

content turned to a blue color, indicating that MV2+ is being reduced (Figure 3.31 

B.). 

 

 

 

 

 

 

 

 

 

 

Figure 3.31. - Color evolution in batch reactor at t=0 h (A) and t=1h30min (B) of 

functioning. 
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Hydrogen production by the batch reactor was monitored for 44 h (Figure 

3.32.). D. desulfuricans-CdS-MoS2 produced a significant H2 amount of 4975±152 

µmol after 30 h of light exposure, reaching a plateau. The theoretical maximum 

H2 production was determined, based on Equation 2.1. Since the total of cysteine 

in the reactor was 13.1 mmol, the theoretical maximum H2 determined was 6567 

µmol (Figure 3.32.). Thus, the efficiency of H2 production by reactor was 76 %. A 

possible explanation for the biohybrid to not reach the theoretical maximum 

production could be related to cysteine, that apart from being the sacrificial 

electron donor of the system is also a reducing agent. Hence, cysteine could have 

been consumed to reduce some O2 present in the reactor. 

 

Figure 3.32. - Hydrogen photoproduction of Desulfovibrio desulfuricans-CdS-MoS2 

system in a batch reactor. Error bars indicate the standard deviation of the average 

values. 

 

Therefore, a considerable H2 production was attained by D. 

desulfuricans-CdS-MoS2 system in batch bioreactor, in the presence of MV. 
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Chapter 4: Conclusion  

The conversion of solar energy to hydrogen is an attractive approach 

towards a sustainable and low-carbon energy economy. Hence, this thesis aimed 

to develop a new and more efficient photosynthetic biohybrid system for 

light-driven H2 production. 

In the present work, among the four systems developed, D. 

desulfuricans-CdS revealed an outstanding H2 production performance 

independently of the presence of an electron shuttle. These results demonstrated 

the ability of D. desulfuricans to accept electrons directly from biogenic CdS.  

The D. desulfuricans-CdS system performance was improved by the addition 

of cocatalysts, especially with molybdenum, reaching an impressive H2 

production of 49.7 µmol after 147 h of irradiance, which was 2.3 times higher than 

the system without cocatalyst. The enhancement of H2 production of biohybrids 

systems, by employing cocatalysts on the semiconductor, were described and 

reported for the first time in this thesis. 

Moreover, D. desulfuricans-CdS-MoS2 biohybrid was further immobilized in 

calcium alginate beads. The development of a batch photoreactor for light-driven 

H2 production by D. desulfuricans-CdS-MoS2 was also accomplished. In this 

reactor, the system was able to produce 5 mmol of H2. 

In summary, the construction of a novel and efficient biophotocatalytic 

system was obtained, showing the importance of exploring novel microorganism 

and light-harvesting material combinations for production of value-added 

4 
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products. This work demonstrated the great potential of the biohybrid D. 

desulfuricans-CdS-MoS2 for light-driven H2 production.
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Chapter 5: Future work 

In future work, it would be interesting to investigate the electron transfer 

from biological CdS to cells of biohybrid systems. Fundamental studies at 

molecular level, to identify and to better understand the proteins and complexes 

involved in these processes, would allow to stimulate specific targets for a more 

efficient electron transfer, for example. Moreover, the strategy for the creation of 

CdS nanoparticles could be modified for Clostridium acetobutylicum, particularly 

by using other sulfur sources, like hydrogen sulfide. 

Additionally, the developed biohybrid system could be explored for other 

applications, particularly for CO2-reduction to formate since D. desulfuricans also 

presents formate dehydrogenases. 

Moreover, another promising approach to enhance the proposed 

biophotocatalytic system is the employment of Synthetic Biology tools. These 

tools would enable the engineering of cell's intracellular metabolism or even the 

creation of new pathways, to maximize chemicals and fuels production by 

biohybrid systems. 
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Appendices 

1) H2 calibration curve 

Table A1. - Values used to trace the H2 calibration curve. 

 

 

 

 

 

 

 

 

The H2 calibration curve (Figure A1.) was traced based on the values 

presented in Table A1. The equation of the H2 calibration curve is: 

𝐺𝐶 𝐴𝑟𝑒𝑎 = 226862 × 𝐻2 (𝜇𝑚𝑜𝑙) ⇔  

⇔ 𝑯𝟐 (𝝁𝒎𝒐𝒍) = 𝟒 × 𝟏𝟎
−𝟔 𝑮𝑪 𝑨𝒓𝒆𝒂,               𝑹𝟐 = 𝟎. 𝟗𝟗𝟖  

 

 

 

 

 

 

 

 

Figure A1. - H2 calibration curved used to determine H2 production. 

Volume H2 (µL) Area GC H2 (µmol) 

0 0 0.000 

20 176402 0.818 

40 319382 1.636 

60 467497 2.454 

100 789991 4.089 

200 1823368 8.179 

400 3873735 16.358 

600 5879349 24.537 

800 7687413 32.716 

1000 9812307 40.895 

1500 14081280 61.342 

2000 17944989 81.790 
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2) Determination of hydrogenases activity of whole-cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. - Hydrogenases activity of whole-cells: Citrobacter freundii (A), Escherichia coli (B), Desulfovibrio desulfuricans (C) and 

Desulfovibrio vulgaris (D). 
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