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Background: The 2018/2019 influenza season in the WHO European Region was dominated by influenza
A (H1IN1)pdmO09 and (H3N2) viruses, with very few influenza B viruses detected.

Methods: Countries in the European Region reported virus characterization data to The European
Surveillance System for weeks 40/2018 to 20/2019. These virus antigenic and genetic characterization
and haemagglutinin (HA) sequence data were analysed to describe and assess circulating viruses relative
to the 2018/2019 vaccine virus components for the northern hemisphere.

:;efj{lﬁonrg: Results: Thirty countries reported 4776 viruses characterized genetically and 3311 viruses antigenically.
Surveillance All genetically characterized A(H1N1)pdmO09 viruses fell in subclade 6B.1A, of which 90% carried the
Europe amino acid substitution S183P in the HA gene. Antigenic data indicated that circulating A(H1N1)
Genetic pdmO9 viruses were similar to the 2018/2019 vaccine virus. Genetic data showed that A(H3N2) viruses
Antigenic mostly fell in clade 3C.2a (75%) and 90% of which were subclade 3C.2a1b. A lower proportion fell in clade
Vaccine 3C.3a (23%) and were antigenically distinct from the vaccine virus. All B/Victoria viruses belonged to

clade 1A; 30% carried a double amino acid deletion in HA and were genetically and antigenically similar

to the vaccine virus component, while 55% carried a triple amino acid deletion or no deletion in HA; these

were antigenically distinct from each other and from the vaccine component. All B/Yamagata viruses

belonged to clade 3 and were antigenically similar to the virus component in the quadrivalent vaccine

for 2018/2019.

Conclusions: A simultaneous circulation of genetically and antigenically diverse A(H3N2) and B/Victoria

viruses was observed and represented a challenge to vaccine strain selection.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Influenza viruses are known for their rapid evolution and
genetic heterogeneity. Recent years have seen extensive genetic
diversification of the haemagglutinin (HA) gene of circulating A
(H3N2) viruses with emergence of several subclades [1-3]. A
(HIN1)pdmO09 viruses have also evolved since 2009, although
more slowly than A(H3N2) viruses, and there are now new sub-
clade designations based on the HA gene sequences [4-6]. In addi-
tion, new B/Victoria deletion variants were detected during the
2017/2018 season [4,5]. Those newly emergent strains have spread
in Europe and worldwide at varying proportions during recent
influenza seasons [5,7,8].
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Monitoring influenza virus diversification is necessary as it may
affect vaccine effectiveness, population immunity, antiviral drug
resistance and pandemic preparedness. Annual vaccine recom-
mendations for the northern and southern hemispheres are based
on global epidemiological and virological influenza surveillance
data, genetic and antigenic virus characterization data, and the
availability of candidate vaccine viruses (CVVs) at the time of the
Vaccine Composition Meeting (VCM) in February or September.
Global data are provided by the Global Influenza Surveillance and
Response network (GISRS) and the WHO Collaborating Centres
(WHO CC) [9]. Real-time tracking platforms, like Nextstrain
(https://nextstrain.org/), provide important tools to monitor the
evolution of influenza viruses and facilitate the vaccine decision
making.

In February 2018, WHO recommended that the influenza
trivalent vaccine for the northern hemisphere 2018/2019 season

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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contain an A/Michigan/45/2015 (H1N1)pdmO09-like virus (clade
6B.1), an A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus
(clade 3C.2a1) and a B/Colorado/06/2017-like virus (B/Victo-
ria/2/87 lineage) (clade 1A_A2). For the quadrivalent vaccines,
the recommendation was to also include a B/Yamagata lineage
B/Phuket/3073/2013-like virus (clade 3) [10].

Throughout the 2018/2019 influenza season, both influenza A
subtypes circulated widely in the World Health Organization
(WHO) European Region, with very few influenza B viruses of
either lineage reported [3,11]. We used the virological data
reported weekly by the national reference laboratories for influ-
enza and the National Influenza Centres (NICs) to describe the viro-
logical, genetic and antigenic characteristics of the viruses
circulating in the WHO European Region during the 2018/2019
season and compare them with the vaccine virus components for
the northern hemisphere 2018/2019 influenza season.

2. Methods

In the WHO European Region, countries reported weekly influ-
enza surveillance data to The European Surveillance System
(TESSy) during the 2018/2019 influenza season. We used data from
week 40/2018 to week 20/2019. The data were retrieved on 30
May 2019. Viruses were characterised according to pre-defined
criteria and category definitions described below.

2.1. Genetic characterization

Influenza viruses were genetically characterised by the national
influenza reference laboratories/NICs using Sanger and/or next
generation sequencing techniques directly on clinical specimens
or virus isolates. To report a virus to TESSy as belonging to a speci-
fic genetic category, the phylogenetic and amino acid sequence
analysis had to fulfil the following criteria: (a) based on the HA
gene sequence phylogeny, the virus clustered within the clade rep-
resented by the indicated vaccine/reference virus, and (b) the virus
contained neither more non-synonymous nor critical amino acid
substitutions that may alter the antigenicity compared to reference
viruses from the given clade. In October 2018, the WHO CC at the
Francis Crick Institute, London, United Kingdom provided the list of
reference viruses for genetic analysis and the TESSy reporting cat-
egories for influenza virus characterization related to the HA gene.
Fourteen different representative influenza virus categories pro-
posed by WHO CC were available for reporting genetic characteri-
zation data to TESSy. In addition, ‘not attributed to any clade’ and
‘subgroup not listed’ were available for each subtype and lineage to
accommodate viruses that either did not match any of the prede-
fined genetic groups or were assigned to a previously designated
category that was no longer included in the reporting scheme.
Characterisation results in aggregated and strain-based manner
and, often, the Global Initiative for Sharing All Influenza Data
(GISAID) database EpiFlu reference number were reported to
TESSy.

2.2. Antigenic characterization

National influenza reference laboratories/ NICs cultured influ-
enza viruses, from a subset of influenza-positive clinical speci-
mens, in MDCK, MDCK-SIAT or other variants of MDCK cell lines
and/or embryonated chicken eggs [12]. A haemagglutination inhi-
bition (HI) assay was used for antigenic characterization of recov-
ered influenza viruses using post-infection ferret antisera raised
against vaccine/reference influenza viruses (supplied by WHO CC
London or Atlanta or produced in the laboratory) to inhibit virus
agglutination of red blood cells [12]. A virus isolate was considered

antigenically similar to a reference virus if the HI titre with the
respective post-infection ferret antiserum differed by no more than
4-fold down in a 2-fold dilution series, from the homologous HI
titre of the antiserum against the reference virus itself. To consider
an isolate antigenically different from a reference virus, the HI titre
had to show a decrease of more than 4-fold or more compared to
the homologous titre. For antigenic characterization of A(H3N2)
viruses, some laboratories conducted HI assays in the presence of
oseltamivir, to prevent haemagglutination by the neuraminidase,
and/or performed virus neutralization assays. Ten different repre-
sentative influenza virus categories proposed by WHO CC were
available for reporting antigenic characterization data to TESSy.
In addition, ‘not attributed to any category’ was available for each
subtype and lineage to accommodate viruses that either did not
match one of the predefined major antigenic groups, did not yield
a conclusive HI assay result (showed >4-fold reduced HI titres
against all the reference virus antisera that the laboratory had
used) or were not tested against the appropriate reference antisera.
‘Subgroup not listed’ was available for each subtype and lineage
and was used when a virus was assigned to a designated category
that is no longer in the reporting scheme. Interpretations of HI
assays from the laboratory were reported to TESSy. Raw data for
antigenic characterization are not submitted to TESSy.

2.3. Analysis

We performed a descriptive analysis of virological data that
were reported by the laboratories to TESSy between week
40/2018 and 20/2019. Viral genetic and antigenic characterization
data were reported weekly in aggregated and/or virus-based for-
mat by date of sampling. If any laboratory reported both aggre-
gated and virus-based data for the same week, the more detailed
virus-based data were used. All data originated from ambulatory
and inpatient populations from sentinel primary care and non-
sentinel (e.g., diverse populations, including outpatients, hospitals,
outbreak investigations, long-term care facilities) sources. For Sup-
plemental Fig. 1, October/November as well as April/May were
merged due to the very low number of A(H3N2) virus genetic char-
acterizations that were reported during October 2018 and May
2019.

2.4. Phylogenetic analysis

We conducted phylogenetic analysis on reported influenza HA
sequences for A(HIN1)pdmo09, A(H3N2), B/Victoria, and B/Yama-
gata viruses. Sequences were downloaded from the EpiFlu data-
base of GISAID. An ECDC in-house programme was used to
process the sequence data for each subtype separately. All entries
for HA sequences in TESSy were matched with the respective
GISAID data. HA sequences were excluded if the sequence was
not released for public access, or if the entry had errors in the
accession number or the name of the virus in the TESSy report
did not match GISAID. Alignment was performed using mafft v7,
first aligning the reference sequences and then adding the avail-
able test sequences, and the alighment was trimmed to include
only the HA1-coding region in order to include as many TESSy
reported sequences as possible. RAXML v8.2.7 was used to con-
struct a phylogenetic tree and a maximum likelihood search [13].
We used the maximum likelihood best tree and branch likelihood
for the output that are not affected by the number of bootstraps.
The tree was rooted on the oldest reference sequence using treesub
(https://github.com/tamuri/treesub) and PAML baseml v4.9f was
used to reconstruct the ancestors of the HA1 sequences for all
internal nodes of the tree. Treesub was used to annotate the tree
branches with amino acid substitutions based on the root
sequence. The nodes were coloured according to month and the
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Table 1

Distribution of antigenically and genetically characterized influenza viruses as reported to TESSy by country, WHO European Region, weeks 40/2018-20/2019.

Genetic clades

Antigenic categories

Countries AH1/ AH1Subgroup AH3/Alsace/ AH3/Cote  AH3/Greece/ AH3/ AH3/ AH3/Hong AH3/ AH3NOClade AH3Subgroup BVic/Hong  BVic/ BVic/ BYam/ Total  AH1/ AHINOCAT AH3/ AH3/ AH3/ AH3NOCAT BVic/ BVic/ BVicNOCAT BYam/ Total
Michigan/ NotListed 1746/ d'lvoire/544/ 4/ England/ Switzerland/ Kong/ Singapore/ NotListed Kong/269/  Colorado/06/ Brisbane/  Phuket/ number Michigan/ Switzerland/ Hong Singapore/ Colorado/ Brisbane/ Phuket/ number
45, 2018_3C.2alb 2016_3C.2a3 2017_3C.2ala 538/ 8060/ 4801/ INFIMH-16- 2017_1A_A3 2017_1A_A2 60/ 3073/  of 45/2015- 8060/2017- Kong/ INFIMH- 06/2017- 60/2008- 3073/ of
2015_6B.1 2018_3C.3a 2017_3C2a2 2014_3C.2a 0019/ (1) 2008_clade 2013_3 viruses like (1) like 4801/ 16-0019/ like (1) like 2013-  viruses
1) 2016_3C.2a1 A (2) 2014- 2016-like like (2)
(1) like (1)
Austria 104 0 71 2 0 8 1 0 0 0 2 0 0 0 3 191 43 0 0 0 0 0 0 0 0 [ 43
Belgium 31 0 60 0 0 12 7 0 22 0 0 0 0 2 0 134 0 0 0 0 0 0 0 0 0 0 o
Bulgaria 16 0 5 0 0 0 4 0 0 0 0 0 0 0 0 25 0 0 0 0 1 0 0 0 0 0 1
Czech Republic 5 0 25 0 0 1 0 0 0 0 0 0 0 0 0 31 23 [ 0 0 0 0 [ 0 [ 0 23
Denmark 161 [ 89 1 0 1 1 0 0 [ 0 0 0 0 0 253 23 0 0 0 0 0 0 0 0 0 23
Finland 74 0 60 0 0 9 1 0 0 0 0 0 0 0 0 144 0 0 0 0 0 0 0 0 0 0 o
France 99 [ 96 7 0 83 16 0 1 0 0 0 0 2 [ 304 69 1 2 24 0 35 0 0 2 [ 133
Germany 90 0 158 3 0 19 7 0 0 0 2 1 0 0 1 281 764 0 0 0 327 0 0 0 0 1 1092
Greece 24 3 6 0 0 0 2 1 0 0 1 0 0 0 0 37 16 [ 0 1 1 0 0 0 0 0 18
Hungary 4 [ 4 0 0 0 0 0 0 0 [ 0 0 0 [ 8 4 0 0 0 4 0 0 0 0 [ 8
Ireland 139 0 38 0 0 13 0 0 0 0 0 0 1 0 1 192 73 3 0 0 1 0 0 0 0 1 78
Italy 38 0 51 0 0 21 9 0 0 0 0 0 0 0 1 120 12 0 0 0 0 0 0 0 0 0 12
Kazakhstan 24 [ 19 0 0 0 0 0 1 0 0 0 6 0 [ 50 19 [ 0 0 11 0 6 0 0 [ 36
Latvia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 61 0 7 0 3 0 0 0 0 0 Kl
Lithuania 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 16 0 0 0 0 0 0 0 0 0 16
Luxembourg 26 [ 69 4 0 17 0 0 0 [ [ 0 0 0 0 116 0 0 0 0 0 0 0 0 0 [ o
Republic of 13 0 0 0 7 0 1 0 0 0 0 0 0 0 0 21 13 0 0 8 0 0 0 0 0 0 21
Moldova
Netherlands 309 [ 305 3 0 65 4 0 2 0 0 2 0 0 1 691 [ [ 0 0 0 0 0 0 0 [ o
Norway 126 0 121 0 0 6 7 4 0 0 0 12 2 1 18 297 0 0 0 0 0 0 0 0 0 0 o
Portugal 30 0 55 7 0 21 1 0 0 0 0 0 0 0 3 17 97 0 0 0 2 21 0 0 0 2 122
Romania 39 [ 37 0 0 0 3 0 0 0 0 0 0 0 [ 79 94 0 0 0 1 0 0 0 0 0 95
Russian 19 0 10 0 0 0 0 0 0 0 0 0 1 0 0 30 439 0 0 92 100 0 1 8 0 14 654
Federation
Slovakia 0 [ 0 0 0 0 0 0 0 0 0 0 0 0 [ o 174 [ 0 0 64 0 0 0 0 [ 238
Slovenia 28 0 33 0 0 2 1 0 0 0 0 0 0 0 0 64 33 0 7 0 0 0 3 0 0 0 43
Spain 201 [ 266 6 0 322 3 0 0 0 0 0 0 0 1 799 38 [ 0 0 11 0 0 0 [ [ 49
Sweden 153 [ 83 0 0 3 10 0 0 0 0 4 0 1 2 256 0 0 0 0 0 0 0 0 0 [ o
Switzerland 49 [ 13 0 0 1 3 0 0 0 33 0 0 [ [ 99 26 0 0 0 27 0 0 0 0 [ 53
Ukraine 13 [ 0 0 0 0 0 0 45 1 0 0 0 0 [ 59 13 0 0 0 45 1 0 0 [ [ 59
United 238 [ 112 0 0 9 5 0 0 0 0 3 2 0 9 378 418 0 0 3 0 0 0 0 [ 2 423
Kingdom
Total 2053 3 1786 33 7 613 86 5 7 1 38 22 12 6 40 4776 2468 4 16 128 598 57 10 8 2 20 3311

(1) Vaccine component for the trivalent vaccines used in the northern hemisphere 2018/2019 season.
(2) Additional vaccine component for the quadrivalent vaccines for use in northern hemisphere 2018/2019 season.
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Fig. 1. Phylogenetic comparison of influenza A(HIN1)pdmO09 HA gene sequences. Colour coding indicates the northern hemisphere 2018/2019 vaccine virus in red and
reference strains in black. The number of collapsed sequences (including reference sequences) are mentioned next to the branches. Supplemental Fig. 3 shows all TESSy
reported sequences in color according to the virus collection month. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

tree was exported in nexus format. PDF trees were edited and
annotated using FigTree and PDF Illustrator. HA amino acid
sequence alignments were used to inspect amino acid substitu-
tions in Bioedit and compare them with the respective vaccine
viruses for 2018/2019.

3. Results

3.1. Genetic and antigenic characteristics of circulating influenza
viruses, 2018/2019

Genetic characterization results were reported for a total of
4776 viruses (2056 A(H1IN1)pdm09, 2640 A(H3N2), 40B/Victoria
and 40B/Yamagata) from 26 countries (Table 1). Of the genetically
characterized viruses, accession numbers for HA sequences in
GISAID EpiFlu were available for 1467 (74%) A(H1N1)pdmO9,
2083 (79%) A(H3N2), 20 (50%) B/Yamagata and 16 (40%) B/Victoria

viruses. Antigenic characterization results were reported for a total
of 3311 viruses from 23 countries.

3.2. A(HIN1)pdm09

3.2.1. Genetic characterization

Of 2056 genetically characterized A(H1N1)pdmO09 viruses
reported to TESSy, 2053 (99.9%) were assigned to the A/Michi-
gan/45/2015 subgroup (6B.1) (Table 1). The phylogenetic analysis
included 1432 HA gene sequences from A(HIN1)pdmO9 viruses
(Fig. 1). Similarly to the reported characterization data, they all fell
in phylogenetic clade 6B.1 which is defined by amino acid substi-
tutions at positions S84N, S162N and 1216T in HA1 and includes
the 2018/2019 vaccine virus A/Michigan/45/2015. All of the viruses
further clustered into a genetic subgroup designated 6B.1A with
additional amino acid substitutions S74R, S164T and 1295V in
HAT1. Most of the viruses (1290, 90%) also carried amino acid sub-
stitution S183P in HA1. Subgroup 6B.1A diversified in subclade
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Fig. 2. Phylogenetic comparison of influenza A(H3N2) HA gene sequences. Colour coding indicates the northern hemisphere 2018/2019 vaccine strain in red and reference
strains in black. The number of collapsed sequences (including reference sequences) are mentioned next to the branches. Branch colouring indicates the different clades and
subclades. Supplemental Fig. 2 shows all TESSy reported sequences in color according to the virus collection month. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

6B.1A1 (n = 23) that carried only S182P and further into subgroups
defined by specific amino acid substitutions in addition to S183P
including L2231 (n = 56) (subclade 6B.1A2), or T120A (n = 9)
(6B.1A3), or N129D together with A144E (n = 3) (subclade
6B.1A4), or N260D together with N129D (n = 830) (subclade
6B.1A5A) or E235D (n = 50) (subclade 6B.1A5B), or T120A
(n = 122) (subclade 6B.1A6), or K302T (n = 282) (subclade
6B.1A7), often in combination with other substitutions.

Two of the HA sequences were derived from seasonal A(H1N2)
reassortant viruses that were detected in Sweden and Denmark,
respectively. These viruses carried an HA sequence similar to cur-
rently circulating A(H1N1)pdmO9 viruses [14,15].

3.2.2. Antigenic characterization

Of 2472 antigenically characterized A(H1N1)pdmO09 viruses,
2468 (99.8%) were reported as similar to the 2018/2019 vaccine
virus component A/Michigan/45/2015. Only four were not attribu-
ted to a predefined antigenic category (Table 1).

3.3. A(H3N2)aaa

3.3.1. Genetic characterization

Of 2640 A(H3N2) viruses that were genetically characterized
and reported to TESSy, 1988 (75%) belonged to clade 3C.2a, includ-
ing 71 (4%) in 3C.2al, 1786 (90%) in subclade 3C.2a1b, 86 (4%) in
3C.2a2, 33 (2%) in 3C.2a3 and 7 (<1%) in 3C.2ala. Clade 3C.3a
accounted for 613 viruses (23%) from 15 countries (Table 1). The
proportion of clade 3C.3a viruses among all A(H3N2) viruses
increased from O to 27% through mid-season and then decreased
to 11% by the end of the season (Supplemental Fig. 1). Thirty-
eight A(H3N2) viruses (1%) were reported as ‘subgroup not listed’
and one virus was reported as ‘not attributable to any predefined
group’.

The phylogenetic analysis of A(H3N2) viruses was performed on
2034 HA gene sequences (Fig. 2). Similarly to the reported

characterization data, 71% of viruses carried HA genes that fell into
genetic groups within clade 3C.2a (n = 1439) and 29% in clade
3C.3a (n = 595). Among the 3C.2a clade viruses, 93% fell in the
3C.2a1b subgroup (n = 1343), 4% in the 3C.2a2 subclade (n = 61),
2% in the 3C.2a3 subclade (n = 30) and <1% in 3C.2a4 (n = 5). The
major clades and subclades with the characteristic amino acid sub-
stitutions in HA1 are presented in Table 2.

3.3.2. Antigenic characterization

Seven hundred and forty-two (93%) of 799 A(H3N2) viruses
were attributed to a predefined antigenic category and were
reported as antigenically similar to the 2018/2019 vaccine compo-
nent A/Singapore/INFIMH-16-0019/2016 or to reference viruses
that are considered antigenically similar to the vaccine strain
(A/Hong Kong/4801/2014-like, A/Switzerland/8060/2017-like)
(Table 1).

Fifty-seven A(H3N2) viruses (7%) were not assigned to any anti-
genic reporting category. Of the unassigned viruses, 56 had a
reported genetic category; 37 (65%) were genetically characterized
as A/England/538/2018 (3C.3a clade). The remainder of the unas-
signed viruses belonged to subclades 3C.2alb (n = 13), 3C.2a3
(n=3)or3C.2a2 (n=2)or were not attributable to any predefined
group (n = 1).

3.4. B/Victoria lineage

3.4.1. Genetic characterization

Of the 80B viruses genetically characterized and reported to
TESSy, 40 were B/Victoria lineage viruses. Of these, six (15%) were
genetically assigned to the B/Brisbane/60/2008 group, 12 (30%) to
the B/Colorado/06/2017 group that carries a HA1 double amino
acid deletion (A162-163), and 22 (55%) to the B/Hong
Kong/269/2017 group that carries a HA1 triple amino acid deletion
(A162-164) (Table 1).
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Table 2

Influenza A(H3N2) viruses by (sub)clade and amino acid substitutions (retrospective analysis based on GISAID accession numbers reported
to TESSy), WHO European Region, weeks 40/2018-20/2019. Coloured circles indicate the respective branch in the phylogenetic tree (Fig. 2

and Supplemental Fig. 2).

(Sub)clade
(Sub)clade-specific amino acid substitutions in HA1"
+ Additional frequent substitutions

Number of viruses and percentage
of total A(H3N2) viruses or of

specific (sub)clade as indicated

©3C.2a
L3I+N128T(+CHO)+N1445(-

1439 (71%)

CHO)+N1455+F159Y+K160T(+CHO)+P1985+F2195+N225D+Q311H

e 3C.2al
NI12IK+N171K
3C.2a1b
K92R+H311Q
+T135K(-CHO) +T128A(-CHO)
+5198P
+D53N
+T131K+K135T(+CHO)
+S219F+/-Q197R+/-K83E

1343 (93% of 3C.2a)

1343 (100% of 3C.2al)
712 (53% of 3C.2a1b)
133 (9% of 3C.2alb)
148 (10% of 3C.2alb)
625 (43% of 3C.2a1b)
367 (26% of 3C.2alb)

3C.2a2

K12IN+T131K+R142K+R261Q
+A212T

61 (4% of 3C.2a)
57 (93% of 3C.2a2)

3C.2a3
NI121K+T128A+T135K (-CHO)+5144K
+R142G+R261Q+/-T30A+T128A+/-R150K
+T128A+1192V

30 (2% of 3C.2a)
27 (90% of 3C.2a3)
3 (1% of 3C.2a3)

® 3C.2a4

N315+D53N+51449R+N171K+1192T+Q197H
+I34V+ Q137H+ 1242L+T328S

5 (<1% of 3C.2a)
5 (100% of 3C.2a4)

e 3C.3a

T128A(-CHO)+ A1385 +R142G+ | 31+S91N+N144K(-CHO)+F193S 595 (29%)
+R326K 57 (10% of 3C.3a)

Total number of A(H3N2) virus HA sequences 2034

*Major (sub)clades in bold with characteristic amino acid substitutions in italics.

Nineteen HA gene sequences from B/Victoria lineage viruses
were included in the phylogenetic analysis (Fig. 3). All but two
were correctly assigned to the genetic categories. All of the viruses
with reported GISAID accession numbers belonged to clade 1A and
carried additional amino acid substitutions 1117V and N129D or
V1461 in HA1 compared with B/Brisbane/60/2008. Two (11%) of
the reported HA sequences belonged to the A162-163 subclade,
represented by the trivalent and quadrivalent 2018/2019 vaccine
virus B/Colorado/06/2017 and carried additional substitutions
D129G and 1180V in HA1. Two HA sequences (11%) did not have
any amino acid deletion. Fifteen (79%) of the reported HA
sequences fell into the A162-164 subgroup, similar to B/Hong
Kong/269/2017 (see Fig. 3).

Of the A162-164 viruses, 13 (87%) carried K136E in HA1, plac-
ing them in the 1A(A3)B subgroup (West African); 92% (n = 12)
also carried D164K, often with G74E and E198K or G133R in
HAT1; one also carried K52N in HA1. The remaining two (13%)
B/Victoria viruses of the A162-164 group also carried amino acid
substitutions 1180T and K209N in HAI1, thus belonging to the 1A
(A3)A subgroup (Asian group) together with B/Hong
Kong/269/2017.

3.4.2. Antigenic characterization

Of the 20 antigenically characterized B/Victoria lineage viruses,
ten (50%) were characterized as B/Colorado/06/2017-like (A162-
163) similar to the 2018/2019 vaccine virus component, eight
(40%) were reported as B/Brisbane/60/2008-like that is antigeni-
cally distinct from the vaccine virus component and two (10%)
were not attributed to any predefined category (Table 1). No
viruses were assigned to the A162-164 antigenic group, possibly
due to the lack of the corresponding reference antisera for the HI
assay.

3.5. B/Yamagata lineage

3.5.1. Genetic characterization

Of the 80B viruses genetically characterized and reported to
TESSy, 40 (50%) were reported as B/Yamagata lineage and they
were all assigned to the B/Phuket/3073/2013 clade (clade 3) that
was included only in the quadrivalent vaccine and was similar to
the vaccine virus component (Table 1).

By week 20/2019, 15 HA gene sequences from B/Yamagata-
lineage viruses were included in the phylogenetic analysis
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(Fig. 4). Similarly to the reported characterization data, all
sequences fell in clade 3 represented by B/Phuket/3073/2013, the
additional vaccine virus recommended for inclusion in quadriva-
lent influenza vaccines for the 2018/2019 northern hemisphere
season and in a subgroup defined by the amino acid substitutions
L172Q and M251V in HA1 compared with B/Phuket/3073/2013
(Fig. 4). Few viruses carried additional amino acid substitutions
in HA1, namely D232N introducing a potential N-linked glycosyla-
tion site in HA1 (n = 4), D229N (n = 2), S120T (n = 2), G141R with
D232N (n = 2).

3.5.2. Antigenic characterization

All 20 antigenically characterized B/Yamagata lineage viruses
were characterized as similar to the quadrivalent 2018/2019 vac-
cine virus component B/Phuket/3073/2013 (Table 1).

4. Conclusions

During the 2018/2019 season, influenza A(H1N1)pdmO09 and A
(H3N2) viruses co-dominated in the WHO European Region, while
there were low levels of influenza B virus circulation. The genetic
analysis of circulating viruses showed that both influenza A sub-
types as well as influenza B lineage viruses are evolving. A
(H1N1)pdmQ9 viruses have evolved from their 2009 ancestor and
are becoming genetically more variable, but at a slower pace than
A(H3N2) viruses [16]. In contrast, A(H3N2) viruses continued to
exhibit high genetic heterogeneity, with a higher prevalence of
clade 3C.3a viruses compared with 2017/2018, but with 3C.2alb
viruses being the most prevalent. B/Victoria viruses were also
highly divergent, with four distinct antigenic variants
co-circulating in the Region and worldwide. The evolution of

B/Yamagata viruses did not have implications for the vaccine strain
selection so far.

Based on data from the 2018/2019 season, WHO recommended
for the 2019/2020 season to change the A(HIN1)pdm09 and A
(H3N2) components to an A/Brisbane/02/2018 A(H1N1)pdm09-
like virus (clade 6B.1A1) and an A/Kansas/14/2017 A(H3N2)-like
virus (clade 3C.3a), respectively [17,18].

In large parts of the WHO European Region, during 2018/2019,
influenza A(H1N1)pdmO9 viruses predominated and consistently
resembled the 2018/2019 vaccine virus component A/Michi-
gan/45/2015 in both antigenic and genetic characterization data.
However, phylogenetic analysis showed that 90% of circulating
subgroup 6B.1A viruses carried amino acid substitution S183P,
which is on an antigenic epitope of HA1. Together with the obser-
vation that post-vaccination human sera showed reduced titres
against recent 6B.1A viruses compared with the titres against the
2018/2019 vaccine virus (6B.1), the fixation of the S183P substitu-
tion in the viral population supported the change in the A(H1N1)
pdmO09 vaccine virus component to a 6B.1A1 virus for the
2019/2020 influenza season [5,6].

The situation was more complex for A(H3N2) viruses as several
genetic subclades continued to co-circulate and diversify. 3C.2a
viruses exhibited high genetic heterogeneity and several subclades
co-circulated, in some cases with additional amino acid substitu-
tions. Subclade 3C.2alb was the most divergent group and
included the majority of emerging A(H3N2) subclusters, the most
prevalent ones being those with additional amino acid substitu-
tions in HAT1, either T131K or T135K combined with T128A.
Although these viruses carried substitutions at HA antigenic epi-
topes, antigenic data from the NICs and from the WHO CC indi-
cated that viruses within the 3C2a subclade remained
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antigenically similar to the cell-based 2018/2019 vaccine virus
component [2,5].

Antigenically distinct clade 3C.3a viruses were circulating in
smaller numbers than 3C.2a; based on the genetic characterization
data, their proportion among all characterized A(H3N2) viruses
increased from 0% in the 2017/2018 season to 23%. The United
States reported a more pronounced increase of 3C.3a viruses,
where their relative proportion reached 60% in 2018/2019
[19,20]. WHO recommended including a 3C.3a virus in the
2019/2020 vaccine because of the wide circulation of viruses that
belonged to this clade in some regions; the increasing trend
observed until February in countries of the WHO European Region
supported the recommendation at the time [5,17,19]. However, the
proportion of this clade decreased to 11% of viruses tested in April,
and 89% were subclade 3C.2a1b. This change was reflected in the
subsequent recommendation for the 2020 southern hemisphere
vaccine, in which a 3C.2a1b variant was included as the A(H3N2)
component [21].

Interim VE estimates against all influenza A viruses for
2018/2019 from six studies in Europe ranged from 32 to 43% in
persons of all ages seen in primary care. VE was higher (40-71%)
against A(HIN1)pdmO09 viruses, while the vaccine was not effec-
tive against A(H3N2) [22]. Estimates from studies in Canada, Hong
Kong and the United States varied depending on the population
studied and the proportions of circulating influenza A virus sub-
types in each region [23-25|. Overall, a lower VE against A
(H3N2) viruses was observed globally during 2018/2019, and
was mainly driven by lack of effectiveness in the 15-64 year old
people. A lower VE against A(H3N2) was also observed in previous

seasons and has been partly attributed to the egg-adaptive muta-
tions that the virus acquires during the preparation of candidate
vaccine virus and which impact its antigenicity [26-29]. Our
results show co-circulation of antigenically divergent influenza A
(H3N2) viruses in the European Region, which could be another
reason for the poor VE against these viruses during 2018/2019.
The analyses of characterization data suggest that the proportions
of circulating influenza subtypes/lineages and their subclades may
differ across countries or regions and this may have differing impli-
cations for the VE in any given country.

New B/Victoria-lineage groups have also recently emerged and
are circulating in the Region since 2017/2018 [8,30]. In the A2
group, the HA gene encodes a double deletion of amino acid resi-
dues 162-163 of HA1. The two additional A3 groups (Asian and
West African) both encode a triple deletion of residues 162-164
of HA1. Although there were very few B/Victoria-lineage viruses
during the 2018/2019 influenza season, the newly emerged anti-
genically distinct subgroups with triple deletions predominated
over the ancestral B/Brisbane/60/2008 variant and the 2018/2019
vaccine virus B/Colorado/06/2017. Furthermore, the phylogenetic
analysis revealed that the West African group was more frequent
than the Asian group. As these groups are antigenically distinct
from the virus component of 2018/2019 and 2019/2020 vaccines
and from each other, it is crucial to continue to monitor them
[2,31]. In contrast, the few characterisations of B/Yamagata lineage
viruses in European national reference laboratories suggested that
they remain uniformly close to the recommended B/Phu-
ket/3073/2013 strain included in the quadrivalent vaccine for
2018/2019 and 2019/2020.
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Although regional analyses of national laboratory characterisa-
tion data are helpful, they also have limitations. The results from
such analyses cannot be used to generate conclusions for the
Region overall. Only 30 (60%) of 50 countries that reported influ-
enza detection data contributed virus characterization data to
varying extents and less than 5% of viruses detected by surveillance
were characterized. In addition, there was no information on the
selection criteria, so data may be biased. There may, however, also
be biases in the selection of viruses shipped to the Collaborating
Centres, and to the subset of data presented at real-time tracking
platforms, so the national characterisation data can serve to sub-
stantiate these analyses. Furthermore, not all sequences had been
submitted to GISAID at the time of analysis and therefore there
are small discrepancies in the proportions of genetic clades
between the TESSy reported genetic data and the data derived
from the phylogenetic analyses. Finally, incomplete reference anti-
serum panels may have been used for antigenic characterisation;
NICs are encouraged to request the most updated set of reference
antisera for their antigenic assessment to be able to discriminate
and accurately characterise the different circulating strains [12].

Simultaneous circulation of genetically and antigenically
diverse A(H3N2) and B/Victoria viruses present a challenge to vac-
cine strain selection. While the genetic diversity observed among A
(H1IN1)pdmO9 subclade 6B.1A viruses and A(H3N2) clade 3C.2a
viruses appeared not to cause antigenic dissimilarity in HI assays
compared to their egg/cell or cell-derived vaccine viruses respec-
tively, antigenically distinct A(H3N2) clade 3C.3a and low levels
of antigenically distinct B/Victoria viruses were detected in the
WHO European Region. Influenza surveillance in the Region would
be further strengthened by increasing the number of countries
reporting genetic and antigenic data, increasing the number and
frequency of antigenic and genetic reports per country, and
improving the representativeness of viruses selected for character-
ization. As it was illustrated in this paper when comparing TESSy
categories with the more detailed phylogenetic analysis, moving
away from weekly reporting of genetic categories to TESSy to
real-time analyses of weekly reported sequences to GISAID will
increase accurate and timely reporting of emerging clades, sub-
groups and amino acid substitutions with antigenic implications,
highlighting the important role of platforms for real-time tracking
of pathogen evolution for public health decision making. Timely
sharing and reporting of genetic data before the VCM is critical
to the decision-making process of recommending influenza strains
for inclusion in the vaccines.
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