
Recommender Systems for Grocery Retail -
A Machine Learning Approach

XAVIER DOS SANTOS SILVA
Outubro de 2020

Recommender Systems for Grocery
Retail

[A Machine Learning Approach]

Xavier dos Santos Silva

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Software Engineering

Supervisor: Professor Carlos Ferreira
Co-Supervisor: Eng. Sílvio Macedo

Porto, October 14, 2020

iii

Dedicatory

To my parents, who have supported me like no one else during these journey; to my brother,
who has been there since day one; to my grandmother, who has once told me she would
walk me to my first day in school, but passed away before. Thank you.

v

Abstract

Recommender systems are present in our daily activities in different moments, such as when
choosing a song to listen to or when doing online shopping. It is an everyday reality for
people to have the help of computer systems in order to simplify regular decision activities.

Grocery shopping is an essential part of people’s life and a frequent activity. Despite being a
common habit, each customer has unique routines, needs and preferences regarding products
and brands. This information is valuable for grocery retailers to know their customers better
and to improve their marketing and operational activities.

This dissertation aims to apply machine learning algorithms to the development of a rec-
ommender system capable of preparing personalized grocery shopping lists. The proposed
architecture is designed to allow integration with different grocery retailers and support
distinct TensorFlow algorithms.

The process of extracting information from the dataset as features was explored, as well as
the tuning of the model hyperparameters, to obtain better results. The recommendation
engine is exposed via a distributed software architecture designed to allow retailers to in-
tegrate the recommender system with different existing solutions (e.g., websites or mobile
applications).

A case study to validate the implemented solution was performed, integrating it with a
public dataset provided by Instacart. A comparison study between different machine learning
algorithms over the adopted dataset has lead to the choice of the gradient boosted trees
algorithm.

The solution developed in the case study was compared against two non-machine learning
approaches at predicting the last purchase of 360 arbitrary test customers. A pattern mining-
based solution and a SQL-based heuristic were used. Different evaluation metrics (namely,
the average accuracy, precision, recall, and f1-score) were registered. The way association
rules with different strengths were reflected in the predictions of the developed solution was
also analyzed.

The gradient boosted trees-based implementation from the case study was capable of out-
performing the compared solutions as far as evaluation metrics are concerned, and has shown
a higher capability of predicting at least one correct item per customer. Also, it became
evident that the strictest association rules were frequently found in the recommendations.

The adopted solution and algorithm have shown promising results and a remarkable capability
to provide meaningful predictions to the different customers, evidencing its capability to add
value to grocery retail. Nevertheless, there is still potential for further expansion.

Keywords: recommender systems; grocery retail; machine learning; gradient boosted trees

vii

Resumo

Os sistemas de recomendação estão presentes no nosso quotidiano, em momentos como
a escolha da música a ouvir ou a preparação de compras online. Estamos acostumados
a contar com a ajuda de sistemas computacionais para simplificar tarefas habituais que
envolvem decisões.

Realizar compras de retalho alimentar é uma parte importante e frequente da nossa vida.
Apesar de ser um hábito comum, cada um de nós tem as suas próprias rotinas, necessidades
e preferências no que toca a produtos e marcas. Esta informação é valiosa para que os
retalhistas alimentares consigam conhecer melhor os seus clientes e melhorar atividades
operacionais e de marketing.

Esta dissertação tem como objetivo a aplicação de algoritmos de machine learning na criação
de um sistema de recomendação capaz de preparar listas de compras personalizadas. A
arquitetura proposta é desenhada com o objetivo de permitir a integração com diferentes
retalhistas e a utilização de diferentes algoritmos em TensorFlow.

O processo de extração de informação na forma de features foi explorado, tal como a afi-
nação dos hiperparâmetros do modelo, para obter melhores resultados. O motor de recomen-
dações é exposto através de uma arquitetura de software distribuída, com o propósito de
permitir que os retalhistas alimentares possam integrar este sistema com diferentes soluções
existentes (e.g., websites ou aplicações móveis).

Foi realizado um caso de estudo para validar a solução implementada, através da integração
da solução com os dados públicos disponibilizados pelo retalhista Instacart. Uma comparação
entre a aplicação de diferentes algoritmos de machine learning aos dados utilizados, levou à
adoção do algoritmo gradient boosted trees.

A solução desenvolvida no caso de estudo foi comparada com duas abordagens não baseadas
em machine learning para a previsão da última compra de 360 clientes arbitrários. Foi usada
uma abordagem baseada em pattern mining e uma abordagem baseada em SQL. Difer-
entes métricas de avaliação (nomeadamente accuracy, precision, recall e f1-score médios)
foram registadas. Foi também analisada a forma como diferentes regras de associação se
encontraram refletidas nas recomendações da solução desenvolvida.

A implementação baseada em gradient boosted trees do caso de estudo superou as soluções
com as quais foi comparada quanto às métricas de avaliação, e mostrou uma maior capaci-
dade de recomendar pelo menos um produto correto por cliente. Verificou-se também que
as regras de associação mais fortes estão frequentemente refletidas nas recomendações.

A abordagem adotada e o algoritmo aprofundado mostraram resultados promissores e uma
capacidade notável de fornecer recomendações úteis aos diferentes clientes, evidenciando a
sua aptidão para adicionar valor ao retalho alimentar. Ainda assim, este sistema apresenta
um elevado potencial para expansão.

ix

Acknowledgement

I want to thank both my supervisors, Professor Carlos Ferreira and Eng. Sílvio Macedo,
for providing me this opportunity and for the crucial discussions we have had. My parents,
for helping me keeping the motivation and supporting me every time. Carla Miguel, for
showing me the brighter side of life and supporting me throughout the different situations.
My brother, for always having a smile and the calm in life. Santiago, for showing me how
tiny things can have huge meanings. João Martins, for all the discussions we have had and
the support we have transmitted to each other. All my family, family, and teachers across
this amazing journey, because each one of you has left a mark in my life. Thank you.

This dissertation was carried out at and financed by the proponent company Xarevision SA.

xi

Contents

List of Figures xv

List of Tables xvii

List of Source Code xix

List of Acronyms xxi

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Purpose . 2
1.4 Methodology . 2
1.5 Contributions . 3
1.6 Document Organization . 3

2 Context 5
2.1 Context of the dissertation . 5

2.1.1 Recommender Systems . 5
2.1.2 Grocery Retail . 6
2.1.3 Business Concepts . 6
2.1.4 Processes and Actors . 7
2.1.5 Existing Restrictions . 7

2.2 Value Analysis . 7
2.2.1 Innovation Process . 8
2.2.2 Value . 10
2.2.3 Business Model . 11
2.2.4 Value Network . 12
2.2.5 Quality Function Deployment . 13

3 State of The Art 15
3.1 Recommender Systems . 15

3.1.1 Architecture . 16
3.1.2 Challenges . 16
3.1.3 Classification . 18

3.2 Machine Learning Approaches to Recommender Systems 21
3.2.1 Unsupervised Learning . 21
3.2.2 Supervised Learning . 22
3.2.3 Reinforcement Learning . 27
3.2.4 Learning Methodologies . 28
3.2.5 Evaluation Metrics . 30
3.2.6 Comparing Machine Learning Approaches to Recommender Systems 32

xii

3.3 Non-Machine Learning Approaches to Recommender Systems 33
3.3.1 Heuristic-Based Recommender Systems 33
3.3.2 Pattern Mining-Based Recommender Systems 34
3.3.3 Association Rules-Based Recommender Systems 34

3.4 Comparing Machine Learning Approaches to Recommender Systems 35
3.4.1 Evaluation Criteria . 35
3.4.2 Evaluating Machine Learning Algorithms 35

3.5 Technologies for Machine Learning-Based Recommender Systems 36
3.5.1 TensorFlow . 37
3.5.2 SciKit-Learn . 37
3.5.3 PyTorch . 38
3.5.4 Keras . 38
3.5.5 Other Popular Technologies . 38
3.5.6 Comparing Technologies for Machine Learning 39

3.6 Summary . 41

4 Solution Description 43
4.1 Requirement Analysis . 43

4.1.1 Domain Concepts . 43
4.1.2 Functional Requirements . 44
4.1.3 Non-Functional Requirements . 45

4.2 Solution Design . 47
4.2.1 Architecture . 47
4.2.2 Use Cases Realizations . 51
4.2.3 Deployment . 53
4.2.4 Machine Learning Methodology 54
4.2.5 Adopted Technologies . 55

4.3 Summary . 55

5 Solution Implementation 57
5.1 Architectural Components . 57

5.1.1 Recommendations Front-end Service 58
5.1.2 Customer Authorization Service 60
5.1.3 Customer Device . 62
5.1.4 Grocery Retail API . 63
5.1.5 Machine Learning Model . 63
5.1.6 Machine Learning Model Interface 64

5.2 Machine Learning Processes . 66
5.2.1 Identifying the Target Variable in the Dataset 67
5.2.2 Extracting New Features From the Data 67
5.2.3 Training and Predicting Datasets 68
5.2.4 Preparing the Training Dataset from the Features 68
5.2.5 Training Pipeline . 70
5.2.6 Preparing the Predicting Data from Features 71
5.2.7 Predicting Pipeline . 72

5.3 Software Tests . 73
5.3.1 Unit Tests . 73
5.3.2 Integration Tests . 74
5.3.3 End-to-end Tests . 74

xiii

5.4 Summary . 75

6 Evaluation and Results 77
6.1 Experimentation and Evaluation . 77

6.1.1 Test Hypothesis . 77
6.1.2 Evaluation Metrics . 78
6.1.3 Evaluation Methodology . 78
6.1.4 Test Environment . 79

6.2 Instacart Dataset - A Case Study . 79
6.2.1 Dataset Overview . 79
6.2.2 Exploratory Data Analysis . 80
6.2.3 Obtaining The Target Variable . 85
6.2.4 Feature Engineering . 86
6.2.5 Adopting a Machine Learning Algorithm 92

6.3 Tuning the Hyperparameters . 93
6.3.1 Test Conditions . 95
6.3.2 Test Results . 97

6.4 Comparison Against Other Recommender Systems 100
6.4.1 Recommender Systems Used for Testing 100
6.4.2 Test Conditions . 101
6.4.3 Test Results . 102
6.4.4 Testing the Null Hypothesis . 105

6.5 Association Rules in the Recommendations 106
6.5.1 Test Conditions . 107
6.5.2 Test Results . 108

6.6 Performance Tests . 110
6.7 Summary . 111

7 Conclusions 113
7.1 Achieved Requirements . 115
7.2 Limitations . 116
7.3 Future Work . 117
7.4 Final Appreciation . 118

Bibliography 119

A Technologies used in the solution 125

B Dissection of recommendations for last order 127

C Friedman hypothesis test source code 129

xv

List of Figures

2.1 NCD model as a circular representation (P. Koen et al. 2001) 8
2.2 Business model canvas diagram . 12
2.3 Value network analysis diagram . 13
2.4 Quality Function Deployment - House of Quality diagram 14

4.1 Domain model for a recommender system in grocery retail 44
4.2 Use case diagram for the dissertation . 45
4.3 Architecture proposal number 1 (adopted architecture) 48
4.4 Architecture proposal number 2 . 49
4.5 Architecture proposal number 3 . 50
4.6 Sequence diagram for use case UC_C1 51
4.7 Sequence diagram for use case UC_C2 52
4.8 Sequence diagram for use case UC_S3 52
4.9 Sequence diagram for use case UC_S4 53
4.10 Deployment view of the solution . 54
4.11 Phases of the CRISP-DM model (Wirth and Hipp 2000) 54

5.1 Class diagram of Recommendations Front-end Service 59
5.2 Class diagram of Customer Authorization Service 61
5.3 Customer Device demo with a tailored recommendation 63
5.4 Class diagram of Machine Learning Model Interface 65
5.5 Example of a training dataset with a mapped target variable 68
5.6 Example of a predicting dataset and its predictions 68
5.7 Training pipeline of the machine learning model using TensorFlow 71
5.8 Predicting pipeline of the machine learning model using TensorFlow 73
5.9 Unit testing coverage for the component Machine Learning Model Interface 74
5.10 Integration tests of the component Machine Learning Model Interface . . . 74
5.11 End-to-end tests of the recommender system 75

6.1 Entity Relationship Diagram of Instacart the Instacart Dataset 80
6.2 Distribution of products per order . 81
6.3 Distribution of orders per customer . 81
6.4 Distribution of orders by days since prior order 82
6.5 Distribution of orders by day of week . 82
6.6 Distribution of orders by hour of day . 83
6.7 Distribution of orders by hour of day and day of week 83
6.8 Distribution of the product position in the orders 84
6.9 Distribution of reordered products per order 84
6.10 Distribution of reordered products per position in the order 85
6.11 Repeatability of products . 85
6.12 Feature contribution diagram for the chosen model configuration 91
6.13 Training duration projected against the average f1-score 99

xvi

6.14 Variation of the average f1-score between tests for the 3 compared models 103
6.15 Variation of the number of zeros between tests for the 3 compared models 104
6.16 Percentage of zeros between tests for the 3 compared models 104
6.17 Variation of accuracy between tests for the 3 compared models 105
6.18 Average duration of parallel and sequential tests 110

B.1 Evaluation of the last order recommendation for customer 313 127
B.2 Evaluation of the last order recommendation for customer 136302 128
B.3 Evaluation of the last order recommendation for customer 319 128

xvii

List of Tables

3.1 Comparison between TensorFlow, SciKit-Learn, Keras and PyTorch 41

6.1 Comparison tests using different machine learning algorithms 93
6.2 Descriptions of the hyperparameter tests 96
6.3 Values used per hyperparameter test . 96
6.4 Results obtained in the hyperparameter tests 97
6.5 Results obtained before and after hyperparameter tests 99
6.6 Results obtained by the thee compared recommender systems 102
6.7 Input data for the Friedman hypothesis test over the 3 models 106
6.8 Tests for identifying association rules in the dataset. 107
6.9 Results for the association rules tests for 360 customers 108
6.10 Results for the performance tests on the developed solution 110

A.1 Technologies used to develop the solution 125

xix

List of Source Code

5.1 Response of Generate Shopping List Prediction Endpoint 60
5.2 Request of Create Customer Authorization Token Endpoint 61
5.3 Response of Create Customer Authorization Token Endpoint 62
5.4 Request of Validate Customer Authorization Token Endpoint 62
5.5 Response of Predict Basket Endpoint . 66
6.1 TensorFlow BoostedTreesClassifier Constructor 94
C.1 Friedman hypothesis test over the 3 recommender systems 129

xxi

List of Acronyms

AI Artificial Intelligence.
ANN Artificial Neural Network.
API Application Programming Interface.

CPU Central Processing Unit.

DB Database.
DNN Deep Neural Network.

FMCG Fast-Moving Consumer Goods.
FN False Negatives.
FP False Positives.

GPU Graphics Processing Unit.

JSON JavaScript Object Notation.
JWT JSON Web Token.

kNN K Nearest Neighbor.

LSTM Long Short-Term Memory.

MAE Mean Absolute Error.
ML Machine Learning.
MSE Mean Square Error.

NCD New Concept Development.

QFD Quality Function Deployment.

REST REpresentational State Transfer.
RMSE Root Mean Square Error.
RNN Recurrent Neural Network.

SQL Structured Query Language.
SVM Support Vector Machines.

TN True Negatives.
TP True Positives.

UC Use Case.

1

Chapter 1

Introduction

This chapter discusses the problem that motivated the present dissertation, its purpose, the
results (expected and achieved), the methodology adopted, existing contributions, and the
document’s organization.

1.1 Context

Recommender systems have gathered a lot of research interest since the mid-90s (Ado-
mavicius and Tuzhilin 2005), focusing on providing additional value to many different areas
such as music, cinema, or retail. These systems faced some additional problems due to the
capabilities of the time (e.g., amount and quality of existing data or computational power),
but the evolution of technology was able to spark its progress.

A recommendation problem consists, traditionally, of assigning a rate to an item or a set of
items, and sorting it accordingly (Adomavicius and Tuzhilin 2005). This way, it is possible
for recommender systems to generate recommendations regarding similar items or the top-n
items for a specific context (Guidotti et al. 2017).

Grocery retail covers the biggest percentage of the revenue associated with all the retail sub-
fields worldwide (Deloitte 2019), and it is characterized by a large number of unique products
and customer segments. These customers have unique shopping habits, making generating
recommendations for grocery retail a problem of its own. Unlike in other retail areas, grocery
customers buy the same items frequently and tend to manifest clear preferences on certain
items or brands, conditioning their receptivity to new items.

This dissertation aims at covering the topic of recommender systems applied to grocery
retail, from both theoretical and practical stand-points, culminating with the development
of a solution capable of generating accurate grocery retail predictions.

1.2 Problem

Grocery retailers understand the importance of investing in unique customer experience,
both in-store and online stores (Deloitte 2018). A way of offering personalized service and,
thus, increasing the proximity with customers, is by facilitating the process of creating and
managing the shopping list for the next purchase (Guidotti et al. 2017).

2 Chapter 1. Introduction

Recommending items based on an item the customer is viewing at a specific time is a com-
mon reality in e-commerce platforms. Recommending shopping lists for the next purchase
(i.e., the top-n next items) is, however, a distinct and more complex task because of the
correlation between users and their habits (Guidotti et al. 2017). Each customer’s unique
shopping habits make grocery retailers face difficulties when trying to specifically target in-
dividual customers with product recommendations that they desire at a specific moment
(Sun, Gao, and Xi 2014).

Recommending products for grocery retail further becomes a unique and complex task be-
cause of the wide variety of different products, its seasonality, its promotional character,
its evolution in time, the huge number of customers, and the reduced proportion of items
they buy (Sano et al. 2015). For grocery retailers to achieve this proximity level with their
customers, information regarding their products and customer’s shopping history is needed,
which is not always a reality.

1.3 Purpose

This dissertation’s main goal is to develop a machine learning-based recommender system for
grocery retail, capable of generating shopping list predictions for the next purchase. These
predictions should match the customer’s needs at that specific moment.

With this solution, retailers can get closer to their customers and benefit directly from
individual marketing advantages, as it gets easier to promote different products, while en-
hancing, at the same time, the trust relationship between retailer and customer (Sun, Gao,
and Xi 2014). Besides, sales can be maximized, and stock management optimized.

To develop the recommender system, a study on state of the art is carried out, aiming to
understand the existing approaches and their characteristics, as well as the most promising
technologies and machine learning approaches to use. A case study integrating the developed
recommender system with a public grocery retail dataset allows a validation of the solution.

The recommender system needs to be open to expansion and customization by the pos-
sibility of training the model using data from different retailers. Recommendations should
be available through a REST API, capable of abstracting the internal logic. This way, the
solution is decoupled and integrated with retailers and existing systems in the proponent
organization.

Both the predictions’ quality and solution’s performance are important factors to the final
result, and thus they are measured and analyzed. To compare the quality of the recommender
system, two non-machine learning approaches provided by the organization are used for
comparison. The performance is evaluated using a simulated workload.

1.4 Methodology

This dissertation has the following two significant phases: investigation and development.
Both phases were paired with meetings with both the supervisor and co-supervisor, where
the work was presented, and the next steps were discussed· Both phases were also organized
using a task board, where the progress and next-steps were tracked.

1.5. Contributions 3

The investigation was conducted to design a generic architecture to allow integrating the
recommender system with different retailers and identify the more adequate technologies to
implement it. A case study using a grocery retail dataset and machine learning algorithm
that better performs under this data was developed to validate the solution.

The development of a machine learning-based recommender system followed the investiga-
tion, and the whole process was documented. The case study was then compared against
other implementations under test circumstances. Additional quality and performance tests
were also performed and discussed.

All meetings and board organization follow the Kanban methodology - an agile methodology
that aims at periodic deliveries and progressive and straightforward ways of following the
project status (Raut, Wakode, and Talmale 2015). Based on this methodology, tasks were
divided into smaller ones, allowing better track of the project status. Then, tasks were
organized in a board according to its status: backlog, to-do, in progress, blocked, in a test,
and done.

1.5 Contributions

The contributions provided by this dissertation to the proponent organization can be syn-
thesized with the following artifacts:

• the study performed on the state of the art of machine learning algorithms and its
application to recommender systems for grocery retail;

• the development of a case study, where the implemented architecture is integrated
with a public grocery retail dataset, useful features are identified and extracted, and
the processes behind tuning/optimizing a machine learning algorithm are explored;

• the study comparing a machine learning-based recommender system with traditional
approaches;

• the development of a generic and modular architecture, designed for the integration
with different grocery retailers.

This dissertation has also contributed to the student’s personal and professional development
by providing a chance to explore the machine learning field and exploring alternatives to
overtake the challenges of recommender systems for grocery retail.

1.6 Document Organization

This dissertation is composed of 7 chapters: introduction, context, state of the art, solution
description, solution implementation, evaluation and results, and conclusion.

The introduction chapter provides a brief contextualization of the matter, presenting the
problem and the primary purpose and analysis of the results, methodology, and organization.

The context chapter is organized under two main areas: the context of the dissertation
and value analysis. The first part presents recommender systems, grocery retail, and its
uniqueness, some essential business concepts, processes and actors, and existing restrictions.

4 Chapter 1. Introduction

The second part analyzes the value and the quality provided by this dissertation and presents
a business model analysis.

The state of the art chapter starts with an analysis of recommender systems, including its
architectures, challenges, and approaches. It is followed by a study on machine learning
applied to recommendations and a discussion on the different approaches, metrics, and
comparisons. An analysis of other approaches to the same problem is presented thereafter,
followed by a comparison of the results achieved by different methodologies on public studies.
It is concluded by a study of the leading technologies for machine learning-based solutions.

The solution description chapter starts by analyzing the functional and non-functional re-
quirements of the problem and essential domain concepts. It is followed up by the solution
design, describing the architecture and the journey to its adoption, a use case realization view
of the use cases, a deployment view, the modeling methodology, and the adopted technolo-
gies. The solution implementation contains details on the different architectural components
and their development, the different machine learning-related processes involved, and the
software tests developed to support the implementation.

The evaluation and results chapter starts with an analysis of experimentation and evalua-
tion, test hypothesis, metrics, and methodology. It is followed by a case study, where the
implemented architecture is validated against a public dataset, using a promising machine
learning algorithm. This case study solution is then optimized as far as hyperparameters
are concerned, and compared against other recommender systems. An evaluation of the
inference of association rules and performance tests are also performed. The last chapter
presents the conclusions obtained in this dissertation, limitations, and future work.

5

Chapter 2

Context

This chapter aims to contextualize this dissertation and to understand its value. Both the
processes and the actors are explained, and the existing restrictions are discussed. Value
analysis is also presented, including details on the innovation process, a value proposition, a
business model canvas, an analysis on the value network, and the quality function deployment
view.

2.1 Context of the dissertation

This section contextualizes the work done in this dissertation regarding recommender sys-
tems and grocery retail. Some important business concepts are also presented, as well as
the actors evolved. The restrictions on the development of the solution close this section.

2.1.1 Recommender Systems

Since the mid-90s, recommender systems have gathered much interest, as far as research is
concerned (Adomavicius and Tuzhilin 2005). Authors describe a recommendation problem,
in its purest and more basic form, as estimating ratings for items that users have not yet
demonstrated interest on, based on their interest in other items or other user’s interests,
and then recommending the most highly-rated ones.

The utility of an item is defined by a rating - which can be specifically provided (e.g., historical
data) or calculated by a function. Besides, users are commonly cataloged according to
various characteristics into profiles that represent their user-space (Adomavicius and Tuzhilin
2005; Jariha and S. K. Jain 2018).

According to the literature (Adomavicius and Tuzhilin 2005), papers on collaborative fil-
tering have sparked the interest of both academy and industry, which have responded by
exploring and developing techniques that enable the generation of customized real-world
recommendations on increasingly bigger datasets. Despite the progress, due to both the
embryonic phase of the matter and hardware capabilities of the time, the work done in this
area faced some difficulties: the specific representation of users’ behavior was ambiguous,
contextual information (i.e., data) was sometimes lacking, evaluating multi-criteria ratings
and performance was not clear and generating predictions was computationally demanding.
Noticeable signs of progress have been achieved, on the matter, since day one.

Despite the common objectives, recommender systems differ across domains. Some business
areas, such as the fashion or music industries, thanks to its domain, deal with a smaller

6 Chapter 2. Context

set of both items and customers (Hanke et al. 2018). Other areas, like retail, have a
complex product hierarchy, deep on both depth and width, and a huge and distinct amount
of customers (Sano et al. 2015).

2.1.2 Grocery Retail

Grocery retail is an increasing vector when it comes to revenue, covering the most significant
percentage associated with retail worldwide (Deloitte 2019). It is mainly characterized by
a large number of unique products, sparse customer segments, and seasonality (Sano et al.
2015).

Traditionally, grocery retail was done in local stores owned either by big or small players
(commonly referred to as bricks and mortar retailers). Many types of grocery retailers use
loyalty management systems to target their customers more efficiently and improve the way
their stocks are managed. Technology advances have made people more comfortable while
shopping online but have also increased the bar when it comes to in-store technology, either
for customers or for employees’ usage.

Despite the evolution in grocery retail, the most significant percentage of purchases cor-
responds to in-store purchases (Deloitte 2018; Mitova 2020). Retailers are investing in
creating a more omnichannel (strategy applied across the different channels) experience
by providing their customers with the ability to have a complete shopping experience from
home to stores. Online stores, loyalty mobile apps, shopping-list management mobile apps,
price-checking software (either in-store or via mobile apps), and self-scanning mobile apps
are examples of retailers’ effort to improve their footprint.

The pre-shopping experience has gained interest in recent years, with grocery retailers in-
vesting in shopping list recommendations and personalized prices (Deloitte 2019). Most
customers still show a preference for preparing shopping lists before shopping (around 69%
of women and 52% of men have shown this habit (Mitova 2020)), providing retailers with
a way of improving the technology and assisting their customers in the whole shopping
experience.

Unlike some other retail areas, where suggesting new items is mostly good and suggesting
duplicated items may not be considered (e.g., recommending the same shirt may not be
ideal for fashion retail), in grocery retail, customers’ habits are unique. People like the same
product and repeat some purchases frequently (e.g., people may have a favorite brand for
an item and always buy that same product). Also, products have hierarchical categories,
and a product of a category is not necessarily a replacement of another (e.g., a solid yogurt
is different from a liquid one).

Recommending customized shopping lists for grocery retail is a singular task, and it is
attracting attention and investments (Deloitte 2019), making it valuable to explore.

2.1.3 Business Concepts

Some retail-related concepts are important and referred over this dissertation.

• customer - a person with unique preferences, opinions and needs regarding items;

2.2. Value Analysis 7

• shopper - a person who goes shopping. A shopper can represent an individual customer
or a number of customers (e.g., a person that goes shopping for the items her family
needs);

• item - a product that can be bought by a customer, with specific characteristics;

• shopping list - a list of the items that a customer wants to buy;

• shopping cart/basket/order - all the items bought in a single purchase.

2.1.4 Processes and Actors

The main actors in the tasks are customers, grocery retailers, and the recommender system.

Four main processes are on the foundation of the flow represented by this dissertation:

1. Customers go shopping;

2. Retailers acquire, process, and store loyalty and transactional data;

3. Recommender systems are trained against historical information and generate recom-
mendations;

4. The tailored recommendations are shown to the customer.

2.1.5 Existing Restrictions

The recommendations’ success can be affected by restrictions regarding data, technology,
and literature. In order to maximize it, it is important for retailers to have solid historical
data and to choose a proper recommendation method.

Different grocery retailers have different technology footprints (e.g., traditionally, brick and
mortar retailers are less evolved technologically than retailers with online solutions), causing
differences in the information they acquire. The lack of loyalty information on some retailers
or the insufficient depth can make generating predictions a difficult or impossible task.

The specificities of grocery retail can turn scaling into a problem, as the number of customers
and products may cause some recommendation methodologies to have poor or non-practical
performance when using big amounts of data (Sun, Gao, and Xi 2014). Data sparsity, in
addition, can cause some of the algorithms to fail. The uniqueness of the grocery retail
domain may demand high computational resources to accomplish good results (Sano et al.
2015; Sun, Gao, and Xi 2014).

Besides technological restrictions, the lack of literature and deployed recommender systems
for grocery retail makes managing expectations on the predictions and comparing results
two difficult tasks.

2.2 Value Analysis

This section aims to analyze the value of the dissertation. First, the front-end of innovation
(using the New Concept Development model) is detailed via the five front-end elements. A

8 Chapter 2. Context

value proposition is presented, discussing the advantages of generating customized product
recommendations. A business model canvas is presented after synthesizing the business
model, and the quality function deployment is studied. The section is concluded with an
analysis of the value network.

2.2.1 Innovation Process

The New Concept Development (NCD) model, proposed by Peter Koen (P. A. Koen et al.
2002), has made it possible to use both a common language and insights on the process of
innovating (P. Koen et al. 2001). The proposed model includes three key-parts, shown in
Figure 2.1: five front-end elements, which comprise the front-end of innovation; an engine
that drives these elements; and external environment features, which influence the engine
and the front-end elements.

Figure 2.1: NCD model as a circular representation (P. Koen et al. 2001)

The five front-end elements, shown within a circular shape, mean that the ideas are expected
to flow, circulate and iterate, freely, between them (P. Koen et al. 2001). The Opportunity
Identification element represents the moment where potentially interesting opportunities are
identified; the Opportunity Analysis element corresponds to the process of using information
from Opportunity Identification, in order to validate if the opportunity is viable; Idea Genesis
is the building and maturation of an opportunity into concrete ideas; the Idea Selection
element consists of selecting the most promising ideas, as far as business value is concerned;
Concept and Technology Development is the final element, and involves the development of
a business case, according to factors such as market potential, customer needs, competition,
investment, and project risk. The Opportunity Identification and Idea Genesis are typically
the two existing starting points on the innovation process (P. A. Koen et al. 2002).

This section details the application of the five elements of the NCD engine to the current
dissertation.

2.2. Value Analysis 9

Opportunity Identification

Customers have unique shopping habits when it comes to shopping for groceries. Demo-
graphic, social or economic motifs, personal preferences, and habits make people have dif-
ferent needs. Besides, they wish frictionless processes, at hand, within the smallest amount
of time possible.

Grocery retail stores have a more difficult time when it comes to attending to customer
preferences because of the huge amount of products they offer, the number of customers
they serve, and the many factors associated with the process of choosing items to buy (Sano
et al. 2015). They are working on getting closer to their customers in many ways, such as
increasing their online footprint - which is being welcomed by customers, mostly younger
ones (Group 2018).

The revenue associated with Fast-Moving Consumer Goods (FMCG) is increasing over the
years, representing around 66% of the revenue associated with retail (Deloitte 2019). The
footprint of online grocery shopping keeps also increasing (Deloitte 2018). In addition,
customers understand the evolution of technology, being it related to payments, in-store
shopping, or loyalty management. The competitiveness between grocery retailers is a reality,
and it has an important role in the way they target their customers.

Approximating grocery retailers and customers, through technology, taking advantage of the
growing market is seen as an opportunity window. A retailer who can target their specific
customer’s needs is a retailer with a higher chance of succeeding in a competitive market.

Opportunity Analysis

By having a chance to use technology as part of the grocery shopping experience, people
have gained comfort in dealing with a wider variety of items. Subscription plans are also
conquering new customers each day, especially among younger customer profiles. Frictions
associated with the process of returning items are also being minimized (Group 2018). This
information could be perceived as higher confidence for grocery retailers to suggest new
items to customers in a more traditional way (e.g., through advertising) or by improving
subscription plans to include product suggestions.

Researchers have concluded that customers are comfortable with using retailer-specific or
common grocery apps in order to manage shopping lists, and they are welcoming customiza-
tion achieved by the use of previous shopping information (e.g., when building their lists)
(Group 2018). Also, studies have shown that around 69% of women and 52% of men
prepare shopping lists prior to go shopping (Mitova 2020).

Thus, personalized retail technology can be used to promote sales and make customers feel
a personalized experience when shopping.

Idea Genesis

The confidence that customers deposit on technology can be taken advantage of, and the
need for comfort that customers seek can be attended if retailers have the opportunity
to suggest personalized shopping lists based on the historical data they have from their
customers. Customer’s individual and household needs can, this way, be met more efficiently,

10 Chapter 2. Context

and retailers can improve sales and improve their marketing strategy into a more individual
format.

Idea Selection

Using recommender systems to generate a personalized shopping list, retailers can target
the specific needs of their customers. The historical data can be used to develop a model
that can propose shopping lists for a specific moment.

The recommender system can be integrated with different systems, having the potential to
enhance the shopping experience in many vectors. Grocery retailers can use these recom-
mendations to save customer’s time while promoting sales (e.g., using subscription plans
to ship items into customer’s houses), facilitating the pre-shopping experience (e.g., when
building shopping lists), and increasing basket sizes.

Concept and Technology Development

The developed solution is expected to be a low-coupled system, with a clear communication
interface to make the integration with external systems a simple task. Public data should
be used when developing a case study.

2.2.2 Value

Value is an ambiguous concept since it is distinct per stakeholder (Wolfgang and Andreas
2006). As far as this dissertation is concerned, benefits are distributed mainly between
retailers and customers. Some minor sacrifices exist, however, between parts, in order to
make it a reality.

The following subsections present a value proposition of the solution and the value perception
and existing trade-offs.

Value Proposition

The value proposition describes what products and services offer value to customer segments
(Petrovic and Kittl 2003). This analysis is particularly useful when presenting the project to
both customers and investors in order to be clear about how it differs from its competition
(Wolfgang and Andreas 2006).

The solution presented by the current dissertation is designed to provide personalized grocery
shopping cart suggestions to customers, making the shopping experience easier while giving
grocery retailers a chance to promote new products and boost sales. These recommender
systems make grocery retailers closer to customers while giving them the potential to boost
their footprint.

2.2. Value Analysis 11

Value Perception And Trade-offs

Grocery retailers benefit from being closer to customers by understanding them in a better
way and from being able to switch to an individual marketing strategy. By predicting shopping
lists, retailers can target their needs more efficiently and effectively, to both parts.

It is possible for grocery retailers who adopt the solution to optimize stock management, sell
new products, and improve the trust-relationship with customers. They receive the chance
to integrate the recommendations engine with different technologies they provide their cus-
tomers with (e.g., mobile apps or websites), benefitting from the advantages associated with
an omnichannel experience.

By including these technologies, grocery retailers also make a statement as far as technology
use in their business is concerned. Nevertheless, a front-end interface with its customers
has to be developed or adapted, so they can interact with the predictions.

Customers will benefit from a smoother experience while preparing shopping lists and shop-
ping, especially while online shopping, because of the simplification of time-consuming tra-
ditional processes. They will also have a bigger chance of discovering interesting products
for their profile.

The solution gets better (learns) with time, being as good as the shopping history size.
For grocery retailers to benefit from customized recommendations, loyalty context data has
to exist. It is of paramount importance for customers to understand that to benefit from
a tailored experience, their shopping history has to be known and analyzed by computer
systems.

Besides, since machine learning and recommender systems are currently a hot topic, showing
an application of a recommender system for grocery retail, and evaluating its results, can be
valuable for both the academy and enterprise world.

2.2.3 Business Model

The solution proposed by this dissertation is intended to be used by grocery retailers, giving
them the ability to boost sales and enhancing their customer’s experience. This way, the
total available market (commonly referred to as TAM) comprises all the grocery retailers in
the world.

Despite the similarities between retailers, there are differences in the products they sell and
how they target their customers, and historical data is crucial to generate good predictions.
This way, the serviceable available market (commonly referred to as SAM) represents all the
grocery retailers with accessible historical data regarding their customer’s shopping habits.

This solution can be easily and intuitively communicated using a business model canvas
(Qastharin 2016). This canvas captures nine building blocks: key partners, key activities,
key resources, cost structure, value propositions, customer relationships, customer segments,
channels, and revenue streams. The first four elements are commonly referred to as business-
related and the remaining ones as customer-related.

Grocery retailers, logistic services, and manufacturers are identified as the main partners,
and they are of paramount importance to provide personalized recommendations. Being

12 Chapter 2. Context

a customized solution, data, and knowledge associated with it are the most important re-
sources.

Grocery retailers with accessible customer’s shopping history are the target market of the
solution. Proof of concepts and shared knowledge with customers are identified as keys
to success. The visibility is mainly foreseen as associated with the publicity channels of
customers and with partnerships with order-fulfillment systems.

A business model canvas for this business-to-business solution is presented in figure 2.2.

Figure 2.2: Business model canvas diagram

2.2.4 Value Network

Value network analysis is a methodology for business modeling, where business activities and
relationships are visualized from a dynamic standpoint of the whole system (Allee 2006).
Verna Allee, the author, argues a modeling method centered on the networking principle,
where activities enhance the value of the business as a whole. The business should favor
this characteristic, favoring connections between activities through the whole ecosystem.

Figure 2.3 represents the value network diagram, where the important elements to the
project idea and its tangible and intangible connections are shown. One can understand the
value of the idea and how the different parties interact/benefit within the flow.

2.2. Value Analysis 13

Figure 2.3: Value network analysis diagram

Since the solution proposed in the current dissertation consists of a system for enabling
grocery retailers to predict their customer shopping needs, the symbiosis is clear: retailers
and customers benefit each other. In addition, FMCG manufacturers and logistics services
also have an important role in supporting the activity (by providing items and by offering
services, respectively).

2.2.5 Quality Function Deployment

Quality Function Deployment (QFD) is a methodology for designing a product or a service,
based on the customer demands, considering both the producer and supplier chains (Manu-
facturing Group 2007). This technique allows the product or service to have a better quality
in a smaller amount of time, makes sure that the design is customer-driven, and provides
a tracking system for future design or process improvements. Besides, it encourages the
involvement of the different parts of the organization.

The house of quality is the primary design tool of the QFD methodology, and it consists of
a map with a large amount of information in one place that can be used by the different
teams involved in order to find and follow design priorities (Hauser and Clausing 1988). The
name has its origins in its shape.

This tool maps the customer quality demands (rows), according to a predefined weight, with
the quality characteristics of the product (columns), the difficulty associated with it, and
the target quality value per technical attribute (Hauser and Clausing 1988; Manufacturing
Group 2007). Also, it describes the correlation between attributes (gabled roof).

The central matrix contains symbols representing the relationship between the demanded
quality and product characteristics. This diagram targets competitors as well, by comparing
the solution against the service provided by similar companies. However, since no public
information regarding competitors is known, this part cannot be approached.

The figure 2.4 presents a house of quality diagram for the current dissertation. It describes
the main quality attributes for the customers (i.e., grocery retailers) and the characteristics

14 Chapter 2. Context

of the solution. The relationships between both these entities and between the attributes
itself can be found.

Figure 2.4: Quality Function Deployment - House of Quality diagram

The diagram evidences that the most important quality characteristics for the solution are
related to the ability to evolve in time by automatically updating the solution and the data it
works with, in order to assure an up to date machine learning-based recommender system.
These quality characteristics target the most crucial quality demands of customers, namely
the quality of recommendations, the support for different customer profiles, and customer
security. So they should be pursued in order to keep the customers satisfied and remain a
priority throughout the different steps of this dissertation.

15

Chapter 3

State of The Art

This chapter contextualizes the work done in this dissertation as far as approaches and
technologies are concerned. It starts by detailing recommender systems, their architecture,
the challenges associated with them, and their possible classifications.

Machine learning is, hereafter, described. Key concepts such as unsupervised learning, su-
pervised learning and reinforcement learning are detailed, and machine learning approaches
to recommender systems are presented. Learning methodologies and evaluation metrics are
analyzed, followed by a comparison between the algorithms.

Non-machine learning approaches to recommender systems are also analyzed, followed by
the most relevant technologies and frameworks. This chapter is concluded by a summary of
all the presented topics.

3.1 Recommender Systems

Recommender systems are solutions with the ability to use previously known historical data
to generate predictions on a matter (Adomavicius and Tuzhilin 2005). Items are assigned a
rating (e.g., a weight or a sequential order), and the most relevant ones, according to the
problem, are recommended.

Different recommender systems can be developed according to the problem and the require-
ments (Adomavicius and Tuzhilin 2005). Simpler ones can be solved using heuristics (which
use business rules to generate the predictions upon historical data). More complex scenarios
can benefit from data mining and machine learning algorithms. In the last two scenarios,
models are created and used to generate future predictions.

A model is said to be created after applying the algorithm to the training data (i.e., the part
of the dataset used for training). A model can also be tested with test data (i.e., the part
of the dataset used for testing) and having its performance evaluated.

Recommender systems can face problems when generating predictions, depending on the
data used in the training process or even the methodology adopted (Jariha and S. K. Jain
2018). Since they predict upon different criteria, different classifications are associated with
them.

In this section, the main architecture behind a recommender system is analyzed, as well as
the major processes evolved. Classical problems that they tend to face are also discussed.
The section is concluded by going through the different ways a recommender system can be
classified.

16 Chapter 3. State of The Art

3.1.1 Architecture

A recommender system is composed of two different moments: information collection and
prediction (Jariha and S. K. Jain 2018). The first moment consists of gathering meaningful
information regarding both users and items from the available options to build a solid knowl-
edge basis; the second one, on the other hand, consists of generating predictions based on
the information obtained in a previous moment.

The information collection task is of paramount importance as it is responsible for building
the information used as input of the recommender system. The prediction task can consist
of the execution of a single technique or multiple techniques combined (Jariha and S. K.
Jain 2018).

When recommender systems are more complex and thus represented by a model, success on
the predictions depends on a successful training process, where the model was trained with
useful information retrieved from the training data. Feedback is provided during this phase,
either implicitly or explicitly.

Feedback is said to be implicit when it arises from information existing in the training data
(e.g., the purchase history) (Jariha and S. K. Jain 2018). On the other hand, feedback is
considered explicit when it is originated from input prompted explicitly to the user (e.g., if
a user is asked to classify whether a specific basket would make a good prediction for that
specific moment or not). Naturally, both kinds of feedbacks are useful for a recommender
system life cycle and success and can be combined to create a more robust model.

3.1.2 Challenges

Recommender systems may face different challenges during training. Data quantity or qual-
ity, limitations regarding the approach, or training time are some of the main challenges.
The presented challenges are common to many other research areas besides recommender
systems.

The sections below present some of the most frequent challenges faced by recommender
systems, according to the literature.

The Cold-Start Problem

Adding a new user or a new item into the system can work against some recommendation
approaches, as there is no sufficient information for it to predict viable recommendations.
Recommender systems such as collaborative filtering, because of its dependency on the
relationships between users and items, struggle with this problem. On the other hand,
content-based recommender systems do not find this issue when it comes to new users, as
they do not rely on previous associations (Jariha and S. K. Jain 2018; Mohamed, Khafagy,
and Ibrahim 2019). New items, because of the lack of history, are still prone to this issue.

The Sparsity Problem

There is typically a correlation between data sparsity and the success of the predicted rec-
ommendations. Recommender systems that rely on ratings provided by users tend to face

3.1. Recommender Systems 17

this issue, as they may not provide the classification for all items (Jariha and S. K. Jain
2018; Mohamed, Khafagy, and Ibrahim 2019). Also, items may not be considered as they
do not meet certain requirements related to the number of classifications provided by users,
decreasing the quality of recommendations. Some authors argue demographic similarities,
in addition to the existing ratings, as a possible solution for this problem (Jariha and S. K.
Jain 2018).

The Overfitting Problem

Overfitting occurs when a model fits too closely to a subset of the items in the training data.
This way, the predicted items will not have a significant margin for innovation nor predict an
unbiased scenario. Instead, only previously seen/recommended items related to previously
existing scenarios are recommended, without reflecting the recommendation moment and
conditions (Jariha and S. K. Jain 2018).

The Scalability Problem

Scalability is the ability of a system to handle increasing loads gracefully (Jariha and S. K.
Jain 2018; Mohamed, Khafagy, and Ibrahim 2019). The increasing number of both users
for which the recommender system has to generate predictions and items being predicted
brings scalability problems. The system faces difficulties to remain capable of generating
recommendations in a reasonable time. Approaches like collaborative filtering suffer in a
critical way, as the computation is directly related to the number of users and items existent
(Jariha and S. K. Jain 2018).

The literature argues some approximation mechanisms to increase the capacity of a recom-
mender system to scale (e.g., splitting the data across systems). Despite this fact, most
of them sacrifice the accuracy of the results (Jariha and S. K. Jain 2018). Areas such as
retail, because of the huge amount of users and items involved, tend to struggle with this
problem.

The Long-Tail Problem

The long-tail problem affects approaches that rely on item ratings for items that were newly
added or that have fewer recommendations. Similar to what happens in the cold-start
problem, these items may find it difficult to be recommended. The literature states that
this is an issue faced by most recommendation techniques (Jariha and S. K. Jain 2018),
where long-tails are introduced by suggesting only the most popular or classified items.

The Grey Sheep Problem

The grey sheep problem occurs when a recommender system relies on user categories in order
to generate recommendations and faces users that do not properly fit any of the existing
profiles (Mohamed, Khafagy, and Ibrahim 2019). These users cannot, thus, benefit from
the information regarding the profiles, risking its predictions to be of less quality. Approaches
like collaborative filtering or demographic-based recommendations tend to suffer from this
issue because of its dependency on collaborative information.

18 Chapter 3. State of The Art

The Privacy Problem

Recommender systems need information regarding users or their taste in order to be able
to generate accurate and meaningful predictions (Jariha and S. K. Jain 2018; Mohamed,
Khafagy, and Ibrahim 2019). Users may find some discomfort with the provided information,
which brings the necessity of transparency and trust relationship between both user and
recommender system, so users know which information is provided (Mohamed, Khafagy,
and Ibrahim 2019) and understand that there may be a risk of personal information being
exposed (Jariha and S. K. Jain 2018). This should be fought by the recommender entity.

3.1.3 Classification

Recommender systems can be classified according to the way that recommendations are gen-
erated. The literature presents two major approaches: content-based recommendations and
collaborative recommendations (Adomavicius and Tuzhilin 2005). However, the evolutions
on the field have made some authors consider additional techniques, commonly referred to as
hybrid approaches, as they combine at least two methodologies into one (Jariha and S. K.
Jain 2018). Some examples of hybrid approaches include utility-based recommendations,
knowledge-based recommendations, demographic-based recommendations, interactive rec-
ommendations, and context-based recommendations (Burke 2002; Jariha and S. K. Jain
2018).

In addition to the classifications presented by the literature, it is common for the industry to
develop their own heuristics, often based on the most popular items or on items frequently
bought together.

The sections below present some of the most typical classifications for recommender sys-
tems, according to the literature.

Content-Based Recommendations

Content-based recommender systems, also known as cognitive filter recommender systems
(Jariha and S. K. Jain 2018), are popular for their simplicity: recommendations are generated
based on relationships between item’s features (e.g., words in texts (Burke 2002)) and the
similarity between user profiles (traced based on the historical information regarding their
previous interests). This way, the system learns from the features present in the information
regarding what users have seen in the past (Burke 2002; Jariha and S. K. Jain 2018; Lops,
Gemmis, and Semeraro 2011).

Different learning methods can be used with content-based recommender systems to pro-
duce user profiles. Among the most used methods, one can find neural networks, vector
representations, and decision trees (Burke 2002). The learned models are typically updated
only when new information about user preferences exists.

Because of the tight relationship between the recommendations and the user history, these
systems tend to face some difficulties while recommending new products for which a user
has not yet specifically manifested its interest (Jariha and S. K. Jain 2018).

3.1. Recommender Systems 19

Collaborative Recommendations

Collaborative recommender systems, also known as “social filter” or “collaborative filtering”
recommender systems (Jariha and S. K. Jain 2018), generate recommendations based on
users’ behavior. Information from multiple users is combined (collaboratively) in order to
learn patterns that can help to predict the interest of specific users.

Typically, collaborative recommendations are either classified as item-item or user-item (Jar-
iha and S. K. Jain 2018). Item-item recommendations are based on relationships between
different items, which can be used to generate predictions related to items that the user
has already demonstrated interest. User-item recommendations, on the other hand, are
generated based on the proximity/similarity between users. The interest of a specific user is
used in the predictions for similar ones.

The more the historical data and the number of users, the more relevant and accurate the
recommendations tend to be, as more similarities exist between user habits (Burke 2002).
This characteristic tends to be flipped into a problem: since the recommendations are based
on users and items, adding a new element (either a user or a product) can cause poor
predictions because of the lack of data (Jariha and S. K. Jain 2018).

Utility-based recommendations

Utility-based recommender systems are hybrid approaches that try to base their predictions
on the evaluation of the match between what a user needs and the available options (Burke
2002). These recommendations are, thus, predicted by computing the utility of each item
for a specific user, and the systems get to know the user preferences over time.

The utility of an item for a user is calculated by an evaluation function. This function may
vary according to the implementation. Different companies have different techniques to
reach this result (Burke 2002), according to their needs.

One key benefit of utility-based recommender systems is that the evaluation function can be
designed to model business rules or preferences (e.g., exchange price for delivery schedule for
a user with an immediate need (Burke 2002)). This is, at the same time, the main difficulty
regarding these recommender systems, as the evaluation function is a key component in the
solution, but it might get hard to model.

Knowledge-Based Recommendations

Knowledge-based recommender systems are hybrid approaches that attempt to generate
recommendations based on inferences regarding user needs and preferences. A recommen-
dation is made upon a reasoning process on the need for an item, using functional knowledge
about how an item meets a user’s need (Burke 2002).

The knowledge used for the prediction process can be specifically provided by the user (Burke
2002; Jariha and S. K. Jain 2018) or obtained via the analysis of existing data across the
domain. The first scenario can be observed by the usage of the data provided in the query
on search engines (Burke 2002); an example of the second one is the usage of information
regarding items to infer similarities (e.g., use cuisines to infer similar restaurants).

20 Chapter 3. State of The Art

The difficulty in obtaining the knowledge used to generate recommendations is the major
challenge these recommendation systems face (Jariha and S. K. Jain 2018) because of its
origin and domain specificity.

Demographic-Based Recommendations

Demographic-based recommender systems are hybrid approaches that use user-user rela-
tionships in order to generate predictions. Using user data (e.g., age, gender, and location),
demographic profiles based on the similarity between users are created (Burke 2002; Jariha
and S. K. Jain 2018). The relationship between items and user-groups is calculated and
used to recommend items.

The demographic data can be directly obtained from the user for pre-usage surveys or
by analyzing actual data regarding users and inferring useful information (Burke 2002).
Different solutions may obtain this information in different ways, either by convenience or by
design, but always aiming to collect useful information that enables the system to calculate
user profiles.

Since the correlations between users are based on the similarity between their data, no history
is needed in order for these systems to start recommending items to a new user (Jariha
and S. K. Jain 2018), because the system assumes that users with similar demographic
information will have similar interests. Common problems such as cold-starts or overfitting
3.1.2 are also avoided by these systems. Users and items are typically represented as vectors.
Thus the proximity can be calculated by the scalar product of two vectors, for example.

Interactive Recommendations

Interactive Recommendation Systems are hybrid approaches focused on generating predic-
tions based on the preferences of a user, for that specific moment, by analyzing the answers
to questions asked interactively to the user (Jariha and S. K. Jain 2018). This technique is
based on the principle that user interests change over time, which would invalidate recom-
mendations obtained by analyzing user history.

Users’ current preferences are obtained from the feedback analysis. Users are asked to
provide feedback via short/long answer questions, yes/no questions, like/dislike buttons,
ratings, etc., and systematic search strategies are used to extract the relevant information.
Frequently, predictions are generated after matrix operations or exploratory data analysis
executed over the information (Jariha and S. K. Jain 2018).

Context-Based Recommendations

Context-based recommender systems are hybrid approaches that take advantage of contex-
tual information (such as location, time, and social information) at recommendation time
to attempt accurate predictions (Jariha and S. K. Jain 2018). This technique has the
user-profile at its core and aims to enhance it with the user circumstance and contextual
knowledge acquired.

3.2. Machine Learning Approaches to Recommender Systems 21

Different implementations of this principle were developed, according to the recommendation
business model. Typical implementations of these systems are cultural or entertainment rec-
ommendations (e.g., music/movies or travel recommendations). The difficulty in generating
knowledge from the contextual information makes this technique complex to implement, de-
spite its promising results and academic interest (Jariha and S. K. Jain 2018).

3.2 Machine Learning Approaches to Recommender Systems

Machine Learning (ML) is a field of Artificial Intelligence (AI), where learning algorithms
are used to make inferences from provided data, to learn and execute specific tasks (e.g.,
generating predictions or making a decision) (Shalev-Shwartz and Ben-David 2014).

The literature describes the learning process as converting experience into knowledge (Shalev-
Shwartz and Ben-David 2014), where the training data, used to train the model, represents
the experience, and the output represents the knowledge and can be used over unseen data.

Machine learning problems are typically classified according to the nature of the interaction
into three main categories: unsupervised learning, supervised learning, and reinforcement
learning (Shalev-Shwartz and Ben-David 2014). Details on each of these categories can be
found in the following subsections.

3.2.1 Unsupervised Learning

Unsupervised learning is a field of Machine Learning where algorithms are used in order to
find previously unknown patterns in unlabeled data (Gama et al. 2015).

Algorithms adapt their behavior based on observations in the data, without specifically being
told to. Structures related to datasets’ properties can be identified, enhancing their decision-
making capability and the ability to learn from uncategorized data (Le et al. 2012). This
process consists of the main idea of the self-taught learning framework.

Unsupervised learning can be interesting to different businesses, as they can provide a way to
understand datasets in a better way (e.g., understanding customers or providers in a better
way). Problems solved by this field of Machine Learning are called descriptive tasks (Gama
et al. 2015).

The sections below present some of the most relevant unsupervised learning algorithms to
the literature.

Clustering

The literature (Shalev-Shwartz and Ben-David 2014) identifies clustering as one of the most
known problems in unsupervised learning. In this technique, the algorithms group unlabeled
data into clusters, allowing a bigger understanding of a subject.

The resulting clustered information can, then, be used to execute targeting actions. Retail-
ers, for example, are known to use this information in order to execute targeted marketing
campaigns (Shalev-Shwartz and Ben-David 2014).

22 Chapter 3. State of The Art

Autoencoder

Autoencoders are unsupervised learning algorithms that use the encoding and decoding pro-
cesses to solve problems (Xu et al. 2017). These algorithms compress input data into a
code and attempt to generate a representation of the input data.

Because of its simple architecture, autoencoders tend to learn a low-dimensional represen-
tation, which can be a better representation of the input data (Xu et al. 2017). Autoen-
coders are often used as layers of complexity in neural networks trained in unsupervised ways
(Shalev-Shwartz and Ben-David 2014).

3.2.2 Supervised Learning

Supervised learning is a field of Machine Learning where, during the training process, both
the input and output data of datasets are known. Based on the knowledge built up from a
training set, algorithms are able to analyze and predict with high accuracy the outputs for
unseen input data in the test set (Gama et al. 2015). These algorithms are said to learn
from experience.

In order to train a supervised learning model, n ordered pairs (xi, yi) are used (Learned-
Miller 2014). Each xi corresponds to a measurement or set of measurements (often called
a vector) of a single example, and yi is its label. The algorithm processes this data (trains)
and generates a model to predict the output labels of unseen cases - test cases that are
structurally similar to the training ones.

Supervised learning tasks can be developed over two distinct types of output labels (Gama
et al. 2015): discrete data (e.g., identifying shelves with missing products) and continuous
data (e.g., estimating the optimum price of an item). Problems that deal with the first
type of data are referred to as classification problems, while the other ones are classified as
regression problems.

Classification is a supervised learning variant where cases are assigned with categories. The
trained model predicts categories associated with unseen data (Gama et al. 2015). Regres-
sion models, on the other hand, generate real or continuous predictions.

In addition to classification and regression problems, the literature refers to deep learning
algorithms as supervised implementations with good results (Bengio, Courville, and Vincent
2014). These algorithms take advantage of deep multilayered structures to solve the prob-
lems where there is a huge amount of data (Dhumale, Thombare, and Bangare 2019). Deep
learning is commonly used in supervised learning (Bengio, Courville, and Vincent 2014), al-
though not strictly (there are unsupervised implementations of deep learning, but in the
context of this dissertation, they are not considered).

Grocery retailers can benefit from supervised learning implementations to, among other use
cases, identify perishable items while weighting them and calculate the price (Learned-Miller
2014). Problems solved by this field of Machine Learning are called predictive tasks (Gama
et al. 2015).

The sections below present some of the most relevant supervised learning algorithms to the
literature.

3.2. Machine Learning Approaches to Recommender Systems 23

Support Vector Machine

A Support Vector Machines (SVM) is a technique for classification problems solved in super-
vised learning. These algorithms can be classified as linear and non-linear (Auria and Moro
2011), according to the characteristics of the decision function (i.e., linear and parametric
and kernels, respectively).

SVMs use hyperplanes (mathematical functions) to separate the vectorial representations
of the training set elements in the space. The distance of the points to the hyperplane is
used to chose the best function to perform classifications: the hyperplane with the biggest
distance from the closest vector is chosen (He and Chen 2005). If no hyperplane that
separates the classes in a clear way can be chosen, the selected hyperplane is the one that
minimizes the error (Auria and Moro 2011).

Each vector from the training set has a score associated with it (depending on its distance),
which is analyzed during the training phase. Vectors linearly closer to the chosen hyperplane
are denominated as support vectors, having more relevance on future predictions (Auria and
Moro 2011).

SVM typically provide good recommendations as the model is trained, looking to maximize
the generalization capability and performance of the classifier (He and Chen 2005).

K Nearest Neighbor

A K Nearest Neighbor (kNN) is a technique for solving problems using supervised learning,
being it classifications or regressions. These algorithms use the closest value in the training
set in order to predict a class assigned to an unseen example (Gama et al. 2015).

This technique is associated with expensive computation times, since it requires the entire
dataset to be stored and scanned, at test time, to identify the nearest neighbors of an element
(Shalev-Shwartz and Ben-David 2014). This way, these algorithms are more performant
when trained using datasets composed of elements with a reduced dimension.

K Nearest Neighbour is simple to implement and applicable to problems with different com-
plexities (Gama et al. 2015), making it into one of the most commonly used implementations.

Decision Tree

A decision tree is a technique for solving problems using supervised learning, in both classifi-
cation and regression techniques. These trees consist of a sequence of linked tests, starting
in a root node and continuing through internal nodes until the last leaf node (Anuradha and
G. Gupta 2014).

The decision tree is generated during the training phase, where each internal node partitions
the instance space according to a function applied to the input value from the training set
(Anuradha and G. Gupta 2014). After completing the training process, the tree can generate
predictions on unseen data by going across the tree, testing conditions until reaching a
confidence point about the input data. This structure enables complex problems to be
solved by a set of simpler ones.

24 Chapter 3. State of The Art

It is common to generate ensembles composed of multiple decision trees in order to achieve
better results. The principle is to generate a strong learner from a set of weaker ones. The
literature presents two predominant techniques: bagging and boosting (Anuradha and G.
Gupta 2014).

Bagging is a technique where several subsets are chosen randomly from the training set
(Anuradha and G. Gupta 2014). Each of these smaller sets is used to train a decision tree.
The average of all the models is used to generate the prediction.

Boosting consists of a set of consecutive weighted classifiers, trained together, aiming to
improve the accuracy of the previous one (Anuradha and G. Gupta 2014). Detecting mis-
classified inputs is translated into an update of the weight to improve future predictions
(i.e., the weight of each classifier results of its exactness during the training process). The
prediction is generated by a ponderation on a weighted vote of each of the evolved classifiers.

Although decision trees are intuitive prediction algorithms to humans, they are computa-
tionally complex to learn. The literature presents multiple heuristics associated with their
training processes (Shalev-Shwartz and Ben-David 2014). Also, these algorithms are typi-
cally not recommended to scenarios where data is missing, as it will cause some nodes to
be empty in the tree (Gama et al. 2015), making it less stable.

Gradient Boosted Trees

Gradient boosted trees are a supervised learning technique used to solve regression and
classification problems. Being a boosted technique, it generates predictions after weighing on
a set of weighted classifiers trained together (Anuradha and G. Gupta 2014). In addition, this
technique is based on the gradient descent algorithm (the algorithm used to find minimums
of a function by iteratively taking steps into the negative of the gradient (see Shalev-Shwartz
and Ben-David 2014 for more details)).

During the training process, at each step, a decision tree is built in order to fit the residuals
of the trees that precede it (Si et al. 2017). Similarly to the gradient descent algorithm,
the chosen decision trees are the ones that reduce the error the most (Hastie, Tibshirani,
and Friedman 2009). This process stops when the number of iterations matches the value
specified for the training or until the number of trees matches the maximum value configured.
A prediction is computed using all the decision trees that constitute the ensemble.

Gradient boosted trees are defended by the literature as having promising results because of
their high accuracy, training speed, fast prediction time, and reduced memory footprint (Si et
al. 2017). This technique is shown as being strong when trained over big datasets. In order
to improve further their results with huge amounts of data, modifications can be done, such
as the usage of embeddings or even algorithms that extend the classical implementation.

Ada Boosted Tree

Ada boosted trees (from adaptive boosted trees) are a supervised learning technique used to
solve regression and classification problems. Similar to gradient boosted trees, they generate
predictions after a ponderation on a set of weighted classifiers trained together (Anuradha
and G. Gupta 2014).

3.2. Machine Learning Approaches to Recommender Systems 25

During the training phase, every time a classifier in the ensemble generates a failed result,
its weight is diminished; in addition, it is also reduced on each good result, but on a smaller
amount (Rojas 2009). In this technique, a classifier is extracted upon each N iterations
(being this value customized before the training process).

This technique deals with the bias induced by weak learners in a natural way, as their weight
is reduced in the ponderation (Freund and Schapire 1996). Also, the better the tree behaves,
the bigger is the impact of the wrong prediction on the weights. The final prediction is,
thus, based on a ponderation between the strongest classifiers.

Artificial Neural Network

An Artificial Neural Network (ANN), commonly referred to as neural network, is a supervised
learning technique popular in classification or regression problems. Similar to the way a
human brain performs, neural networks use communication between simple computing cells
(called neurons) to generate a prediction (Haykin et al. 2009).

Neural networks are constituted by three distinct layers: input, output, and hidden layers
(Shalev-Shwartz and Ben-David 2014). The first layer is used to process the input and feed
the network with initial data; the output layer is responsible for producing the final result; the
hidden layer corresponds to the layers located between the initial and the output layers, and
it is where most of the communication occurs. When a ANN has a hidden layer composed
of two or more layers, it is called a Deep Neural Network (DNN).

Neurons receive as input a weighted sum of the outputs provided by the neurons connected
to their incoming edges (Shalev-Shwartz and Ben-David 2014). During the training phase,
these synaptic weights of the network are modified in order to reduce the difference between
the prediction and the labeled value (Haykin et al. 2009). Commonly, in this phase, the
gradient descent algorithm is used to update the network parameters and try to find a global
minimum of the cost function.

The network can also modify its own topology, resembling the human brain’s neurons, which
may die or grow new synapsis (i.e., the principle of plasticity, which corresponds to the need
to adapt to its surrounding environment). The adaptation of synaptic weights and the ability
to change its topology give neural networks the ability to be easily trained for environments
with minor differences.

The literature presents two major classifications for neural networks: feedforward and feed-
back networks (Haykin et al. 2009; Shalev-Shwartz and Ben-David 2014), differing from the
way the communication flows. Feedforward neural networks have information flowing from
layer to layer: the input layer feeds the hidden layer, which communicates with the output
layer (Gama et al. 2015). Feedback networks can have signals traveling in both directions,
using feedback loops (e.g., recurrent neural networks) (Haykin et al. 2009).

Progresses on computational power, data size, and algorithmic advancements have im-
proved the effectiveness of neural networks (Haykin et al. 2009). More complex networks
have emerged, including convolutional neural networks, restricted Boltzmann machines, or
networks with layers of autoencoders. Because they are out of the scope of this dissertation,
these networks are not detailed.

Neural networks are especially valuable because of their parallel and distributed architecture
and their capability to learn within very distinct training datasets (Haykin et al. 2009). Their

26 Chapter 3. State of The Art

architecture makes ANNs able to provide measurable confidence in the result, in addition to
the prediction itself.

Long Short-Term Memory

A Long Short-Term Memory (LSTM) is a deep learning technique used in supervised learning,
and it is an application of Recurrent Neural Network (RNN). RNNs are implementations of
neural networks with feedback, based on recurrent connections (i.e., signals from previous
interactions that are fed back into the network) (Staudemeyer and Morris 2019).

LSTMs can use information from steps far in time (e.g., more than 1000 time steps back)
(Staudemeyer and Morris 2019). In order to keep a sense of memory, these networks use
memory cells with an internal state (Zhang et al. 2017), which are responsible for carrying
relevant information during the flow.

This technique uses three important gates to work: input, output, and forget gates (Staude-
meyer and Morris 2019). Input gates control the signals from the network to the memory
cell. Output gates are used to control access to the memory cell’s content. Forget gates are
used to reset the memory cell’s internal state in order to clean up unnecessary information.

This technique has shown promising results in dealing with the seasonality of items and the
changes in customer’s preferences (Staudemeyer and Morris 2019), having the potential to
better represent the recurrent nature of grocery shopping patterns.

Linear Regression

Linear regression is a supervised learning technique popular in regression problems. This
technique uses a simple mathematical linear algebra function to trace the best line able
to separate the elements from the training set (Dhumale, Thombare, and Bangare 2019).
Linear regressions are known for being the simplest way to solve a machine learning problem.

Linear regressions include complex loss-functions to dictate how a misclassified value should
be penalized since one is dealing with continuous data (i.e., a misclassified value can be
measurably close or distant from the training one) (Shalev-Shwartz and Ben-David 2014).

The literature classifies linear regression models into two possible categories: simple linear
regressions and multi-linear regressions (Dhumale, Thombare, and Bangare 2019). The first
category uses a single dependent-variable in the regression - all other variables are considered
independent; The second category uses more than one dependent-variable to generate the
regression.

Other Supervised Learning Algorithms

In addition to the previous algorithms, there are other common algorithms used in supervised
learning, which are not deeply studied in this dissertation, given its relevance on the matter.
In this section, algorithms such as random forests, naive Bayes, logistic regressions, one-hot
encoding, and embeddings are briefly analyzed.

Random forest is an algorithm used in supervised learning to solve both regression and
classification problems. It uses a composition of decision trees in a way that each tree

3.2. Machine Learning Approaches to Recommender Systems 27

produces its own opinion regarding the input. The final prediction is a ponderation of the
output of each composing decision tree (Breiman 2001).

Naive Bayes is a technique for classification problems solved in supervised learning. These al-
gorithms generate a probability of each of the possible outputs and chose the final prediction
based on the class with a higher probability (Gama et al. 2015).

Logistic regressions are supervised learning techniques used in regression problems. These
techniques generate an estimation of the probability of input matching a class using a multi-
linear function of the features and convert it into an actual decision (Dhumale, Thombare,
and Bangare 2019). This way, logistic regressions are regression analysis that can be applied
to classification tasks (Shalev-Shwartz and Ben-David 2014).

One-hot encoding is a technique mainly used in classification problems solved in supervised
learning. In this technique, each word from the contextual-vocabulary is encoded into a
vector, according to its position. Vectors contain "0"s and "1"s representing the existence
or absence, respectively, of each element (Potdar, S., and D. 2017).

Word embedding (or just “embedding”) is a technique mainly used in supervised deep learning
techniques, such as deep neural networks, where words are mapped into vectors of real num-
bers (H.-T. Cheng et al. 2016). This vectorial representation can be generated by classic
methods or learned by using neural networks (Grbovic and H. Cheng 2018). Embeddings
were originated in natural language processing but have been extended beyond word repre-
sentations to scenarios such as e-commerce or web searches. Contextual information (e.g.,
words in a sentence or product details) is often used with embeddings.

3.2.3 Reinforcement Learning

Reinforcement learning is a field of Machine Learning where intelligent agents learn from
their own experience and receive signals from an environment in order to help with predic-
tions (Wang and Zhan 2011). These systems include intelligent agents, an environment,
environment states, and a notion of reward for actions taken by the agents.

Agents take actions in an environment. The environment feeds back the agent with a reward
or punishment signal and an update on its state (Wang and Zhan 2011). This is a continuous
process, where actions are chosen according to the feedback provided by the environment.
The goal of these systems is to learn an action strategy, which consists of discovering a
sequence of actions that maximize the cumulative reward provided by the environment.

Actions are determined according to an algorithm called policy (Gron 2017). Depending on
the situation, the policy can be a simpler or a more complex algorithm. Common examples
used to explore the policy space include neural networks, stochastic algorithms, and genetic
algorithms.

Reinforcement learning has gained much interest in 2013, when researchers from DeepMind
proved that a computer could play Atari games without prior knowledge of the rules, even
outperforming human players (Gron 2017). One of the most important moments of this
technique was the victory of the system AlphaGo against Go’s world champion, Lee Sedol,
in 2016.

28 Chapter 3. State of The Art

The notion of an environment and the effect it has on the predictions can provide retailers
with benefits such as tailoring prices dynamically to each customer (Raju, Narahari, and
Ravikumar 2003; Slivkins 2019), which can enhance their competitive power.

The section below details multi-arm bandits, an important reinforcement learning algorithm
for recommendations.

Multi-Armed Bandits

A multi-armed bandit (also known as k-armed bandit) is a powerful technique used in rein-
forcement learning, where the system explores and learns from the environment, according
to the pieces of evidence (rewards) it receives (Vermorel and Mohri 2005). Its name and
its idea are an analogy to a gambler using multiple slot-machines, which provide different
results despite looking identically.

The algorithm has a set of possible actions to chose (called “arms”) and a fixed number of
rounds to keep training (Slivkins 2019). During the training process, an arm is chosen on
each round, and the agent collects a reward from the environment for the action - and the
other arms are not evaluated. Also, a reward function is arm-specific.

The process of choosing which arm to explore is the subject of study (Vermorel and Mohri
2005). Multiple algorithms are presented by the literature: e-greedy strategy, where arms
are chosen randomly; SoftMax strategy, where a Boltzmann distribution is used to decide; or
the interval estimation strategy, where arms are assigned and updated upon each interaction
with it.

The algorithm needs to explore the different arms in order to look for the best action strategy
(Slivkins 2019). This way, multi-armed bandits learn which arms provide the best balance
between rewards and duration.

3.2.4 Learning Methodologies

Machine learning systems can be classified according to their ability to learn incrementally
upon new existing data (Gron 2017). In this section, offline and online learning techniques
are presented.

Offline Learning

Using offline learning (also known as “batch learning”), models have no capability to learn
incrementally (Gron 2017). Models are trained using the existing data and then deployed.
After this moment, these models generate predictions based on what they have learned,
without further learning anymore. Since deployed models are static instances, they can be
horizontally scaled easily.

These algorithms are trained by dividing the dataset into training and test subsets (Vinagre,
Jorge, and Gama 2014). The dataset can be split by choosing a portion of shuffled data or
according to a moment in time.

3.2. Machine Learning Approaches to Recommender Systems 29

Since models are trained using a big set of data, the learning task is usually a slow and
computationally expensive process (Gron 2017). It is common to have models training for
many hours.

In order to train the model with new data, it is necessary to aggregate both the original and
new data and re-train and re-deploy the model (Gron 2017). Since it is a repetitive task,
very often this process is automated, and new offline learning solutions are re-trained and
re-deployed frequently, automatically.

Offline learning algorithms are typically preferred in controlled scenarios, where data does
not vary very often (Vinagre, Jorge, and Gama 2014). Also, since data tends to accumulate
with time, there are some situations that may require a decision on filtering part of it.

Depending on the problem requirements and the size of the dataset, using offline learning
might not be an option as the training time could be superior to business needs (Vinagre,
Jorge, and Gama 2014). Scenarios where using an offline learning model might not be
feasible include models for mobile devices and for devices on space missions (Gron 2017).

Online Learning

Using online learning, models have the ability to be trained in an incremental way by feeding
data instances individually or in groups (mini-batches) (Gron 2017). This training process
typically occurs once the model is already deployed and serving real users (Vinagre, Jorge,
and Gama 2014). This characteristic makes online models unable to scale horizontally since
learning would be decentralized.

Online learning is of paramount importance in scenarios where the system needs to adapt
to the environment in order to change rapidly or autonomously (e.g., stock prices) (Gron
2017). In addition, if there are limitations regarding hardware, this technique is beneficial
since the incremental training iterations are computationally inexpensive, and the data can
be discarded after the training because the model has already learned it.

Another usage of online learning algorithms is to train models in scenarios where the dataset
does not fit in the machine’s memory (also known as “out-of-core” learning) (Gron 2017).
In these situations, portions of the dataset are iteratively used to train the model until all
data is used to feed the model.

The learning rate (i.e., how fast the model should adapt to changing data, has a major role
in this type of learning (Gron 2017). High learning rates are translated into a quick change
of the results since it adapts quickly to the new data and forgets the old one easier. Low
learning rates mean that the system will adapt slower to changes, being, at the same time,
less prone to errors due to noise in data (e.g., attacks).

Since these models evolve iteratively, it is possible to perform a more detailed evaluation of
their performance by analyzing behaviors that could be unseen in offline learning (Vinagre,
Jorge, and Gama 2014). It is common for companies with deployed online learning models
to monitor performance and act upon abnormal situations by turning off the learning process
(Gron 2017).

30 Chapter 3. State of The Art

3.2.5 Evaluation Metrics

Recommendations predicted by machine learning-based recommender systems are evaluated
according to different mathematical metrics in order to evaluate system quality. These
metrics are obtained by running the algorithms during the test process.

Evaluating Regression Algorithms

When evaluating regression algorithms, errors can be calculated based on the distance be-
tween predicted values and known values from the training set (Gama et al. 2015).

The sections below present some of the most common metrics used when evaluating re-
gression algorithms.

Mean Absolute Error

Mean Absolute Error (MAE) is a popular metric when comparing the predicted rating on
an item to the rating that a user has actually provided (Jariha and S. K. Jain 2018). MAE
measures the average of the absolute deviance between these two ratings (i.e., the average
error on all the predicted ratings) (S. Gupta and Nagpal 2015; Lerato et al. 2016).

MAE is calculated according to the following equation (Jariha and S. K. Jain 2018), where
pri corresponds to the predicted rating of item i, and ari to the actual rating.

MAE =
1

N

N∑
i=1

|pri − ari | (3.1)

Mean Square Error

Mean Square Error (MSE) is used in replacement of MAE, in order to enhance the scenarios
of larger deviance between the predicted rating and the actual one (Lerato et al. 2016).

MSE is calculated according to the following equation (Lerato et al. 2016), where pri cor-
responds to the predicted rating of item i, and ari to the actual rating.

MSE =
1

N

N∑
i=1

(pri − ari)2 (3.2)

Root Mean Square Error

Root Mean Square Error (RMSE) is a variant of MSE, which gives more importance to
larger predictions errors (S. Gupta and Nagpal 2015; Lerato et al. 2016).

RMSE is calculated according to the following equation (Lerato et al. 2016), where pri
corresponds to the predicted rating of item i, and ari to the actual rating.

3.2. Machine Learning Approaches to Recommender Systems 31

RMSE =

√√√√ 1
N

N∑
i=1

(pri − ari)2 (3.3)

Evaluating Classification Algorithms

When evaluating classification algorithms, errors are based on the correctness and incorrect-
ness of the prediction, when compared to the remaining training set. The performance of
these algorithms is based on four indicators (Gama et al. 2015):

• True Positives (TP) - number of examples of positive class which were correctly
predicted;

• True Negatives (TN) - number of examples of negative class which were correctly
predicted;

• False Positives (FP) - number of examples of negative class wrongly predicted as
positive;

• False Negatives (FN) - number of examples of positive class wrongly predicted as
negative.

The sections below present some of the most relevant measures of classification algorithms,
combining the four evaluation indicators.

Accuracy

Accuracy, or success rate, measures the degree of closeness of a prediction (i.e., the number
of relevant items, among all the possibilities) (Shalev-Shwartz and Ben-David 2014).

Accuracy is calculated according to the following equation (Jariha and S. K. Jain 2018),
where the abbreviations from 3.2.5 are used.

Accuracy =
relevant predictions

total i tems
=

TP + TN

TP + TN + FP + FN
(3.4)

Precision

Precision measures the fraction of items in the prediction that is actually relevant (i.e., the
number of correctly predicted items in the total number of recommendations) (S. Gupta
and Nagpal 2015; Lerato et al. 2016).

Precision is calculated according to the following equation (Jariha and S. K. Jain 2018),
where the abbreviations from 3.2.5 are used.

P recision =
cor rect predictions

total predictions
=

TP

TP + FP
(3.5)

32 Chapter 3. State of The Art

Recall

Recall measures the fraction of relevant items that were actually recommended over the
whole dataset (i.e., the amount of correctly recommended items over the total number of
relevant items) (S. Gupta and Nagpal 2015; Lerato et al. 2016).

Recall is calculated according to the following equation (Jariha and S. K. Jain 2018), where
the abbreviations from 3.2.5 are used.

Recal l =
cor rect predictions

total relevant predictions
=

TP

TP + FN
(3.6)

F1-Score

F1-score measures the combined effect of both precision and recall on the results, giving
equal importance to both, helping to simplify the interpretation of both metrics (S. Gupta
and Nagpal 2015; Jariha and S. K. Jain 2018).

F1-score is calculated according to the following equation (Jariha and S. K. Jain 2018).

F1 =
2 ∗ P recision ∗ Recal l
P recision + Recal l

(3.7)

3.2.6 Comparing Machine Learning Approaches to Recommender Systems

As presented in section 3.1.3, recommender systems can be classified in many different
ways depending on the path to the generation of recommendations. Some traditional tech-
niques used in collaborative filtering recommender systems include linear regressions and
SVM (Adomavicius and Tuzhilin 2005). Decision trees are often used in both collaborative-
filtering and content-based systems. Neural network implementations tend to be used in
hybrid approaches. Depending on the context, different implementations can be used in
different types of recommender systems.

In addition, machine learning approaches to recommender systems are typically categorized
according to the nature of the interactions into unsupervised, supervised and reinforcement
learning 3.2. Popular unsupervised learning techniques include clustering and autoencoders;
common supervised algorithms include SVM, kNN, decision trees, artificial neural networks,
LSTMs, and linear regression models; a powerful reinforcement learning technique in recom-
mender systems is multi-armed bandits. Depending on the problem, recommender systems
based on supervised learning can be used to solve regression problems (e.g., predicting a
user’s rate on an item) or classification problems (e.g., predicting if a user wants an item or
not).

Beyond the differences in the characteristics of each algorithm, there are differences in
performance. Algorithms perform in different ways depending on many variables (algorithm-
related, problem-related, or dataset-related). Most implementations have parameters (also
known as “hyperparameters”) that can be tuned before the training phase in order to achieve
the best results (Olson et al. 2017). These parameters can be as simple as the depth of a
decision tree classifier or more complex such as learning rates or settings of the loss function.

3.3. Non-Machine Learning Approaches to Recommender Systems 33

Depending on the technique and the implementation, different hyperparameters can be used.
The number of trees is a common parameter in decision trees; the number of layers or depth
is a typical parameter for neural network implementations; regret is a common parameter in
reinforcement learning implementations.

The differences presented on the results of the same algorithms over different datasets and
different parameter conditions (Olson et al. 2017, Fernández-Delgado et al. 2014), make
it possible to conclude that, although using the proper algorithm for each problem is key,
tuning the parameters can lead to the most significant improvements. Spending appropriate
amounts of time and effort on this task can lead to better results than testing superficially
many different implementations looking for the best results.

Recent developments have been made on the automation of hyperparameter tuning and al-
gorithm selection (often called automated machine learning or AutoML) (Komer, Bergstra,
and Eliasmith 2014; Thornton et al. 2013). Several approaches exist and target different
machine learning frameworks (supporting algorithms often used for recommender systems),
but share the common principles of experimenting with different algorithms and hyperpa-
rameter configurations to achieve good results. These approaches are capable of achieving
good results - sometimes outperforming standard algorithm selection and hyperparameter
configuration (Thornton et al. 2013).

3.3 Non-Machine Learning Approaches to Recommender Sys-
tems

In addition to Machine Learning, recommender systems can also be developed using tailored
heuristics and data mining rules (Adomavicius and Tuzhilin 2005). Depending on the problem
and the existing data, some recommender systems can provide satisfactory results with
solutions that do not require machine learning algorithms.

Although the main goal of this dissertation is to use a machine learning algorithm to develop a
recommender system, these techniques are very valuable. In this section, three non-machine
learning implementations are introduced, namely heuristic-based, pattern mining-based, and
association rules-based recommender systems.

3.3.1 Heuristic-Based Recommender Systems

Heuristics are customized algorithms designed in order to solve specific problems in a quick,
sufficient, and non-optimal way. These algorithms are developed with business rules in mind,
and they tend to model knowledge.

If the context in which predictions are generated is simple enough (e.g., recommending the
most popular or most recent items), simple heuristics can be used. Heuristics will solve
the problem in a quick way and can, probably, be integrated in an easier way with existing
technology.

Since grocery retail is a complex field, with many variables and without rational relationships
between domain concepts (e.g., between items), a heuristic to generate personalized basket
predictions for customers is expected to be complex. Time-related constraints, for instance,
need to be addressed (e.g., to prevent suggesting Christmas products in summer). Other

34 Chapter 3. State of The Art

examples would include shopping frequency, seasonality, globally favorite items, the time
between purchases. Customers with no historical data would need special attention as well.

3.3.2 Pattern Mining-Based Recommender Systems

Pattern mining algorithms can be used to develop recommender systems. Often, periodic
and sequential pattern mining algorithms are used to generate basket predictions (Fournier-
Viger et al. 2016; Guidotti et al. 2017).

There are multiple periodic pattern mining tasks, aiming at factors such as frequency or
utility (Fournier-Viger et al. 2016), and they can be used to build recommender systems
for retail. Shopping lists can be generated by applying different periodic pattern miners to
shopping history datasets. An effective pattern mining algorithm used in this field is PHM,
which aims to efficiently discover periodic high-utility items in a dataset.

Sequential pattern mining implementations rely on discovering recurrent sequences of be-
havior in the dataset (e.g., sequences of items bought together or recurrency of sequential
purchases during a period) (Guidotti et al. 2017). Recommender systems for retail based
on this type of pattern mining rely on the principle that customers have individual behaviors
that evolve in time.

Frameworks such as XMuSer (Ferreira, Gama, and Santos Costa 2011) use temporal pat-
terns in the form of sequences to discover frequent discriminative patterns using predictive
sequence miners. The information perceived as the most important is mapped into a tempo-
ral table. This framework also uses an algorithm to learn a way to complete the exploitation
of temporal information.

Summing up, recommender systems based on periodic pattern mining algorithms discover
temporal patterns within the customer information to predict new items (e.g., preference
for certain items during the weekends). Recommender systems based on sequential pat-
tern mining algorithms figure out subsequences within sequences of data (e.g., recurrent
purchases of items).

3.3.3 Association Rules-Based Recommender Systems

Association rules represent a branch of data mining with high investigation interest (Jooa,
Bangb, and Parka 2016). This technique aims at identifying rules about the relationship
between two events in the format of A->B, where the probability of the second part of a
rule (i.e., B) existing is higher when the first one (i.e., A) is present. Association rules can be
used to develop or improve recommender systems based on relationships between products.

Different algorithms for finding association rules exist and can be applied to grocery retail
(Agarwal, Yadav, and Anand 2013). Apriori is a classical implementation of this technique,
known for optimizing the way it handles with big amounts of data.

Association rules are filtered according to two traditional criteria: confidence and support
(Agarwal, Yadav, and Anand 2013; Jooa, Bangb, and Parka 2016). Some implementations
can include other criteria, such as lift, adopted in some implementations such as Apriori
(Malik 2020). Confidence measures the likelihood of buying the item sets B when buying
the item set A. Support is the ratio of orders with an order on the total number of orders.

3.4. Comparing Machine Learning Approaches to Recommender Systems 35

The lift measures the number of times an item set B is more likely to be present when item
set A is present (and is calculated by the confidence of the rule divided by the support of
item set B).

This technique is very flexible when identifying patterns in a transaction dataset. The
patterns found on a dataset have different values of the algorithm criteria (e.g., confidence,
support, and lift). Also, a certain item set B can be associated with different item sets A.

The ability to find association rules in grocery retail extends the interest of product recom-
mendations. Some rules may have a high interest in business operations, such as aisle sorting
or sales. For recommender systems, these rules can be combined with other methodologies
to increase the performance of a recommender system (Jooa, Bangb, and Parka 2016), or
used by themselves for simple non-personalized suggestion systems (e.g., real-time next-item
suggestion).

3.4 Comparing Machine Learning Approaches to Recommender
Systems

As observed in section 3.2, different approaches to recommender systems using machine
learning exist. In order to understand how they compare when it comes to producing good
results, some studies were analyzed.

This section presents the criteria used to evaluate the algorithms and how they differ from
each other.

3.4.1 Evaluation Criteria

The criteria for selecting which studies to analyze was the range of algorithms and datasets
compared. The main goal was to understand which algorithms achieve the best and the
worst results.

Because of the lack of public studies on comparing these algorithms on grocery retail
datasets, broader applications were considered. The key concern was to include a notion of
user and data associated with it (e.g., movies, e-commerce, or health procedures).

The results achieved by different studies were analyzed in order to understand the most
powerful machine learning approaches to recommender systems.

3.4.2 Evaluating Machine Learning Algorithms

Extensive studies on the comparison between the behavior of different machine learning
algorithms in multiple fields and problems were performed. In (Fernández-Delgado et al.
2014), 179 classifiers were applied to 121 distinct datasets. These datasets vary from
commerce-related data to health-related data. More recently, in (Olson et al. 2017), 13
powerful state-of-the-art algorithms were analyzed on 165 different datasets representing
different classification problems.

Despite not being strictly related to retail, these studies have great importance since they
include valuable comparisons in multiple algorithms used to create recommender systems

36 Chapter 3. State of The Art

and include scenarios with similar data structures and problems. Other studies including
valuable information regarding the comparisons between classifiers are also analyzed.

Studies (Olson et al. 2017; Vanschoren et al. 2012) have shown that, with tuned hyperpa-
rameters, ensemble-based tree algorithms (namely gradient boosted trees, random forest,
and extra trees) tend to show the most promising results. Traditional SVM vectorial imple-
mentations have succeeded the first in the results.

Naive Bayes, on the other hand, is shown as achieving the worst results (Olson et al. 2017).
The kNN implementations, according to the same study, present middle-range results. Imple-
mentations of RNN (namely LSTMs and Gated Recurrent Unit (GRU)s) have also achieved
strong comparable results (Liu and Singh 2016; Sheil, Rana, and Reilly 2018).

The studies in (Fernández-Delgado et al. 2014) show a similar trend: they show ensemble-
based tree implementations, and SVMs as achieving an average best accuracy. Neural
network implementations have also obtained great results. Naive Bayes classifiers and re-
gressions are presented as having obtained the worst results. This study also shows a
difference between the behavior of different extensions of the same algorithm (e.g., different
extensions of neural networks or different ada boost classifiers).

These studies have confirmed that no algorithm performs the best in all the scenarios nor
datasets (Olson et al. 2017). Also, these studies confirm that different classifiers produce
different results in the same datasets (Fernández-Delgado et al. 2014). This means that it
is of paramount importance to adapt the chosen method to the current problem.

Although some algorithms tend to show better results than others on similar problems, it is
common to see the overall less-performing algorithms in a study outperforming the overall
best-performing in a specific problem or dataset (Olson et al. 2017).

Summing up, analyzing the results obtained by all these comparisons (Fernández-Delgado
et al. 2014; Olson et al. 2017; Vanschoren et al. 2012), one can conclude that boosted
tree algorithms, SVMs and neural network implementations present the overall best results.
Not only do these algorithms achieve the best average results across the different datasets,
but they also achieve lower fluctuations as far as best and worst results are concerned. In
addition, kNN and naive Bayes implementations seem to achieve overall lower results.

3.5 Technologies for Machine Learning-Based Recommender Sys-
tems

Several technologies or frameworks exist to help developing machine learning-based recom-
mender systems, reducing the effort in the development and deployment of machine learning
applications. Depending on the framework, they typically provide implementations for most
of the state of the art algorithms.

While some of the existing technologies are paid, the open-source community is big, in-
cluding software released and supported by big companies (Bloice and Holzinger 2016).
Some frameworks provide Application Programming Interface (API) for multiple program-
ming languages and for multiple deployment paradigms (such as traditional servers or mobile
phones).

3.5. Technologies for Machine Learning-Based Recommender Systems 37

The following subsections present some of the more relevant open-source frameworks to the
literature and include a synthetical comparison on them.

3.5.1 TensorFlow

TensorFlow 1 is an open-source library for numerical computation using data flow graphs,
created and developed by Google (Nguyen et al. 2019). It is popular in both the academy and
industry. TensorFlow was designed for large-scale distributed training and inferences. Since
it is based on data flow graphs, it includes nodes and edges: nodes represent mathematical
operations; edges represent multidimensional data arrays (also known as “tensors”).

Complementary to the original TensorFlow implementation, TensorFlow Lite, a lightweight
distribution, was provided, aiming at mobile and embedded devices (Nguyen et al. 2019).
These models have a small size but are known to provide good on-device inferences with low
latency. In addition, TensorFlow Lite supports hardware acceleration using Android Neural
Networks API.

Despite being written mostly in C++, TensorFlow is available for both Python and C++
(Bloice and Holzinger 2016; Nguyen et al. 2019), including developments for other pro-
gramming languages ongoing. TensorFlow provides the ability to run models on Central
Processing Unit (CPU) and Graphics Processing Unit (GPU) (even in multi-GPU settings),
and mobile, and has good scaling capabilities.

TensorFlow is a recent but powerful low-level library, making it possibly harder to use, but
capable of many optimizations and control (Bloice and Holzinger 2016).

3.5.2 SciKit-Learn

SciKit-Learn 2 is a general-purpose, open-source tool for Python, containing implementations
of the most popular machine learning algorithms (Bloice and Holzinger 2016). It started as
a project for a competition, and it is now one of the most popular technologies (especially in
the academy) when it comes to developing machine learning models, maintained by INRIA,
Telecom ParisTech, and occasionally Google (Nguyen et al. 2019).

SciKit-Learn uses NumPy and SciPy libraries as its core and provides multiple algorithms
on top of it as a higher-level tool. This technology is known for being well-updated and
supporting many subsets of problems, despite being relatively basic when it comes to neural
networks (Nguyen et al. 2019).

This library also provides several convenience utilities for pre-processing tasks (e.g., nor-
malization), as well as built-in sample datasets (Bloice and Holzinger 2016). Despite its
multipurpose character, SciKit-Learn has no native support for GPU (Nguyen et al. 2019).

1https://github.com/tensorflow/tensorflow
2https://github.com/scikit-learn/scikit-learn

38 Chapter 3. State of The Art

3.5.3 PyTorch

PyTorch 3 is an open-source machine learning library, available for Python, based on a
dynamic computational graph (Nguyen et al. 2019). It is developed and maintained by the
Facebook team, based on Torch, and written mostly in Python and C (Bloice and Holzinger
2016). It is popular in both the academy and industry.

PyTorch supports both CPU and GPU (Nguyen et al. 2019) and edge devices, and it is
popular for providing a simple way to build complex solutions. One of its most well-known
characteristics is a concept called “reverse-mode auto-differentiation”, which consists of en-
abling a neural network to behave differently by changing configuration without needing to
start from scratch.

This library has strengthened up by merging with Caffe2, joining the effort of powerful teams,
and the respect of both the academy and industry.

3.5.4 Keras

Keras 4 is an open-source machine learning library, available for Python and popular in both
the academy and industry (Nguyen et al. 2019). It works as a wrapper around lower-level
technologies, such as TensorFlow, R, or Theano (Bloice and Holzinger 2016). Keras is cur-
rently maintained by François Chollet and supported by companies like Google or Microsoft
(Nguyen et al. 2019).

In its core, models are represented as a sequence or a graph of stand-alone, adjustable
modules that are plugged together (e.g., cost functions or activation functions) (Nguyen
et al. 2019). It is possible to add new modules in a simple way.

Despite its design being deep-learning oriented, Keras has the ability to perform other general
mathematical computations since it is bound to lower-level frameworks. It is popular for
providing simple abstractions to less experienced users and having good documentation -
although this comes at the price of being less flexible and modular (Nguyen et al. 2019).

Keras supports both CPU and GPU (Bloice and Holzinger 2016). The support to edge
devices depends on the technology Keras is built on top of (e.g., using TensorFlow, it is
possible).

3.5.5 Other Popular Technologies

In addition to the previously analyzed technologies, some other important libraries are worth
mentioning, either for historical reasons or for its successful results. Some examples include
Caffe, Caffe2, Theano, and Weka.

Caffe 5 is an open-source deep learning framework, developed with speed and modularity in
mind (Nguyen et al. 2019). It is developed by BAIR and by community contributors. Caffe is
very detailed at describing neural networks, using a definition per-layer. It contains multiple
utility functions out of the box and provides users with the ability to create their own ones

3https://github.com/pytorch/pytorch
4https://github.com/keras-team/keras
5https://github.com/BVLC/caffe/

3.5. Technologies for Machine Learning-Based Recommender Systems 39

using C++. There are multiple forks of Caffe done by big companies, such as Intel Caffe 6

or Nvidia Caffe 7.

Caffe2 8 is an open-source, lightweight, modular and scalable deep learning framework, based
in Caffe, and developed by Facebook (Nguyen et al. 2019). This framework provides support
for GPU and edge devices (Caffe2go). This framework was merged with PyTorch, which is
analyzed in 3.5.3.

Theano 9 is an open-source, pioneer deep learning framework (Nguyen et al. 2019). It is
currently maintained by the University of Montreal, although the end of its development
was announced. Theano is available for Python, using NumPy at its core. It is a low-level
framework, popular for being very efficient and supporting both CPU and GPU (but not
mobile devices).

Weka 10 is an open-source deep learning framework, popular for its graphical user-interface
(Nguyen et al. 2019). Weka is developed in Java, and it is maintained by the University of
Waikato. It is commonly used in the academic world because of its recognition and simplicity
to use (Bloice and Holzinger 2016).

XGBoost 11 is an open-source, distributed a library designed to model flexible and efficient
gradient boosted trees (Nguyen et al. 2019). This library can be used in the programming
languages C++, Java, Python, R, and Julia. It supports computations on both CPU and
GPU, and it is well-known for its performance. Its downside is being restricted to one
algorithm.

LibSVM 12 is an open-source library for modeling support vector machines (Nguyen et al.
2019). It can be used with many programming languages such as Java, R, PHP, and Python,
and it is popular among the community. Its downsides are problems when scaling and its
restrictions to one algorithm.

These technologies are not detailed since, despite their relevance, they are not completely
aligned with the purposes of this dissertation, either by not being updated or for not being
the most appropriate tool for the studied problem or for the most promising algorithms.

3.5.6 Comparing Technologies for Machine Learning

From the study performed in the previous sub-sections, the table 3.1 was prepared, syn-
thesizing the most relevant technologies according to the literature for the current context.
Only open-source technologies were considered in order to guarantee control and the best
community support level.

Python is the programming language with a bigger presence among the languages supported
by these technologies. All of them are capable of being scaled into production, but not all
of them support GPU and edge computations: SciKit-Learn includes support for CPU only

6https://github.com/intel/caffe
7https://github.com/NVIDIA/caffe
8https://github.com/pytorch/pytorch/tree/master/caffe2
9https://github.com/Theano/Theano

10https://svn.cms.waikato.ac.nz/svn/weka/
11https://github.com/dmlc/xgboost
12https://github.com/cjlin1/libsvm

40 Chapter 3. State of The Art

and has no support for edge devices; Keras includes support for edge devices depending on
the technology it is bound to (e.g., using TensorFlow it is able to support mobile devices).

Recalling the large amounts of data in grocery retail, supporting GPU computations is of
paramount importance. In addition, supporting mobile phones can enhance the value of the
solution, despite not being a priority.

There are major differences in the way these technologies were developed: TensorFlow is a
lower-level library while SciKit-Learn and Keras provide a higher-level abstraction; PyTorch
is somewhere in the middle regarding this aspect. Also, all the technologies detailed include
good official documentation and powerful support from the community. TensorFlow and
Keras occupy the first and last position as far as the repository’s activity is concerned, in
this order. SciKit-Learn is the technology with less presence when it comes to industrial use.

Some benchmarks (Nguyen et al. 2019) performed on a wide set of machine learning prob-
lems and datasets (e.g., IMDb, ImageNet, and MNIST), comparing different frameworks on
different algorithms have shown similar accuracy and performance results. The study shows
TensorFlow and PyTorch as having obtained slightly better results on average, but not in
every scenario.

The slight differences in the results show that there is no clear winner (Nguyen et al. 2019).
Although those differences have not shown themselves as significant, the study does not
find a clear justification for its origin: it may be related to the framework itself or the
implementation of a specific algorithm.

Other benchmarks (V. Kovalev, Kalinovsky, and S. Kovalev 2016) performed using different
frameworks to build a deep learning solution for a classification problem (on Digits dataset)
have found similar results: there are differences in performance, accuracy, and even training
times, but they are residual. Keras and TensorFlow tend to fight for the first place, on
average, but it is also not a rule.

In addition, this study has compared the lines of code spent to solve the same problems and
concluded that lower-level frameworks (e.g., TensorFlow or Theano) require fewer lines of
code. Again, as in the benchmark performed in (Nguyen et al. 2019), the differences may
have to do with the framework itself.

This table synthesizing how the different technologies handle different criteria does not
produce a winner nor a loser, because all the technologies behave similarly. The benchmarks
regarding their behavior do not present major differences but show TensorFlow and Keras
as slightly more performant technologies. Also, the lack of support for GPU and mobile
computations, and its reduced use in industry, make SciKit-Learn into a vulnerable situation.

TensorFlow, Keras, and PyTorch are, thus, the technologies that are more prepared for the
current scenario, according to the literature.

3.6. Summary 41

Table 3.1: Comparison between TensorFlow, SciKit-Learn, Keras and Py-
Torch

TensorFlow SciKit-
Learn Keras PyTorch

What programming languages
does it support?

C++,
Python

Python Python, R Python

Is it able to scale in production? Yes Yes Yes Yes
Is it open-source? Yes Yes Yes Yes

Does it support both CPU and
GPU?

Yes
No, CPU

only
Yes Yes

Does it include support for edge
devices?

Yes No

Yes,
depending
on the

technology

Yes

Is it a low-lever or high-level
technology?

Low-level High-level High-level “Mid”-level

Does it have good
documentation?

Yes Yes Yes Yes

Does it have good support from
the community?

Yes Yes Yes Yes

Where is it mostly used?
Academy

and
Industry

Academy
Academy

and
Industry

Academy
and

Industry

3.6 Summary

Recommender systems use historical data in order to generate predictions (Adomavicius
and Tuzhilin 2005). To build such systems, heuristics, data mining, and machine learning
algorithms can be used. Some issues may arise when training a prediction model, mostly
related to the data quality or quantity, the chosen approach, or the training methodol-
ogy (Jariha and S. K. Jain 2018). Typical issues include cold-starts, sparsity, overfitting,
scalability, or long-tail. Authors classify recommender systems according to three major
categories: content-based recommendations, collaborative recommendations, and hybrid
recommendations (Adomavicius and Tuzhilin 2005). Examples of hybrid recommendations
are utility-based, knowledge-based, demographic-based, interactive, and context-based rec-
ommendations (Burke 2002; Jariha and S. K. Jain 2018).

In machine learning, algorithms make inferences from data to learn and generate predictions
(Shalev-Shwartz and Ben-David 2014). Learning is described as converting experience into
knowledge, training data corresponds to the experience, and the output of a model over
unseen data is considered knowledge.

According to the nature of the interaction, machine learning problems are typically classified
into three main categories: unsupervised learning, supervised learning, and reinforcement
learning (Shalev-Shwartz and Ben-David 2014). In unsupervised learning, algorithms are
used to find patterns in unlabeled data. In supervised learning, models learn from datasets,
where both the input and output information is known (Gama et al. 2015). Supervised

42 Chapter 3. State of The Art

learning problems can be categorized as classification problems, regression problems, or
deep learning (Bengio, Courville, and Vincent 2014). In reinforcement learning, intelligent
agents learn from their experience and receive signals from an environment to help with the
decisions (Wang and Zhan 2011).

Machine learning systems can also be classified according to their ability to learn upon new
data (Gron 2017). When a model cannot learn incrementally when deployed, it is called an
“offline” or “batch” algorithm. On the other hand, if the model can learn in an incremental
way when deployed, it is called an “online” algorithm.

The recommendations predicted by a machine learning model can be evaluated according
to different mathematical metrics obtained. When evaluating regression algorithms, typical
metrics include: mean absolute error, mean square error, and root mean square error (S.
Gupta and Nagpal 2015; Lerato et al. 2016). When evaluating classification algorithms,
typically, four indicators are used (Gama et al. 2015): true positives, true negatives, false
positives, and false negatives. These indicators are used to calculate important metrics,
such as accuracy, precision, recall, and f1-score (S. Gupta and Nagpal 2015; Shalev-Shwartz
and Ben-David 2014).

Studies have shown that, despite being essential to adjust the algorithm to the problem
being solved, the performance and results achieved by a machine learning model can be
highly improved by manipulating the hyperparameters of the algorithm (Fernández-Delgado
et al. 2014; Olson et al. 2017).

Besides the many machine learning approaches existent, there are also recommender sys-
tems developed using approaches like tailored heuristics, pattern mining, and association
rules (Adomavicius and Tuzhilin 2005; Jooa, Bangb, and Parka 2016). Heuristics are cus-
tomized algorithms designed to solve a specific problem, being typically fast but non-optimal.
Pattern mining models are used to discover temporal patterns within the information or fig-
ure out subsequences within sequences of data (e.g., recurrent purchases). Association rules
represent relationships between items of a dataset, allowing the identification of items or
sets of items that are more likely to be bought when other certain items are bought.

Several studies comparing the results achieved by different machine learning algorithms in
multiple problems and datasets with different hyperparameter tunings have achieved similar
results. The results obtained in (Olson et al. 2017; Vanschoren et al. 2012) have shown
that ensemble-based tree algorithms (namely gradient boosted trees, random forests, and
extra trees) tend to obtain the most promising results. Vectorial implementations (namely
SVMs) occupy the next place on the podium. Neural networks also present good results.
Naive Bayes, on the other hand, is shown as achieving the overall worst results among all
the compared techniques (Olson et al. 2017).

Multiple technologies or frameworks can be used to develop machine learning algorithms for
recommender systems. The most relevant technologies, according to the literature, include
TensorFlow (Nguyen et al. 2019), PyTorch, Keras, and SciKit-Learn (Bloice and Holzinger
2016).

43

Chapter 4

Solution Description

This chapter describes the solution proposed in this dissertation for a machine learning-
based recommender system for grocery retail. It starts with a requirement analysis, where
domain concepts, functional and non-functional requirements are analyzed. The solution
design is, hereafter, described, where the different architectural proposes are presented and
analyzed, use cases are designed, a deployment view is proposed, the modeling methodology
is described, and technologies presented. A summary of all the presented topics is present
at the end of this chapter.

4.1 Requirement Analysis

This section presents an analysis of the different requirement artifacts. It is started by an
analysis of the domain concepts associated with a recommender system for grocery retail,
translated into a domain model. Functional requirements are then presented as use cases.
The section is concluded by an analysis of the non-functional requirements, based on the
FURPS+ model (Eeles 2004).

4.1.1 Domain Concepts

A recommender system for grocery retail deals with different actors, entities, and interactions
throughout the different steps to provide custom recommendations to a specific customer.

The most important roles are played by two main actors: customers and the recommender
system. Customers are responsible for starting the recommendation request and for viewing
the results. The system is responsible for keeping the information up to date, training the
model periodically, and providing a way for customers to have tailored recommendations.

Retailers could also be seen as actors, but since they do not execute a specific action in
the solution, they are not considered. Retailers are only responsible for providing access to
information consumed by the system.

The figure 4.1 represents a possible representation for the domain model of a grocery retail
recommender system, with the main domain concepts and the interactions between them.

Customers perform different orders, containing several products. Each product belongs to
a certain department and a certain aisle. A shopping history represents several customers
and all their orders.

44 Chapter 4. Solution Description

-identi�er

Customer

-date

Order

-identi�er

Product

ShoppingHistory

-identi�er

Department

-identi�er

Aisle

-date

ShoppingList

RecommenderSystem

1 1..*

1..*

1

0..*

1..*

1..*

1

1

1..*

1

0..*

1

0..*

0..*

1..*

1..*

1

1..*

1

1..*

0..* 1..*

1

originates

consults

accesses predicts

contains

creates

belongs tobelongs to

contains

contains

contains

performs

Powered ByVisual Paradigm Community Edition

Figure 4.1: Domain model for a recommender system in grocery retail

In addition to orders, customers can also prepare shopping lists containing different products.
These shopping lists can also be turned into orders.

The recommender system accesses the shopping history, containing information regarding
customers and orders. It is also able to predict shopping lists for the different customers.

4.1.2 Functional Requirements

Functional requirements describe the main characteristics of the system and its core func-
tionalities, and they were identified with the proponent organization. Each functional re-
quirement is represented as a Use Case (UC) and referenced by the first letter of its actor
and by a number (e.g., UC_C1 is the first use case and has the customer as the actor, and
UC_S3 is the third use case and has the recommender system as the actor).

Customer Use Cases

• UC_C1 - View a shopping list recommendation

• UC_C2 - View an item recommendation

Recommender System Use Cases

• UC_S3 - Update the shopping history

• UC_S4 - Train and update the model

Use case UC_C1 is the main use case in the solution, responsible for generating a recom-
mendation for a complete shopping list for a specific customer, representing its needs at a
particular time. Use cases UC_S3 and UC_S4 are crucial for the solution to work, as they
represent the support processes of acquiring the data, adapting it to a format feasible to be
learned by the machine learning algorithm and the training itself, followed by the update of
the model used.

Use case UC_C2, however, represents a functionality that can value the solution but is not
the main target of this dissertation. By providing this feature, the recommender system

4.1. Requirement Analysis 45

would be stronger as it would suggest shopping lists (target of this dissertation) and the
next-items to buy.

The use cases of the solution are presented below, grouped by their actor. They are also
synthesized in the use case diagram in figure 4.2. Also, details on the realization of each
use case can be found in section 4.2.2.

UC_C1 - View a shopping list recommendation UC_S3 - Update the shopping history

UC_S4 - Train and update the modelUC_C2 - View an item recommendationCustomer Recommender
System

Powered ByVisual Paradigm Community Edition

Figure 4.2: Use case diagram for the dissertation

4.1.3 Non-Functional Requirements

Non-functional requirements are analyzed using the FURPS+ model, which succeeds the
FURPS model (Eeles 2004). In addition to the original non-functional requirements (usabil-
ity, reliability, performance, and supportability), the successor model brings the specification
of design, implementation, interface, and physical constraints. Despite the solution being
more oriented to a concrete problem and result, non-functional requirements assume an
important role in this solution since they capture how the system is expected to behave.

The sections below present the non-functional requirements for this project, presented using
the FURPS+ model.

Usability

Usability represents the requirements based on the interface with the user (Eeles 2004).
Since the solution is a module capable of being integrated by different stakeholders, its core
is not to include a graphical user interface - instead, the interface assumes the form of an
API. The usability requirements for this project are presented below.

1. The communication interface should be clearly documented and simple to use;

2. The system should treat errors and unexpected situations smoothly, providing clear
details regarding the operations.

Reliability

Reliability represents how a system is said to behave, measuring aspects such as its avail-
ability, precision, and failure recovering (Eeles 2004). The reliability requirements for this
project are presented below.

1. The system should keep itself available after a previous error;

2. The system should treat errors that may occur inside internal operations/requests,
without propagating it to other components.

46 Chapter 4. Solution Description

Performance

Performance represents how a system behaves under different usage loads, including concerns
such as response times, load time, and failure recovering (Eeles 2004). The performance
requirements for this project are not measurable in a quantifiable way since there are no
specific requirements. However, it is valuable for the system to be able to be used without
disrupting the user experience on the integrator side. This way, the performance requirements
for this project are simplified below.

1. The system should provide recommendations in a feasible amount of time, in order
not to deteriorate the user experience;

2. Metrics about the way a model performs against a training set should be captured and
evaluated.

Supportability

Supportability represents how a system is concerned about language limitations, testability,
adaptability, maintainability, compatibility, and scalability (Eeles 2004). The supportability
requirements for this project are presented below.

1. The system should be ready to a replacement of the machine learning model with
another one, without affecting other components or integrators;

2. The system should be ready for integration with retailers with different historical data
representations.

Design Constraints

Design constraints limit the way a system is designed upfront (Eeles 2004). The design
constraints for this project are presented below.

1. The recommendations engine should be developed using a machine learning algorithm;

2. The recommendations should be abstracted behind an API;

3. The architecture should support periodic dataset updates and training of new models;

4. The usage of an online or offline approach should be based on the ease of integrating
with retailers.

Implementation Constraints

Implementation constraints affect the way a solution is built, possibly impacting the solution
design (Eeles 2004). The implementation constraints for this projects are listed below.

1. No personal information regarding a customer should be used by the solution - only a
unique identifier is allowed;

2. Unit, integration and end-to-end tests should be developed with the solution.

4.2. Solution Design 47

Interface Constraints

Interface constraints limit the way a component communicates with another one (Eeles
2004). The interface constraints for this project are presented below.

1. The recommendations API should provide a REpresentational State Transfer (REST)
interface.

4.2 Solution Design

This section presents the solution designed after understanding the requirements. It starts
by presenting alternatives for the architecture to be used and considerations of its choice.
It is followed up by the realization of each use case, an analysis of the deployment view
for the chosen architecture, and the modeling methodology adopted. It is concluded by a
presentation of the technologies used for each important module.

4.2.1 Architecture

From the requirements, one can conclude that the system needs to take care of two main
activities: acquire updated data regarding the customer’s shopping history and suggest
personalized shopping list recommendations.

To accomplish the data acquisition process, the system needs access to data exposed by
retailers, containing their customer’s shopping history, either via private APIs or private data
storages. This information is then processed within the system itself and used to train a
machine learning model. The model learns from this information and uses it to generate
predictions upon future requests.

For customers to view personalized recommendations, the model must be exposed by a
private API that encapsulates its internal logic. In addition, to provide an extra layer of
security, authorization, and, if necessary, request caching, an API should be exposed. This
should be the main entry point with which customers interact with.

The core modules of the architectures proposed are, thus:

• Customer Device - The device used by the customer to interact with the system -
despite being an external module, it is simulated in this dissertation;

• Grocery Retailer API - API provided by the retailer to expose their customer’s data
- despite being an external module, it is also simulated in this dissertation;

• Customer Loyalty DB - Retailer’s Database (DB), representing its customer’s loyalty
information;

• Customer Authorization Service - Retailer’s authorization service, used by the rec-
ommender system to make sure the customers are authorized to access the recom-
mendations - despite being an external module, it is simulated in this dissertation;

• Recommendations Front-end Service - Main API, responsible for exposing the rec-
ommender system to retailers in a secure and clear way;

48 Chapter 4. Solution Description

• Machine Learning Model - Component responsible for generating tailored predictions
for a customer; trained and used by the Machine Learning Model Interface;

• Machine Learning Model Interface - API responsible for training and exposing the
Machine Learning Model, and updating the internal Shopping History - accessible only
for scheduled support tasks or via the Recommendations Front-end Service;

• Shopping History - Internal representations of the shopping history, used to train the
model and generate predictions for the customers.

With the different architectural modules identified, different architectures were thought,
analyzed, and designed. This section includes three different architectures that were explored
in order to solve this problem: an offline learning approach (see section 3.2.4), and two online
learning approaches differing in the way they provide data updates (see section 3.2.4).

Architectural Proposal 1

This architecture proposal, represented in figure 4.3, represents an offline learning approach
(see section 3.2.4). In this alternative, the learning process occurs via a scheduled task
responsible for acquiring new data and training (and evaluating) a new version of the model.

Grocery retailers, in this approach, provide an API that exposes loyalty information regarding
their customers (component Grocery Retailer API). This module is consumed by the Machine
Learning Model Interface, which digests it and stores it in the local Shopping History.

The generated model (represented via the component Machine Learning Model) is exposed
via its private API (component Machine Learning Model Interface), and it is consumed by
the public Recommendations Front-end Service.

Customers interact with the system by invoking the public Recommendations Front-end
Service, which verifies its authorization against the Customer Authorization Service. This
service calls, after successful validation, the Machine Learning Model Interface, which then
interacts with the Machine Learning Model to generate predictions.

<<component>>

<<external>>

Customer Device

<<component>>

Recommendations Front-end Service

<<component>>

Machine Learning Model Interface

<<component>>

<<database>>

Shopping History

<<component>>

<<external>>

Customer Authorization Service

<<component>>

<<external>>

Grocery Retailer API

<<component>>

<<external>>

<<database>>

Customer Loyalty DB

<<component>>

<<model>>

Machine Learning
Model

Recommendations API

DB Driver/CSV

Authorization API

DB Connector

Retailer API

ML Recommendations API

Model Interface

Powered ByVisual Paradigm Community Edition

Figure 4.3: Architecture proposal number 1 (adopted architecture)

4.2. Solution Design 49

Architectural Proposal 2

This architecture proposal, represented in figure 4.4, represents an online learning approach
(see section 3.2.4). In this alternative, the learning process is done after a specific call from
the retailer API to the Recommendations Front-end Service, informing about new data.
This data is then processed, validated, and sent to the Machine Learning Model Interface,
where it is used to train the model. Since this is an online approach, no new model would
be generated nor deployed, just updated.

Grocery retailers, in this approach, still provide an API that exposes loyalty information re-
garding their customers (component Retailer API). This module is consumed by the Machine
Learning Model Interface, which digests it and stores it in the local Shopping History. It is
mainly used for initial model training.

The generated model (representing via the component Machine Learning Model) is still
also exposed via its private API (component Machine Learning Model Interface), and it is
consumed by the public Recommendations Front-end Service.

Customers interact with the system by invoking the public Recommendations Front-end
Service, which verifies its authorization against the Customer Authorization Service. This
service calls, after successful validation, the Machine Learning Model Interface, which then
interacts with the Machine Learning Model to generate predictions.

<<component>>

<<external>>

Customer Device

<<component>>

Recommendations Front-end
Service

<<component>>

Machine Learning Model
Interface

<<component>>

<<database>>

Shopping History

<<component>>

<<external>>

Customer Authorization Service

<<component>>

<<external>>

Grocery Retailer API

<<component>>

<<database>>

<<external>>

Customer Loyalty DB

<<component>>

<<model>>

Machine Learning Model

Recommendations API

DB Driver/CSV

Authorization API

DB Connector

Retailer API

ML Recommendations
API ML Updates API

Updates API

Model Interface

Powered ByVisual Paradigm Community Edition

Figure 4.4: Architecture proposal number 2

Architectural Proposal 3

This architecture proposal, represented in figure 4.5, represents also an online learning ap-
proach (see section 3.2.4). In this alternative, the learning process is done on-the-fly, while
the customer is interacting with its Customer Device, running software from the retailer.

50 Chapter 4. Solution Description

In this scenario, the software is responsible for informing the Recommendations Front-end
Service about the creation of a new purchase. This data is then processed, validated, and
sent to the Machine Learning Model Interface, where it is used to train the model, simi-
larly to alternative 2 (figure 4.4). Since this is an online approach, no new model would be
generated nor deployed, just updated.

Grocery retailers, in this approach, still provide an API that exposes loyalty information
regarding their customers (component Grocery Retailer API). This module is consumed by
the Machine Learning Model Interface, which digests it and stores it in the local Shopping
History. It is mainly used for initial model training.

The generated model (representing via the component Machine Learning Model) is still
also exposed via its private API (component Machine Learning Model Interface), and it is
consumed by the public Recommendations Front-end Service.

Customers interact with the system by invoking the public Recommendations Front-end
Service, which verifies its authorization against the Customer Authorization Service. This
service calls, after successful validation, the Machine Learning Model Interface, which then
interacts with the Machine Learning Model to generate predictions.

<<component>>

<<external>>

Customer Device

<<component>>

Recommendations Front-end
Service

<<component>>

Machine Learning Model
Interface

<<component>>

<<database>>

Shopping History

<<component>>

<<external>>

Customer Authorization Service

<<component>>

<<external>>

Grocery Retailer API

<<component>>

<<database>>

<<external>>

Customer Loyalty DB

<<component>>

<<model>>

Machine Learning Model

Recommendations
API

DB Driver/CSV

Authorization API

DB Connector

Retailer API

Updates API

ML Recommendations
API

ML Updates API

Model Interface

Powered ByVisual Paradigm Community Edition

Figure 4.5: Architecture proposal number 3

Adopting an Architectural Proposal

As detailed in the previous sections, the main difference regarding the first proposal (figure
4.3), the second (figure 4.4) and the third one (figure 4.5) is the learning methodology (cf.
3.2.4). The first alternative uses an offline learning approach, while both the second and
third alternatives use online approaches.

As studied in section 3.2.4, both learning alternatives provide good results. The frequency
of data updates is something retailer-specific, which is important to consider, as it may be
translated into a difficulty to take advantage of online approaches.

4.2. Solution Design 51

Also, all the alternatives require an API from the grocery retailer to expose its shopping
history. The alternatives 2 and 3 require an additional effort from the retailer to publish
updates regarding new shopping transactions. Alternative 1 deals with this in a less-efficient
way, but comparably effective, since the Machine Learning Model Interface consumes the
Grocery Retailer API to acquire new information, just like it does while training the model.

With this constraints in mind, alternative 1 (see section 4.3) is adopted. The proponent
organization supports the decision.

4.2.2 Use Cases Realizations

This section presents the use-cases realization for the use cases identified in section 4.1.2.
For each of these uses cases, a sequence diagram is presented, helping the identification of
the components and interactions designed to fulfil the requirement (Bittner 2016).

View a Shopping List Recommendation

Obtaining a shopping list recommendation is the target of this dissertation and the core of
the solution, and corresponds to the use case UC_C1 (see section 4.1.2). It represents
the interaction of a customer using the retailer’s specific software to view a shopping list
recommendation.

The figure 4.6 represents the sequence diagram that describes this process. The customer
starts the flow using its own device, and a call to the public Recommendations Front-end
Service is executed. The Recommendations Front-end Service validates the authorization
against the Customer Authorization Service and, if it is valid, executes a request to the
Machine Learning Interface. This API loads the machine learning model and uses it to
obtain a prediction for a shopping list. The information is fed back to the customer.

alt

[validationResult == true]

Machine Learning ModelMachine Learning Model
Interface

Customer Authorization
Service

Recommendations
Front-end Service

Customer

Customer Device

1.2: list

1.4: ok

1.1: GET

/recommendations/basket/customer/

customer_id

1.1.1: POST /auth/customer/validate/customer_id

1.1.3: GET /recommendations/basket/customer/customer_id

1.1.2: validationResult

1.1.3.5: shoppingList

1.1.3.2: predict(predictingDataset)

1.1.3.3: predictins

1.1.3.1: preparePredictingDataset()

1.1.3.4: �lterPredictions()

1.3: display(list)

1: start prediction generation

Powered ByVisual Paradigm Community Edition

Figure 4.6: Sequence diagram for use case UC_C1

View an Item Recommendation

Generating a prediction for the next item in the list is not a core functionality of this solution.
However, it is something that could be accomplished by training another machine learning
model, analogously to what it is done for a full-sized list. It is represented by the use case

52 Chapter 4. Solution Description

UC_C2 (see section 4.1.2). The use case represents the interaction of a customer, using the
retailer’s specific software, in order to see desired items and obtain item recommendations.

The figure 4.7 represents the sequence diagram that describes this process. The customer
starts the flow using its own device, after using the retailer software to express interest in
an item (e.g., by viewing it or adding it to a shopping list). At this moment, a call to the
public Recommendations Front-end Service is executed. The Recommendations Front-end
Service validates the authorization against the Customer Authorization Service and, if it is
valid, executes a request to the Machine Learning Interface, informing about the user and
the current item. This API loads and uses the machine learning model to obtain a prediction
for the next item to recommend. The information is fed back to the customer.

loop

alt

[while manipulating shopping list]

[validationResult == true]

Machine Learning ModelMachine Learning Model
Interface

Customer Authorization
Service

Recommendations
Front-end Service

Customer

Customer Device

1.2: nextItem

1.1: POST

/recommendations/item/customer/

customer_id

1.1.3.3: predictions

1.1.3.2: predict(predictingDataset)

1.1.3.5: nextItem

1.1.3.4: �lterPredictions()

1.1.3.1: preparePredictingDataset()

1.1.3: GET /recommendations/item/customer/customer_id

1.1.2: validationResult

1.1.1: POST /auth/customer/validate/customer_id

1.4: ok

1.3: display(nextItem)

1: expresses interest in an item

Powered ByVisual Paradigm Community Edition

Figure 4.7: Sequence diagram for use case UC_C2

Update the Shopping History

Obtaining updates regarding shopping history is a crucial part of the flow. This functionality
is represented by the use case UC_S3 (see section 4.1.2), and it represents the interaction
of an automatic task with the Machine Learning Model Interface. This task triggers the
update of the internal Shopping History component with the new data.

Figure 4.8 represents the sequence diagram that describes this process. The Machine Learn-
ing Model Interface executes a request to Grocery Retailer API in order to obtain new histor-
ical data. Since this component is retailer-specific, it does internal logic in order to provide
access to the requested information and return it. The Machine Learning Model Interface
digests the new data and updates the internal Shopping History.

Machine Learning Model

Interface

Recommender System

Grocery Retailer API Shopping History

1.5: update result

1.4: result

1.3: update(newShoppingHistory)

1.2: newShoppingHistory

1.1: getNewShoppingHistory()

1: updateDataset()

Powered ByVisual Paradigm Community Edition

Figure 4.8: Sequence diagram for use case UC_S3

4.2. Solution Design 53

Train and Update the Model

Training a new model and updating the running instance is of paramount importance to
the problem since it allows the recommender system to know new data and improve. This
functionality is represented by the use case UC_S4 (see section 4.1.2). This use case
represents the interaction of an automatic task with the Machine Learning Model Interface,
which uses the existing data to train, evaluate, and deploy a new model.

Figure 4.9 represents the sequence diagram that describes this process. The Machine Learn-
ing Model Interface uses the data in the internal Shopping History component to extract
features and prepare the training dataset. This dataset is used to train a new model and a
portion of it to evaluate its quality. If the model meets the quality criteria (e.g., performs
better than the previous one), it can be deployed - replacing the previous version.

alt

[model is good]

Recommender System

Machine Learning Model Interface Shopping History

model : Machine Learning Model

Model Deployment

1.10: evaluationResult

1.9: evaluate(trainingSet)

1.8: trainingResult

1.7: train(trainingSet)

1.2: shoppingHistory

1.12: update result

1.11: deployNewModel(model)

1.3: extractFeatures()

1.4: generateTrainingSet(shoppingHistory, features)

1.6: create

1.5: trainModel(trainingSet)

1.1: getShoppingHistory()

1: updateModel()

Powered ByVisual Paradigm Community Edition

Figure 4.9: Sequence diagram for use case UC_S4

4.2.3 Deployment

After adopting an architectural approach (see section 4.2.1), the solution deployment was
designed. Figure 4.10 represents a deployment view for the adopted architectural proposal.

Since the customer is expected to use a retailer’s specific software, this module is generically
represented in its own environment. The Recommendations Front-end Service, since it
assumes a major role in the solution (mostly regarding performance and security constraints),
is deployed in its own Linux Server. It accepts communication using HTTP requests.

Both the Authorization API and the Retailer API are external components to the solution,
being, thus, represented as individually deployed in their specific machines. Both of these
components are expected to accept HTTP requests.

The Machine Learning Module, as well as its API and Shopping History, are planned to be
deployed inside another Linux Server. It is also expected to accept HTTP requests.

The Linux servers should preferably run a Ubuntu distribution but could equally be a container
running on some virtualization infrastructure or cloud service.

54 Chapter 4. Solution Description

Device N : Computer / Mobile Phone

<<component>>

Retailer App/Website

Server 1 : Linux Server

<<component>>

Recommendations
Front-end Service

Server 2 : Generic Server

<<component>>

Authorization API

Server 3 : Linux Server

<<component>>

Machine Learning Model

<<component>>

Shopping History

Server 4 : Generic Server

<<component>>

Retailer API

<<component>>

Customer Loyalty DB

<<component>>

Machine Learning Model
Interface

HTTPS

HTTPS

HTTPS

HTTPS

Powered ByVisual Paradigm Community Edition

Figure 4.10: Deployment view of the solution

4.2.4 Machine Learning Methodology

To facilitate the different processes involved, from understanding the problem to deploying
a final solution, the solution development was based on and adapted from the CRISP-DM
(CRoss Industry Standard Process for Data Mining) methodology (Wirth and Hipp 2000).

This methodology was proposed for the development of data mining projects, independent
from business and sectors, and presents a reliable and efficient iterative and cyclic flow that
can be adapted to different situations (Wirth and Hipp 2000). It can also serve as a base for
machine learning projects. The figure 4.11 describes its different phases and the relationships
between them.

Figure 4.11: Phases of the CRISP-DM model (Wirth and Hipp 2000)

Business Understanding corresponds to understanding the problem, goals, and requirements,
and converting them into a data-related problem (Wirth and Hipp 2000) - in this dissertation,
it can be seen when understanding the problem and designing a generic solution. Data
Understanding corresponds to collecting, exploring, and verifying the quality of data (Wirth
and Hipp 2000) - it can be seen when collecting and exploring a retailer’s dataset.

4.3. Summary 55

Data Preparation corresponds to the data selection, cleaning, construction of new attributes,
and transformation (Wirth and Hipp 2000) - it is present when analyzing the data and
engineering features for a retailer dataset, during integration. Modeling corresponds to
selecting and applying a model and calibrating the parameters (Wirth and Hipp 2000) - it
can be seen when adopting a machine learning model and tuning its hyperparameters.

Evaluation corresponds to the evaluation and review of the used models (Wirth and Hipp
2000) - it can be seen when evaluating the quality of the solution on a retailer’s dataset.
Deployment corresponds to organizing and presenting the knowledge so that the customer
can use it (Wirth and Hipp 2000) - in this dissertation, it is seen when deploying the machine
learning model as part of the recommender system’s architecture.

4.2.5 Adopted Technologies

The study on the state of the art of frameworks for the development of machine learning
models has led to the identification of three possible technologies: Tensorflow, Keras, and
PyTorch (see section 3.5.6). TensorFlow was the adopted framework as it has excellent
recognition in the field and a big community around it, and it supports an ample amount of
machine learning algorithms. The proponent company and the advisors also supported this
choice.

The study on the state of the art of algorithms for machine learning models (see section
3.4.2) has evidenced three types of algorithms as being the most promising ones to deal
with the flexibility and agitation associated with grocery retail (see section 3.2): gradient
boosted trees, SVMs and neural networks. The proposed architecture is machine learning
model-agnostic, thus the solution is adaptable to different TensorFlow machine learning
algorithms. The choice should be based on comparisons between the different approaches,
when integrating with a retailer dataset (as performed in the case study of section 6.2).

The chosen programming language for the TensorFlow model and the different services was
Python because of its flexibility, simplicity, and recognition in the field. Some auxiliary scripts
for the different testing moments were done using both PHP and Python. A demonstrator
(simulating the software in a customer device) was developed using JavaScript and HTML.
Unit and functional tests of the services were developed using pytest, which is a simple
testing framework for Python.

The services expose HTTP APIs using the internal Python HTTP modules. These mod-
ules provide a multi-threaded HTTP server, allowing these APIs to assure responsiveness.
The different services communicate using JavaScript Object Notation (JSON). Data opera-
tions are performed using the frameworks pandas and NumPy, two Python frameworks that
combined provide access to mathematical operations over large datasets.

The main technologies can also be found synthesized in the appendix A.

4.3 Summary

A recommender system for grocery retail deals with different entities and interactions through-
out the different steps. The most important roles are played by two actors: customers and
the recommender system itself.

56 Chapter 4. Solution Description

Customers perform orders with different products. Several customers and their orders on a
retailer represent a shopping history. Customers can also prepare shopping lists, which can
be translated into orders. They can also interact with the recommender system in order to
obtain tailored recommendations. The recommender system, on the other hand, has access
to the shopping history so it can predict shopping lists.

Functional requirements are addressed as use cases, and they are split into two different
types: customer use cases and recommender system use cases. The use cases for cus-
tomers are: view a shopping list recommendation (UC_C1); view an item recommendation
(UC_C2). The use cases for the recommender system are: update the shopping history
(UC_S3); train and update the model (UC_S4). Use case UC_C2 represents an additional
functionality designed to value the solution

Non-functional requirements are addresses using the FURPS+ model, which succeeds the
FURPS model (Eeles 2004). Despite the solution being more oriented to a concrete prob-
lem, different non-functional requirements are identified, belonging to the FURPS+ cate-
gories of usability, reliability, performance, supportability, design constraints, implementation
constraints, and interface constraints.

The designed solution involves different modules. Some of these modules are related to
the recommender system itself, while others are retailer-specific. The core modules for
the recommender system are Recommendations Front-end Service, Customer Authorization
Service, Machine Learning Model, Machine Learning Model Interface, and internal Shopping
History representation.

When designing the architecture of the solution, different approaches were considered, dif-
fering in the learning methodology and in the way data is updated. Two online approaches
and one offline approach were studied. However, difficulties inherent in having small but fre-
quent data updates are an obstacle to using online approaches. Also, one online approach
creates a need for the retailer to develop a specific piece of software to publish data updates
instead of just providing access to it, which can also difficult the adoption of such a system.
With these conditions present, the adopted methodology was an offline approach.

Deployment is thought with modularity and maintenance in mind. A retailer-specific app,
deployed in its environment, communicates via HTTP with the Recommendations Front-end
Service, which is also deployed in its own Linux environment. Both the Authorization API
and Retailer API are external components used by the recommender system, so they are also
deployed in their environments, and the communication with these two components is also
performed via HTTP. The Machine Learning Module and its API and history are deployed
in another Linux server, providing communication via HTTP.

The different processes involved when developing the machine learning model, from under-
standing the problem to deploying a solution, were based on the CRISP-DM methodology.

Python was chosen as the primary programming language for the different components
developed. Unit and functional tests are developed using pytest, a testing framework for
Python. The most promising machine learning algorithms to be considered when integrating
with a retailer were identified: gradient boosted trees, SVMs, and neural networks. The
adopted machine learning framework was TensorFlow.

57

Chapter 5

Solution Implementation

The implemented solution consists of a prototype for a recommender system ecosystem,
integrating the different actors and processes involved. The solution can provide customers
with tailored recommendations on-demand, as well as operations that simulate the periodic
updates associated with the dataset and model versions. It simulates a real-world scenario
where retailers release data updates, and a newer version of the model can be generated to
work with more recent results.

The adopted architecture presents a general approach for the solution, allowing integra-
tion with different grocery retailers. Also, by using TensorFlow, the vast majority of the
flows regarding data preparation (detailed in this chapter) is common to the different algo-
rithms, allowing the solution to support distinct machine learning algorithms if the business
conditions or the dataset lead to such decision.

Integrating with a grocery retailer requires the adoption of their dataset. This means that
the features extracted from the data may suffer some modifications. Also, the algorithm
hyperparameters should be tuned to better perform in the retailer dataset. The different
components and pipelines were designed to support the integration process. A specific case
study, where the solution is integrated with a retailer dataset, is studied later, in section 6.2.

This chapter details the development of the different architectural components present in the
recommender system, providing a complete view of the solution. It also covers the journeys
of processing the dataset and extracting relevant features and the different software tests
that supported the implementation. A summary of the different concerns concludes the
chapter.

5.1 Architectural Components

The adopted architecture (see section 4.2.1) presents a way of integrating different compo-
nents and data in order to create a complete solution for a recommender system based on
a machine learning model. These components may be provided explicitly by the retailer or
be a specific part of the solution.

The Recommendations Front-end Service works as the gate for the solution, providing ex-
ternal access to the recommender system. The Machine Learning Model Interface exposes
the Machine Learning Module (which corresponds to the main element of this disserta-
tion) for recommendations and deals with scheduled tasks related to training of new models
and shopping history data updates. These constitute the most critical components of the
recommender system.

58 Chapter 5. Solution Implementation

Some components, namely the Customer Authorization Service, Customer Device, Grocery
Retail API, and Customer Loyalty DB, represent elements that, despite playing an important
role in the solution, are complementary. The Customer Authorization Service is responsible
for making sure that recommendations are authorized. The Customer Device is used to
start the recommendation flow and display the recommendations and is retailer-specific.
The Grocery Retail API and Customer Loyalty DB are also retailer-specific components that
represent a way for the solution to obtain and update the internal Shopping History.

Regardless of the contribution of each component to the solution, the different compo-
nents were developed and tested with the best practices of software development in mind.
This section details the different components on an internal level regarding the way they
communicate with each other.

5.1.1 Recommendations Front-end Service

The Recommendations Front-end Service works as the entry point for the solution. The
retailer app, in the customer device, communicates with this service in order to obtain tailored
shopping list recommendations for that specific customer. This service communicates with
the Customer Authorization Service in order to make sure the customer is allowed to, and
with the Machine Learning Model Interface to obtain the shopping list recommendations.

This service was developed using Python, and it is organized in a simple structure with
different packages, keeping the responsibilities segregated. An API layer communicates with
a controller layer, which communicates with different utility entities. Business exceptions
and configurations are common components shared by the different layers.

Figure 5.1 represents a simplified view of the class diagram for this service, containing
the most important classes and connections. The class RecommendationsServer is the
entry point of the service, accepting HTTP requests. This class communicates with the
RecommendationsAPI, which parses the input information as necessary and uses the different
controller classes to validate the authorization and obtain the prediction. Each controller
class uses the HTTPClient class to execute HTTP requests. Different BusinessException
implementations are used by the different classes to manage exceptional flows.

The current version of the recommender system is not yet able to predict the quantity of
a product. This way, since customers communicate directly with this service, and in order
to support additional features beforehand, this service sets a default quantity of 1 for each
product predicted by the model, via the Machine Learning Model Interface.

This service includes configurations to control the HTTP port where it is served, the two
endpoints it uses, and logging. Since these configurations are important to several moments
(e.g., different endpoint configurations are needed when validating the authorization and
when requesting a prediction), they are provided using dependency injection, allowing a
lower coupling associated with configurations and more flexibility when testing.

5.1. Architectural Components 59

+run(port)

RecommendationsServer

+get_basket_recommendation_for_customer()

RecommendationsAPI

+validate_access_token_for_customer()

AuthorizationController

+get_basket_recommendation_for_customer()

RecommendationsController

-message

BusinessException

ConnectionException

InvalidAuthorizationException

InvalidCon�gsException

InvalidArgumentException

HTTPClient

1

1

1

1

1

0..*

1

1

1

1

1

0..*

1

1..*

Powered ByVisual Paradigm Community Edition

Figure 5.1: Class diagram of Recommendations Front-end Service

The Recommendations Front-end Service exposes an endpoint associated with the use case
UC_C1, and it is detailed in the following section.

Generate Shopping List Prediction Endpoint

This endpoint is responsible for showing tailored recommendations for a specific customer.
It is the entry point of the recommender system, and it is called by the customer device. It
returns the recommended list or an HTTP error code if the request could not be executed.

• Resource URL: /recommendations/basket/customer/{customer_id}

• Method: GET

• Headers: Authorization Token

• Status codes: 200 (OK: recommendation generated); 400 (Bad Request: there is a
problem with the request); 401 (Unauthorized: customer cannot obtain recommenda-
tions)

• Request body: non-applicable

• Response body:

60 Chapter 5. Solution Implementation

{
" ba s k e t_recommendat ion " : [

{
" q u a n t i t y " : 1 ,
" c o n f i d e n c e " : 0 .976926863193512 ,
" p r oduc t_i d " : 16797 ,
" p r oduc t_name " : " S t r a w b e r r i e s "

} ,
{

" q u a n t i t y " : 1 ,
" c o n f i d e n c e " : 0 .9686682820320129 ,
" p r oduc t_i d " : 24852 ,
" p r oduc t_name " : "Banana"

}
]

}

Listing 5.1: Response of Generate Shopping List
Prediction Endpoint

5.1.2 Customer Authorization Service

The Customer Authorization Service simulates an external service responsible for controlling
the access of a customer to a certain resource. It is called by the Recommendations Front-
end Service, in order to make sure a certain customer has permissions to request shopping
list recommendations. In addition, it provides the ability to generate an authorization token,
simulating the retailer service.

The authorization tokens are prepared using JSON Web Token (JWT), which allows the
representation of customer information as JSON, digitally signed using a private key. Using
the same key, it is possible to validate the content and, so, validate the authorization of a
customer.

Since this service is only intended to simulate a retailer service, the validation rule it performs
is simple: it decodes the token using the private key and compares the information against
the customer identifier sent in the request. This validation makes sure that a request is only
valid when using a token encoded for the same customer identifier. This methodology is
based on the premise that, in the customer device, the process regarding token generation
assures that a customer can only obtain identifiers for herself.

This service was developed using Python, and it is organized in a simple structure with
different packages, to have the responsibilities segregated. An API layer communicates with
a controller layer, which communicates with a domain layer and different utility entities.
Business exceptions are shared by different layers.

The figure 5.2 represents a simplified view of the class diagram for this service, containing
the most important classes and connections. The class AuthServer represents the entry
point of the service, accepting HTTP requests. This class communicates with the AuthAPI,
which deals with the input information and uses the AuthController class to finish the oper-
ations with the JWTCustomerTokenService. Different BusinessException implementations
are used by the different classes to deal with exceptional flows. This service includes logging
and HTTP port configurations.

5.1. Architectural Components 61

+run(port)

AuthServer

+generate_auth_token_for_customer()
+validate_auth_token_for_customer()

AuthAPI

+generate_auth_token_for_customer()
+validate_auth_token_for_customer()

AuthController

-message

BusinessException

InvalidTokenException

InvalidCon�gsException

InvalidArgumentException

+encode_token_for_customer()
+validate_token_for_customer()

JWTCustomerTokenService

1

0..*

1

1..*

1

1

1

0..*

1

1

Powered ByVisual Paradigm Community Edition

Figure 5.2: Class diagram of Customer Authorization Service

Customer Authorization Service exposes two endpoints to manage the authorization, detailed
in the following section.

Create Customer Authorization Token Endpoint

This endpoint is responsible for simulating the generation of a customer authorization token.
It is called with a customer identifier and a unique installation identifier. This information is
encoded in a JWT token and returned to the customer. If the request is invalid, an HTTP
error code is returned.

• Resource URL: /api/auth/customer/generate

• Method: POST

• Headers: non-applicable

• Status codes: 201 (Created: authorization token generated); 400 (Bad Request:
there is a problem with the request)

• Request body:

{
" customer_i d " : 12345 ,
" i n s t a l l a t i o n_i d " : " r e t a i l e r_s p e c i f i c_ i n s t a l l a t i o n_i d "

}

Listing 5.2: Request of Create Customer Authorization
Token Endpoint

• Response body:

62 Chapter 5. Solution Implementation

{
" a c c e s s_token " : " eyJQ iO iJkc 2Zqh . . . " ,
" token_type " : " b e a r e r "

}

Listing 5.3: Response of Create Customer Authorization
Token Endpoint

Validate Customer Authorization Token Endpoint

This endpoint is responsible for simulating the validation of a customer authorization token.
It is called with the token to validate and the customer identifier. The token is digested and
a confirmation is returned. If the request is not valid, an HTTP error code is returned.

• Resource URL: /api/auth/customer/validate

• Method: POST

• Headers: Authorization Token

• Status codes: 200 (OK: authorization validated); 400 (Bad Request: there is a
problem with the request); 401 (Unauthorized: invalid token)

• Request body:

{
" customer_i d " : 12345

}

Listing 5.4: Request of Validate Customer Authorization
Token Endpoint

• Response body: empty

5.1.3 Customer Device

The Customer Device simulates the software used by a customer of a grocery retailer in
order to have access to the tailored recommendations. In a real-world scenario, it could be
a mobile app, a website, or even an in-store device, such as a PDA. For this dissertation,
a simple website was developed using HTML and JavaScript, to allow the visualization of a
shopping list recommendation.

The Customer Device obtains the list by accessing the Recommendations Front-end Service.
This request includes an identification token used to represent customer authorization. This
token is obtained using the Customer Authorization Service, but in a real-world scenario, it
could already be part of the retailer software. The recommender list is then displayed to the
customer.

The figure 5.3 presents a screenshot of the demonstrator website, where a tailored shopping
list recommendation is being shown for an authorized customer.

5.1. Architectural Components 63

Figure 5.3: Customer Device demo with a tailored recommendation

5.1.4 Grocery Retail API

The Grocery Retail API simulates an external service that allows access to a retailer’s loyalty
dataset. In a real-world scenario, this service could correspond to an API or a data storage
(e.g., Amazon S3 object storage 1 or Google Cloud Storage 2).

To simulate this service, the retailer dataset is compressed and saved into a private Google
Cloud Storage. The data is exposed via a unique URL that controls the access. The data
updates are simulated by providing access to a new version of the whole dataset in the shared
file.

This approach exposes the retailer data similar to what could happen in a real-world scenario,
allowing the Machine Learning Model Interface to download a new version periodically and
update the internal data representation.

5.1.5 Machine Learning Model

The Machine Learning Model corresponds to the machine learning model developed using
TensorFlow. It may be developed using different algorithms, as long as supported by the
TensorFlow framework. The model is trained and used via the Machine Learning Model
Interface.

The training and predicting processes - designed for generating shopping list recommenda-
tions - are constituted by multiple important steps that diverge from the traditional software
components and architectures addressed in this section. Details regarding them were wit-
tingly not approached in this section and are detailed in section 5.2.

The model is designed to generate predictions for the items to be present in the next purchase
of an existing customer in the dataset used for training. It does not, yet, predict quantities.

1https://aws.amazon.com/s3/
2https://cloud.google.com/storage

64 Chapter 5. Solution Implementation

A key feature of the model is that, since it is developed using TensorFlow, it is able to use
the GPU during both training and predicting moments because of the CUDA Toolkit. This
allows the operations around the model to be executed faster.

5.1.6 Machine Learning Model Interface

The Machine Learning Model Interface is the service responsible for exposing the machine
learning model, updating the shopping history, and for training new models. It can, thus, be
called by the Recommendations Front-end Service (using a private API-key, since it allows
only requests from authorized sources) or by scheduled business tasks.

Predictions are exposed via HTTP, while the two business operations (updating the dataset
and training a new model) are only accessible via command-line. This service communicates
with the Grocery Retail API to obtain shopping history updates and ingests the data. In
addition, it works this dataset in order to extract features and train new models. It provides
recommendations using the already deployed models.

The Machine Learning Model Interface was developed using Python and follows a structure
that prioritizes responsibility segregation between the different packages and classes involved.
An API layer communicates with a controller layer, which uses classes related to the model
and data processing and common utility classes.

Since this component is responsible for both the training and predicting processes, it needs
to manipulate data to feed the training and predicting phases. The data operations are
done using the Python libraries pandas and NumPy. The first library offers access to data
structures and operations for manipulating and analyzing numerical tables; the second one
provides access to high-level mathematical operations over large, multi-dimensional arrays
and matrices.

The figure 5.4 presents a simplified version of the class diagram for this service, showing
the most important classes and connections. This service includes two distinct entry points:
the Main class, for command-line management access, and the RecommendationsServer,
allowing the service to serve HTTP requests.

The command-line access is intended for training new models and updating the dataset but
also supports prediction generation. The Main class communicates with the CLIModelAPI,
which uses the proper controller class to perform the necessary data and model-related
operations. The RecommendationsServer class includes only support for predictions and
uses its API class, which communicates with the ModelController to conclude the operation.

Both controller classes (and thus both entry points) use common classes to perform op-
erations on the data, the model, or access configurations and deal with exceptions. The
concrete implementations of the classes TrainingDataProcessor and PredictingDataProces-
sor are responsible for accessing the data needed for the respective process and for obtaining
the necessary features. A FeatureProcessor and various Helper classes are used to assist
these processes.

This service supports the configuration of the HTTP port where it is served, logging, as-
sociation rules, machine learning hyperparameters, and location of newly trained models.
Similarly to the other services, these configurations are accessible across the solution via
dependency injection.

5.1. Architectural Components 65

+train()
+update_dataset()

Main

+run(port)

RecommendationsServer

+train_new_ml_model()
+get_basket_recommendation(customer)
+update_dataset()

CLIModelAPI

+get_basket_recommendation_for_customer()

RecommendationsAPI

+update_dataset()

DatasetController

+train()
+predict(customer_id)

ModelController

+�nd_asociation_rules()

AssociationRulesProcessor

PredictingDataProcessor

+ingest_dataset()
+generate_features()

IRetailPredictingDataProcessor

TrainingDataProcessor

+ingest_dataset()
+generate_features()

IRetailTrainingDataProcessor

+generate_features()

FeaturesProcessor

-message

BusinessException

InvalidAuthorizationException

InvalidCon�gsExceptionInvalidArgumentException

+train_gbt_model(training_set)
+predict(predicting_set)

TensorFlowModel

DataProcessorHelper

FeaturesProcessorHelper

1

0..*

1

1

1

1

1

1

1

1

1..*

1

0..*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Powered ByVisual Paradigm Community Edition

Figure 5.4: Class diagram of Machine Learning Model Interface

Machine Learning Model Interface exposes one HTTP endpoint for recommendations (corre-
sponding to the use case UC_C1) and supports two command-line accesses for management
operations (use cases UC_S3 and UC_S4). These three entry-points are detailed below.

Predict Basket Endpoint

This endpoint is responsible for generating the basket recommendations. It is called by the
Recommendations Front-end Service, using a private API-key and the customer identifier.
If the request is valid, the recommendations are generated and returned. If the request is
not valid, an HTTP error code is returned.

• Resource URL: /recommendations/basket/customer/{customer_id}

• Method: GET

• Headers: api-key

• Status codes: 200 (OK: basket predicted); 400 (Bad Request: there is a problem
with the request); 401 (Unauthorized: invalid private api-key)

• Request body: non-applicable

• Response body:

66 Chapter 5. Solution Implementation

[
{

" p r oduc t_i d " : 16797 ,
" p r oduc t_name " : " S t r a w b e r r i e s " ,
" c o n f i d e n c e " : 0.976926863193512

} ,
{

" p roduc t_i d " : 24852 ,
" p r oduc t_name " : "Banana " ,
" c o n f i d e n c e " : 0.9686682820320129

}
]

Listing 5.5: Response of Predict Basket Endpoint

Update the Shopping History Scheduled Task

This scheduled task allows the shopping history to stay up to date by periodically downloading
updates from the retailer and updating the dataset. Since the Grocery Retail API simulates
the data updates by providing a new compacted dataset version in a Google Cloud Storage
account periodically (see section 5.1.4), this process is done by recurrently accessing the
storage.

During each iteration, the task downloads the compressed data file, decompresses it, and
creates a newer version of the dataset used to train new models. This scheduled task allows
the configuration of the time it is expected to run, as it should be adapted to each real-world
scenario.

Train and Update the Model Scheduled Task

This scheduled task allows the training of a newer version of the model based on the existing
dataset and adopted machine learning algorithm configurations. During each iteration, this
task triggers a training and evaluation process, resulting in both the new model and the
newer version of the dataset being configured as the latest.

This scheduled task allows the configuration of the moment it is expected to run, either by
being run at a specific time or after the task responsible for updating the shopping history.
It should be adapted to each retailer scenario.

5.2 Machine Learning Processes

When creating a machine learning model and when generating recommendations, the Ma-
chine Learning Model Interface performs some processes to assure that the dataset is ready
to be used. When integrating with a retailer, it is of paramount importance to study their
dataset to understand which and how knowledge can be extracted.

This section starts by describing the identification of the target variable and the process of
how the features are extracted to create both training and predicting datasets. The section
is closed with an analysis of both training and predicting flows.

5.2. Machine Learning Processes 67

5.2.1 Identifying the Target Variable in the Dataset

When training a classification machine learning model, the training data needs a label. The
model is trained knowing the target variable and learns to analyze new future scenarios and
predict them. In this problem, the prediction represents whether or not a specific scenario
may lead to an item’s purchase by a specific customer.

During the training phase, the dataset is loaded and parsed in order to obtain a matrix repre-
senting a scenario where a customer, at a specific moment in time, with a certain historical
data, has purchased an item. Whether or not an item was bought, using these conditions,
corresponds to the target variable - this is a binary classification, and it is expressed with "0"
for "no" and "1" for "yes". It is important to note that, when integrating with a grocery
retailer, the dataset should be analyzed in order to identify how the target variable can be
obtained.

When predicting, a similar logical matrix is built, representing the specific moment in time,
the products, and the customer being recommended. The machine learning model assigns
confidence in this prediction. The top-N items that the model considers most likely to be
bought by a customer are joined together to create the recommended next shopping list.

5.2.2 Extracting New Features From the Data

The training set used to train a classification machine learning model is constituted by pairs
of a target variable and a set of details that lead to each classification. These details
are commonly referred to as features, and they can be extracted directly from the dataset
or created - either by combining different details from the original dataset, or by applying
mathematical operations to them. Some examples of traditional operations used when
generating new features include averages, counts, maximum and minimum values. This
process benefits, typically, from knowledge on the domain.

In this particular problem, different types of features can be extracted to represent specific
behaviors that lead to buying or not an item. Regardless of the retailer or dataset, for this
solution, one should aim to extract features about four categories: explicit features (e.g.,
the hour of the day), customer features (e.g., buying frequency and number of purchases),
product features (e.g., number of orders and number of reorders), and customer-product
features. Different features can be extracted for each of these categories, according to the
dataset. However, excluding any of them may compromise the recommendations’ quality.

Features are typically numerical or categorical (more types of features exist, but the tech-
nology used limits the usage of these two types (TensorFlow 2020b)). Numerical features
correspond to quantitative information, represented as numbers; categorical features, on the
other hand, correspond to information represented as groups or categories.

The contribution of each extracted feature for the retailer dataset should be individually
understood before being used by the model. Some features may need to be refactored or
dropped because they provide little to no benefits or are too computationally expensive for
the value they provide.

This feature engineering should be addressed in the Machine Learning Model Interface when
integrating with a retailer dataset. These features are then used when training a new model

68 Chapter 5. Solution Implementation

and when generating recommendations. It is a crucial step in both training and predicting
pipelines.

5.2.3 Training and Predicting Datasets

With the target variable identified and the different feature categories obtained, one can
prepare both training and predicting datasets. These datasets map the features with the
target variable, and the main difference is in the fact that the training dataset corresponds
to all the existing customers and products, whilst the predicting dataset corresponds to one
customer at a time. Also, the target variable is not known in the second one.

The figure 5.5 represents a simplified example of a training dataset, where certain features
lead to the purchase of a particular item by a specific customer. The different features
were extracted and mapped against the target variable, and are ready to feed the machine
learning algorithm.

Figure 5.5: Example of a training dataset with a mapped target variable

The figure 5.6 represents an example of the predicting dataset, where the chance of a
specific customer purchasing a set of products is being evaluated for a particular moment
in time. The different features were extracted for the customer and the different products,
and the target variable for each row is ready to be predicted by the machine learning model
(i.e., predict if that product should be recommended).

Figure 5.6: Example of a predicting dataset and its predictions

5.2.4 Preparing the Training Dataset from the Features

Different features are obtained for every customer, every product, and every combination of
customer-product, creating three separate and significant in-memory tables. These tables
are joined with the tables representing the training orders, order details, and products, creat-
ing a big table with all the features projected against each occurrence of customer-product,
indexed by customer and product identifiers.

Each line of this logical table represents a unique scenario, where a specific product was
bought by a specific customer, for a specific moment in time, and where both customer and
product have certain details (from their features). Each of these lines also includes an entry

5.2. Machine Learning Processes 69

for the target variable, representing whether or not that scenario originated the purchase of
an item already purchased before.

The dataset has to go through three additional steps before the training phase: feature
normalization, training-validation split, and setup of the TensorFlow feature columns.

Feature Normalization

The numerical features are sparse, which would make harder for the model to work during
both training and predicting phases. Several techniques exist to overtake this difficulty by
normalizing (or rescaling) the data. In this dissertation, min-max normalization was the
technique chosen to normalize the data. This technique performs a linear transformation on
the original data, keeping the relationship between the original data (Patro and Sahu 2015).
It can rescale the data between a specific range of values or simply between 0 and 1.

The normalization is performed according to the following equation (Patro and Sahu 2015),
where x corresponds to the value being rescaled, x’ to the rescaled value and a and b to the
range.

x ′ =
x −min(x)

max(x)−min(x) ∗ (b − a) + a (5.1)

The normalization was performed between 0 and 1, thus it can be simply described as:

x ′ =
x −min(x)

max(x)−min(x) (5.2)

In order to perform min-max normalization, one needs to calculate the minimum and maxi-
mum values of each feature in order to apply the equation to all the entries in every feature.
These normalization parameters are saved so that they can be used during the predicting
phase.

With the training dataset normalized, the machine learning model can be trained.

Training-validation Split

The dataset needs to be divided into two subsets before training: training and evaluation
subsets. The machine learning algorithm uses the first subset to train the model, according to
its internal specifications and configurations; the second subset is used in order to evaluate
the trained model and provide some statistical information regarding the training process
(e.g., accuracy, precision, recall). These two subsets include the features and the label
associated with it.

Several works exist on finding the best percentage value for this training-validating split.
Some authors consider a good percentage to be around 20-25% (Medar, Rajpurohit, and
Rashmi 2018). TensorFlow also specifies 25% as the default value for this setting. For this
work, 20% was the adopted split percentage.

70 Chapter 5. Solution Implementation

Setup of TensorFlow Feature Columns

In order to allow TensorFlow to manage the data in the training dataset properly, it is neces-
sary to configure the columns in the dataset specifically. For numerical features, the process
is straight forward: a numeric column (tf.feature_column.numeric_column) is added, spec-
ifying the feature name and the data type (e.g., float32, int64).

Categorical features, on the other hand, are a different matter, as they have to be encoded
in order to allow the machine learning algorithm to work with labeled data (TensorFlow
2020b). The way recommended by the documentation to solve this issue is by creating
simple embeddings with the categorical features, using one-hot encoding. This technique
consists of simply using a vector representing all the distinct categories for that feature,
having a "1" value in the position corresponding to the specific value, and "0" in every
other position.

Categorical columns are, then, configured by creating a column (tf.feature_column. cate-
gorical_column_with_vocabulary_list) with the feature name and a list of every distinct
value for that feature. This configuration is dynamically used by TensorFlow and persisted
with the model metadata, to be used when predicting.

5.2.5 Training Pipeline

The steps addressed in section 5.2.4 allow the preparation and setup of a training dataset
ready to create a machine learning model in TensorFlow. To ensure that datasets with
different sizes can be used, the training dataset is sliced, and the training is performed in
multiple iterations.

Experiments performed on the used hardware shown that training iterations with 5M lines
caused a memory usage of around 90%, which was an affordable value. The training dataset
(more specifically, the subset of the training dataset used for training) is split into slices of
5M lines, and one iteration is performed per slice. In order to obviate any existing bias, each
slice is shuffled before training. TensorFlow provides a set of hyperparameters to be tuned
in order to increase the performance of the model (see the tests performed in 6.3).

After the training flow, the evaluation subset from the training dataset is used to generate
metrics regarding the current training. TensorFlow uses the data from this subset to predict
the target variable and returns some statistics. However, since the main goal of this disser-
tation is to predict a shopping list, the results returned by the evaluation dataset are not the
results one aims to obtain - it is necessary to evaluate the shopping list recommendation.
Nevertheless, these results are a good indicator of success.

Once the model is trained and evaluated, a useful feature provided by TensorFlow is to
extract the contribution of each of the features during the training phase. This information
is persisted with the model for future consultations and is approached later, in the case
study. The next and final step is, then, to save the latest model. The path for the latest
saved model was made configurable. In addition to the final model, TensorFlow saves several
checkpoints to allow the recovery or continuation of the training flow.

The figure 5.7 represents the trained pipeline, which wraps up the multiple processes analyzed
in the previous sections. The flow is started with loading and preparing the training data,
extracting the features, normalizing the data, and saving the normalization parameters for

5.2. Machine Learning Processes 71

the predicting phase; after this moment, TensorFlow columns are configured, and the dataset
is split into training and validating subsets; the training subset is then split into several slices
to allow an iterative training flow; finally, the TensorFlow classifier is created, and the model
is trained in multiple iterations with the training dataset slices; the process is concluded with
the evaluation and persistence of the latest model.

Data loaded Features Extracted Raw Training Dataset Prepared

Training Dataset Normalized

Training Dataset Ready Training Dataset Sliced TF Classi�er Created

Model TrainedModel EvaluatedModel Saved

Normalization Parameters Saved
save normalization parameters

save newest model evaluate the model

train the model with all the dataset slices

create TensorFlow classi�erslice the training dataset

split training-validating data and

setup feature columns

normalize features

join features and tablesextract featuresload dataset

Powered ByVisual Paradigm Community Edition

Figure 5.7: Training pipeline of the machine learning model using TensorFlow

5.2.6 Preparing the Predicting Data from Features

Preparing the predicting data is a process very similar to preparing the training data, detailed
at 5.2.4. However, whereas training is done for every customer in the dataset, predicting is
customer-specific, which reduces the amount of data being dealt with.

Recommendations can be generated in two different ways: predicting the last purchase and
predicting a shopping list for that specific moment. The first approach is useful when eval-
uating the recommendation, as it predicts for the moment of the customer’s last purchase
(which was naturally not considered during training). The second approach is useful when
predicting a shopping list for the current moment, since it uses the day and hour of the
recommendation request.

The different features described in 5.2.2 are obtained for every product ever purchased by
the customer (since only these products are being recommended), the customer itself, and
every combination of customer-products. These three different features are joined with the
information regarding products bought by that customer and the order being predicted.

Each line of this predicting dataset represents a scenario where, for a certain moment in
time, a customer and different products have certain details (from their features) - the same
kind of details used when training the model. The difference is that, now, the label is not
known and needs to be predicted.

The predicting dataset has to go through two additional steps: feature normalization and
setup of the TensorFlow examples.

Feature Normalization

Similarly to what happens during training (detailed in 5.2.4), the predicting dataset goes
through min-max normalization. The normalization is performed in exactly the same way,

72 Chapter 5. Solution Implementation

differing only in the way the normalization parameters (i.e., min and max values for each
feature) are obtained. When training, these parameters are retrieved from the dataset (and
saved); when predicting, the training parameters are loaded into memory.

The feature normalization done at predicting time uses the same parameters as to when
training in order to assure coherence between the data. If this normalization was performed
using different parameters than the ones used when training, no guarantees would exist
that a certain normalized value meant the same in both steps, causing the results to lose
reliability.

The predicting set has, naturally, the same structure as the training set, as presented in
section 5.2.3.

Setup of TensorFlow Examples

When predicting using a previously saved machine learning model, each row of the predicting
set is transformed into an instance of tf.train.Example(). Each TensorFlow Example is
constituted of several feature columns with the feature name, where the data type differs
according to the type of feature: numerical features set a float value, and categorical features
set an integer value.

Whilst during training it is useful to encode categorical features, as studied in 5.2.4, when
predicting this step is not done. TensorFlow includes this meta information in the saved
model, allowing it to dynamically interpret the value of each categorical feature.

Finished this process, the predicting dataset is ready to be predicted.

5.2.7 Predicting Pipeline

The steps detailed in section 5.2.6 allow the preparation and setup of a predicting dataset,
ready to be predicted by a machine learning model using TensorFlow. This model, which
was saved at the end of the training pipeline (5.2.5), is loaded into memory and is used
to predict each of the TensorFlow Examples in the predicting set. The result is a list of
predictions with the same number of rows as the predicting dataset.

Each prediction includes information regarding the existing classes (i.e., the possible values
for the target variable (see section 5.2.1)), the predicted class and the confidence in the
prediction. To generate a shopping list recommendations, these predictions are filtered,
retrieving only the predicted items, and ordered decreasingly by confidence.

The maximum amount of items in the recommended list is a configuration in the project
and should be specified for each retailer.

The figure 5.8 represents the pipeline, wrapping up the multiple processes involved in the
previous sections. The flow is started by loading the necessary data, extracting the features,
and preparing the predicting dataset; the dataset is then normalized, and TensorFlow exam-
ples are prepared to allow predicting; next, the machine learning model is loaded and used to
predict over the prepared dataset; predictions are then filtered and sorted, and the process
is concluded by resizing the recommendations list.

5.3. Software Tests 73

Data loaded Features Extracted Raw Predicting Dataset Prepared

Predicting Dataset NormalizedPredicting Dataset ReadyRaw Predictions Obtained

Predictions Prepared Recommended Shopping List Ready

setup TensorFlow Examples

resize predictions list

�lter and sort recommended items

load the model and

predict

load normalization parameters

and normalize features

join features and tablesextract featuresload dataset

Powered ByVisual Paradigm Community Edition

Figure 5.8: Predicting pipeline of the machine learning model using Tensor-
Flow

5.3 Software Tests

The development of the recommender system was kept up with different tests. Depending
on the development phase, different types of tests were developed to help making sure that
the implementations have a fewer number of flaws possible and that adding new features
can be done without risking compromising other parts of the solution.

The adopted test types differ on the granularity they hit: small portions of code are tested
by unit tests; the main goals of each component are tested using integration tests; and
functional requirements are tested using end-to-end tests. This section presents the concerns
behind the developed unit, integration, and end-to-end tests.

5.3.1 Unit Tests

Unit tests consist of tests for small portions of the code, such as functions. The main goal is
to develop tests for the smallest and useful portion of code possible, in order to test complex
applications with sets of small and comprehensive tests. These tests target the identification
of logical bugs (whether in the existing code or when adding features). However, they are
also important to help developers improving code quality and promoting low coupling.

Unit tests were developed using pytest, a framework for the adopted language. Each ar-
chitectural component has a set of tests, developed throughout the project life cycle, and
organized similarly to the source code structure, for better organization. These tests are
run every time the code is published to the repository, allowing visualization of the project
status.

In order to test heavier computational flows (e.g., training a model or extracting features
from a dataset) or communications with external services, the configurations were overridden
with test data, namely with a subset of the dataset and mock services. This was easily
accomplished since dependency injection was adopted in the different services.

The percentage of code covered by unit tests can be automatically retrieved from the exe-
cution of the tests. This procedure helped to identify the parts of the code that were not
tested yet, facilitating the design of new tests. As an example, the figure 5.9 shows the
coverage report of unit testing in the Machine Learning Model Interface service.

74 Chapter 5. Solution Implementation

Figure 5.9: Unit testing coverage for the component Machine Learning Model
Interface

5.3.2 Integration Tests

Integration tests can be seen as an extension of unit tests. The goal of these tests is
to assure that the communication between the different parts of a component works as
expected, by testing functionalities as a whole. These tests are more complex than unit
tests, but they also provide bigger confidence in the component success.

Since each component includes well-defined responsibilities, the number of integration tests is
inevitably smaller than unit tests. Nevertheless, they were an important part when developing
each software component by testing the different scenarios within the functionalities of a
component.

Integration tests were also developed using the test framework used in unit tests (i.e.,
pytest). Each component includes a set of integration tests, assuring that every functionality
is working as expected. Such as unit tests, integration tests benefited from using a smaller
dataset and mock endpoints, when needed, to assure that the tests hit the different scenarios
within a feasible amount of time.

The figure 5.10 presents an output summary of an integration testing run. These tests are
related to the Machine Learning Model Interface, and it is possible to evidence that the
different functionalities of this component (i.e., training a model, generating prediction, and
updating the dataset) are tested independently.

Figure 5.10: Integration tests of the component Machine Learning Model
Interface

5.3.3 End-to-end Tests

End-to-end tests aim at testing the success of a functional requirement. These tests have a
higher granularity than unit and integration tests and also provide higher confidence regarding
the success of the solution. The success of end-to-end tests represents the success of a use
case, since both the different components involved and communication protocols are tested.

5.4. Summary 75

These tests were developed using pytest as well, but in the latest moment of the development
cycle, after the success of both unit and integration tests. Since they hit a complete
functional requirement, it was of paramount importance to test the different error flows
beside the happy-path. The end-to-end tests hit success, failure, and error scenarios.

The use cases that compose the main functionality of the recommender system were exten-
sively tested. The support use cases, namely training and deploying a model and updating the
dataset, do not involve different components and thus were not translated into end-to-end
tests - they were tested via integration tests.

The figure 5.11 presents the output summary of an end-to-end testing run. One can observe
that the main recommendation scenario is covered, as well as exceptional scenarios (with
invalid and unauthorized requests) and error scenarios in internal communications. The real
deployed components were used in these tests, replicating real-world requests.

Figure 5.11: End-to-end tests of the recommender system

5.4 Summary

The recommender system developed includes several architectural components that commu-
nicate with each other to provide a general solution for personalized recommendations. The
adopted architecture is composed of three main components, three support components,
and two data sources.

The three main components are the Recommendations Front-end Service; the Machine
Learning Model Interface, and the Machine Learning Model. The three support compo-
nents correspond to the Customer Authorization Service, the Grocery Retailer API, and the
Customer Device. The two data sources are the dataset exposed by the retailer and the
dataset used by the model. Since the support services are retailer-specific, they are simu-
lated in this dissertation. The communication between the services is done via HTTP, and
each component is built using a structure with multiple packages and layers, promoting the
responsibilities segregation. Good software development practices were in the foundation of
the different modules.

In this problem, the target variable corresponds to the purchase of an item associated with a
set of conditions that lead to this decision. The way it is obtained depends on the adopted
dataset. Features correspond to information generated from the dataset, representing cer-
tain characteristics, and TensorFlow supports either numerical or categorical features.

Four types of features were identified: customer-related, product-related, customer-product-
related, and explicit features. Customer-related features represent details about customer’s
shopping habits, product-related features describe the product, customer-product-related
features represent the relationship between the two entities, and explicit features are present
directly in the dataset. These features are used when training and predicting.

76 Chapter 5. Solution Implementation

Before training, the training dataset is normalized using the min-max technique. The train-
ing pipeline is finished with the split of the dataset into training and validation, and the
configuration of the feature columns for TensorFlow.

When predicting a shopping list, only the orders of the customer executing the request are
considered. The predicting dataset is also normalized using the normalization parameters
obtained during training, and the model is loaded into memory in order to predict the data.
The predictions are then filtered by the classification result and sorted by confidence. The
predicting pipeline is concluded by returning the top recommendations.

The development was followed by different methodologies of software tests. Unit testing
was done to ensure that the code was bug-free and that new features could be added with
confidence. Integration testing was implemented to make sure that the different components
were working as expected as a whole. End-to-end testing was performed in the last moment
of the development life cycle, in order to assure that the different use cases work as expected.

77

Chapter 6

Evaluation and Results

This chapter presents the solution evaluation and the discussion of its results. It starts by
analyzing the experimentation and evaluation processes, where the test hypothesis is ana-
lyzed, the metrics used are presented, and the evaluation methodology is described. It is
followed by a case study, where the implemented solution is applied to a public dataset.
After, experiments around hyperparameter tuning are performed, and the solution is com-
pared against other recommender systems over the same conditions. These comparisons
are followed by a validation of the recommendations with association rules and performance
tests over different workloads. A summary of the different concerns concludes the chapter.

6.1 Experimentation and Evaluation

Experimentation and evaluation are important tasks for research and critical thought (Gomes
2016). They are an important part of achieving conclusions. In this section, test hypotheses
are presented, the metrics used to evaluate them are enumerated, the evaluation methodol-
ogy is detailed, and the test environment where the experiences are executed is presented.

6.1.1 Test Hypothesis

Since the primary goal of this dissertation is to develop a machine learning recommender
system capable of predicting useful shopping baskets, it is of paramount importance to
evaluate its quality, using appropriate metrics, and its performance. It is essential to choose
a machine learning model and tune its hyperparameters to prepare a good comparison point.
As a comparison, two non-machine learning recommender systems existing in the proponent
organization were applied to the same dataset.

Analyzing the results obtained by the three solutions, one is able to detect quality differences.
In addition to plots and tables, statistical tests help to achieve conclusions (Gomes 2016).
This way, the comparisons aim to reject the null hypothesis, where all the different classifiers
would behave similarly on the same data, under similar conditions.

Also, the system is tested to validate its behavior under the presence of different workloads
and respond in an adequate amount of time so that customers can seamlessly wait for
predictions to be generated without sacrificing the user experience. The main goal in this
validation is to make sure the system can respond in real-world scenarios and understand
how the adopted architecture is able to deal with different stress moments.

78 Chapter 6. Evaluation and Results

6.1.2 Evaluation Metrics

The developed solution and the two solutions used for comparison are tested over the same
data to generate recommendations. As detailed in 3.2.5, the quality of the generated
recommendations can be evaluated using the metrics accuracy, precision, recall, and f1-
score (Jariha and S. K. Jain 2018). In this specific domain, the evaluation metrics can be
understood as:

• accuracy - Number of correct predicted products divided by the total number of
predicted and not predicted products;

• precision - Number of correct predicted products divided by the total number of
predicted products;

• recall - Number of correct predicted products divided by the total number of purchased
products;

• f1-score - Harmonic average of the precision and recall.

In addition to the quality metrics, performance is also evaluated. Parallel and sequential
requests are executed programmatically, simulating the different stress moments of real-
world use. The average duration times are acquired and analyzed.

6.1.3 Evaluation Methodology

The implemented solution is applied to a dataset, against which is evaluated according to
two complementary ways: it is measured the quality of the recommendations and the ability
of the solution to generate predictions in useful time. The first measure is obtained by
running the solution over the dataset and the last one by simulating user requests.

The quality evaluation is done by collecting and comparing the average results of each
evaluation metric for all the test customers, in the different tests, by the three solutions,
using the same data. This evaluation provides information to plot the comparisons and
evaluate the results.

In the end, one is able to apply the non-parametric test of Friedman, to conclude with higher
confidence the possibility to refute the null hypothesis (Gomes 2016) - in other words, verify
the existence of differences between the behavior of multiple recommender systems. One
is able to use the Friedman test since there are more than two classifiers and because the
data is not expected to follow a normal distribution. If the null hypothesis is proven rejected,
one can also use the Nemenyi test (post-hoc) in order to obtain details on the origin of the
difference.

The performance of the solution is tested after an automatic simulation of requests to
generate recommendations. These requests are made sequentially and in parallel, simulating
a real scenario. The duration times are registered and plotted.

This evaluation methodology is supported by studies such as (Fernández-Delgado et al.
2014; Gomes 2016; Olson et al. 2017), where non-parametric tests and post-hoc analysis
are applied to the evaluation metrics from machine learning classifiers.

6.2. Instacart Dataset - A Case Study 79

6.1.4 Test Environment

The different tests performed in this section were executed in a machine, courtesy of the
proponent organization, with the following specifications: Ubuntu 18.04 OS; 64 GB Crucial
DDR4 4x16GB RAM; Intel i7-8700K CPU; 480 GB Micron 5200 SSD storage; Asus ROG
STRIX Z370-G GAMING motherboard; Nvidia GeForce GTX 1070 8 GB GDDR5 GPU.

6.2 Instacart Dataset - A Case Study

The architecture detailed in chapter 4 and implemented in chapter 5 allows the development
of a generic recommender system for grocery retail, based on a TensorFlow-based machine
learning model. The real value of the solution can only be obtained when integrating it with
a grocery retailer.

In order to perform the case study, different public datasets were analyzed, and one was
adopted and detailed. Also, as studied in section 5.2.2, valuable features were extracted
from the dataset and analyzed, to improve the results of the recommender system. This
process was followed by an analysis of the different supported machine learning algorithms
to identify which provides better results over the adopted dataset. The adopted dataset and
algorithm are further explored and compared in this chapter.

From the public datasets analyzed, some were not strictly related to grocery retail (e.g., the
Online Retail Data Set 1). The dataset that better reflected a grocery retail scenario, with
a fair amount of data, was Instacart Online Grocery Shopping Dataset (Instacart 2017) -
from now on referred to as the Instacart dataset.

The Instacart dataset contains data regarding 3 million grocery orders, divided by more than
200 thousand users. It was also used in a former Kaggle competition 2. The proponent
company and the advisors also supported the choice of the dataset.

This section includes an analysis of the dataset, an exploratory data analysis that allows a
deeper understanding of the data, the tests performed to adopt a machine learning algorithm,
and the performed feature engineering.

6.2.1 Dataset Overview

The Instacart dataset was provided for non-commercial use by the American company In-
stacart 3, which partners with some of the biggest retailers in the US, in order to provide a
pick-up and delivery service.

The dataset is provided as a set of .csv files, translating data tables for departments,
aisles, orders, products, and product_orders. The last table is divided into two separate
files, containing different portions of the data: prior and train. The prior file contains all
the items in all the transactions for each customer, except for the last transaction. The
last transaction is present in the training file or is absent. The figure 6.1 represents the
relationships between the data tables.

1https://archive.ics.uci.edu/ml/datasets/Online+Retail
2https://www.kaggle.com/c/instacart-market-basket-analysis/data
3https://www.instacart.com/

80 Chapter 6. Evaluation and Results

aisle_id integer(10)

aisle varchar(256)

aisles

department_id integer(10)

department varchar(256)

departments

product_id integer(10)

product_name varchar(256)

aisle_id integer(10)

department_id integer(10)

products

order_id integer(10)

user_id integer(10)

eval_set varchar(50)

order_number integer(10)

order_dow integer(10)

order_hour_of_day integer(10)

days_since_prior_order integer(10)

orders

order_id integer(10)

product_id integer(10)

add_to_cart_order integer(10)

reordered integer(1)

order_products_prior

order_id integer(10)

product_id integer(10)

add_to_cart_order integer(10)

reordered integer(1)

order_products_train

Powered ByVisual Paradigm Community Edition

Figure 6.1: Entity Relationship Diagram of Instacart the Instacart Dataset

Each product in the dataset has an identifier and a direct reference to a specific aisle and
department, categorizing its location in the store and an exact name. Each aisle and each
department include an exact name, as well as its identifier. Orders include an identifier, the
identifier of the customer (there are no more details regarding a customer), a tag regarding
the set it belongs (i.e., train, prior, or test), an order number representing the position in a
specific customer shopping list, the day of the week, the hour of the day and, when available,
the number of days since a previous order.

The dataset includes N prior orders for each customer, and one train or test order (designed
for the competition). This is useful to separate the last transaction and, thus, evaluate
its recommendation. This way, for the purpose of this dissertation, only prior orders are
considered during training, saving the last transaction from the training flow.

The association between these orders and their products are present in two additional tables:
one with all the N-1 orders for each customer, and one for the train orders (for customers
with one train order). Other customers have no train orders but have one test order, and
they are used only for training and not for evaluating recommendations, as no information
regarding their last transaction exists. These association tables also include the position in
which a product was added to the cart, and a flag representing if the product was reordered
(i.e., if it is not new for a specific customer).

There is not a specific table with customer data. The only detail regarding customers is their
unique identifier. Even if there existed customer details, they would not be considered by the
recommender system to assure privacy. In addition, recent rules regarding data protection
(e.g., GDPR 4) encourage this concern.

6.2.2 Exploratory Data Analysis

The Instacart dataset includes 206209 customers and 3421083 orders. From these orders,
3214874 are classified as prior, 131209 as train, and 75000 as test. Since only the prior
orders are useful to train the dataset (as detailed in 6.2.1), the model can use around 94%
of all the transactions available during training.

4https://gdpr.eu/what-is-gdpr/

6.2. Instacart Dataset - A Case Study 81

The biggest amount of orders for a specific customer is 100, and the minimum amount of
orders is 4. In addition, the average amount of products in the orders is 10. From all the
orders used for training (prior), 388513 include no reordered products (i.e., around 12% of
these orders include only new items or are the first order), meaning that more than 88% of
the orders contain the items that that customer uses to buy.

This section presents an exploratory data analysis of the dataset, aiming to better under-
standing the dataset to create the best model possible. It includes several diagrams exploring
the data and an explanation of its meaning and generation. These diagrams were generated
using pandas and seaborn libraries, for Python, over the Instacart dataset. This analysis was
inspired by the work of two authors (Lekha 2019; SRK 2017), but adapted and evolved to
target the specific problem of this dissertation.

The figure 6.2 represents the distribution of products per order, and it was generated by sim-
ply counting the number of items in each order. This provides useful additional information
regarding the basket size (as seen in 6.2.2, the average basket size is 10). The number of
products per order increases until the number of items is 6; after this moment, it decreases
gradually, approaching 0 when the amount of products per cart goes around 50.

Figure 6.2: Distribution of products per order

The figure 6.3 details the distribution of orders per customer. This chart was generated by
grouping the orders by customer and order identifiers and counting the orders. It is possible
to observe that the majority of customers have less than 10 orders. The amount of orders
per customer falls progressively, to the point where the number of customers with more than
30 orders is meager. Customers with more than 70 orders represent a residual part of the
dataset.

Figure 6.3: Distribution of orders per customer

The figure 6.4 shows an interesting customer behaviour regarding shopping habits. Since
each order register in the dataset includes the number of days since prior order, it was possible

82 Chapter 6. Evaluation and Results

to generate a diagram mapping the number of days since prior order by the number of orders
with a specific value. This value seems to be chopped at 30, showing that the dataset might
be missing customers whose shopping frequency is more than once a month. Interestingly,
the peaks at 7, 14, 21, and 30 days, evidence a clear preference for weekend shopping,
either weekly, bi-weekly, tri-weekly, or monthly. Shopping on a weekly and monthly basis
is, however, the most common habit, which is easily understood when dealing with grocery
shopping.

Figure 6.4: Distribution of orders by days since prior order

Figure 6.5 shows the distribution of orders by day of the week, and it was generated by
using the information for the day of the week in each order. There is a clear preference for
shopping on days 0 and 1. Since days 2-6 have similar behavior, it is likely that 0 corresponds
to Saturday and 1 to Sunday. This idea is also supported by a study that presents Saturday
as being the most popular day to go shopping (Mitova 2020).

The Instacart dataset provides the day of the week as an integer from 0 to 6, but there is
no official information regarding which day belongs to each value. At the time of writing,
there are several topics asking for this clarification, but without an answer (e.g., the official
data dictionary, by Instacart 5).

Figure 6.5: Distribution of orders by day of week

Figure 6.6 describes the distribution of orders by the hour of the day. It was generated by
using the information regarding the hour of the day in each order. A peak for shopping is
shown between 8 am and 6 pm, with slight increases at the beginning and end of the interval.
Besides, a higher concentration of orders is present in both the hours immediately before

5https://gist.github.com/jeremystan/c3b39d947d9b88b3ccff3147dbcf6c6b

6.2. Instacart Dataset - A Case Study 83

and after lunch. This behavior seems to reflect the overall day of people, where shopping is
done after and before work activities, and around lunchtime, either by using the lunch period
for grocery shopping or to buy food.

Figure 6.6: Distribution of orders by hour of day

Figure 6.7 projects the information in the previous diagram to the day of the week it hap-
pened. The same behavior is evidenced, keeping the same preference periods. However, two
interesting peaks are shown in the afternoon of day 0 and the morning of day 1, which might
value the theory of 0 corresponding to 0 and 1 to Sunday.

Figure 6.7: Distribution of orders by hour of day and day of week

The position a product is added into a specific order is also a parameter present in the
Instacart dataset. Figure 6.8 shows the distribution of the product position in all the orders.
This bar plot was build by grouping the positions for each product in all the training orders,
and counting and summing each occurrence. It is possible to observe that, naturally, there
are more products added in the first positions because of the order size - the most significant
amount of products correspond to the first 10 positions, which correlates with the average
order size being 10 (as seen in 6.2.2). This value drops progressively, approaching 0 for
positions over 80.

84 Chapter 6. Evaluation and Results

Figure 6.8: Distribution of the product position in the orders

In addition to the number of products per position, it is relevant to check the behavior of the
reordering flow of products. The figure 6.9 represents the distribution of reordered products
per order. This plot was generated by grouping the products in each order and summing
the amount of reordered items present. Besides a large number of orders with 0 reordered
items (which are easily justified by the more than 200k first orders existent), it is possible
to observe that most orders have up to 10 products that are recurrent for that customer.
This value drops gradually, approaching 0 when the number of reordered products per order
is 30.

Figure 6.9: Distribution of reordered products per order

In addition to the previous plot on reordered, it is possible to understand when reordering oc-
curs with a higher rate during the shopping flow. The figure 6.10 represents the distribution
of reordered items according to the position in the cart. This diagram was built by grouping
the products in all the orders by the position they were added in the cart and counting and
summing, which were reordered. The percentage was calculated using the total purchases
and the total recurrent items for each position.

This diagram provides fascinating information: the regular purchases are added into the cart
in the first place. There is an accentuated decrease in the reorder rate as the position in the
cart goes forward. This diagram shows an uneven behavior when the position moves after
50 (even a bit earlier) - which has a direct correlation with the amount of reordered items
in the cart, as seen in the figure 6.9, when almost no data exists past 30 reordered items in
the cart.

6.2. Instacart Dataset - A Case Study 85

Figure 6.10: Distribution of reordered products per position in the order

By counting the number of times each product is reordered and projecting it into a diagram,
as seen in figure 6.11, it is possible to understand the way reordering correlates with the
kind of product. There is a visible peak at 0%, meaning that several products tend not to
be reordered. This is easily justifiable in a grocery retail scenario, as people tend not to need
some kind of products more than once in a lifetime (e.g., the support for the gas canister
or floor mats for their cars). On the other hand, most products have a repeatability rate
of around 50%. This percentage follows a curve where most products have a reorder rate
between 20% and 60%.

Figure 6.11: Repeatability of products

6.2.3 Obtaining The Target Variable

As studied in section 5.2.1, the way of retrieving the target variable may be dataset-specific,
so the adopted one is analysed to understand how to retrieve it. The target variable could
be represented via several ways, but two alternatives appeared to be specifically powerful:
using the presence or absence of every product in a list as a label; using the reorder flag as
the label. The main difference between these approaches is that the first one represents the
purchase of every item in the list, and the second one the purchase of every reordered item
in the list.

By targeting every purchased item, one would face a higher density of data, causing a
higher temporal and computational load when training and predicting. The model would,
theoretically, be able to suggest items that a customer has never purchased before, but this
would also bring a bigger chance of failing since more products would be considered.

Targeting only the products previously purchased by a customer would be lighter when it
comes to the amount of data and time spent training, but would leave behind the suggestion
of new products. However, by recommending only products that a customer has already
bought in previous transactions, a smaller chance of failing would, theoretically, exist.

86 Chapter 6. Evaluation and Results

There was consensus with the advisors to follow the second approach. This way, the target
variable represents the reorder of an item (where 1 means reordered and 0 means not
reordered), and recommendations are purely consisting of previously reordered items.

6.2.4 Feature Engineering

As studied in section 6.2.1, prior orders provide a clear way of having all the transactions but
the last one, for every customer, and orders and products are present in their own tables. In
addition to the tables representing orders and products, a logical table joining prior orders
with orders and products is created as a way of providing detailed information regarding each
order and the items that constitute them.

This combination provides a way of representing a very detailed view of every prior order
existent in the dataset. Since departments and aisles do not have many details, and their
name would provide a very sparse representation, only their unique identifiers are used when
joining the data regarding products with orders.

All these tables represent several occurrences of customers buying products, and by com-
bining them, certain shopping habits are enhanced, and they are intended to be perceived
by the model. This provides us with the ability to cross information and calculate different
features.

As studied in section 5.2.2, the solution expects the presence of four types of features:
customer-related, product-related, and customer-product-related features, as well as fea-
tures extracted explicitly from the data. Also, the TensorFlow framework supports numeri-
cal and categorical features (TensorFlow 2020b) - where numerical features correspond to
quantitative information, represented as numbers, and categorical features correspond to
information represented as groups or categories.

This section describes how the dataset was used to extract the different features used to
feed the model in both training and predicting pipelines of the implemented solution (see
section 5.2). An analysis on the the extraction of different types of features is performed at
the end of the section.

Customer-related Features

The Instacart dataset does not provide many details regarding customers. There are no
demographic or biological details present. Despite this fact, plenty of useful details can be
obtained when joining the information regarding their previous orders.

There were generated 12 different features regarding each customer, and they are described
below.

1. c_num_purchased_products - This numerical feature represents the total number
of products purchased by the specific customer and is calculated by grouping all the
previous orders by customer identifier and counting. It is helpful to understand the
type of customer but only combined with the other features.

2. c_unique_purchased_products - This numerical feature represents the number of
different products purchased by a specific customer. It is calculated by grouping all

6.2. Instacart Dataset - A Case Study 87

the previous orders by customer identifier and counting how many unique products are
present. It was chosen as an attempt to understand how experimental is the customer.

3. c_unique_prior_orders - This numerical feature represents the total number of
unique orders for a specific customer and is calculated by grouping all the previous
orders by customer identifier and counting the unique number of orders.

4. c_num_reordered_products - This numerical feature represents the number of
products that a specific customer has reordered. It is calculated similarly to the fea-
tures before, but counting how many of the products a user has bought correspond
to reorders and is intended to help the model identifying customers with more stale
shopping habits.

5. c_avg_days_since_prior_orders - This numerical feature measures the average
amount of days since an order. It is calculated by grouping the orders by the customer
identifier and measuring the average value for the number of days since the previous
order. It was chosen as an attempt to help representing the customer’s shopping
frequency.

6. c_num_orders - This numerical feature represents the number of orders for a specific
customer and is calculated by grouping all the previous orders by customer identifier
and counting the number of orders. It is similar to the number of unique orders and
serves only the purpose of making sure that the model can handle eventual splits
between orders in the dataset. This feature was chosen as an attempt to represent
how frequent or usual the customer is.

7. c_avg_basket_size - This numerical feature measures the average basket size for
a specific customer. It is obtained by dividing the number of purchased products by
the number of unique orders (features already obtained and detailed) and is useful to
understand what kind of customer the model is dealing with (i.e., customers with a
preference for small or big purchases).

8. c_ratio_reorders - This numerical feature measures the ratio of reorders for a specific
customer (i.e., how many of the products bought were reordered). It is also obtained
by the result of the division of two already existing features, the number of reordered
products, and the total number of purchased products. This feature, as well as the
number of reordered items, is chosen as an attempt to identify customers who take
fewer risks and are more loyal to certain items.

9. c_median_order_dow - This numerical feature corresponds to the median value of
the day of the week of all the orders of a specific customer. It is calculated by simply
grouping all the orders by the customer identifier and calculating the median value of
this parameter.

10. c_last_basket_size - This numerical feature corresponds to the number of items
present in the last basket of a specific customer. It is calculated by simply counting the
number of items in the last order. It was chosen as an attempt to value extraordinary
last purchases and identify size patterns when predicting a new one.

11. c_orders_with_new_products - This numerical feature represents the number of
orders with new products (i.e., products never bought before by that customer), and is
calculated by grouping the items in each order by the customer identifier and counting

88 Chapter 6. Evaluation and Results

the products that were not reordered. It was calculated in order to attempt to represent
the kind of shopper being dealt with.

12. c_std_days_since_prior_orders - This numerical feature represents the standard
deviation on the days since a previous order. It is calculated by simply grouping all
the orders by the customer identifier and calculating the standard deviation of this
parameter. This feature was chosen as an attempt to represent how agitated is the
customer’s shopping behavior.

Product-related Features

The dataset includes simple details regarding products (i.e., identifier, name, and which aisle
and department they belong to). However, one can extend the amount of information known
regarding each item by calculating some metrics over the data.

There were generated 6 different features regarding each product, and they are described
below.

1. p_num_orders - This numerical feature represents the number of times a specific
product has been purchased. It is calculated by grouping the order details by the prod-
uct identifier and counting the occurrences. This feature was chosen as an attempt
to detect the items that are ordered the most.

2. p_num_reorders - This numerical feature represents the number of times a specific
product has been reordered. It is calculated by grouping the order details by the
product identifier and counting this parameter. It was chosen as an attempt to detect
the items that are ordered in a more recurrent way.

3. p_ratio_reorders - This numerical feature describes the ratio of reorders for a specific
product (i.e., how many times the product was bought as a reorder out of all the times
it was bought). It is calculated by dividing the two already known features, number of
reorders, and number of orders. This feature was used in order to help to identify the
more popular items, with the help of the other features.

4. p_num_customers_purchased - This numerical feature measures the number of
times a customer has bought that specific product. It is calculated by simply counting
the number of times it appears when grouping the order details by customer and
product identifiers.

5. p_num_customers_one_shot_purchased - This numerical feature measures the
number of times that specific product was bought as a one-shot in all its buying
record (i.e., how many times someone has bought the product only once in their
whole shopping history). This feature is calculated by grouping the order details by
customer and product identifiers, calculating the number of occurrences, and counting
how many of those correspond to an isolated purchase. The interest in this feature
was originated in trying to help the model identify items that, typically, people do not
need to buy more than once (e.g., the support for the gas canister).

6. p_ratio_one_shot_customers - This numerical feature measures the ratio of one-
shot purchases for a specific product. It is simply calculated by dividing the number of
times it is bought as a one-shot item by the total number of purchases, and is intended
to serve the same purpose as the number of one-shot occurrences.

6.2. Instacart Dataset - A Case Study 89

Customer-Product-related Features

In addition to the features regarding products and features, it is possible to cross both
entities and extract features regarding their relationship. These features aim to clarify the
shopping behavior between customers and all the products they have already purchased.

There were generated 5 features regarding this relationship, and they are described below.

1. cp_num_orders - This numerical feature describes the number of times a specific
product was bought by a customer. It is obtained by grouping the order details by
customer and product identifiers and counting the occurrences. This feature was
designed to help to identify the favorite items of each customer.

2. cp_num_reorders - This numerical feature represents the number of times a product
was reordered by a customer. It is obtained in a similar way to the number of orders,
but counting the number of times it was reordered.

3. cp_ratio_reorders - This numerical feature measures the ratio of reordering by a
specific customer for a specific product, and is simply calculated by dividing the number
of times a product was reordered by that customer by the number of times it was
ordered. It is also intended to help to identify the most bought items of a customer.

4. cp_avg_order_in_cart - This numerical feature describes the average position a
product is bought by a customer in all the purchases. It is calculated by grouping
order details by customer and product identifiers and calculating the average of the
position in the cart. This feature is intended to clarify in which part of the shopping
flow a product is typically bought by the customer.

5. cp_order_strike - This numerical feature describes how recently and/or frequently a
product is bought by a customer. It is calculated by applying a function that tends to
0 when the variable tends to infinite, to the reverse value of the order number (i.e., if
the user has 10 orders, the first one will have the value 10). The function used was
simply (1/2)n, since it returns a value that, the bigger the value of n, the smaller it
is. This way, older orders (which will have the highest values for order number) will
have the lowest importance. This allows us to sum the result of this function in all the
times the product was bought by the user, and obtain a strike value that, the bigger
it is, the more recently a user has bought the product. This feature is intended to
allow the model to identify products bought recently or frequently by the customer,
and those that it has probably stopped buying.

Explicit Features

The dataset provided important information that was explicitly extracted in order to generate
some features. These features represent information directly related to the orders and
products.

There were generated 6 explicit features, and they are described below.

1. order_hour_of_day - This numerical feature represents the hour of the day where
a specific order was made, and it was directly provided in the dataset associated with
each order. This feature aims at helping to associate the purchase of certain items
with specific times of the day.

90 Chapter 6. Evaluation and Results

2. department_id - This categorical feature represents the department where a certain
product belongs to, and it is directly associated with each product. This feature
aims at helping the model dealing with the proximity of items, both physically and
categorically.

3. days_since_prior_order - This numerical feature represents the number of days
since the previous order. This feature is also provided directly in the dataset and aims
at helping the model inferring time-related constraints, such as seasonality.

4. add_to_cart_order - This numerical feature represents the position where a certain
product was added in a certain purchase, and it is provided in the order details. The
goal of this feature is to help understanding reorder patterns, since the study performed
in 6.2.2 shows a higher reorder rate associated with lower positions in the cart.

5. order_dow - This categorical feature represents the day of the week where a certain
order was done and is also provided directly associated with each order. This feature
aims at helping the model to deal with time-related constraints, such as the preference
for certain items in certain days (e.g., weekend-purchases).

6. aisle_id - This categorical feature represents the aisle where a certain product belongs,
and it is directly associated with each product. It also aims at helping the model dealing
with the proximity of items, both physically and categorically.

Selecting the Extracted Features

Choosing which features to develop, how to calculate them, or which to keep was an iterative
and experimental process. The analysis of the documentation on the usage of machine
learning algorithms was important to understand which kind of general features are typically
used for similar scenarios. Reading and experimenting with several notes, discussions, and
solution proposals available for the Instacart Kaggle competition, as well as works regarding
other recommender systems around the retail area, made it easier to select which features
to pursue.

Besides these features, several others were considered and experiment, but for multiple
reasons had to be left behind. For instance, considering the number of orders in a row that
each customer bought each product caused a massive increase in the computational time
evolved in the process and brought little to no benefits.

Some features brought, however, clear benefits and thus had to be considered. For instance,
the feature cp_order_strike, which was analysed in 6.2.4 is also very computationally and
time expensive, but was able to contribute in a significant way to the model results.

Multiple features are computationally inexpensive and seem to have little relevance to the
model, but the results have proved us wrong. All the experiments made around features
made it visible that, just because one thinks a feature is useful or can benefit the results in
a significant way, it does not necessarily work that way. However, this does not mean that
business knowledge is useless. It is of paramount importance to know the domain in order to
judge on feature selection and have intuition on where to experiment. Learning better data
representations improves the results of machine learning algorithms (Olson et al. 2017).

TensorFlow allows the generation of a diagram presenting the top-N features that have
contributed the most to the model, helping this selection. As an example, the figure 6.12

6.2. Instacart Dataset - A Case Study 91

represents this diagram for the top 10 features for the final model configuration (see the
journey to find the final configurations in section 6.3).

Figure 6.12: Feature contribution diagram for the chosen model configuration

One can evidence that, for this specific model, the feature that contributes the most is
cp_num_orders, which represents the number of times that a product was purchased by
that specific customer. This feature is followed by p_num_orders, which represents the
number of purchases of a specific item. The next most-contributing features are the num-
ber of days since the last order of the specific customer (days_since_prior_orders) and
the position occupied by an item in the cart for a specific customer and a specific order
(add_to_cart_order). The heavy feature cp_order_strike, referred to above, is the 8th
most powerful feature for the model.

Computational Challenges

The amount of data present in the dataset, increased by the processes described in section
5.2 brings some challenges when performing heavier operations in the data.

The customer-product feature cp_order_strike (see section 6.2.4) requires the parameter
representing the position where each product was added into each order, to be reversed.
During training, this operation has to go through 3 million orders; when predicting, this
number will depend on the number of previous orders that a customer has, but it will be
significantly lower. Nonetheless, this is a very heavy computation in both scenarios. During
training, this step was, initially, taking more than 45 minutes alone to execute.

When preparing the TensorFlow example columns (see section 5.2.6), the whole predicting
dataset needs to be converted, thus every row and every column need to be accessed.
Depending on the number of orders and products, this process can also take some time to
execute. On average, more than 2 seconds were being taken to execute, which is considerable
when thinking that a customer might be waiting for it to finish.

In order to reduce the time spent performing these operations, a multi-threaded approach
was developed. A pool of processes (scaled by Python, depending on the hardware it is
running on) processes chunks of the whole dataset in parallel. The amount of data per
process is also managed by the language to keep it optimized.

This parallel mapping allows an average CPU usage of more than 95% during these op-
erations, and a reduction of around 7 times the time spent (probably depending on the

92 Chapter 6. Evaluation and Results

hardware). With this modification, the first process was reduced from 45 minutes to less
than 7 minutes, and the second one from more than 2 seconds to around 0.3 seconds, on
the test environment (see section 6.1.4).

This computational challenge brings another issue to the table: by using so much CPU for
each predicting process, the scaling of this solution will, inevitably, suffer. The predicting
time will increase under higher stress loads, as the CPU will be occupied by many processes
(plus the additional time spent by the process scheduler). This solution is capable of providing
better results if the Machine Learning Model Interface is scaled horizontally.

6.2.5 Adopting a Machine Learning Algorithm

The study on state of the art for machine learning algorithms for the current problem has
evidenced three algorithms as being more promising (see section 4.2.5): gradient boosted
trees, SVMs and neural networks. However, the support for SVMs using TensorFlow esti-
mators has been deprecated (TensorFlow 2018), which makes this algorithm unable to be
further studied using the developed architecture as is. So, gradient boosted trees, and neural
networks were compared against other algorithms, to understand which should be adopted
in the following tests.

A simple linear classifier was also used, to serve as a baseline, as well as a combined technique
mixing a deep neural network and a linear classifier (commonly referred to as wide-n-deep
approach). From the original three most promising approaches, a gradient boosted trees
implementation and deep neural network implementation were used.

Since the main goal of this experimentation is to understand which algorithm to explore
further, the tests have been performed using no hyperparameter tuning. Each algorithm
was executed using the default parameter configuration, provided by TensorFlow. The
comparison was performed using the training pipeline of the complete solution (which can
be found detailed in 5.2.5). The predicted target variable was also the one used in the
complete solution (detailed in 6.2.3).

Since all the algorithms were executed using the default hyperparameter configuration, the
starting point was equivalent. The gradient boosted trees algorithm was configured with
100 trees, a maximum depth of 6, one single batch per layer and a learning rate of 0.1.
Both the deep neural network algorithm and the wide-n-deep algorithm were built using two
hidden layers of 50 and 25 nodes, respectively, and used the available Adam optimizer. The
linear classifier was built using the available Ftrl optimizer.

The tests were performed over the adopted Instacart dataset to assure that they provide
accurate conclusions. Two different test sets were conducted: test set 1, using a portion of
the dataset (corresponding to 991714 orders over a total of 187435); and test set 2, using
the complete dataset (see section 6.2.1). These two test sets were executed in order to
understand the results in different amounts of data and avoid overfitting.

Before training, 20% of the training dataset is split for evaluation. During the evaluation,
the TensorFlow framework predicts the target variable on this subset and provides access to
evaluation metrics. The table 6.1 presents the results obtained by the compared algorithms,
over the different test sets, as far as accuracy, precision, recall, f1-score, and duration are
concerned.

6.3. Tuning the Hyperparameters 93

Table 6.1: Comparison tests using different machine learning algorithms

test
set algorithm accuracy precision recall f1-score duration

(min)
1 Gradient Boosted Trees 0,916699 0,909790 0,953114 0,930948 24
1 Linear Classifier 0,798954 0,745651 0,999925 0,854268 12
1 Deep Neural Network 0,880106 0,855256 0,958862 0,904100 13
1 Wide-n-Deep 0,633094 0,634689 0,890384 0,741102 13

2 Gradient Boosted Trees 0,867172 0,838963 0,958773 0,894876 36
2 Linear Classifier 0,822802 0,786945 0,959452 0,864678 23
2 Deep Neural Network 0,843371 0,836527 0,912820 0,873010 25
2 Wide-n-Deep 0,645525 0,641447 0,904153 0,750474 25

The results detailed in the table 6.1 evidence overall best results obtained by the gradient
boosted trees algorithm, throughout the different test sets, despite taking the highest to
train. Looking at the f1-score (which is the combined effect of precision and recall), one can
observe that this algorithm has obtained 0,930948 on the test set 1, and 0,894876 on the
test set 2. The second place was obtained by the deep neural network algorithm, which has
achieved f1-scores of 0,904100 and 0,873010, respectively. The last position was achieved
by the wide-n-deep algorithm, with 0,741102 on the test set 1, and 0,750474 on the test
set 2.

These results led to the choice of the gradient boosted trees algorithm as the machine
learning algorithm to explore in this dissertation. The results evidenced this algorithm as
very successful during the evaluation phase, making it an excellent candidate to explore
the hyperparameter tuning and to generate shopping list recommendations. Also, both
advisors and the proponent company support its adoption. One key-benefit of the designed
architecture, as well as TensorFlow, is that the algorithm can be changed in future if the
business reality indicates so.

6.3 Tuning the Hyperparameters

A good model, as far as the goals of this dissertation are concerned, is a model that is
able to achieve good recommendation results regarding precision, accuracy, and recall on a
set of test predictions, but without compromising too much on the training and predicting
duration. A model that achieves results that overtake another model’s by a small percentage,
needing several hours more to train, might not be a better model, as it can result in bigger
challenges when being used in real-world scenarios. This section uses the solution prepared
in the Instacart case study (see section 6.2).

TensorFlow provides multiple hyperparameters that support tuning. At the moment of
writing this dissertation, all the tunable hyperparameters can be seen in the constructor of
BoostedTreesClassifier, by TensorFlow, in the code example 6.1 (TensorFlow 2020a).

94 Chapter 6. Evaluation and Results

t f . e s t im a t o r . B o o s t e d T r e e s C l a s s i f i e r (
f ea tu re_co lumns , n_batches_per_layer , mode l_d i r=None ,
n_c l a s s e s =2 ,
weight_column=None , l a b e l_ v o c a b u l a r y =None , n_trees =100 ,
max_depth=6 ,
l e a r n i n g_ r a t e =0 .1 , l 1 _ r e g u l a r i z a t i o n =0.0 , l 2 _ r e g u l a r i z a t i o n
=0 .0 ,
t r e e_comp l e x i t y =0 .0 , min_node_weight =0 .0 , c o n f i g =None ,
c e n t e r_b i a s=Fa l s e ,
pruning_mode= ’ none ’ , q u a n t i l e_ s k e t c h_e p s i l o n =0.01 ,
tra in_in_memory=F a l s e

)

Listing 6.1: TensorFlow BoostedTreesClassifier Constructor

The literature presents learning rate, number of trees, trees’ depth, and regularization pa-
rameters as the hyperparameters that provide the best results when tuning gradient boosted
trees (A. Jain 2016a,b; TensorFlow 2020c). The learning rate corresponds to a shrinkage
value added when adding a new tree to the model (TensorFlow 2020a). The number of
trees represents the total number of trees created in the model. Max depth restricts the
maximum depth of each tree to grow.

Regularization parameters, on the other hand, are common parameters to many machine
learning algorithms, working as a cost related to large weights. In TensorFlow’s implemen-
tation of this algorithm, they consist of multipliers that are applied to tree leaves in order to
penalize and control growth (TensorFlow 2020a). Two different regularization parameters
exist: l1 and l2 regularization. The first one is applied to the absolute weights of the leaves,
whilst the second one is applied to the square weights of the leaf. L2 is typically more used
as it does not encourage sparse models, since the penalty tends to zero for smaller weights
(TensorFlow 2020c).

Because of the large number of tunable hyperparameters, this process has to follow a certain
guideline. Despite the existence of some works published in this area, most of them target
the process of tuning other machine learning algorithms. Furthermore, those who target
gradient boosted trees tend to focus on more classical approaches such as XGBoost - which
is not a problem, since most parameters are common to the different implementations.

The steps followed in order to tune the hyperparameters were based on an official paper
by TensorFlow regarding the implementation of gradient boosted trees (Ponomareva et
al. 2017) and on two articles describing some guidelines for tuning these models (A. Jain
2016a,b). Based on these sources, the following four-step algorithm was adopted to tune
the hyperparameters of the TensorFlow gradient boosted trees model.

1. Start with a learning rate value that is high enough to allow fast tests but small
enough to provide good results (typically between 0.05 to 0.2). The default value in
TensorFlow is 0.1;

2. Find an optimum number of trees for the chosen learning rate (avoiding too big training
times, since several tests are executed);

3. Tune tree-specific and regularization parameters (e.g., depth, batches per layer, l1
regularization and l2 regularization);

4. Lower the learning rate and increase the number of trees.

6.3. Tuning the Hyperparameters 95

A limitation of the TensorFlow implementation of gradient boosted trees is, as far as the
research made at the time of this dissertation, the lack of an automatic way to optimize
specific parameters. For instance, XGBoost allows the usage of cross-validation during each
boosting iteration of the training phase to calculate the optimum number of trees (A. Jain
2016a). Nevertheless, this automation would perform similar tasks to the ones described,
thus the achieved conclusions should not be much different, but would probably allow the
saving of research and experimentation time.

6.3.1 Test Conditions

As analyzed in the previous chapter (see section 6.2.1), by not considering the last order of
each customer when training the model, one is allowed to generate shopping list predictions
and to compare them against the actual purchase done by the customer. Similarly to the
detailed evaluations and comparisons are done in chapter 6, a subset of customers was used
in this step to evaluate the recommendations. To keep the results reliable and within a
reasonable time span, 100 customers were used for these tests.

Several tests over the steps from the previous tuning algorithm were performed. Each trained
model was used to predict recommendations for each one of the 100 test customers and
evaluated. The average results of accuracy, precision, recall, and f1-score were registered, as
well as the duration and the number of customers where the model was not able to predict
a single item from the actual purchase (this is not an official metric, but it provides a good
high-granularity point-of-view on how the model is behaving), referred in this dissertation as
zeros. Details on the comparison metrics are present in section 3.2.5.

The tables 6.2 and 6.3 present the most important tuning tests performed. The first table
describes the goal of the test (according to the tuning algorithm adopted) and the different
steps involved. The second one presents the different hyperparameter configuration of each
test. Both tables are indexed by the test number, so the information can be crossed.

96 Chapter 6. Evaluation and Results

Table 6.2: Descriptions of the hyperparameter tests

test
test description step description

1 finding a good learning rate starting with a high learning rate
2 finding a good learning rate trying a smaller learning rate
3 finding a good learning rate even smaller learning rate
4 higher number of trees higher number of trees
5 tuning tree-specific and regul. params. more batches per layer
6 tuning tree-specific and regul. params. adding l2 regularization
7 tuning tree-specific and regul. params. higher l2 regularization
8 tuning tree-specific and regul. params. adding l1 regularization
9 tuning tree-specific and regul. params. best l2 value and more trees
10 tuning tree-specific and regul. params. more batches per layer
11 tuning tree-specific and regul. params. no l2 to assure it is useful
12 tuning tree-specific and regul. params. keeping l2 but higher max depth
13 higher number of trees higher number of trees
14 higher number of trees even higher number of trees
15 tuning tree-specific parameters more batches per layer
16 higher num. trees and tuning tree params. more trees and batches per layer
17 higher num. trees and less learn. rate more trees and less learning rate

Table 6.3: Values used per hyperparameter test

test
n trees max

depth
batches
layer

learning
rate l2 regul l1 regul

1 100 7 1 0.1 0.0 0.0
2 100 7 1 0.01 0.0 0.0
3 100 7 1 0.05 0.0 0.0
4 150 7 1 0.01 0.0 0.0
5 150 7 2 0.01 0.0 0.0
6 150 7 2 0.01 0.001 0.0
7 150 7 2 0.01 0.05 0.0
8 150 7 2 0.01 0.05 0.01
9 200 7 2 0.01 0.001 0.0
10 200 7 3 0.01 0.001 0.0
11 200 7 3 0.01 0.0 0.0
12 200 8 3 0.01 0.001 0.0
13 230 7 3 0.01 0.001 0.0
14 260 7 3 0.01 0.001 0.0
15 230 7 4 0.01 0.001 0.0
16 260 7 4 0.01 0.001 0.0
17 260 7 4 0.007 0.001 0.0

Tests were started with 100 trees, a learning rate of 0.1 and no l1 or l2 regularization, which
correspond to the default values in TensorFlow. The starting max depth was 7 (started with

6.3. Tuning the Hyperparameters 97

one more than the default one, because of the big amount of data) and 1 batch per layer
was used, corresponding to the lowest value allowed.

The main goal of these tests is to understand how the results evolve with different hyperpa-
rameter configurations and determine one that allows the model to achieve the best results
in the best training duration achievable.

6.3.2 Test Results

The table 6.4 presents the average results for all the 100 test users of the different evaluation
metrics, obtained in the different tests described in the previous section. The table is also
indexed by the test number, to allow information to be crossed. For a matter of simplifying
the analysis, these tests are described bellow synthetically, presenting only the average f1-
score (i.e., the combined effect of precision and recall) and zeros. All the remaining details
can be obtained in the tables.

Table 6.4: Results obtained in the hyperparameter tests

test
#

avg
accuracy

avg
precision avg recall avg

f1-score num zeros duration
(min)

1 0.164181 0.275238 0.298533 0.260819 22 51
2 0.186305 0.309943 0.333533 0.291619 14 51
3 0.183724 0.304762 0.329686 0.287733 14 51
4 0.183857 0.305181 0.331590 0.288743 14 61
5 0.185343 0.308038 0.323476 0.289181 16 87
6 0.184086 0.307086 0.322419 0.288229 15 90
7 0.178876 0.299467 0.314610 0.280790 16 91
8 0.166743 0.278514 0.298333 0.263381 19 87
9 0.185267 0.308990 0.323829 0.289857 15 110
10 0.185648 0.309943 0.324581 0.290657 15 149
11 0.183133 0.306133 0.322543 0.287781 15 144
12 0.183552 0.307086 0.320895 0.287505 15 170
13 0.187705 0.311848 0.326276 0.292429 15 171
14 0.186162 0.309943 0.324495 0.290543 15 190
15 0.185381 0.308990 0.323752 0.289724 15 212
16 0.186581 0.310895 0.324895 0.291143 15 244
17 0.184495 0.308038 0.322952 0,288905 15 246

The average results for 100 users under the initial conditions (test 1) were a f1-score of
0.260819 and 22 zeros, taking 51 minutes to train. In an attempt to find a smaller learning
rate, 0.01 was experimented (test 2), resulting in an increase of f1-score to 0.291619, a
drop in the number of zeros to 14 and the same duration. Another test on the learning
rate was performed, increasing the value to 0.05 (test 3), but it provided a slightly worse
f1-score of 0.287733. A learning rate of 0.01 was, then, chosen to pursue the tests.

The number of trees was increased in an attempt to find the optimum number for the chosen
learning rate, as specified in the tuning algorithm. Using 150 trees and the same previous
conditions (test 4), the results dropped slightly (f1-score of 0.288743) and the duration
increased to 61 minutes. However, it is premature to conclude that the number of trees was

98 Chapter 6. Evaluation and Results

too big for the dataset without experimenting with a higher number of batches per layer or
depth. The test 5 includes one additional batch per layer and the results got slightly better
(the average f1-score increased to 0.289181, despite the increase in the number of zeros to
16 and the duration to 87), which is a good indicator that the number of trees is getting
closer to the optimum value.

By adding a l2 regularization of 0.001 over the previous hyperparameter values (test 6), the
f1-score suffered another slight drop to 0.288229, at the same time that the amount of
zeros was reduced by one and the increase in the duration was insignificant. This parameter
is described as being very helpful by the documentation when it comes to reducing overfitting
(TensorFlow 2020c) so, despite the little drop in the efficiency, additional tests were done
before deciding on its contribution for this model. The value of l2 regularization was increased
to 0.05 in test 7, leading to an even worse result, as the f1-score dropped down to 0.280790
and the amount of zeros increased to 16 again.

In an attempt to increase the results of the model, a l1 regularization of 0.01 was introduced
(test 8), but the results were reduced once again, as the average f1-score dropped to
0.263381 and the number of zeros increased to 19. Since this hyperparameter is known to
cause models to become too sparse (TensorFlow 2020c), it was abandoned. Using the best
l2 regularization value (0.001), the number of trees was increased to 200 (test 9), leading
to an increase of the average f1-score to 0.289857, a reduction of the number of zeros to
15 and an increase in the duration to 110 minutes.

The number of batches per layer was increased in test 10, improving the f1-score value to
0.290657 and jumping the training duration to 149 minutes. Since good results were being
obtained while increasing the trees’ depth, number and batches per layer, a test without
l2 regularization was performed (test 11), to assure that it was benefiting the results -
without l2 regularization, the average f1-score dropped significantly to 0.287781, evidencing
its importance for the results.

In an attempt of tuning even better the model, the number of max depth was increased to
8 (test 12). This test caused the model to perform slightly worse than before increasing
this parameter, and made it take almost twice as much to train. This way, this parameter
was left as was. The number of trees was, then, increased to 230 (test 13) and the results
were positive: the average f1-score increased to 0.292429 and the number of zeros was
maintained at 15, with a training time of 171 minutes.

Despite the positive results, the tests were pursued, and in test 14 the number of trees was
increased to 260, causing the model to perform slightly worse and take 20 more minutes
to train. The number of trees was kept as 230 and the number of batches per layer was
increased to 4 (test 15), but the performance kept decreasing and the training duration
following the opposite route. A mix of both previous tests was done in test 16, causing the
results to improve, but being still worse than in test 13, but taking 73 more minutes to train.

Following the training algorithm, the number of trees was increased and the learning rate
decreased in test 17, using 260 trees and a learning rate of 0.007, and the results were
surprisingly lower: it obtained an average f1-score of 0.288905 and kept the same number
of zeros as the previous test and approximately the same duration. This results were better
than the previous tests, but still lower than the values achieved in test 13.

The results obtained in the last test lead us to believe that, in order to achieve better
results, the number of trees, maximum depth and number of batches per layer have to be

6.3. Tuning the Hyperparameters 99

increased even more, causing the model to take significantly longer to train, as evidenced
by the tests and defended by the literature (A. Jain 2016b). This means that the best ratio
results/duration might have been reached in test 13, and that in order to improve it, the
training duration might not be worth it. Since grocery retail is an agitated business area,
with big amounts of data produced every day, having models that take too much to train
may reduce the ability to update the recommender system frequently.

The figure 6.13 represents the projection of the average values of f1-score from the previ-
ous tests, against the training duration. This allows us to better perceive how the results
got, typically, better with higher training times, and how it is predictable that the results
outperform the ones obtained in test 13, with 171 minutes of training, but for significantly
higher training times.

Figure 6.13: Training duration projected against the average f1-score

Predicting time, on the other hand, does not suffer big fluctuations with the different models
trained. In all the different hyperparameter configurations, the overall prediction time (with
all the architectural services and HTTP connections involved) is around 11 seconds. Most
of this time is spent during data-related tasks, before feeding the model. All these gradient
boosted trees models take around one second to predict on the whole predicting set.

With these considerations and results, hyperparameter tuning was concluded at this moment,
and the satisfactory results and decent training duration of test 13 have led to the adoption
of its hyperparameter configurations. The final model was trained with 230 trees, a max
depth value of 7, 3 batches per layer, a learning rate of 0.01, and an l2 regularization value
of 0.001.

The table 6.5 synthesizes the evolution obtained by the model before tuning the hyperpa-
rameters (i.e., test 1) and after training with a promising hyperparameter configuration (i.e.,
test 13).

Table 6.5: Results obtained before and after hyperparameter tests

description test
#

avg ac-
curacy

avg pre-
cision

avg
recall

avg
f1-score

num
zeros

duration
(min)

before tuning 1 0,164181 0,275238 0,298533 0,260819 22 51
after tuning 13 0,187705 0,311848 0,326276 0,292429 15 171

100 Chapter 6. Evaluation and Results

6.4 Comparison Against Other Recommender Systems

After finding a hyperparameter configuration that allows the developed recommender system
based on machine learning to achieve good results and have a decent training duration, one
can compare it to different solutions, under different circumstances.

This section presents the different recommender systems compared, the existing test con-
ditions, and the results obtained. It is concluded by a statistical test of the null hypothesis.

6.4.1 Recommender Systems Used for Testing

Two non-machine learning recommender systems were used as a comparison against the de-
veloped gradient boosted trees model. These two models represent two distinct approaches:
a pattern-mining solution and a heuristic solution. The three models compared are detailed
below.

Gradient Boosted Trees Model

The gradient boosted trees model represents the model prepared using the algorithm, dataset
and features from the Instacart case study (see section 6.2), and optimized in section 6.3.
It is a TensorFlow implementation of this algorithm and is ready to predict personalized
shopping lists, with no information regarding quantity.

Details regarding its architecture can be found in the chapter 4; its development is widely
detailed in the chapter 5; the optimization is done via the hyperparameter tuning in order
to achieve the final configuration is detailed in section 6.3.

Pattern Mining Model

A periodic pattern mining model (see section 3.3.2) from the organization was used for
the comparison. This type of non-machine learning algorithm aims at discovering temporal
patterns within the dataset in order to generate predictions (e.g., preference for certain
items during the weekends). Similarly to the gradient boosted trees implementation, this
model was not trained using the last order of each customer. This model is a property of
the proponent company, thus it is only briefly presented here.

This algorithm filters customers with less than 30 orders, restricting the number of users for
which it is able to generate recommendations. It uses 80% of the data for training and the
remaining as evaluation data. The PFPM algorithm 6 is used to find shopping patterns, a
frequency and a score. This score is intended to penalize the most recent and old products.

Patterns with the lowest frequency or score are pruned. The periodic patterns are then
sorted, and the absolute frequency of products and patterns is calculated, valuing the favorite
ones. The last step is normalizing the scores and re-sorting the data. The 10 products with
a higher score are recommended. The predictions generated by this model do not include
quantity recommendations.

6https://www.philippe-fournier-viger.com/spmf/PFPM.php

6.4. Comparison Against Other Recommender Systems 101

SQL Heuristic Model

An heuristic-based model (see section 3.3.1) from the proponent organization was also used
for the comparison. This non-machine learning approach is based on a Structured Query
Language (SQL) heuristic that aims at finding products that should be repurchased based
on the average buying frequency of each customer. This implementation uses the predicting
moment as a time limit when accessing the data. This solution is also a property of the
company, thus it is only briefly presented here.

When recommending a basket for a customer, this algorithm starts by accessing the shopping
history and calculating the average shopping frequency and obtaining the period since the last
purchase. Then, it searches for products that the number of days since their last purchase
is higher than the average shopping frequency.

The most popular products for that customer that were not bought between the last two
weeks from the recommendations and the average frequency are also obtained. These two
sets of products are used to create a list with a configurable amount of products, with an
equal amount of products from each list (if the number is odd, the first set includes an extra
element).

Unlike the gradient boosted trees and pattern-mining models, this heuristic is ready to predict
quantities. However, since the adopted Instacart dataset does not provide such information,
this feature is not used.

6.4.2 Test Conditions

The comparison between this 3 classifiers was performed by compiling the results of each
model when predicting the last purchase of a set of customers. Since the last purchase was
not considered when training the gradient boosted trees model or by the pattern mining
algorithm, and the SQL heuristic ignores it by design by using only the information before
the predicting time, it is safe to compare the recommended shopping list against the last
purchase to evaluate the results (see section 6.2.1).

The evaluation is done using the metrics accuracy, precision, recall, f1-score, and zeros
(the number of customers where the model could not predict a single item from the actual
purchase).

A subset of 360 customers was arbitrarily chosen, and 3 distinct sets of tests were performed,
varying the number of products being recommended. Since the average cart size in the
adopted dataset is 10 (see section 6.2.2), it was the first value chosen for the maximum
recommendation size. The two additional sets of tests were performed, recommending a
maximum of 7 and 5 products, respectively. The reason behind adopting two values smaller
than the average was due to trying to reduce errors inserted by a lack of certainty by the
recommender systems associated with a higher number of predictions.

The main goal of these tests is to understand how the developed solution behaves when
comparing to solutions with a similar purpose. The variation on the amount of data is to
remove any possible bias associated with the number of items predicted, not to find the best
ones. That decision may be more business-related than technical, so it is not approached in
this dissertation.

102 Chapter 6. Evaluation and Results

6.4.3 Test Results

The average results of each model regarding the accuracy, precision, recall, f1-score, and
zeros are compiled in the table 6.6. For each test set in the table, there are three rows,
representing the results attained by each model. The model description, in the column with
the same name, is abbreviated in the table: GBT stands for the gradient boosted trees
model, PM to the pattern mining model, and SQL to the SQL heuristic.

Table 6.6: Results obtained by the thee compared recommender systems

test
set

num
cus-

tomers

num
items model avg ac-

curacy
avg pre-
cision

avg
recall

avg
f1-score

num
zeros

1 360 10 GBT 0.169613 0.300591 0.295923 0.269607 50
1 360 10 PM 0.158481 0.291137 0.267530 0.253327 64
1 360 10 SQL 0.053492 0.110294 0.105755 0.096022 142

2 360 7 GBT 0.158852 0.337198 0.239832 0.253349 65
2 360 7 PM 0.143753 0.316618 0.219819 0.232124 76
2 360 7 SQL 0.042126 0.104953 0.069192 0.075580 189

3 360 5 GBT 0.149146 0.381868 0.199643 0.237115 74
3 360 5 PM 0.121412 0.328066 0.168475 0.198989 97
3 360 5 SQL 0.038679 0.116437 0.059544 0.069102 210

Unlike the analysis performed in the different hyperparameter tuning tests (see section 6.3),
these tests do not have the same amount of products being predicted, meaning that one
cannot compare the f1-score alone, between the different test sets. The divider when calcu-
lating precision is the number of predicted products, thus it is expected to grow inevitably.
Besides, since recall is built dividing the number of correctly predicted items by the number of
bought items, its value is expected to decrease with the decrease in the number of predicted
items. The f1-score is obtained by these two values, so it is also influenced. The accuracy
metric is obtained considering the predicted and not predicted data, making it a bit more
adequate to the analysis, however it cannot be compared alone. Details on the metrics for
this domain can be found in the section 6.1.2.

With this in mind, comparisons between test sets can be simplified using the average f1-
score, since the different models were executed under the same circumstances. Between test
sets, the accuracy allows us to perceive with a higher granularity how the different models
evolved with the changes in the condition. The number of zeros is a good indicator of how
broad the model is, thus it is useful in the different comparisons.

When recommending a maximum of 10 items (test set 1), the gradient boosted trees model
achieved an average f1-score of 0.26960 and 50 users where it failed the prediction com-
pletely. For the same test, the pattern mining model obtained significantly worse results,
having an average f1-score of 0.25332 and 64 zeros. The SQL heuristic obtained the worse
results, having an average f1-score of 0.09602 and 142 where it could not predict a single
item from the list.

When generating baskets of a maximum of 7 items (test set 2), the gradient boosted trees
model obtained an average f1-score of 0.25334 and 65 zeros. The pattern mining model
achieved a slightly worse average f1-score of 0.23212 and an increased number of zeros of

6.4. Comparison Against Other Recommender Systems 103

76. The SQL heuristic obtained the worse results again, having an f1-score of 0.07558 and
a number of zeros of 189.

When recommending a maximum of 5 items (test set 3), the gradient boosted trees model
obtained the best results once again, having an average f1-score of 0.237115 and increasing
to 74 zeros. For the same test set, the pattern mining obtained an average f1-score of
0.198989 and 97 zeros. The SQL heuristic occupied the third place once again, having an
average f1-score of 0.069102 and 210 customers where it could not predict a single item
correctly.

It becomes evident that the different positions are maintained by the different models across
the test sets. The gradient boosted trees model occupies the first position with a slightly
better average f1-score in every test set, as evidenced in the figure 6.14, and a much lower
number of customers with no correctly predicted products. The SQL heuristic obtains the
worst results in all the test sets in the different metrics as well.

Figure 6.14: Variation of the average f1-score between tests for the 3 com-
pared models

Despite the number of customers where the prediction failed completely (i.e., zeros) having
increased when the maximum number of recommended items decreased, one can observe
that the gradient boosted trees model presents the smallest increase: it failed the predictions
to 24 more customers when comparing test sets 1 and 3, while the pattern mining and SQL
models failed to 33 and 68 more customers, respectively. The figure 6.15 presents the
relationship between zeros and maximum predicted items.

104 Chapter 6. Evaluation and Results

Figure 6.15: Variation of the number of zeros between tests for the 3 com-
pared models

In addition to the absolute number of zeros, the percentage of this value in the whole test
customers set is visible in the figure 6.16. The increase obtained by the gradient boosted
trees model is the lowest. Both pattern mining and SQL implementations had a higher
accentuation, but in different moments: the higher increase for the pattern mining algorithm
was when reducing the maximum predicted items to 5, whilst the SQL heuristic was when
reducing this value from 10 to 7.

Figure 6.16: Percentage of zeros between tests for the 3 compared models

The variations regarding the accuracy variation across the different test sets were slightly
different. Both the gradient boosted trees and the SQL heuristic implementations suffered
a slight drop when decreasing the maximum predicted products, while the pattern mining
algorithm suffered a more accentuate drop. The figure 6.17 shows the accuracy variation
across the different test sets. Once again, the gradient boosted trees implementation shows
itself as a slightly more robust solution.

6.4. Comparison Against Other Recommender Systems 105

Figure 6.17: Variation of accuracy between tests for the 3 compared models

Because the different metrics are presented as the average value, the increase in the zeros
may lead to devaluing the better results of the gradient boosted trees implementation to
the detriment of the pattern mining model. However, it also means that the first model is
significantly more robust and generalized. It is able to provide useful recommendations to a
higher number of customers in the dataset, meaning that it was able to learn in a way that
made it know a little bit more about the different individual shopping habits.

The different comparisons and results make it possible to conclude that the developed so-
lution (i.e., the gradient boosted trees approach) when compared to the two comparison
recommender systems used, is able to provide overall better results. It stands out the most
when it comes to consistency: it shows the highest capacity of providing useful recommen-
dations to a bigger portion of the test customers and the fewer variations associated with
the maximum amount of predicted items.

A dissection of some of the recommendations generated by the developed recommender
system can be found in the appendix B.

6.4.4 Testing the Null Hypothesis

As presented in 6.1.1, the null hypothesis of this work (in particular, with the previous
comparisons) can be defined as all the different recommender systems behaving in the same
way, under the same data and conditions. By having more than two classifiers and because
no normal distribution is expected to be followed, the non-parametric Friedman statistical
test can be used (Gomes 2016) to test the null hypothesis.

Friedman test is used to validate differences between groups and can be executed over a
random population from the dataset, measured under 3 or more different scenarios (Gomes
2016). To ensure these conditions, the f1-score results obtained by the 3 models compared in
this section, for recommendations with a maximum of 10 items, were selected for 10 arbitrary
customers. The reason behind choosing the f1-score is its coverage, since it combines both
precision and recall, reducing any bias. This input data for the Friedman test is present in
table 6.7.

106 Chapter 6. Evaluation and Results

Table 6.7: Input data for the Friedman hypothesis test over the 3 models

GBT PM SQL
0.242 0.242 0.121
0.533 0.533 0.286
0.235 0.125 0.118
0.32 0.32 0.083
0.421 0.471 0.105
0.125 0.125 0.25
0.4 0.267 0.133
0.25 0.167 0.083
0.261 0.174 0.091
0.296 0.519 0.222

The alpha value for p-value validation is 0.05 (Gomes 2016). The p-value obtained by
the test (i.e., the result of the test, compared against the p-value) is 0.004320. The null
hypothesis (h0) can be rejected since the p-value < alpha (Gomes 2016), meaning that not
all the different recommender systems perform the same way under this circumstances.

The difference between p-value and alpha is significant, which reinforces the results obtained
in the previous comparison between the three systems (see section 6.4.3).

The Friedman test was executed using the SciPy Python library, based on a public work on
this matter (Brownlee 2018). The code used for the test can be found in the appendix C.

6.5 Association Rules in the Recommendations

Association rules provide knowledge regarding the data, and can be used in order to add
value to a recommender system (see section 3.3.3). These rules represent the most common
behaviors in the dataset (i.e., the more commonly bought together sets of products), but
are completely customer-agnostic. This section uses the solution prepared in the Instacart
case study (see section 6.2) and optimized in section 6.3.

At first glance, it becomes tempting to extract the most frequent association rules and use
them as binary features in the training set for the developed gradient boosted trees model,
but this idea was refuted for two reasons: first, the number of hyperparameters would in-
crease significantly, causing much higher training and predicting times; second, by projecting
these rules in the current training dataset, one could be causing a potentially erroneous in-
terpretation of the model, as it could learn the rule as associating feature behaviors instead
of just products.

However, by training the model, most of the rules are expected to be already present, since
the training data corresponds to a set of purchases of a set of customers during a period,
and some of the developed features are intentionally designed to help the identification of
these patterns. This way, one might expect to add little value by finding a way of mixing
the output of the machine learning model with the identified association rules.

This section describes the tests designed to understand the value that adding association
rules to the solution could bring, and presents the results obtained.

6.5. Association Rules in the Recommendations 107

6.5.1 Test Conditions

In order to understand how association rules were being perceived by the trained model, the
recommendations used in the tests 6.4, where a maximum of 10 items were predicted for
360 random users, were analysed.

The Apriori algorithm (see section 3.3.3) was chosen in order to find association rules in
the Instacart dataset. A set of 12 different tests, with different configurations of minimum
support, confidence and lift, was executed and the resulting association rules saved. The
table 6.8 presents the configurations used in the different iterations.

Table 6.8: Tests for identifying association rules in the dataset.

test
#

min
support

min confi-
dence min lift

1 0.0009 0.6 3
2 0.0008 0.6 3
3 0.0007 0.6 3
4 0.0006 0.6 3
5 0.0005 0.6 3
6 0.0005 0.6 2
7 0.0005 0.5 3
8 0.0005 0.5 2
9 0.0005 0.4 3
10 0.0005 0.3 3
11 0.0004 0.6 3
12 0.0004 0.5 3

As studied in 3.3.3, support measures the times a rule occurs in the data; confidence rep-
resents the percentage of transactions with the first part of a rule that also contain the
second part; lift measures the number of times the second part is more likely to be bought
when buying the first part.

The tests start with searching for the strongest rules in the dataset and then lightening the
criteria. By starting with a minimum confidence of 60%, the algorithm searches for rules
where 60% or more of the transaction contain the complete rule, within the transactions
with the first part of a rule. This value was chosen to assure the detection of rules stronger
than 50%.

With a minimum lift of 3, the algorithm searches for rules where the second part of a rule
is, at least, 3 times more likely to be bought when the first part is bought. Once again, this
value was adopted to make sure only the strongest rules could be identified.

The initial minimum support of 0.0009 means that the rule is present at least 3000 times in
all the purchases (3000/3214874 (details regarding the amount of transactions in 6.2.2)).
This value was adopted by performing some tests in an attempt to find a value so tight that
no rules could be generated, in order to progressively experiment with slower values in the
other tests (i.e., less frequent rules).

For each of these tests, the recommendations for the test customers were analysed in order
to evaluate how these rules were being reflected. The results for each test contain the

108 Chapter 6. Evaluation and Results

amount of rules found complete in all the test recommendations, as well as the incomplete
rules (i.e, rules where only the first part of a rule was present).

The goal of these tests is to validate how strong the recommender system is as far as
popular shopping habits are concerned, and understand if by using association rules, one
could improve its results and make it stronger.

6.5.2 Test Results

The results of each test can be found in table 6.9. This table is indexed by the test number,
allowing the information to be crossed with the table describing the tests (table 6.8). The
results are analyzed bellow.

Table 6.9: Results for the association rules tests for 360 customers

test
num rules num complete

rules

num
incomplete

rules
1 0 - -
2 2 3 0
3 4 5 0
4 6 7 1
5 7 7 1
6 7 7 1
7 24 20 7
8 24 20 7
9 153 104 69
10 403 255 229
11 22 19 2
12 61 42 15

The first test, as designed, had a minimum support so small that no rules could be found
with the desired confidence and lift values. The second test had a minimum support value
of 0.0008 and the same other configurations, allowing 2 rules to be found in the dataset -
these rules are the strongest in the dataset and were found 3 times in the recommendations,
and were not found incomplete. As a curiosity, both these rules are regarding the association
of different sparkling water flavors.

The minimum support was decreased again, to 0.0007 in test 3, allowing the identification
of 4 distinct rules - these rules were found fulfilled 5 times in the 360 recommended shopping
lists and were never found incomplete. The minimum support was then dropped down to
0.0006 (test 4), increasing the number of rules identified to 6 - they appear complete in
7 shopping lists and incomplete in 1 recommendation (i.e., only the first part of the rule
appeared).

The minimum confidence and lift values were kept, and the minimum support was decreased
once again, to 0.0005 (test 5), allowing the identification of 7 association rules - again,
these rules appeared complete 7 times in the dataset and 1 time incomplete. This time, the
minimum lift was decreased to 2 (test 6), in order to test its impact in the rules (since less
strict rules could, theoretically, be detected) - this test caused no changes in the results.

6.5. Association Rules in the Recommendations 109

The minimum confidence was dropped down to 0.5 in test 7, allowing weaker rules to be
found, and a total of 24 rules were identified throughout the recommendations - these rules
were found complete 20 times and incomplete 7 times. The lift was decreased again to
2, keeping the previous confidence and support values (test 8), causing no changes in the
results again.

The minimum confidence value was relaxed once again, to 0.4 (test 9), keeping a minimum
lift of 3 and a minimum support of 0.0005, causing the highest increase in the number
of the identified rules - 153 rules were identified, and they were found complete in 104
recommendations, and incomplete 69 times. It is important to remember that these rules
are significantly weaker than the ones found using higher confidence values.

In an attempt to verify the presence of even weaker rules, the minimum confidence value was
decreased to 0.3 in test 10, allowing the identification of 403 association rules - they were
found complete 255 times in the different recommendations and 229 times incomplete. The
minimum confidence value was increased to 0.6, and the minimum support was decreased
to 0.0004 (test 11), and 22 strict rules were identified - they were found entirely in 19
recommendations and 2 times incomplete.

The minimum confidence was decreased one last time to 0.5 for test 12, and 61 rules were
found - they were found 42 times complete in the recommendations and 15 times incomplete.

Lowering the minimum confidence, the number of rules identified by the Apriori algorithm
increased, naturally. The weaker association rules have a higher probability of not being
present in the recommendations, which was evidenced throughout the different tests. The
strictest rules, on the other hand, were present many times in the recommendations.

These results should not be interpreted quantitatively - it is not because the recommenda-
tions generated by the gradient boosted trees model include many association rules that it
becomes stronger. The association rules are obtained using the transaction of all the cus-
tomers, while the machine learning model generates recommendations using details regarding
the particular behavior of each customer.

However, by comparing the evolution of the number of rules found complete and incomplete
with their strength, it becomes evident that the strictest rules are recognized by the model
and exist entirely in the recommendations. The weaker the rules, the more they were found
incomplete in the recommendations. The fact that the number of rules found incomplete is
significantly smaller than the ones found complete and that it increases with the decrease
in the strength of the rules is a good indicator that the rules may actually not reflect the
reality of that customer for those recommendations.

The gradient boosted trees model seems capable of identifying the strictest rules in the
dataset and reflect that reality in the recommendations. However, it seems that it could
benefit from including a heuristic layer of association rules in the recommendations pipeline.
Maybe increasing the confidence of a suggestion from the raw recommendations list (output
of the model, prior to resizing the recommendations) when a rule was fully present, using
its confidence or lift, could benefit the final results. This could, nonetheless, decrease the
reliability of the recommender system, since the results would be manipulated with the rule.
As far as the research made at the time of this dissertation, it does not seem to exist any
work combining these two approaches in the described way, so no conclusions regarding the
potential benefit can be obtained beforehand, but it would be interesting to explore.

110 Chapter 6. Evaluation and Results

6.6 Performance Tests

This section uses the solution prepared in the Instacart case study (see section 6.2) and
optimized in section 6.3. Performance tests aim to validate how stable and responsive a
software component or architecture stays under different workloads. Since scalability was not
a concern of this dissertation, the high computational costs of the predictions are expected
to sacrifice the duration when multiple requests run in parallel. However, the architecture
by itself is expected to remain responsive, allowing the solution to be scaled in the future
and solve eventual performance issues.

These tests were developed after all the previous test sets, and hit the main use case: obtain
a tailored shopping list recommendation (UC_C1). A set of tests were developed, testing
sequential and parallel HTTP requests, simulating a real-world scenario. In order to simulate
these workloads, the Siege tool was used (Fulmer 2012). Siege is an open-source tool for
stress testing that allows the simulation of sequential and parallel requests.

The table 6.10 presents the results obtained in the different tests, where different numbers
of requests were executed, both in parallel and sequentially. The total duration of each test
and the availability (i.e., the ability to respond to every request) were also registered.

Table 6.10: Results for the performance tests on the developed solution

num
requests

avg
duration
(parallel)

total
duration
(parallel)

avg duration
(sequential)

total duration
(sequential) availability

1 - - 10.46 10.46 100
2 13.94 14.25 10.39 20.78 100
5 29.60 29.77 10.48 52.43 100
10 56.77 60.63 10.37 103.68 100
20 131.58 136.33 10.44 208.78 100
30 193.39 197.45 10.37 311.34 100

The average durations were projected against the number of requests for both types of tests
and are visible in the figure 6.18.

Figure 6.18: Average duration of parallel and sequential tests

6.7. Summary 111

Analyzing the previous table and figure, one can conclude that a recommendation takes
around 11 seconds to be generated. This value follows a linear trend when only one request
is made at a time. However, when the number of concurrent requests increases, the average
response time follows the same trend. The average response time of 5 concurrent requests
is 29.60 seconds, which is almost 3 times the duration of a single request.

When 10 parallel requests are performed, the average request duration increases to 56.77
seconds - more than 5 times the typical duration of a request. This value keeps following
this linear trend, and, for 30 parallel requests, the average duration is 193.39 seconds - more
than 18 times the duration of a request.

The increase in the average duration can be easily explained by the high CPU needs of the
algorithm. The extraction of some features required some tasks to be parallelized in order
to execute in (significantly) shorter times. A higher number of processes being scheduled
in a scenario where each one uses a pool of processes that maximizes the CPU usage is
inevitably translated into a scenario where the overall time is increased by the CPU time
and time between process scheduling. This analysis shows that the process pools used
by the Machine Learning Model Interface should be configured not to use the maximum
CPU possible or that this component should be scaled horizontally (scenario where multiple
instances of this component would be used in parallel).

6.7 Summary

A case study was developed in order to validate the implemented architecture. The adopted
dataset for the case study was the Instacart Online Grocery Shopping Dataset since it
represents a real-world grocery retail scenario. This public dataset contains data regarding
3 million orders and 200 thousand users and was used in a public Kaggle competition.

The dataset includes information regarding orders, products, aisles, departments, and order-
products. Each customer includes N prior orders, and one order classified as either testing
or training, randomly split (testing orders include no information about the products that
constitute them). This last order is designed for the competition, but it is useful for this
dissertation as well: by removing the last order of each user, one can generate recommen-
dations for that moment and compare it with the real one.

Analyzing the dataset, one can conclude that 94% of the orders can be used when training
the model (i.e., they are not the last order of each customer). The amount of orders of
each customer floats between 4 and 100. The average number of products per order is 10.
Around 88% of the orders include products already bought by the customer. It is possible to
detect a preference for shopping on a weekend-basis, either being weekly, biweekly, triweekly,
or monthly, with higher peaks weekly and monthly. There is a peak for shopping between 8
am and 6 pm, with slight increases at the beginning and end of this interval.

The target variable that reflects whether or not a certain condition led to the purchase
of an item was chosen from two main approaches: using the presence or absence of an
item as a label or using the information regarding an item in an order being reordered as a
label. Despite the second approach meaning that only items that were already previously
purchased by a customer can be recommended, it was selected as it allows lighter training
and predicting datasets, as well as a smaller chance of failing. From the analysis of the

112 Chapter 6. Evaluation and Results

dataset, one could extract the proposed four types of features: 12 customer-related, 6
product-related, 5 customer-product-related, and 6 explicit features.

Extracting useful features is a complicated process. Some features seem to provide useful
business information and end up not improving the model. Others can be too computationally
expensive to be worth it. However, good knowledge of the business helps the process.

Comparison tests were performed using the three most promising machine learning algo-
rithms identified (gradient boosted trees, neural networks, and SVMs), to choose the algo-
rithm to adopt in the case study. Since the support for SVMs using TensorFlow estimators
has been deprecated, two other approaches were tested: linear and wide-n-deep algorithms.
The tests were performed in the adopted dataset, using the default hyperparameter config-
uration. Gradient boosted trees outperformed the compared algorithms, being the adopted
one. This case study was used in the different comparisons of this chapter.

When training a gradient boosted trees model using TensorFlow, the literature argues the
learning rate, number of trees, trees’ depth, and regularization parameters as being the most
effective ones. In order to obtain a good result, several experiments were performed, where
the output model was used to predict the last purchase of 100 customers, and evaluation
metrics (precision, accuracy, recall, f1-score, and zeros) were analyzed. These tests lead
to a final model configuration of 230 trees, a max depth value of 7, 3 batches per layer, a
learning rate of 0.01, and an l2 regularization value of 0.001. The model takes around 3
hours to train, and predictions take around 11 seconds to be obtained.

The case study solution was compared against two non-machine learning approaches from
the proponent organization: a pattern mining model and a SQL heuristic. The models
were tested under 3 sets of tests, where each one predicted the last purchase for 360 test
customers, with a maximum of 10, 7, and 5 items, respectively. The developed solution
obtained the overall best results and was the most flexible and generalized one.

A Friedman hypothesis test was executed to test the null hypothesis. A random sample of
10 customers was selected, and the average f1-score was registered. The p-value obtained
by the test was smaller than the alpha (0.05), proving the rejection of the null hypothesis
(all the different classifiers behave similarly on the same data under the same conditions) -
supporting the previous comparison tests.

The detection of association rules by the current model was analyzed. The Apriori algorithm
was applied to the dataset multiple times, with different configurations, to identify sets of
association rules with different strengths and search them in the recommendations generated
for 360 test customers. The results have shown that the strictest rules were identified in
a complete way in the recommendations and that the weakest recommendations appeared
many times incomplete. Despite the developed model being able to learn the strictest rules,
it may be able to benefit from a heuristic layer of association rules.

Performance tests were developed to validate how the recommender system behaves under
different workloads. These tests evidenced an increase in the recommendations time asso-
ciated with a higher number of parallel requests, enhancing the need to scale the solution in
a horizontal way.

All the different experiments were performed in a Ubuntu 18.04 machine, with 64 GB of
RAM, 480 GB of SSD storage, and an Nvidia GeForce GTX 1070 GPU.

113

Chapter 7

Conclusions

Grocery retail differs from other fields of retail because of some of its uniquenesses, such as
the wide variety of different products it deals with, their seasonality, its promotional charac-
ter, its evolution throughout time, and the discrepancy between the number of customers
and items they buy (Sano et al. 2015). Also, grocery retail shopping habits are not easily
described. Certain items are bought only once in a customer’s lifetime, while others are
purchased very frequently; some products are not replaceable for a customer, while others
can be replaced by similar or very distinct items; the need for some products evolves in time
(e.g., sizes or flavours), while for others stays the same forever.

Grocery retailers understand the progress in technology and the benefits associated with
investing in personalized customer experiences, either in-store or in online stores (Deloitte
2018). A way of offering such experience is by providing access to personalized recommenda-
tions, facilitating the process of creating and managing the shopping list for next purchases
(Guidotti et al. 2017).

The academical interest in recommender systems has increased since the mid-90s (Ado-
mavicius and Tuzhilin 2005), and several methodologies have emerged since then. The
more basic recommender systems estimate ratings for items that users have not yet demon-
strated interest on, based on their interest in other items or other user’s interests, and then
recommend the most highly-rated ones. Shopping list recommendations for a specific mo-
ment in time are, however, a more complex use case, as there is a dependency on the history
and shopping habits of each customer.

Recommender systems can be developed using traditional software approaches or using
machine learning-based approaches. This dissertation focused on the second methodology,
and the research performed has shown that several machine learning approaches exist and
provide different results, according to the type of recommendation and to the field or dataset.
The lack of academic and scientific work regarding recommender systems for grocery retail
brought a need to study broader applications when selecting an approach.

By studying academical results (Fernández-Delgado et al. 2014; Olson et al. 2017; Van-
schoren et al. 2012) on areas with similar domains (i.e., where a user has historical data
associated with it, such as movies, e-commerce, or health procedures), gradient boosted-
tree algorithms, neural networks, and SVMs appeared as the most promising approaches to
develop a machine learning model for grocery retail, achieving the best results and being
more consistent throughout the different domains (see section 3.4.2). Several technologies
exist when developing machine learning algorithms. TensorFlow is a very well-known tech-
nology and has a big community around it, making it the ideal framework to be used in

114 Chapter 7. Conclusions

this work. Besides, it includes support for both CPU and GPU, allowing faster results when
working with models.

A case study was developed in order to validate the developed solution. This way, a dataset
capable of reflecting a real-world scenario was needed, and from all the studied datasets,
the Instacart Online Grocery Shopping Dataset was the most promising one (see section
6.2.1). It includes more than 3 million grocery orders divided into more than 200 thousand
customers, representing a good base to work on in order to extract information to train
a machine learning model. A limitation of the dataset is the lack of quantities, causing
the recommender system not to support quantity recommendation yet. Once the dataset
was adopted, the machine learning algorithm for the case study was selected, based on a
comparison between the most promising ones. Gradient boosted trees achieved the best
results on the different test sets performed.

The particularities of grocery retail make the development of a recommender system par-
ticularly challenging. It was of paramount importance to extract the biggest amount of
knowledge as possible from the dataset used in the case study, in an attempt to help the
gradient boosted trees model learn distinct patterns for different customers, different prod-
ucts, and different relationships between both. This knowledge was represented by features.
Four types of features were extracted, according to the implemented solution: customer-
related, product-related, customer-product-related, and explicit features.

Designing and selecting the best features has proved itself to be a difficult task. Some
features seemed to provide very specific information, but ended up by not improving the
results or by increasing the training time for too much (e.g., identifying the number of
orders in a row that a customer bought a product). Some simple features were able to
provide the best results, and some other features were computationally expensive; however,
the benefits were too big to be ignored (e.g., identifying how recently or frequently a product
was bought by a customer). This process was very time consuming, but it was a crucial part
of the solution.

The available data allowed the development of a recommender system capable of predicting
items already purchased by a customer or from all the available items. A business decision
was made in order to target items that the customer has already bought before, in order to
have a theoretical smaller margin of error in the recommendations, and a smaller amount of
data when training and predicting, and consequently smaller amounts of time spent. This
means, however, that the developed recommender system is not ready to suggest new items
for a customer, by itself.

After having decent work feature-wise, the results were improved by tuning the hyperparam-
eters when training the model in the case study. Each machine learning technique provides
different sets of parameters to tune, and the tuning process depends on that. There is no
general rule for training, but some methodologies (e.g., XGBoost) provide ways of optimizing
the choice of the best setup. TensorFlow does not provide such implementation for gradient
boosted trees, so a tuning algorithm based on the official hyperparameter documentation
and general boosting trees algorithms was followed. Several test iterations were executed in
order to identify a good hyperparameter configuration, and the final choice was based on a
ratio between training time and results.

The case study model takes around 3 hours to train and is able to generate recommendations
in around 11 seconds. Tests performed comparing this solution with two non-machine
learning-based approaches have shown it to outperform these solutions as far as results,

7.1. Achieved Requirements 115

flexibility, and consistency are concerned, for all the tests. The three recommender systems
were compared when predicting a maximum of 10 items per customer (average basket size
in the Instacart dataset), a maximum of 7 items, and a maximum of 5 items. The test
sample consisted of 360 random customers.

By recommending a maximum of 10 items, the model from the case study was able to
predict at least one correct item for 310 customers and obtain an average precision of 30%
(i.e., on average, 3 correct items per recommended list were correct). This value increased,
naturally, with smaller amounts of maximum recommended items, achieving 38% when
recommending a maximum of 5 items. Even though the best results were achieved with this
value, the maximum basket size depends essentially on business and market decisions.

An association rules algorithm was applied to the dataset in order to retrieve association
rules with different strengths. These rules were searched for in the recommendations for
the previous test customers, and the results were rewarding. The strictest rules were found
within the recommendations several times. Weaker rules were found complete many times
as well but were also found incomplete. This evidences that the model was able to learn the
strictest rules and that the results may, still, be improved. The lack of literature combining
these two techniques allows the contribution with empirical knowledge regarding a heuristic
association rules layer that could be used to reorganize the recommendations returned by
the gradient boosted trees model.

The adopted architecture follows an offline learning approach (see section 4.2.1), so the
machine learning model needs to be trained and then deployed - it is not capable of learning
as it is being used. This solution includes an automatic training and deployment flow. An
automatic process for downloading retailer data was developed, followed by an automatic
process for training new models periodically, as configured.

Since the machine learning model learns from the historical behavior and preferences of
all the customers and recommends items based on previous purchases, more items will be
available at prediction time, increasing the chance of predicting both correct and incorrect
items. However, if the number of the previous transaction is small, the recommendation’s
quality will inevitably suffer (i.e., cold-start problem (see section 3.1.2)). Using a quality
filter to restrict the recommendations for customers with at least N previous transactions
might be valuable in a real-world scenario.

This chapter presents a review of the achieved requirements, limitations, and future work,
and it is concluded by a final appreciation of the dissertation.

7.1 Achieved Requirements

The main goal of this dissertation was to develop a recommender system for grocery retail,
capable of predicting personalized shopping lists. Throughout this project, several discussions
led to the identification of the functional requirements (in the form of use cases) that suit
the goals. Non-functional requirements were also identified, describing how the solution is
expected to behave.

As far as functional requirements are concerned (see section 4.1.2), the following require-
ments were fulfilled:

• UC_C1 - View a shopping list recommendation

116 Chapter 7. Conclusions

• UC_S3 - Update the shopping history

• UC_S4 - Train and update the model

The previous use cases were designed to match the solution goals. However, an additional
requirement (UC_C2) was proposed to value the work by adding the ability to recommend
the next item, but ended up not being achieved due to the fact that the structure developed
to generate shopping list recommendations is not ready to predict the next item of a shopping
flow. In order to do so in a proper way, a different machine learning algorithm or training
flow would need to be developed.

As far as non-functional requirements go (see section 4.1.3), the following categories were
fulfilled: usability ; reliability ; supportability ; design constraints; implementation constraints;
and interface constraints.

A goal of generating shopping lists in a small amount of time was proposed as another way of
valuing the recommender system. In the developed case study, the average recommendation
time is 11 seconds, depending on the customer (smaller shopping histories can be processed
faster) and on the hardware. The perception of this duration can easily be minimized by
performing the recommendations in background and pushing them to the customers once
ready, reducing its impact.

7.2 Limitations

Despite being able to meet the requirements that motivated this dissertation, some aspects
are limited by different reasons.

The machine learning model is trained over a specific dataset, containing multiple customers
and their purchases during a time period. Since recommendations are tailored to each
customer, it also means that new customers that have no history in the training set cannot
benefit from them. Also, the solution includes no support for forgetting old data.

The choice behind the target variable in the case study (see section 6.2.3) has brought
some benefits to the solution, as analyzed before, but has also brought a limitation: no new
items can be suggested by this recommender system. Even though customers tend to buy
a reduced portion of new items (see section 6.2.2), the solution is limited by predicting only
items that were already bought by the customer.

Also, the adopted dataset in the case study has no details on the quantity of each item
bought. For this reason, this information was not considered during training nor during the
design of the solution. This way, the developed recommender system includes no support
to quantity recommendations.

A limitation of the implemented solution has to do with scaling: the use of several parallel
computations made it able to provide recommendations in decent amounts of time, but with
high CPU usage. This, together with the several steps involved in the predicting pipeline
(see section 5.2.7), caused the predicting phase to be very expensive, computation-wise.

When several requests occur in parallel (see tests made in 6.6), the average response time
of each request increases significantly. In order to solve this limitation, horizontal scaling
should be adopted. The service responsible for exposing the machine learning model (i.e.,
Machine Learning Model Interface) should have multiple instances deployed, with a gateway

7.3. Future Work 117

upfront, routing the requests. This would mean that there could be, at a time, as many
instances as needed, assuring consistent response times. The architecture is prepared to
support this situation.

7.3 Future Work

The work done for this dissertation has much potential to be expanded, either by improving
specific parts or by adding new features to boost the results. Also, the solution can be further
tested using a Nemenyi statistical test to obtain details on the origin of the difference when
compared with other solutions.

A matter to pursue would be using a real-world dataset. Although a grocery retail dataset
was adopted in the case study, this work would benefit from working with real customers
and receiving feedback from its usage. This could lead to eventual fixes or suggestions.

In addition, by working with real customers, the chance to acquire real-time feedback would
exist (either by asking the customer their opinion on the recommendation or by interpreting
how it was then translated into a purchase). This would be a significant step towards
experimenting with models based on online learning and could be completed with periodical
data updates from the retailer.

Predicting quantities associated with an item would also value the solution. Since this
information did not exist in the case study dataset, it was not pursued. In order to accomplish
this, modifications to the training pipeline would be necessary, or even the usage of an
alternative or complementary technique.

Another feature that would benefit the current recommender system is suggesting the next-
item when a customer is shopping. This feature was explored in this dissertation (see section
4.2.2), but ended up not being implemented as the current solution includes no support to
this methodology.

Reducing the recommendation time would also allow a better user experience. This value
can still be reduced with additional parallel computations (e.g., when extracting the different
features from the data) or by optimizing other parts of the code. However, by increasing the
CPU usage, the average duration of parallel recommendations is expected to increase (see
the tests in section 6.6). This enhances the need to scale the service responsible for exposing
the machine learning model horizontally. By having multiple instances of this service, the
previously referred optimizations would bring extra value to the user experience.

The experiments with association rules (see section 6.5) have shown that the model was able
to learn most of the strictest rules. Weaker rules, on the other hand, were found incomplete
in the recommendations some times (i.e., only part of the rule was suggested). These results,
together with the lack of studies on the usage of gradient boosted trees with association
rules (at the time of this dissertation), bring the idea that a heuristic layer could be added
to the results of the machine learning model in order to re-sort the recommendations based
on the confidence of a rule. This is empirical knowledge that would be interesting to pursue.

An exciting matter to explore is how the shopping list is evaluated. Traditional evaluation
metrics cover the strict match between predicted and bought items without considering
alternatives. By analyzing some recommendations (see appendix B), one can find many
similarities between recommended and bought items, and they may be good enough to be

118 Chapter 7. Conclusions

accepted by the customer. Exploring product similarity (e.g., using embeddings) during
evaluation may lead to better and more accurate results.

7.4 Final Appreciation

The challenges associated with machine learning and with the different types of recommender
systems have made this project particularly interesting to the student. Despite the already
existent interest in grocery retail, this dissertation has widened his knowledge in the field
and made him learn more about the uniqueness of the area.

This dissertation has made the student step out of his comfort zone, as far as software
development is concerned. It has made him research and experiment in order to understand
deeper concerns of the area. It has also allowed the student to meet people from the machine
learning area and have enriching conversations.

Analyzing the different approaches to machine learning-based recommender systems was
considered to be a valuable experience. Understanding some of the issues faced by some
authors in different retail subsets allowed the student to acquire a better understating of the
grocery retail uniquenesses and difficulties associated with it.

Feature engineering and hyperparameter tuning were considered to be particularly challenging
tasks. The first one, because of the lack of experience in the field and because of the issues
related to dealing with such amounts of data. The second one, because of the more profound
concepts behind every configuration and every result. However, the student considers these
as the most rewarding tasks.

The student considers also that evaluating recommendations for grocery retail using tradi-
tional evaluation metrics, where only the product identifier is compared, might reduce its
value. The real value for these retailers is related to increasing the basket or its value, which
might not be reflected in the traditional measurements.

The periodical meetings with both advisors have helped to keep this project heading in the
right direction and have brought some interesting discussions regarding retail and machine
learning that were later reflected in the dissertation.

Recommender systems for grocery retail are an exciting but embryonic area. All the studies
and analyses performed have evidenced a lack of research and academic work in this field.
There is still a lot to explore in the area, and it will undoubtedly be done during the next
years. The student feels enriched to have been part of it.

119

Bibliography

Adomavicius, Gediminas and Alexander Tuzhilin (2005). “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions”. In: IEEE
Transactions on Knowledge and Data Engineering 17.6, pp. 734–749. issn: 10414347.
doi: 10.1109/TKDE.2005.99.

Agarwal, Pragya, Madan Lal Yadav, and Nupur Anand (2013). Study on Apriori Algorithm
and its Application in Grocery Store. Tech. rep. 14, pp. 975–8887.

Allee, Verna (2006). “What is ValueNet WorksTM Analysis?” In:
Anuradha and Gaurav Gupta (2014). “A self explanatory review of decision tree classifiers”.
In: International Conference on Recent Advances and Innovations in Engineering, ICRAIE
2014. Institute of Electrical and Electronics Engineers Inc. isbn: 9781479940400. doi:
10.1109/ICRAIE.2014.6909245.

Auria, Laura and R. A. Moro (2011). “Support Vector Machines (SVM) as a Technique for
Solvency Analysis”. In: SSRN Electronic Journal. doi: 10.2139/ssrn.1424949.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2014). “Representation Learning:
A Review and New Perspectives”. In: arXiv: 1206.5538v3. url: http://www.image-
net.org/challenges/LSVRC/2012/results.html.

Bittner, Kurt (2016). Driving Iterative Development With Use Cases. url: https://www.
ibm.com/developerworks/rational/library/4029.html (visited on 09/01/2020).

Bloice, Marcus D. and Andreas Holzinger (2016). “A tutorial on machine learning and data
science tools with python”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9605
LNCS. Springer Verlag, pp. 435–480. doi: 10.1007/978-3-319-50478-0_22.

Breiman, Leo (2001). “Random forests”. In:Machine Learning 45.1, pp. 5–32. issn: 8856125.
doi: 10.1023/A:1010933404324.

Brownlee, Jason (2018). How to Calculate Nonparametric Statistical Hypothesis Tests in
Python. url: https://machinelearningmastery.com/nonparametric-statistical-
significance-tests-in-python/ (visited on 09/06/2020).

Burke, Robin (2002). “Hybrid recommender systems: Survey and experiments”. In: User
Modelling and User-Adapted Interaction 12.4, pp. 331–370. issn: 9241868. doi: 10.1023/
A:1021240730564.

Cheng, Heng-Tze et al. (2016). Wide & Deep Learning for Recommender Systems. Tech.
rep. arXiv: 1606.07792v1. url: http://tensorflow.org..

Deloitte (2018). Global Powers of Retailing 2018 - Transformative change, reinvigorated
commerce. Tech. rep.

– (2019). Global Powers of Retailing 2019. Tech. rep.
Dhumale, R. B., N. D. Thombare, and P. M. Bangare (2019). “Machine Learning: A Way
of Dealing with Artificial Intelligence”. In: Proceedings of 1st International Conference
on Innovations in Information and Communication Technology, ICIICT 2019. Institute of
Electrical and Electronics Engineers Inc. isbn: 9781728116044. doi: 10.1109/ICIICT1.
2019.8741360.

120 BIBLIOGRAPHY

Eeles, Peter (2004). What, no supplementary specification? url: https://www.ibm.com/
developerworks/rational/library/3975.html.

Fernández-Delgado, Manuel et al. (2014). Do we Need Hundreds of Classifiers to Solve Real
World Classification Problems? Tech. rep., pp. 3133–3181. url: http://www.mathworks.
es/products/neural-network..

Ferreira, Carlos Abreu, João Gama, and Vítor Santos Costa (2011). “Predictive Sequence
Miner in ILP Learning”. In:

Fournier-Viger, Philippe et al. (2016). “PHM: Mining periodic high-utility itemsets”. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Vol. 9728. Springer Verlag, pp. 64–79. isbn:
9783319415604. doi: 10.1007/978-3-319-41561-1_6.

Freund, Yoav and Robert E Schapire (1996). Experiments with a New Boosting Algorithm.
Tech. rep. url: http://www.research.att.com/.

Fulmer, Jeffrey (2012). Siege Home. url: https://www.joedog.org/siege-home/ (visited
on 09/09/2020).

Gama, João et al. (2015). Extração de Conhecimento de Dados. isbn: 9789726188117.
Gomes, Elsa Ferreira (2016). Experimentação e Avaliação.
Grbovic, Mihajlo and Haibin Cheng (2018). “Real-time Personalization using Embeddings
for Search Ranking at Airbnb”. In: doi: 10.1145/3219819.3219885. url: https://doi.
org/10.1145/3219819.3219885.

Gron, Aurlien (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. 1st. O’Reilly Media, Inc. isbn:
1491962291.

Group, FMI Hartman (2018). How Technology is Changing Grocery Shopping, From the
Consumer Perspective. url: https://www.fmi.org/docs/default-source/webinars/
trends-2018-webinar-3-final94d6250324aa67249237ff0000c12749.pdf?sfvrsn=
547c426e%7B%5C_%7D0 (visited on 01/09/2020).

Guidotti, Riccardo et al. (2017). “Next Basket Prediction using Recurring Sequential Pat-
terns”. In: Proceedings - IEEE International Conference on Data Mining, ICDM 2017-
November, pp. 895–900. doi: 10.1109/ICDM.2017.111. arXiv: 1702.07158. url: http:
//arxiv.org/abs/1702.07158%20http://dx.doi.org/10.1109/ICDM.2017.111.

Gupta, Swati and Sushama Nagpal (2015). “An empirical analysis of implicit trust metrics
in recommender systems”. In: 2015 International Conference on Advances in Computing,
Communications and Informatics, ICACCI 2015. Institute of Electrical and Electronics En-
gineers Inc., pp. 636–639. isbn: 9781479987917. doi: 10.1109/ICACCI.2015.7275681.

Hanke, Jannis et al. (2018). REDEFINING THE OFFLINE RETAIL EXPERIENCE: DE-
SIGNING PRODUCT RECOMMENDATION SYSTEMS FOR FASHION STORES. Tech.
rep.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical
Learning. Vol. 27. 2. isbn: 978-0-387-84857-0. doi: 111. arXiv: arXiv:1011.1669v3. url:
http://www.springerlink.com/index/10.1007/b94608.

Hauser, John R. and Don Clausing (1988). The House of Quality. url: https://hbr.org/
1988/05/the-house-of-quality (visited on 09/22/2020).

Haykin, Simon et al. (2009). Neural Networks and Learning Machines Third Edition. isbn:
9780131471399.

He, Qiang and Jun Fen Chen (2005). “The inverse problem of support vector machines and
its solution”. In: 2005 International Conference on Machine Learning and Cybernetics,
ICMLC 2005, pp. 4322–4326. isbn: 078039092X. doi: 10.1109/icmlc.2005.1527698.

BIBLIOGRAPHY 121

Instacart (2017). The Instacart Online Grocery Shopping Dataset 2017. url: https://www.
instacart.com/datasets/grocery-shopping-2017 (visited on 08/21/2020).

Jain, Aarshay (2016a). Complete Guide to Parameter Tuning in XGBoost with codes in
Python. url: https://www.analyticsvidhya.com/blog/2016/03/complete-guide-
parameter-tuning-xgboost-with-codes-python/ (visited on 08/30/2020).

– (2016b). Complete Machine Learning Guide to Parameter Tuning in Gradient Boost-
ing (GBM) in Python. url: https://www.analyticsvidhya.com/blog/2016/02/
complete-guide-parameter-tuning-gradient-boosting-gbm-python/ (visited on
08/30/2020).

Jariha, Priyanka and Sanjay Kumar Jain (2018). “A state-of-the-art Recommender Sys-
tems: An overview on Concepts, Methodology and Challenges”. In: Proceedings of the
International Conference on Inventive Communication and Computational Technologies,
ICICCT 2018. Institute of Electrical and Electronics Engineers Inc., pp. 1769–1774. isbn:
9781538619742. doi: 10.1109/ICICCT.2018.8473275.

Jooa, Jinhyun, Sangwon Bangb, and Geunduk Parka (2016). “Implementation of a Recom-
mendation System Using Association Rules and Collaborative Filtering”. In: Procedia Com-
puter Science. Vol. 91. Elsevier B.V., pp. 944–952. doi: 10.1016/j.procs.2016.07.115.

Koen, Peter A et al. (2002). FuzzyFrontEnd: Effective Methods, Tools, and Techniques.
Tech. rep.

Koen, Peter et al. (2001). PROVIDING CLARITY AND A COMMON LANGUAGE TO
THE "FUZZY FRONT END". Tech. rep.

Komer, Brent, James Bergstra, and Chris Eliasmith (2014). Hyperopt-Sklearn: Automatic
Hyperparameter Configuration for Scikit-Learn. Tech. rep.

Kovalev, Vassili, Alexander Kalinovsky, and Sergey Kovalev (2016). “Deep Learning with
Theano, Torch, Caffe, Tensorflow, and Deeplearning4J: Which One is the Best in Speed
and Accuracy?” In:

Le, Quoc V et al. (2012). Building High-level Features Using Large Scale Unsupervised
Learning. Tech. rep. url: http://opencv.willowgarage.com/wiki/.

Learned-Miller, Erik G (2014). “Introduction to Supervised Learning”. In:
Lekha, Madhu (2019). Instacart MBA - Tensorflow GBM - PART1. Tech. rep. url: https:
//www.kaggle.com/madhulekha/instacart-mba-tensorflow-gbm-part1-eda.

Lerato, Masupha et al. (2016). “A survey of recommender system feedback techniques,
comparison and evaluation metrics”. In: 2015 International Conference on Computing,
Communication and Security, ICCCS 2015. Institute of Electrical and Electronics Engi-
neers Inc. isbn: 9781467393546. doi: 10.1109/CCCS.2015.7374146.

Liu, David Zhan and Gurbir Singh (2016). A Recurrent Neural Network Based Recommen-
dation System. Tech. rep. url: https://www.yelp.com/dataset%7B%5C_%7Dchallenge.

Lops, Pasquale, Marco de Gemmis, and Giovanni Semeraro (2011). “Content-based Rec-
ommender Systems: State of the Art and Trends”. In: Recommender Systems Handbook.
Springer US, pp. 73–105. doi: 10.1007/978-0-387-85820-3_3.

Malik, Usman (2020). Association Rule Mining via Apriori Algorithm in Python. url: https:
//stackabuse.com/association- rule- mining- via- apriori- algorithm- in-
python/ (visited on 09/06/2020).

Manufacturing Group, Warwick (2007). “Quality Function Deployment”. In: Product Excel-
lence using Six Sigma.

Medar, Ramesh, Vijay S. Rajpurohit, and B. Rashmi (2018). “Impact of Training and Test-
ing Data Splits on Accuracy of Time Series Forecasting in Machine Learning”. In: 2017

122 BIBLIOGRAPHY

International Conference on Computing, Communication, Control and Automation, IC-
CUBEA 2017. Institute of Electrical and Electronics Engineers Inc. isbn: 9781538640081.
doi: 10.1109/ICCUBEA.2017.8463779.

Mitova, Teodora (2020). 21+ Grocery Shopping Statistics for Every CUSTOMER in 2020.
url: https://spendmenot.com/blog/grocery-shopping-statistics/ (visited on
09/21/2020).

Mohamed, Marwa Hussien, Mohamed Helmy Khafagy, and Mohamed Hasan Ibrahim (2019).
“Recommender Systems Challenges and Solutions Survey”. In: Proceedings of 2019 Inter-
national Conference on Innovative Trends in Computer Engineering, ITCE 2019. Institute
of Electrical and Electronics Engineers Inc., pp. 149–155. isbn: 9781538652602. doi:
10.1109/ITCE.2019.8646645.

Nguyen, Giang et al. (2019). “Machine Learning and Deep Learning frameworks and libraries
for large-scale data mining: a survey”. In: Artificial Intelligence Review 52.1, pp. 77–124.
issn: 15737462. doi: 10.1007/s10462-018-09679-z.

Olson, Randal S. et al. (2017). “Data-driven Advice for Applying Machine Learning to Bioin-
formatics Problems”. In: arXiv: 1708.05070. url: http://arxiv.org/abs/1708.05070.

Patro, S.Gopal Krishna and Kishore Kumar Sahu (2015). “Normalization: A Preprocessing
Stage”. In: IARJSET, pp. 20–22. issn: 2393-8021. doi: 10.17148/iarjset.2015.2305.
arXiv: 1503.06462.

Petrovic, Otto and Christian Kittl (2003). “Capturing the value proposition of a product or
service”. In:

Ponomareva, Natalia et al. (2017). “Compact Multi-Class Boosted Trees”. In: arXiv: 1710.
11547. url: http://arxiv.org/abs/1710.11547.

Potdar, Kedar, Taher S., and Chinmay D. (2017). “A Comparative Study of Categorical
Variable Encoding Techniques for Neural Network Classifiers”. In: International Journal of
Computer Applications 175.4, pp. 7–9. doi: 10.5120/ijca2017915495.

Qastharin, Annisa R (2016). “Business Model Canvas for Social Enterprise”. In: Journal of
Business and Economics 7.4, pp. 627–637. doi: 10.15341/jbe(2155-7950)/04.07.
2016/008. url: http://www.academicstar.us.

Raju, C. V.L., Y. Narahari, and K. Ravikumar (2003). “Reinforcement learning applications
in dynamic pricing of retail markets”. In: Proceedings - IEEE International Conference on
E-Commerce, CEC 2003. Institute of Electrical and Electronics Engineers Inc., pp. 339–
346. doi: 10.1109/COEC.2003.1210269.

Raut, Laukik, Rajat Wakode, and Pravin Talmale (2015). Overview on Kanban Method-
ology and its Implementation. url: https://www.researchgate.net/publication/
280865949%7B%5C_%7DOverview%7B%5C_%7Don%7B%5C_%7DKanban%7B%5C_%7D%
20Methodology%7B%5C_%7Dand%7B%5C_%7Dits%7B%5C_%7DImplementation (visited
on 09/17/2020).

Rojas, Raúl (2009). AdaBoost and the Super Bowl of Classifiers A Tutorial Introduction to
Adaptive Boosting. Tech. rep.

Sano, Natsuki et al. (2015). “Recommendation system for grocery store considering data
sparsity”. In: Procedia Computer Science. Vol. 60. 1. Elsevier B.V., pp. 1406–1413. doi:
10.1016/j.procs.2015.08.216.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning: From
Theory to Algorithms.

Sheil, Humphrey, Omer Rana, and Ronan Reilly (2018). “Predicting purchasing intent: Au-
tomatic Feature Learning using Recurrent Neural Networks”. In: doi: 10.1145/nnnnnnn.
nnnnnnn. arXiv: 1807.08207v1. url: https://doi.org/10.1145/nnnnnnn.nnnnnnn.

BIBLIOGRAPHY 123

Si, Si et al. (2017). Gradient Boosted Decision Trees for High Dimensional Sparse Output.
Tech. rep. url: https://github.com/Microsoft/LightGBM.

Slivkins, Aleksandrs (2019). “Introduction to Multi-Armed Bandits”. In: arXiv: 1904.07272.
url: http://arxiv.org/abs/1904.07272.

SRK (2017). Simple Exploration Notebook - Instacart. Tech. rep. url: https : / / www .
kaggle.com/sudalairajkumar/simple-exploration-notebook-instacart.

Staudemeyer, Ralf C. and Eric Rothstein Morris (2019). “Understanding LSTM – a tutorial
into Long Short-Term Memory Recurrent Neural Networks”. In: arXiv: 1909.09586. url:
http://arxiv.org/abs/1909.09586.

Sun, Chen, Rong Gao, and Hongsheng Xi (2014). “Big data based retail recommender system
of non E-commerce”. In: 5th International Conference on Computing Communication and
Networking Technologies, ICCCNT 2014. Institute of Electrical and Electronics Engineers
Inc. isbn: 9781479926961. doi: 10.1109/ICCCNT.2014.6963129.

TensorFlow (2020a). A Classifier for Tensorflow Boosted Trees models. url: https://www.
tensorflow.org/api%7B%5C_%7Ddocs/python/tf/%20estimator%20/Boosted%
20Trees%20Classifier (visited on 08/31/2020).

– (2020b). Boosted trees using Estimators | TensorFlow Core. url: https : / / www .
tensorflow . org / tutorials / estimator / boosted % 7B % 5C _ %7Dtrees (visited on
08/28/2020).

– (2020c). Overfit and underfit | TensorFlow Core. url: https://www.tensorflow.org/
tutorials/keras/overfit%7B%5C_%7Dand%7B%5C_%7Dunderfit%7B%5C#%7Dadd%7B%
5C_%7Dweight%7B%5C_%7Dregularization (visited on 08/31/2020).

– (2018). TensorFlow Contrib Estimators are Deptrecated. url: https://github.com/
tensorflow/tensorflow/blob/r1.8/tensorflow/contrib/learn/README.md (vis-
ited on 10/09/2020).

Thornton, Chris et al. (2013). Auto-WEKA: Combined Selection and Hyperparameter Op-
timization of Classification Algorithms. Tech. rep. arXiv: 1208.3719v2.

Vanschoren, Joaquin et al. (2012). “Experiment databases: A new way to share, organize
and learn from experiments”. In: Machine Learning 87.2, pp. 127–158. issn: 08856125.
doi: 10.1007/s10994-011-5277-0.

Vermorel, Joannès and Mehryar Mohri (2005).Multi-armed Bandit Algorithms and Empirical
Evaluation. Tech. rep.

Vinagre, João, Alípio Jorge, and João Gama (2014). “Evaluation of recommender systems
in streaming environments”. In: doi: 10.13140/2.1.4381.5367.

Wang, Qiang and Zhongli Zhan (2011). “Reinforcement learning model, algorithms and
its application”. In: Proceedings 2011 International Conference on Mechatronic Science,
Electric Engineering and Computer, MEC 2011, pp. 1143–1146. isbn: 9781612847221.
doi: 10.1109/MEC.2011.6025669.

Wirth, R. and J. Hipp (2000). “Crisp-dm: towards a standard process modell for data mining”.
In:

Wolfgang, Ulaga and Eggert Andreas (2006). “Relationship value and relationship quality”.
In: European Journal of Marketing 40, pp. 836–867. doi: 10.1108/03090560610648075.
url: http://dx.doi.org/10.1108/03090569610106626http://dx.doi.org/10.
1108/03090560710752429.

Xu, Qingyang et al. (2017). “The difference learning of hidden layer between autoencoder
and variational autoencoder”. In: Proceedings of the 29th Chinese Control and Decision
Conference, CCDC 2017. Institute of Electrical and Electronics Engineers Inc., pp. 4801–
4804. isbn: 9781509046560. doi: 10.1109/CCDC.2017.7979344.

124 BIBLIOGRAPHY

Zhang, Shuai et al. (2017). “Deep Learning based Recommender System: A Survey and
New Perspectives”. In: doi: 10.1145/3285029. arXiv: 1707.07435. url: http://arxiv.
org/abs/1707.07435%20http://dx.doi.org/10.1145/3285029.

125

Appendix A

Technologies used in the solution

The main technologies used to develop this solution can be found synthesised in the table
A.1.

Table A.1: Technologies used to develop the solution

Technology Description Usage

CUDA
Toolkit used provide GPU-acceleration to

TensorFlow models

Allowing GPU
acceleration of the

machine learning model

Gradient
Boosted Trees

Supervised learning algorithm for machine
learning models, with high accuracy and
training speed and fast prediction time

The algorithm used for
the machine learning

model of the case study

HTML

Standard markup language used by web
browsers to display documents graphically;

it is capable of embedding scripting
languages

Client device
demonstrator

JavaScript

High-level programming language, scripted
or compiled; it is mainly used to animate
web pages and in smaller server-side

applications

Logic and data
manipulation in the

client device
demonstrator

JSON
Human readable key-value representation

of programming objects

Data representation
between the different

services

NumPy

Python library that provides access to
high-lever mathematical operations over

large, multi-dimensional arrays and
matrices

Data operations over
the dataset

pandas
Python library that offers access to data
structures and operations for manipulating

and analysing numerical tables

Data representation and
manipulation, and charts

PHP
General purpose scripting language, mainly

used for web development and simple
script operations

Auxiliary scripts for
comparison testing

Python
High-level interpreted programming
language, with dynamic typing and

garbage-collector

Main programming
language; used in the
different components

126 Appendix A. Technologies used in the solution

Table A.1: Technologies used to develop the solution (continued)
Technology Description Usage

pytest
Testing framework for Python

programming language
Unit, functional and
end-to-end testing

seaborn
Statistical data visualization library that

allows the generation and customization of
charts

Plot generation

SciPy
Set of frameworks for mathematics,
science, and engineering, containing
frameworks like pandas and NumPy.

Data operations and
Friedman hypothesis

tests

Siege
Open source tool for stress testing, that
allows the simulation of sequential and

parallel requests
Performance testing

TensorFlow
Open-source library for numerical

computation using data flow graphs

Training the machine
learning model and

predicting

127

Appendix B

Dissection of recommendations for
last order

A graphical demonstrator was developed to visualize the quality of the last order recommen-
dations, used throughout the tests. On the left, the recommended shopping list is presented;
on the right, the actual last order is described. Common items are marked in green. Three
examples from the recommendations generated with a maximum of 10 items for 360 test
customers (see section 6.4.2) are dissected in this appendix.

This analysis leads to thinking that traditional evaluation metrics may provide limited re-
sults when evaluating these recommendations, because of the difficulty to identify a wrong
prediction.

The figure B.1 presents a recommendation of 10 items for customer with the identifier 313.
The actual order contained 6 items, of each 5 were correctly predicted by the model.

Figure B.1: Evaluation of the last order recommendation for customer 313

The figure B.2 presents a recommendation of 10 items for customer with the identifier
136302. The actual order contained 10 items, of each 8 were correctly predicted by the
model.

128 Appendix B. Dissection of recommendations for last order

Figure B.2: Evaluation of the last order recommendation for customer
136302

The figure B.3 presents a recommendation of 10 items for customer with the identifier 319.
The actual order contained 9 items, of each 2 were correctly predicted by the model. This
example is particularly interesting because, in addition to the correctly predicted items, the
recommender system predicted items very similar to the ones that ended up being bought.

Figure B.3: Evaluation of the last order recommendation for customer 319

The recommendation contained Bag of Organic Bananas, and the customer purchased stan-
dard bananas. In addition, two varieties of Cheddar Cheese were recommended, and the
customer ended up buying a Medium Cheddar Cheese Block. This scenario is most likely
to be present in many other situations, and consists of situations where the recommen-
dations could have been accepted by the customer, increasing the perceived value of the
recommender system.

129

Appendix C

Friedman hypothesis test source code

Source code of the Friedman hypothesis test, used to validate the null hypothesis in section
6.4.4.

f rom s c i p y . s t a t s impo r t f r i e dm a n c h i s q u a r e

i n d e p e nd e n t s amp l e s
gbt_measurement = [0 . 2 4 2 , 0 . 533 , 0 . 235 , 0 . 32 , 0 . 421 , 0 . 125 , 0 . 4 ,

0 . 25 , 0 . 261 , 0 . 2 9 6]
pm_measurement = [0 . 2 4 2 , 0 . 533 , 0 . 125 , 0 . 32 , 0 . 471 , 0 . 125 , 0 . 267 ,

0 . 167 , 0 . 174 , 0 . 5 1 9]
sq l_measurement = [0 . 1 2 1 , 0 . 286 , 0 . 118 , 0 . 083 , 0 . 105 , 0 . 25 ,

0 . 133 , 0 . 083 , 0 . 091 , 0 . 2 2 2]

a l g o r i t hm
s t a t , p v a l u e = f r i e dm a n c h i s q u a r e (gbt_measurement , pm_measurement ,

sq l_measurement)
p r i n t (’H−s t a t =%.3 f , p=%.6 f ’ % (s t a t , p v a l u e))

i n t e r p r e t a t i o n
a l p h a = 0 .05
i f p v a l u e > a l p h a :

p r i n t (’ p−v a l u e > a l p h a (f a i l to r e j e c t H0) ’)
e l s e :

p r i n t (’ p−v a l u e < a l p h a (r e j e c t H0) ’)

Listing C.1: Friedman hypothesis test over the 3 recommender
systems

