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ABSTRACT Haemophilus influenzae is a Gram-negative bacterium that can be classi-
fied into typeable (types a through f) and nontypeable (NTHi) groups. This opportu-
nistic pathogen asymptomatically colonizes the mucosal epithelium of the upper re-
spiratory tract, from where it spreads to other neighboring regions, potentially
leading to disease. Infection with NTHi can cause otitis media, sinusitis, conjunctivi-
tis, exacerbations of chronic obstructive pulmonary disease, and pneumonia, but it is
increasingly causing invasive disease, including bacteremia and meningitis. Invasive
NTHi strains are more resistant to complement-mediated killing. However, the mech-
anisms of complement resistance have never been studied in large numbers of inva-
sive NTHi strains. In this study, we determined the relationship between binding of
IgG or IgM and the bacterial survival in normal human serum for 267 invasive H. in-
fluenzae strains from Spain, Portugal, and the Netherlands, of which the majority
(200 [75%]) were NTHi. NTHi bacteria opsonized with high levels of IgM had the
lowest survival in human serum. IgM binding to the bacterial surface, but not IgG
binding, was shown to be associated with complement-mediated killing of NTHi
strains. We conclude that evasion of IgM binding by NTHi strains increases survival
in blood, thereby potentially contributing to their ability to cause severe invasive
diseases.

KEYWORDS Haemophilus influenzae, IgG, IgM, complement evasion, sepsis,
meningitis, bacteremia

Before the introduction of Haemophilus influenzae type b (Hib) polysaccharide
conjugate vaccination, Hib was responsible for a large proportion of invasive H.

influenzae disease cases, especially in young children (1). While the number of Hib
infections drastically declined after the introduction of the Hib polysaccharide conju-
gate vaccine in the 1990s, the number of non-type b H. influenzae strains, especially
nontypeable H. influenzae (NTHi), has been noticeably increasing over the past 2
decades (2, 3).

NTHi is a microorganism with several unique bacteriological features. Unlike cap-
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sulated H. influenzae, NTHi strains are genetically and phenotypically heterogeneous. In
the host organism, NTHi is exposed to the antimicrobial action of the complement
system, which is an important defense mechanism against bacterial infections. Direct
complement-mediated killing takes place when the membrane attack complex (MAC)
is formed in the bacterial membrane as a final result of the multistep process of
complement activation.

Previously, we showed that invasive NTHi strains are more resistant to complement-
mediated killing (4). It has been reported that the binding of IgM antibodies to the
bacterial surface is an influential factor concerning the complement-mediated killing of
NTHi (5, 6). This finding is in agreement with a study demonstrating that individuals
with the hyper-IgM syndrome are less prone to be carriers of NTHi (7). Conversely,
patients with common variable immune deficiency (CVID) having low serum IgM levels
(�0.05 g/liter) are at increased risk for H. influenzae colonization (8).

The genetic and phenotypic heterogeneity of NTHi strains requires research using
large numbers of strains to allow a better understanding of the role of IgG and IgM
antibody binding as the first step in the complement-mediated killing of NTHi. In this
study, we investigated the association between binding of IgG or IgM to the bacterial
surface of invasive H. influenzae strains and bacterial survival in human serum.

RESULTS
Characteristics of invasive H. influenzae strains collected from the Netherlands,

Spain, and Portugal. In total, 267 invasive H. influenzae strains were used in this study,
161 from The Netherlands, 51 from Spain, and 55 from Portugal (Table 1). Most were
collected from blood (239/267 [89.5%]), 17 strains were collected from cerebrospinal
fluid (6.4%), 8 strains were collected from pleural fluid (3.0%), 2 strains were collected
from joint fluid (0.7%), and a single strain was collected from undefined tissue (0.4%).
Most of the collected invasive H. influenzae strains (200/267 [74.9%]) were NTHi,
followed by 40 of type b (15.0%), 20 of type f (7.5%), 3 of type a (1.1%), 3 of type e
(1.1%), and 1 of type d (0.4%).

The H. influenzae-infected patients in Spain were older (median, 66 years [25% to
75% quantiles, 56 to 76 years]) than the patients from Portugal (median, 56 years [25%

TABLE 1 Characteristics of analyzed invasive H. influenzae strains

Parameter

Value for:

The Netherlands Spain Portugal Combined

No. of strainsa 161 51 55 267
Serotype a 2 (1.2) 1 (1.8) 3 (1.1)
Serotype b 30 (18.6) 4 (7.8) 6 (10.9) 40 (15.0)
Serotype d 1 (0.6) 1 (0.4)
Serotype e 3 (1.9) 3 (1.1)
Serotype f 8 (5.0) 9 (17.6) 3 (5.5) 20 (7.5)

NTHi 117 (72.7) 38 (74.5) 45 (81.8) 200 (74.9)

Collection sitea

Blood 146 (90.7) 45 (88.2) 48 (87.3) 239 (89.5)
CSFb 13 (8.1) 2 (3.9) 2 (3,6) 17 (6.4)
Pleural fluid 4 (7.8) 4 (7.3) 8 (3.0)
Joint fluid 1 (0.6) 1 (1.8)
Undefined tissue 1 (0.6) 1 (0.4)

Agec 64 (38–75) 66 (56–76) 56 (24–76) 63 (40–76)

Sexa

Male 80 (49.7) 23 (45.1) 20 (36.4) 123 (46.1)
Female 79 (49.1) 28 (54.9) 35 (63.6) 142 (53.2)
Unknown 2 (1.2) 2 (0.7)

aPresented as number (percent).
bCSF, cerebrospinal fluid.
cPresented as median age in years (25% to 75% quantiles).
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to 75% quantiles, 24 to 76 years]) and the Netherlands (median, 64 years [25% to 75%
quantiles, 38 to 75 years]) (Table 1). This difference in age is largely due to the fact that
patients from the Hospital Universitario Bellvitge (Spain) were mainly adults, resulting
in a low number of patients of �18 years in Spain (3/51; 6%) compared to Portugal
(14/55 [25%]) or the Netherlands (28/161 [17%]).

The distributions of H. influenzae types were different according to patient age. Type
a or b strains were mainly isolated from young patients. Among patients �1 year of
age, of all isolated strains, 9 were H. influenzae type a or b (9/22 [40.9%]). In the age
group �80 years, only 1 strain of type b (1/47 [2.1%]) was isolated. Infections with NTHi
were most prevalent in patients �80 years of age (43/47 [91.5%]), whereas they were
responsible for 54.5% (12/22) of infections in the patients �1 year of age (Fig. 1). H.
influenzae type f was found to cause infections in all age categories except in the
youngest age group (Fig. 1). Haemophilus influenzae type a was found only in children
�2 years of age, whereas the only H. influenzae type d and three H. influenzae type e
strains were found in adults �55 years of age.

Binding of serum IgG and serum IgM and bacterial survival in normal human
serum of 260 invasive H. influenzae strains. We performed analysis for H. influenzae
type b (n � 40), H. influenzae type f (n � 20), and NTHi strains (n � 200), excluding type
a (n � 3), type d (n � 1), and type e (n � 3) due to low numbers. Binding of IgG to the
surface of NTHi strains was higher than for H. influenzae type b and f strains (Fig. 2A).
Within the NTHi strains, the median binding of IgG to the surface measured as mean
fluorescence intensity (MFI) was 504 (25% to 75% quantiles, 363 to 754) arbitrary units
(AU), whereas median binding of IgG to the surface of capsulated H. influenzae strains
was lower (115 AU; 25% to 75% quantiles, 92 to 149 AU) (Fig. 2A). The median binding
of IgM to the bacterial surface of NTHi strains was 480 (25% to 75% quantiles, 291 to
794) AU. Median IgM binding of H. influenzae type b (85.5 AU; 25% to 75% quantiles,
70 to 129 AU) and f (58 AU; 25% to 75% quantiles, 46 to 87 AU) strains was lower than
that of NTHi (Fig. 2B). The strains collected in the different countries had similar patterns
of IgG or IgM binding to H. influenzae types b and f and to NTHi (data not shown).

We determined bacterial survival in normal human serum (NHS) for all H. influenzae
strains. In the serum bactericidal assay for NTHi strains, we used 5% NHS since these
strains are, in general, more susceptible to complement-mediated killing. For capsu-
lated H. influenzae, we used 10% NHS. Nearly all H. influenzae type b isolates showed a
high survival rate (median, 59.2% [25% to 75% quantiles, 47.5% to 74.3%]), with two
strains showing survival rates as low as 5% and 7% (Fig. 2C). The median survival rate
of H. influenzae type f (0.9% [25% to 75% quantiles, 0.4% to 1.3%]) was significantly
lower than that of H. influenzae type b strains (Fig. 2C). The median survival rate of NTHi

FIG 1 Numbers of H. influenzae type a, b, d, e, and f and NTHi strains found among patients in different age groups.
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strains in 5% NHS was 9.9% (25% to 75% quantiles, 0.3% to 52.6%), with several strains
showing survival of �100%. Although only 5% NHS was used for NTHi strains, survival
was significantly lower than that of H. influenzae type b strains, for which 10% NHS was
used (Fig. 2C). H. influenzae type b and type f and NTHi collected in the different
countries showed similar patterns of survival in NHS (data not shown).

Association of serum IgG and serum IgM binding with bacterial survival in
normal human serum of 200 NTHi strains. We divided the NTHi strains into four
equal groups based on the survival quantiles in 5% NHS (Fig. 3A) and evaluated the
binding of IgG and IgM to the bacterial surface. Binding of IgG to the surface of NTHi
strains was not associated with bacterial survival (Fig. 3B). Binding of IgM to the surface
of NTHi strains was inversely associated with bacterial survival. NTHi quantile 4 had the
highest survival (72.7%) and had the lowest median IgM binding (320 AU [25% to 75%
quantiles, 199 to 528 AU]) (Fig. 3C).

Binding of IgM to the bacterial surface is associated with increased bacterial
killing of NTHi. Previously, we used IgA/IgM-deficient serum to determine the contri-
bution of IgM in complement-mediated killing of NTHi strains (4, 9, 10). In order to
determine the contribution of IgM in complement-mediated killing of invasive NTHi
strains, we determined binding of IgG and IgM to the bacterial surface and bacterial
killing of 48 NTHi strains divided into four equal groups based on the quantiles for
survival in 5% NHS (Fig. 3A).

Binding of IgG to the surface of NTHi strains was not associated with bacterial
survival using IgA/IgM-deficient serum with or without supplementation of IgM (Fig. 4A).
Binding of IgM was absent with IgA/IgM-deficient serum, but supplementation of
IgA/IgM-deficient serum with IgM resulted in binding of IgM to the surface of NTHi
strains, which was inversely associated with bacterial survival (Fig. 4B). Bacterial survival
rates in IgA/IgM-deficient serum for quantiles 1 through 4 were 45.8% (25% to 75%
quantiles, 20.9 to 86.0), 76.8% (25% to 75% quantiles, 17.8 to 108), 78.4% (25% to 75%
quantiles, 45.5 to 95.8), and 95.5% (25% to 75% quantiles, 38.5 to 99.5), respectively
(Fig. 4C). Supplementation of IgA/IgM-deficient serum with IgM decreased survival for

FIG 2 IgG and IgM antibody binding and bacterial survival of 260 H. influenzae strains. H. influenzae strains were
incubated with 10% HI-NHS, and binding of IgG (A) and IgM (B) was analyzed by flow cytometry (n � 3). The IgG
and IgM antibody binding is presented on log10 scale. (C) H. influenzae strains were incubated with 10% (typeable
Hi strains) or 5% (NTHi) NHS or HI-NHS for 60 min, and survival was determined by dividing the number of CFU after
exposure to NHS with the CFU after exposure to HI-NHS (n � 3). We used analysis of variance (ANOVA) to compare
the groups.
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quantiles 1 through 4 to 0.56% (25% to 75% quantiles, 0.18 to 3.31), 6.6% (25% to 75%
quantiles, 2.36 to 13.0), 53.2% (25% to 75% quantiles, 26.6 to 82.3), and 74.8% (25% to
75% quantiles, 35.1 to 86.7), respectively (Fig. 4C). These results show that binding of
IgM to the surface of NTHi has a major contribution in complement-mediated killing
and that NTHi strains with low binding of IgM present the highest survival rates in
human serum.

DISCUSSION

We examined the association between binding of IgG or IgM to the surface of H.
influenzae strains and survival in normal human serum. Survival of H. influenzae in the
blood of patients is largely dependent on two mechanisms: (i) bacterial resistance to
complement-mediated killing and (ii) the immune competence of the host. In this
study, we focused on bacterial resistance to complement-mediated killing. We have
used a single batch of pooled NHS containing opsonizing IgG and IgM antibodies
recognizing NTHi protein and lipooligosaccharide (LOS) epitopes, as tested previously
(11). We could not take into account the patients’ immune status in the development
of invasive NTHi infection due to the unavailability of serum samples from affected
individuals.

We showed that binding of IgM to the surface of NTHi strains has a small impact on
bacterial survival in normal human serum, whereas we found no association between
IgG binding and bacterial survival (Fig. 3). The results of this study are consistent with
previously published studies revealing the impact of IgM opsonization on the immune
response against NTHi, including opsonophagocytosis and complement-mediated kill-
ing (4–6). Previously, Nakamura et al. showed that NTHi strains from the lower respi-
ratory tract were significantly more resistant to complement-mediated killing than NTHi
strains from the upper respiratory tract, and this was associated with reduced binding
of serum IgM to the bacterial surface (6). We showed that NTHi strains collected from
the middle ear fluid showed increased resistance to complement-mediated killing,
which coincided with a lower binding of serum IgM to the bacterial surface (5). We also
observed that NTHi strains collected from blood were more resistant to complement-
mediated killing and bound less IgM than strains collected from the upper respiratory
tracts of age-matched healthy adults (4).

Bacterial mechanisms that result in evasion of IgM binding to the bacterial surface
are diverse. For instance, incorporation of sialic acids decreases the binding of IgM to

FIG 3 IgG and IgM antibody binding to 200 NTHi strains divided into quantiles based on bacterial survival. (A) NTHi
strains were divided into quantiles based on bacterial survival in 5% NHS. (B and C) Binding of IgG (B) and IgM (C)
to the surface of NTHi strains divided into quantiles. We used ANOVA to compare the groups.
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the bacterial surface (9), possibly due to covering galactose residues extending on
heptose III of the LOS structure (12). Decreased incorporation of phosphorylcholine into
the LOS of NTHi decreased the binding of IgM as well (10), which was consistent with
having a lower phosphorylcholine expression and IgM binding to the surface of NTHi
strains collected from the blood of a patient with bacteremia (4). Outer membrane
protein P5 (OmpP5) has been shown to decrease the binding of IgM to the bacterial
surface (13). Finally, Nakamura and colleagues showed that retrograde trafficking of
phospholipids from the outer to the inner leaflet of the cell envelope decreased the
binding of IgM to the bacterial surface (6).

All of the above-mentioned mechanisms were identified by in vitro experiments, but
the importance of anti-NTHi IgM antibodies in the immune defense against NTHi
infections is also supported by clinical observations in patients. Individuals with hyper-
IgM syndrome had a significantly lower risk of NTHi carriage, confirming that IgM can

FIG 4 IgG antibody binding, IgM antibody binding, and survival of 48 NTHi strains using IgA/IgM-deficient serum
supplemented or not with IgM. NTHi strains were divided into quantiles based on bacterial survival in 5% NHS.
Shown are binding of IgG (A) and IgM (B) to the bacterial surface and survival (C) of NTHi strains divided into
quantiles. We used ANOVA to compare the groups.
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play a protective role independently of other antibody isotypes (7). Conversely, low
serum IgM (�0.05 g/liter) was a risk factor for respiratory tract colonization by NTHi in
patients with CVID (8).

We found no association between IgG binding and bacterial survival, indicating that
binding of IgG to the surface of NTHi, at least in our in vitro experimental setting using
5% serum, is not sufficient to initiate complement-mediated killing. The lack of com-
plement activation by IgG might be partly explained by the fact that IgG recognizing
sugar epitopes such as LOS, but also type B polysaccharide, is mainly IgG2 (14, 15),
which is poor in complement activation and killing of H. influenzae (16). Therefore,
binding of IgM, which is more efficient in complement activation (17), has a larger
contribution in overall complement-mediated killing of NTHi.

The limited role for IgG in killing of NTHi is in contrast to serum bactericidal activity
(SBA) assays for Neisseria meningitidis (18, 19) or Hib (20) used to determine vaccine
responses. However, in these SBA assays, the individual contribution of either IgG or
IgM is not determined because serum containing both IgG and IgM is used. Kim et al.
showed that postvaccination anti-Hib IgG levels correlated well with Hib SBA titers (21).
Baggett et al. showed that SBA Hib prevaccination titers were positively correlated with
log IgM levels, indicating that IgM can contribute in SBA activity, at least in unvacci-
nated individuals (22).

Although this study found that binding of IgM to the bacterial surface may be a
determinant for the complement-mediated killing of NTHi strains, the association was
weak. The distributions of IgM binding were largely overlapping for NTHi strains in all
survival quantile groups. Other mechanisms are known to play a role in bacterial
survival in human serum. For instance, binding of IgG was shown to be decreased by
incorporation of phosphorylcholine (23), and binding of human complement regulatory
proteins, including factor H and C4-binding protein, can affect complement-mediated
killing (13, 24, 25). Besides the known studied mechanisms, other, yet-unknown mech-
anisms can contribute to complement evasion, as illustrated by a large number of
genes identified in genome-wide mutant screening studies (5, 6).

An interesting observation is that Hib and Hif bind equal levels of IgG and IgM, yet
killing of Hif strains is much more pronounced than that of Hib strains (Fig. 2). This can,
at least partly, be explained by the fact that the Hib capsule prevents SBA activity better
than Hif in capsule switch mutants (26), but other immune evasion mechanisms
different between Hib and Hif are likely to contribute as well. In addition, differences in
IgG subclass might also contribute to differences in complement-mediated killing; for
instance, binding of IgG2 to Hib polysaccharide capsule limits complement-mediated
killing (14).

Since a compromised immune status is expected to contribute to the increased risk
of bacterial infections, it would be beneficial to understand whether there are particular
immune dysfunctions that make the host susceptible to acquiring invasive NTHi.
Considering this, it is interesting to investigate whether or not underlying medical
conditions influence the immune response against NTHi and lead to invasive infection,
especially among the elderly, who are mostly affected according to our data and other
literature (27, 28). Moreover, it is known that serum IgG levels against pathogens are
reduced in the elderly (29). However, it is not yet clearly established whether the level
of antibody binding to the bacterial surface alone might be a sufficient reason for the
development of invasive disease caused by NTHi or whether the decline in immune
function requires a combination with increased bacterial virulence to cause invasive
infections. The contribution of bacterial virulence is supported by the fact that healthy
adults without known underlying medical conditions can also present with invasive
NTHi infections (30, 31). A large genetic variability among NTHi strains, in combination
with phase-variable expression of genes, and the ability to utilize multiple mechanisms
of escaping immune response makes NTHi an interesting and challenging subject for
research.

Although most invasive nontypeable Haemophilus strains are found to be H. influ-
enzae, invasive Haemophilus haemolyticus has also been found (32, 33). Haemophilus
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strains from Spain were typed by matrix-assisted laser desorption ionization–time of
flight mass spectrometry (MALDI-TOF MS), which showed concordance with the ab-
sence of the lgtC gene in 65 out of 68 H. haemolyticus strains (32). However, strains from
Portugal were not always determined by MALDI-TOF MS, and for Haemophilus strains
from the Netherlands, a hemolysis test was performed to differentiate between Hae-
mophilus species. Therefore, it is possible that our collection contains H. haemolyticus
strains. However, since H. haemolyticus strains are rarely seen in blood (32–34), we
expect that most strains are actually NTHi.

In summary, we have shown that invasive NTHi bacteria opsonized with low levels
of IgM showed the highest survival in normal human serum. Evasion of IgM binding
may be an important mechanism for invasive NTHi strains to prevent the complement-
mediated killing.

MATERIALS AND METHODS
Ethics statement. This was a retrospective observational study using bacterial strains obtained as

part of the Reference Laboratory for Bacterial Meningitis routine work. Written informed consent is not
required by the Dutch legislation for this type of research. All the data were anonymized and protected
according to Dutch national guidelines.

Strain collections and culture conditions. One hundred sixty-one invasive H. influenzae strains from
the Netherlands were collected in 2014 by the Reference Laboratory for Bacterial Meningitis. Haemo-
philus strains were typed by slide agglutination. When negative, factor V and X growth requirement,
delta-aminolevulinic acid differentiation disk test, and hemolysis test were performed to differentiate
between Haemophilus species. Fifty-one invasive H. influenzae strains from Spain were obtained from the
collections in the Hospital Universitario Bellvitge (Barcelona) and Hospital Universitario Donostia (San
Sebastian) from 2013 to 2015. Capsulated and noncapsulated strains were determined by slide agglu-
tination using omniserum and capsulated H. influenzae strains were typed by PCR (35). Discrimination
between H. influenzae and H. haemolyticus was determined by matrix-assisted laser desorption ioniza-
tion–time of flight mass spectrometry (MALDI-TOF MS) using a MALDI Biotyper (Bruker Daltonics) (32).
Fifty-five invasive H. influenzae strains from Portugal were obtained from the collection of the Portuguese
National Institute of Health from August 2013 to June 2015. Haemophilus strains were typed by PCR (35).
Whenever necessary, H. influenzae identification was confirmed by MALDI-TOF MS (32). Available clinical
data included source and date of the sample collected and age and sex of the patients.

We transferred H. influenzae strains from the primary stock to brain heart infusion (BHI; BD Biosci-
ences) supplemented with 10 �g/ml of hemin (Sigma) and 2 �g/ml of NAD (Merck) (sBHI) agar plates,
where they were grown at 37°C with 5% CO2 overnight. Next, we grew bacteria in sBHI liquid medium
at 37˚C with shaking at 250 rpm to an optical density of 0.9 to 1.1 measured at 620 nm (Tecan; Infinite
F50). We stored 1-ml aliquots of bacteria in sBHI with 20% glycerol at �80°C.

Serum sources. We conducted experiments with a single batch of pooled normal human serum
(NHS) (Immucor; lot no. 2131U; PHS-N100). Serum from an agammaglobulinemia patient on IgG
replacement therapy was used as IgA/IgM-deficient serum (36). Purified IgM from human serum
(Sigma-Aldrich; I8260) was washed with phosphate-buffered saline (PBS) on an Amicon Ultra-0.5 cen-
trifugal filter unit column (Millipore) to remove the preservative sodium azide and suspended in PBS at
a concentration of 1 mg/ml. For IgM supplementation experiments, 10% IgA/IgM-deficient serum was
mixed with 0.1 mg/ml of IgM.

Serum bactericidal assay. For capsulated strains, we used a final concentration of 10% NHS, and for
NTHi strains, we used a final concentration of 5% NHS. We washed H. influenzae from �80°C storage with
PBS and diluted in Hank’s balanced salt solution (HBSS�Ca2�/Mg2�) with 0.1% gelatin (HBSS3�) such
that the bacterial concentration would be �2 � 105 CFU/ml. We mixed 50 �l of diluted H. influenzae with
either 50 �l of NHS, IgA/IgM-deficient serum, IgA/IgM-deficient serum plus IgM, heat-inactivated (30 min
at 56°C) NHS (HI-NHS), HI-IgA/IgM-deficient serum, or HI-IgA/IgM-deficient serum plus IgM and incubated
the mixture for 60 min at 37°C with 5% CO2. After incubation, series of 10-fold dilutions were made and
3 droplets with a total volume of 60 �l of each dilution of H. influenzae exposed to either NHS or HI-NHS
was plated on sBHI agar plates and incubated overnight at 37°C with 5% CO2; the CFU counts were
determined the following morning. We computed the survival percentage of H. influenzae strains by
dividing the number of CFU after exposure to NHS by the number of CFU after exposure to HI-NHS. We
repeated serum bactericidal assays three times for each strain and calculated geometric means of
percent survival in NHS.

Flow cytometry. We transferred 50 �l of H. influenzae from �80°C storage to a v-bottom 96-well
plate, pelleted the organisms by centrifugation at 3,200 � g, washed them once with PBS, suspended
them in 100 �l of 10% HI-NHS, HI-IgA/IgM-deficient serum, or HI-IgA/IgM-deficient serum plus IgM
diluted in HBSS3� as a source of IgG and IgM antibodies, and incubated the strains for 30 min at 37˚C
with 5% CO2. We pelleted the bacteria by centrifugation at 3,200 � g. To determine binding of IgG and
IgM to the bacterial surface, we suspended the bacterial strains in 100 �l of PBS with 2% bovine serum
albumin (BSA) containing either 1:100-diluted fluorescein isothiocyanate (FITC)-labeled anti-human IgG
(Sigma; F0132), 1:100-diluted FITC-labeled anti-human IgM (Sigma; F5384), or 1:500-diluted phycoeryth-
rin (PE)-labeled anti-human IgG (Jackson ImmunoResearch) with 1:500-diluted Alexa Fluor 647-labeled
anti-human IgM (Jackson ImmunoResearch) at 4°C for 30 min. We pelleted the bacteria by centrifugation
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at 3,200 � g and fixed the bacteria with 100 �l of PBS containing 2% paraformaldehyde for 20 min at
room temperature (RT). Next, we pelleted the bacteria by centrifugation at 3,200 � g and suspended
them in 1:2,500-diluted nucleic acid stain SYTO40 (Thermo Fisher Scientific Inc.) in PBS as bacterial DNA
staining and incubated them for 5 min. We diluted stained samples 20-fold in PBS and performed flow
cytometry with a FACS LSRII (BD Biosciences) using the following settings: forward scatter (FSC) � 200,
side scatter (SSC) � 200, and FSC threshold � 200. We repeated flow cytometry three times for each of
the strains and computed geometric means of IgG and IgM binding for each bacterial strain.

Statistical analyses. Statistical analyses were performed with R (37).
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