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ABSTRACT 

Pioneering research on neural control of inflammation has paved the way for new and exciting 

developments in the growing field of bioelectronic medicine. In the past couple of decades, 

pre-clinical research on the role of the vagus nerve in inflammation and immunity has brought 

electrical stimulation of select nerves into clinical trials for the treatment of chronic 

inflammatory diseases. Bioelectronic medicine continues to evolve and address challenges in 

optimizing interfaces and stimulation configurations for activation of specific neural circuits, 

and deciphering nerve signals that regulate inflammation and immunity with the goal of 

targeting specific nerve fibers for treatment of excessive inflammation. Ongoing basic, pre-

clinical research strives to provide the insight necessary to develop therapeutic vagus nerve 

stimulation to mitigate inflammation in disease. 

Inflammation is normally a protective process that defends from microbial invasion and 

promotes healing, provided that it is adequately resolved in a timely manner. Dysregulation of 

resolving mechanisms can result in chronic inflammation and thus, a better understanding of 

the mechanisms that regulate inflammation is important for improving diagnosis, prevention, 

and treatment of chronic diseases. Discoveries over three decades show that the central and 

peripheral nervous systems along with the immune system work together to regulate 

inflammation. The vagus nerve bridges communication between the central and peripheral 

nervous systems and other tissues, regulates homeostasis, and serves an immunoregulatory 

function. Work delineating vagus nerve-mediated regulation of inflammation in experimental 

models of disease has led to important breakthroughs toward enabling treatment methods using 

electronic interfaces and devices that activate homeostatic reflexes that regulate the immune 

system. Considering the speed of action potentials and the anatomical specificity of neurons, 

activation of nerves that regulate immune cell function and activity, potentially provides an 

anatomically and temporally precise method to deliver therapeutic interventions in excessive 

inflammation. Clinical trials aimed at investigating neural control of chronic inflammatory 

responses in conditions such as inflammatory bowel disease and rheumatoid arthritis have been 

launched and data is encouraging, however, not yet fully conclusive. Together, these studies 

show the potential that neural control of inflammation works as a strategy to control excessive 

inflammation. Accordingly, additional studies with improved design in terms of randomization 

and controls are needed to evaluate targeted neural stimulation for regulation of the molecular 

and cellular mechanisms that underlie regulation of inflammation and its resolution. 

The work in this thesis sets forth to understand neural control mechanisms of inflammation by 

establishing methods and technology to study mechanisms of neural regulation of excessive 



 

 

inflammation in experimental models. In Study I, we found that a minute-long electrical vagus 

nerve stimulation impacts the cytokine response to inflammatory stimuli for two days. Study 

II establishes an effective method for vagus nerve stimulation for studies of experimental 

inflammation. Study III provides evidence that the vagus nerve accelerates the active resolution 

phase of inflammation through a cholinergic mechanism that requires release of pro-resolving 

mediators. Because available methods for vagus nerve stimulation are not suitable for long-

term experiments in mice, the understanding of mechanisms of vagus nerve regulation of 

inflammation in chronic diseases is yet incomplete. In Study IV, we developed technology that 

attempts to address this methodological shortcoming and enable studies of vagus nerve 

stimulation in genetic mouse models of chronic inflammatory diseases. 
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1 INTRODUCTION 

The global burden of chronic inflammatory disease has increased over the last few decades, as 

seen in the number of cases of people suffering from conditions such as rheumatoid arthritis, 

cardiovascular disease, inflammatory bowel disease, chronic kidney disease and Crohn’s 

disease (1–5). Inflammation is an immunological defense mechanism in response to harmful 

stimuli, serving an important mechanism to prevent further damage and facilitate healing, but 

it must be well-controlled. Excessive inflammation can in itself cause tissue damage and 

unresolved, persistent inflammation can significantly contribute to the pathogenesis of 

inflammatory diseases (6). Neural reflex circuits are now recognized as important regulators in 

inflammatory responses (7,8). This has generated considerable interest in investigating neural 

control of chronic inflammatory conditions and the prospect of developing novel therapeutic 

approaches for inflammatory-related diseases. 

Bioelectronic medicine is an expanding field that investigates new diagnostic and treatment 

approaches to regulate inflammation and immunity by interfacing with neural circuits for 

therapeutic benefit. The field aims to bring about multidisciplinary collaborations that inspire 

future research efforts to create novel technology for neural modulation of peripheral nerves in 

order to treat disease. Substantial efforts have focused on optimization of peripheral nerve 

recording and stimulation, microfabrication techniques, optimizing electrodes and their 

integration to more chronic setups, and developing mathematical models and algorithms to 

better understand neural signals. This thesis contributes to the growing knowledge of 

mechanisms of neural regulation in inflammation and resolution and seeks to address the lack 

of chronic electrode applications of vagus nerve stimulation. 

 

1.1 INFLAMMATION REGULATION AND RESOLUTION 

In the 1st century AD, Celsus characterized inflammation by four cardinal signs: rubor 

(redness), calor (heat), tumor (swelling), and dolor (pain). Later, Galen added a fifth cardinal 

sign: functio laesa (loss of function). These five cardinal signs are the physiological result of 

the immunological responses to harmful external stimuli, such as pathogens or bacteria that has 

caused infection, injury, or irritation. Collectively, these responses involve immune cells, 

molecular mediators, and blood vessels. Acute inflammation begins shortly after insult and is 

usually a temporary response. Molecular mediators cause blood vessels to dilate and vascular 

permeability is increased allowing for immune cells to migrate into affected tissues through the 
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capillary wall (9). During infection, leukocytes progress from the blood migrating towards the 

site of inflammation with neutrophils as one of the predominant cells at early onset 

inflammation. This ensemble of mediators culminates into phagocytosing macrophages and 

degradation of cellular debris gearing towards resolution. Macrophages are involved in 

regulation of inflammation progression and the duration of the inflammatory response. In a 

process called efferocytosis, macrophages remove apoptotic neutrophils, triggering 

downstream intracellular signal transduction pathways, resulting in anti-inflammatory and pro-

resolving effects (10).  

Anti-inflammatory does not equate to pro-resolving. The former aims to limit or counter-

regulate inflammatory responses, while the latter involves clearance of apoptotic cells, cellular 

debris and bacteria, and promotes tissue repair. The ideal outcome of acute inflammation is 

resolution. Resolution of inflammation is an active, orchestrated process mediated by lipid 

mediators from initiation to resolution (11). The success of resolution of inflammation rests 

upon the cessation of neutrophil influx and macrophage clearance of cellular debris at the site 

of inflammation (12), as well as lipid mediator class-switching from the production of pro-

inflammatory mediators, classified as eicosanoids, towards pro-resolving mediators, termed 

specialized pro-resolving mediators (SPM) (13,14). SPM are enzymatically derived from 

essential fatty acids which include arachidonic acid (AA), eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), in a lipoxygenase (LOX)-dependent manner. Characteristic 

actions of SPM include limiting neutrophil recruitment, counter-regulating cytokine production 

and stimulating efferocytosis (13,14).  
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Eicosanoids, namely prostaglandins and leukotrienes, initiate the inflammatory response (i.e. 

cardinal signs of inflammation), by regulating vascular permeability and migration of 

neutrophils to the site of injury, respectively. Lipid mediator class switching from eicosanoids 

to lipoxins is a key process in initiating the termination of the acute inflammatory response. 

SPM, like the lipoxins and resolvins, stimulate recruitment of non-phlogistic monocytes, and 

stimulate efferocytosis, thereby promoting resolution of inflammation (11,14,15). Failure to 

resolve inflammation can lead to chronic conditions (16,17) (Figure 1). Unsuccessful damage 

control of the inflammatory stimulus results in the continued migration of immune cells to the 

site of insult, amplifying the inflammatory response and causing tissue damage. Persistent 

inflammation can give rise to diseases such as diabetes, rheumatoid arthritis, asthma, and 

atherosclerosis, for example (18). Therapeutics that trigger pro-resolving and anti-

inflammatory processes could potentially be beneficial in changing the course of chronic 

conditions (Figure 1). 

  

Figure 1. Persistent and excessive inflammation can lead to chronic disease. 
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1.2 CYTOKINE THEORY OF DISEASE 

Cytokines are important mediators in maintaining immunological homeostasis and health (19) 

(Figure 2). Successful resolution of inflammation requires not only decreased leukocyte 

infiltration and increased phagocytosis of apoptotic cells and cellular debris, but also counter-

regulation of cytokines. Interleukin 1 (IL-1), tumor necrosis factor (TNF) and its receptor 

families are archetypal pro-inflammatory cytokines that are released upon injury or infection. 

The overproduction of such cytokines can worsen inflammation. The development of cytokine 

targeting therapeutics such as TNF and IL-1 inhibitors for the treatment of rheumatoid arthritis 

or inflammatory bowel disease have revolutionized therapy for patients suffering from these 

conditions (20). However, cytokine inhibiting drugs have several drawbacks, are not effective 

for all patients, and can produce unwanted side effects, some of which can be lethal. The 

pleiotropic nature of cytokines makes them challenging targets and thus, additional and more 

selective treatment options are needed. 

  

Figure 2. Cytokines can have protective or pathologic functions. During an immunological response, 

cytokines can have different effects on target cells (i.e. pleiotropic, synergic, antagonistic, cascade, 

redundant) which can recruit or activate immune cells. A dysregulated cytokine response can result in 

disease. The use of cytokine inhibiting drugs demonstrate how investigating these molecules can be 

utilized to understand how we may therapeutically target disease.  
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1.3 NEURAL REFLEX REGULATION OF IMMUNITY 

Immune cells are not the only responders to the presence of pathogens. In fact, there are a 

multitude of mechanisms that defend against microbes and regulate inflammation. Importantly, 

neural reflexes are activated by pathogen invasion and injury (8,21). A neural reflex has a 

sensory receptor that responds to changes in the environment, a sensory arc that transmits 

action potentials to the central nervous system (CNS) and an efferent arc that sends action 

potentials from the CNS to the peripheral nervous system and impacts local physiology. For 

example, the gastrointestinal, respiratory, and cardiovascular organ systems are regulated by 

reflexes. The CNS transmits action potentials to control function of these organ systems in a 

matter of milliseconds.    

This sensory mechanism can be traced back to one of the most simple organisms with a nervous 

system, the hermaphrodite soil nematode Caenorhabditis elegans (C. elegans), in which a 

neural reflex regulates immune responses, indicating that the presence of neural control of 

immunity is primordial (22,23). Neural signaling that regulates immune responses in C. elegans 

include neuronal secretion and both the insulin and TGF-β pathway in antifungal resistance 

(24,25). Additionally, the innate immune responses against the bacterial pathogen 

Pseudomonas aeruginosa by sensory neurons instead of specialized immune cells, were 

observed in C.elegans (22). Primitive neural circuits are initiated by sensory neurons to detect 

the presence of pathogens and to elicit a physiological response. Sensory information in C. 

elegans is relayed to a large somatic nervous system and small pharyngeal nervous system, 

whereas in humans, autonomic reflex circuits are composed of an afferent arc that reports to 

the CNS and an efferent arc that generates motor signals to elicit a response, such as regulatory 

signals, e.g. immune cell activation or release of cytokines. The nervous system and immune 

system work together to elicit a defense program against pathogens and to regulate 

inflammation (8).  

Hence, in response to infection or tissue damage, nerves play an integral role. The nervous 

system receives alerting information to the presence of infection or damage from the immune 

system. In this bi-directional communication, mediators released through immune 

chemosensory cells detect the presence of threat and activates neural signaling in order to 

provide a defense response (26).  
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1.4 THE VAGUS NERVE 

The vagus nerve is the longest cranial nerve traveling from the brainstem through the neck, 

thorax, and abdomen (27). The Latin word vagus translates to “wandering”, which 

appropriately describes its extensive and complex reach to multiple organ systems including 

the cardiovascular, gastrointestinal, respiratory, and immune system. The broad distribution of 

vagus nerve fibers to most inner organs, including those most in contact with pathogens, for 

example the lung and the gastrointestinal tract, allow for vagus nerve fibers to potentially detect 

pathogens. With its extensive reach, the vagus nerve serves as conduit for communication 

between the nervous system and immune system to work together to elicit a defense program 

against pathogens in order to regulate inflammation through cellular, humoral and neural 

mechanisms (8). 

 

1.5 THE INFLAMMATORY REFLEX 

The vagus nerve is an important component of the inflammatory reflex, a neural circuit that 

monitors and regulates inflammation (Figure 3) (28,29). Physiological changes in the body in 

response to inflammatory stimuli elicit action potentials in the vagus nerve and activate the 

neural reflex to suppress cytokine production and inhibit inflammation (28,30). These 

responses can occur in a matter of seconds to minutes (31).  

The majority of vagus nerve fibers are afferent and can respond to chemical and mechanical 

stimuli, temperature, and even osmotic pressure (32). Afferent fibers are important for neuro-

immune communication, as they sense inflammation in the periphery and convey signals to the 

brain. Afferent neurons associated with the vagus nerve reside in the nodose, petrosal and 

jugular ganglia, terminating in the dorsal vagal complex of the medulla oblongata (26). 

Afferent neural signals can also be activated by cytokines. Our current understanding of the 

afferent arm of the inflammatory reflex stems from several important observations. CNI-1493 

is a general inhibitor of inflammatory responses that was observed to inhibit TNF in the brain 

of animals subjected to cortical infarction (33). However, after these animals were 

vagotomized, the effect of CNI-1493 in the brain inhibiting TNF was no longer observed, 

suggesting signals transmitted by the vagus nerve regulate cytokine production and indicate a 

role for the vagus nerve in CNS regulation of TNF in the periphery, i.e. organ systems. In fact, 

the effect on cytokine release in inflammation by CNI-1493 administered in the CNS is several 

orders of magnitude stronger than CNI-1493 administered in the periphery. Furthermore, 
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subdiaphragmatically vagotomized rats fail to develop a fever response to intraperitoneal 

injection of the cytokine interleukin-1 beta (IL-1β) (34), indicating that signals in the vagus 

nerve are important in the physiological response to elevated cytokine levels in the peritoneal 

cavity. This suggests sensory signals in the vagus nerve are involved in the fever response. 

Moreover, injecting IL-1β into the portal vein of rats increases efferent splenic nerve activity, 

but not if the hepatic branch of the vagus nerve is ablated (35). This observation suggests that 

sensory vagus signals in response to IL-1β-injection intraperitoneally elicit a reflexive motor 

response. 

Our present understanding of efferent signaling in the inflammatory reflex stems from 

investigation of mechanisms of vagus nerve regulation of cytokine release in the periphery. 

Vagotomized rats in an endotoxemia model of inflammation had increased serum TNF levels 

compared with sham-operated rats. When the vagus nerve was electrically stimulated, serum 

TNF was significantly decreased compared to both vagotomized and sham-operated rats (30). 

Vagus nerve stimulation (VNS)-treated animals have been shown to have reduced 

inflammation and cytokines compared with sham-treated animals in different experimental 

models of inflammation, such as inflammatory bowel disease, intestinal inflammation, 

rheumatoid arthritis, and kidney ischemia-reperfusion injury (36–39).   

The spleen plays a major role in systemic release of TNF in endotoxemia in murine models 

(40,41) and is a key component of the inflammatory reflex, despite not having any vagal 

innervation. The current understanding is that efferent signaling in the vagus nerve reaches the 

celiac ganglion where the splenic nerve arises. However, the details of the signal transmission 

in the ganglion are not completely understood. As the splenic nerve is activated, norepinephrine 

(NE) is subsequently released in the spleen, which activates target adrenergic receptors on 

splenic lymphocytes (42), promoting the release of acetylcholine (ACh) by choline 

acetyltransferase (ChAT)-expressing T cells (41,43–45) (Figure 3). The released acetylcholine, 

in turn, activates the α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages in the 

spleen (Figure 3). This contributes to the vagus nerve regulation of the release of pro-

inflammatory cytokines. Based on these findings, that electrical impulses in the efferent vagus 

nerve regulate cytokine release in the spleen, it became reasonable that electronic devices can 

be used to activate the vagus nerve and attenuate inflammation, including chronic inflammatory 

disease.  
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1.6 ACETYLCHOLINE AND THE ALPHA-7 NICOTINIC ACETYLCHOLINE 
RECEPTOR SUBUNIT 

The chief neurotransmitter of the vagus nerve is acetylcholine (46). The α7nAChR is part of a 

ligand gated ion channel located in the central and peripheral nervous systems. Activation of 

the α7nAChR can mediate anti-inflammatory signaling in peripheral tissues (47,48). In contrast 

to wild type mice, mice deficient in the α7nAChR show blunted inhibition of LPS-induced 

TNF production (47). The α7nAChR is expressed on several cells including macrophages, 

monocytes, dendritic cells, endothelial cells, and T cells. ChAT is the enzyme that catalyzes 

acetylcholine biosynthesis (49). ACh is released from ChAT-expressing T-cells that are 

required to relay neural signals to α7nAChR expressing immune cells. α7nAChR has been 

found to suppress NF-κB activation through inhibition of intracellular Ca2+ release (50,51) and 

attenuates excessive production of pro-inflammatory cytokines downstream (7,43). Activation 

of components in the inflammatory reflex to attenuate release of pro-inflammatory cytokines 

 

Figure 3. The vagus nerve transmits afferent signals to the central nervous system and efferent 

signals regulate cytokine release in a neural-immune reflexive arc called the inflammatory reflex. 

The molecular basis of cytokine inhibition in this reflex requires acetylcholine and the alpha-7 nicotinic 

receptor (α7nAChR) subunit expressed on immune cells such as macrophages. 
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in inflammation can be achieved via α7nAChR agonists such as GTS-21 (52,53) or vagus nerve 

stimulation. 

 

1.7 NEURAL REGULATION OF INFLAMMATION RESOLUTION 

Resolution of inflammation is an important active process that terminates the response to 

infection and injury and ultimately promotes healing (13). In addition to its role in inhibition 

of cytokine release in inflammation, the vagus nerve may play an active role in promoting 

processes in resolution of inflammation. It has been shown that electrical stimulation of vagus 

nerve tissue increases production of pro-resolving mediators ex vivo and can regulate 

expression of netrin-1, an axonal guidance molecule, which is involved in dampening the 

inflammatory response and neutrophil infiltration (54,55). In contrast, vagotomized mice 

subjected to experimental peritonitis had a longer resolution time and increased pro-

inflammatory mediators when compared to the sham group (55). Of note, the vagotomized 

group showed a stronger inflammatory response as measured by neutrophil infiltration in the 

peritoneum. Accordingly, it is difficult to conclude from this study whether activity in the vagus 

nerve specifically promotes the resolution phase of inflammation. Nevertheless, these are 

interesting observations since it provides evidence that neural signals may be involved in 

regulating resolution of inflammation. Considering the recent observations of prolonged 

resolution time in vagotomized mice, it is possible that stimulation of the vagus nerve could 

promote pro-resolving processes and reduce resolution time.  

 

1.8 HARNESSING ELECTRICITY TO PROMOTE HEALING 

The therapeutic use of electricity dates as far back to the 1st century AD. In Compositiones 

medicinae, Scribonius Largus describes using a live black torpedo fish (Torpedo nobiliana) to 

treat gout (56). This is not surprising to us today as we understand that nerve cells are 

electrically active, meaning that they generate a membrane potential, and that electrical 

stimulation can elicit action potentials. Action potentials are electrical impulses that send 

signals throughout the body and are propagated when the nerve cell’s membrane potential shifts 

from negative to positive (i.e. depolarization) and voltage-gated sodium (Na+) channels are 

activated (57). Voltage-gated Na+ channels are widely expressed in excitable cells which 

include peripheral neurons, among many others. Many of these widely expressed ion channels 

can be activated by electrical, mechanical and chemical stimuli (58).    
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Action potentials transmitted in the vagus nerve regulate neuro-immune communication 

between the brain and the periphery. Accordingly, fluxes of ions are fundamental in facilitating 

physiological responses and with increased mechanistic understanding of the involvement of 

neural signals in the physiology of inflammation, it is possible that electricity can potentially 

be used to promote healing.  

 

1.9 THERAPEUTIC MONITORING AND STIMULATION OF PERIPHERAL 
NERVES 

In response to physiological changes in the body, the sensory arc of the vagus nerve transmits 

action potentials to the CNS to provide information of the body’s condition. Decoding neural 

activity related to the motor and sensory fibers of the vagus nerve could be beneficial to 

understanding the ‘language’ in which the immune system and nervous system communicate. 

Neural decoding has been successful in motor decoding for devices and application in paralysis 

(59). Neural interfaces have the potential to advance our mechanistic understanding of how the 

CNS communicates with the peripheral nervous system in ways that are not otherwise possible, 

such as the development of vagus nerve recording methodology which have provided us with 

some insights on how levels of anesthesia, nutritional status, and administration of cytokines 

can affect baseline vagus nerve activity (60). Analysis of compound action potentials recorded 

in the cervical vagus nerve of mice indicate that the vagus nerve transmits distinct neural 

signatures in response to specific cytokines (61). Furthermore, hypoglycemia-specific neural 

signals decoded from vagus nerve activity of mice reveal a potentially new way to measure 

blood glucose levels (62). Ideally, a closed-looped device that could record sensory information 

or vagal tone, interpret the signals, and then respond accordingly to therapeutically stimulate 

and restore normal vagal tone would be a major advancement in the field – and likely in 

medicine. Expansion of this knowledge and technological advances in miniaturized interfaces 

attempts to better understand the neural code in inflammation regulation. 

 

1.10 PERIPHERAL NERVE INTERFACE TECHNOLOGY 

Development of peripheral nerve interfaces are challenging due to the physiological and 

anatomical conditions of nerve size and shape depending on the location (i.e. near organs or 

muscles) and the species. Also, certain nerves contain either afferent or efferent fibers or a mix 

of both, like the vagus nerve. There is a wide range of different commercially available 
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electrodes to choose from (e.g. cuff, spiral, needle or hook electrodes), and many laboratories 

even construct their own electrodes. For electrode fabrication, biocompatible materials are 

suitable for nerve interfacing which include metallic biomaterials (e.g. platinum iridium), 

synthetic and naturally occurring polymeric biomaterials (e.g. Parylene) and composite 

biomaterials (e.g. bone cement). Acute and chronic experiments require different electrode 

designs, for instance, hook electrodes are not used for chronic stimulation settings while cuff 

electrodes may be suitable for both. Chronic electrodes need to be biocompatible, thin, and 

flexible but strong enough to withstand compressive strain and stress cracks, maintain good 

adhesion without constriction or damage to the nerve, and perform reliably over time (63). 

Availability of chronic electrodes for mice are limited and implementation of current designs 

have been challenging, in this context, for small peripheral nerves such as the cervical vagus 

nerve. Electrode specifications for rats and mice differ for obvious reasons of size, and it has 

been suggested that the inner diameter for cuff electrodes for example, should be 1.4 times the 

outer diameter of the nerve (64,65).  

There have been some recent advancements to interfacing with the mouse cervical vagus nerve 

(66,67), though these devices operate using wires which do not allow the animals to move 

freely and thus recording and stimulation of peripheral nerves are still performed under 

anesthesia. Furthermore, external electrode contacts and connecting wires can cause 

entanglement with intervening wires, distress to the mouse, affect normal locomotion and 

grooming, alter the group housing situation and dynamic, as well as their habitual behavior. 

Recently it was shown that it may be possible to perform long-term vagus nerve stimulation 

for up to 4 weeks in mice using commercially available bipolar cuff electrodes (68). However, 

the study did report cases of lead wire breakage in the connection between the lead wire and 

electrode, suggesting wireless stimulation would likely be a potentially better solution to 

technical challenges with wired devices. 

Ultrasound technology (e.g. StimDust, Neural Dust) has been utilized for peripheral nerve 

stimulation and recording, but regarding rodents, this has been largely studied in rats (69–71). 

In mice, ultrasound technology has been investigated in the sciatic nerve or in sub-organ 

stimulation (72,73), however, published studies exploring ultrasound vagus nerve activation 

are lacking. Additionally, the mechanisms of neural activation by ultrasound are not yet known, 

though some proposed mechanisms include thermal modulation (74), intramembrane 

cavitation (75), or mechanical effects of radiation force (76). 
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More recently, an innovative discovery in wireless technology has come to light. Organic 

electrolytic photocapacitors (OEPC) are photostimulation devices capable of generating an 

electric current sufficient for nerve stimulation when illuminated with deep-red light. 

Capacitive coupling has been shown in an in vitro model using Xenopus laevis oocytes to be 

the mechanism in which specific ion channels respond to OEPC illumination (77). 

Development of such devices with minimal invasiveness can open for potential replacement of 

traditional wired electrodes (77). Deep-red light (wavelengths above ≈ 600 nm) penetrates 

tissue and therefore has the potential to reach and activate implanted OEPCs to stimulate 

peripheral nerves wirelessly. Recently it has been shown that OEPCs can be chronically 

implanted and wirelessly stimulate the rat sciatic nerve (78), suggesting the possibility for 

application in other peripheral nerves. OEPCs can be manufactured to fit stringent constraints 

for size and shape and thus avoid excessive rigidity and bulkiness. Such devices may allow in 

vivo chronic application, for example expanding the use of vagus nerve stimulation in 

investigating molecular mechanism in chronic inflammatory conditions and thus finally enable 

the long-awaited long-term studies of well-characterized genetic models of inflammatory 

diseases (Figure 4). 

 

 

Figure 4. Wireless organic electrolytic photocapacitor technology could potentially replace current 

vagus nerve stimulation setups. Conventional metal electrodes (left) require connectors, bond pads, 

wires, and are often attached to a head stage and then a stimulator. The electrode is implanted on the 

vagus nerve and the integrated cable is tunneled subcutaneously to the connector. Photoelectrodes (right) 

can be implanted on the vagus nerve. The electrode could then be activated by deep-red light aimed at 

the area of implantation. 
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1.11 TRANSLATIONAL DEVELOPMENTS 

Discoveries in pre-clinical disease models support that the use of electrodes to stimulate the 

vagus nerve might be suitable for therapeutic stimulation to decrease inflammation, providing 

an alternative to drugs in a variety of conditions and diseases characterized by excessive 

inflammation such as sepsis, ischemia/reperfusion injury, rheumatoid arthritis, and 

inflammatory bowel disease (30,33,36,38,79,80). Insights from these studies have brought 

forth clinical trials that utilize VNS devices for treatment of inflammatory diseases. A relatively 

recent pioneering study implanted a vagus nerve stimulator (commercially available device 

used in an open-label study) in humans for treatment of rheumatoid arthritis (81). This study 

showed that VNS decreased serum TNF and C-reactive protein in the included patients, and 

improved the 28-joint disease activity score (DAS score) over a period of 3 months (81). 

Recently, miniaturized devices designed to simplify implantation surgery, follow-up, 

programming and monitoring are under development. One study reported findings using a 

novel microregulator device for VNS-treatment in patients with multi-drug refractory 

rheumatoid arthritis, indicating that half of the patients had significant clinical improvement 

and decreased inflammation comparable to the previous study (82). Currently, we are involved 

in a multi-center study of VNS in therapy-resistant Crohn’s disease led by SetPoint Medical 

Inc. A preliminary report shows that Crohn’s symptoms were reduced in six of the eight 

patients, with three of the patients in remission (83). In another Crohn’s disease study, an 

implantable vagus nerve stimulator was reported to restore vagal tone and clinical, biological, 

and endoscopic remission in patients over a 6 month period (84). While results from these 

clinical trials are encouraging, it is important to note that more well-designed and much larger 

studies are needed. To date, the use of randomization and placebo has been insufficient for 

definite conclusions. In addition, more experiments are needed to define optimal stimulation 

parameters and protocols. For the future, it would be beneficial, likely even crucial, to better 

define the neural circuits that regulate inflammation. With this information it might be feasible 

to develop technology that is more selective for more precise molecular targets by pinpointing 

specific nerve fibers – or perhaps bundles of fibers – when such technology becomes available. 

The vision is to optimize treatment paradigms and enable the use of electrons for specific 

anatomical and functional targeting of key pathogenic mechanisms of inflammatory diseases.  
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2 RESEARCH AIMS 

This thesis aims to investigate neural control of inflammation and develop technology to enable 

long-term mechanistic studies in experimental animal models. 

In particular, the specific aims were to: 

I. Uncover mechanisms underlying sustained reduction of cytokine production in 

response to vagus nerve stimulation (Paper I). 

II. Standardize a practical and feasible method to isolate and stimulate the vagus nerve 

in mice (Paper II). 

III. Investigate whether electrical stimulation of the vagus nerve promotes resolution 

of inflammation (Paper III). 

IV. Develop technology for chronic vagus nerve stimulation (Paper IV).
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3 EXPERIMENTAL METHODOLOGY 

 

3.1 IN VIVO MOUSE MODELS 

Prior to our animal studies presented here, ethical permits (N104/16 and 20818-2020) were 

approved by the Regional Ethical Committee on Animal Experiments.  

Animal research has made tremendous contributions to our understanding of various chronic 

diseases, particularly in terms of mechanistic understanding of biological processes and for 

development of treatment. Genetic mouse models are important tools to study mechanism of 

physiology and disease. 

 

3.2 ENDOTOXEMIA 

Experimental murine endotoxemia is a well-established and commonly used model of systemic 

inflammation (85,86). Lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) which is 

expressed on a range of immune cells and other cells. TLR4 activation commonly promotes 

the secretion of TNF. Since it is known that VNS reduces the release of pro-inflammatory 

cytokines like TNF in endotoxemia, the use of this model allowed us to observe differences in 

cytokine levels of sham- and VNS-treated mice. After VNS- or sham-treatment, mice received 

a single intraperitoneal dose of LPS and were euthanized 90 minutes after injection. Blood was 

collected for later analysis of serum TNF and other mediators of interest. 

 

3.3 ZYMOSAN-INDUCED PERITONITIS 

Zymosan is a toll-like receptor 2 (TLR2) agonist. The zymosan-induced peritonitis model is a 

self-resolving inflammation model that peaks within several hours and is cleared within 48 to 

72 hours (87). Mice received a single intraperitoneal dose of zymosan and were euthanized at 

different time points. Peritoneal exudate was collected for leukocyte, cytokine and lipid 

mediator analysis. 
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3.4 IMPLANTATION 

Development of biocompatible electrodes for vagus nerve stimulation was studied in vivo, as 

it necessary to observe inflammation in response to electrical activation of the inflammatory 

reflex. The physiology of neural regulation of inflammation involves interactions between 

multiple cell types and tissues at several anatomical locations. It would be exceedingly 

challenging – currently impossible – to investigate electrode biocompatibility, electrical 

activation of neural circuits and their interactions with the immune system and other tissues in 

vitro. Our studies involve both acute and chronic implantation of electrodes which include 

custom-built bipolar hook electrodes (66), multi-electrode arrays (MEA) and OEPC devices. 

 

3.5 VAGUS NERVE STIMULATION 

VNS is a procedure that involves the delivery of electrical impulses to the vagus nerve and is 

studied in vivo. In our studies, the cervical vagus nerve was isolated and stimulated in 

anesthetized mice. Isolating the vagus nerve and suspending the nerve on an electrode without 

electrical stimulation does not necessarily elicit activation of the vagus nerve (88). We found 

in a number of method development and verification experiments over several years that there 

was no significant difference between careful vagus nerve isolation and electrode placement 

versus a simplified sham surgery. Thus, for sham-treatment, mice were subjected to surgery 

without vagus nerve isolation or stimulation. However, for experiments validating the use of 

new electrodes that utilize OEPC technology, VNS-treated mice were implanted with OEPC 

devices while sham mice were implanted with sham devices (Parylene-C substrate with gold, 

without the photoactive PN pixel). Both groups were subjected to deep-red light-mediated 

photovoltaic stimulation. Sham devices yield no response to illumination, as they lack the 

photoactive PN pixel which responds to light to generate electrical current, as previously shown 

in acute sciatic nerve photostimulation (78).  

 

 





 

 21 

4 RESULTS & DISCUSSION 

4.1 SUSTAINED INHIBITION OF ENDOTOXIN-INDUCED CYTOKINE RELEASE 
FOR ≥ 24 H AFTER VAGUS NERVE STIMULATION REQUIRES THE 
ALPHA-7 NICOTINIC ACETYLCHOLINE RECEPTOR SUBUNIT (PAPER I) 

VNS reduces release of pro-inflammatory cytokines in inflammation in experimental and 

clinical studies (36,81). However, how long this effect is sustained and the underlying 

mechanism for this effect, are not well understood. To investigate this, VNS- and sham-treated 

animals were subjected to endotoxemia at 0, 2, 24 and 48 h after surgery. Blood was then 

collected, and serum TNF was analyzed. VNS-treated animals had significantly lower levels 

of serum TNF for up to 48 h compared to sham-treated animals (Figure 5A).  

Vagus nerve signals in the inflammatory reflex are relayed by ChAT+ T cells that release ACh 

which then binds to the α7nAChR on cytokine producing cells, such as macrophages. To study 

whether VNS-induced prolonged suppression over time requires the α7nAChR, VNS-treated 

wild type and α7nAChR-deficient mice were subjected to endotoxemia. After 24 h, blood was 

collected, and serum TNF was analyzed. The sustained effect on endotoxin-induced TNF by 

VNS was absent in α7nAChR-deficient mice, suggesting that persistent inhibition of TNF by 

VNS requires the α7nAChR (Figure 5B). 

 

Figure 5. Sustained inhibition of endotoxin-induced cytokine-release for ≥ 24 h after vagus 

nerve stimulation requires the alpha-7 nicotinic acetylcholine receptor subunit. (A) Animals 

were subjected to VNS- or sham-treatment and after recovery were injected with endotoxin at 

different time points after surgery. White squares represent mean TNF ± SEM in sham-treated 

animals, black diamonds represent mean TNF ± SEM in VNS-treated animals. (B) Wild type (left) 

and α7nAChR-deficient (right) mice were subjected to VNS- or sham-treatment and after 24 h 

recovery were injected with endotoxin. Serum TNF levels relative to sham mice are shown as mean 

± SEM. ***p < 0.001, **p < 0.01, *p < 0.05. 
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Several mechanisms have been proposed for cholinergic control of immune cell release of pro-

inflammatory cytokines, including signals interfering with NF-κB and JAK2/STAT3 

(50,79,89). The ionotropic activity of α7nAChRs is likely not sufficient to elicit currents in 

immune cells to mediate inhibition of TNF release (89), which suggests there are other 

molecular components involved. α7nAChR in neurons have been shown to interact with 

adenylyl cyclase 6 (AC6) (90), thus we investigated whether an analogous interaction occurs 

in macrophages. RAW 264.7 cells were exposed to the adenylyl cyclase-inhibitor MDL 

12,330A, and the selective α7nAChR agonist, choline. Subsequently, cells were exposed to 

endotoxin and TNF mRNA was measured in cell lysates by qPCR. Exposure to MDL 12,330 

suppressed choline-mediated reduction of TNF mRNA, suggesting cholinergic activation of 

adenylyl cyclase mediates endotoxin induced-TNF release (Figure 6A). In another experiment, 

RAW 264.7 cells were transfected with siRNA targeting AC6 or scrambled siRNA. 

Subsequently, cells were exposed to choline and endotoxin. Knock-down of AC6 cells 

abolished cholinergic attenuation of TNF mRNA, indicating that cholinergic suppression of 

endotoxin-induced TNF release requires AC6 (Figure 6B).  

Taken together, results from this study identify that the α7nAChR and adenylyl cyclase are 

involved in sustained reduction of TNF release in endotoxemia after VNS, thus improving our 

understanding of the inflammatory reflex with insights that may have implications for 

development of therapeutic stimulation strategies, in particular the required frequency of VNS 

for inhibition of TNF release.  
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4.2 A SIMPLE, CONSISTENT AND REPRODUCIBLE METHOD FOR 
PERFORMING VAGUS NERVE STIMULATION FOR THE STUDY OF 
EXPERIMENTAL INFLAMMATION (PAPER II) 

Recent results from clinical trials using electrical VNS to treat rheumatoid arthritis and Crohn’s 

disease support VNS as a prospective treatment of diseases characterized by excessive 

inflammation (81–84). This has created increasing interest across numerous labs in exploring 

VNS in a wide range of experimental models of inflammation. However, there is a lack of 

comprehensive description of how these experiments should be performed to promote 

simplicity of implementation and consistency between sites. Accordingly, we sought to 

describe an effective and practical method to perform VNS in acute inflammation studies 

involving mice intended to be readily introduced and reproduced in other laboratories with 

consistent results.   

 

Figure 6. Adenylyl cyclase 6 mediates inhibition of endotoxin-induced TNF. (A) RAW 264.7 

cells were incubated with the adenylyl cyclase inhibitor MDL 12,330A, then exposed to choline and 

endotoxin. Bar graphs represent mean fold increase of TNF mRNA ± SEM relative to cells exposed 

to endotoxin and choline in the absence of MDL 12,330A. (B) Adenylyl cyclase 6 (AC6) was knocked 

down using siRNA in RAW 264.7 cells. Subsequently, cells were exposed to the α7nAChR selective 

agonist, choline. (Inset) Western blot shows cells treated with siRNA targeting AC6 (si-AC6) or 

scrambled siRNA (si-SCR). Bar graphs represent fold increase ± SEM of TNF mRNA compared to 

cells not challenged with endotoxin. *p < 0.05. 
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Lot-to-lot variation exists in commercially available biochemicals and reagents, therefore it is 

necessary to evaluate each new batch of biochemical or reagent when inducing inflammation 

(91). In our previous studies, as much as 8 mg/kg of endotoxin was used to study effects of 

VNS intervention on serum TNF levels, however as low as 0.1 mg/kg has also been used 

depending on the batch of LPS used, regardless whether the purchase was made from the same 

manufacturer (88,92). Therefore, titration must be performed during the experimental setup to 

ensure suitable dosing to induce inflammation within physiological limits based on the animal 

strain and species (93). Based on our observations and the current batch of endotoxin titrated, 

the dose-response curve plateaus at doses ≥ 2.5 mg/kg and thus concentrations below this 

threshold are suitable for studying VNS in endotoxemia for the experiments in our setup 

(Figure 7).  

To perform VNS, the basic components required include a computer, a pulse generator, 

stimulator, electrode and a microscope. An oscilloscope can be used to visualize voltage output 

and is recommended to monitor impedance changes (Figure 8A-B) and other issues that may 

for example result from inadequate electrode or stimulator integrity, leaking current, or poor 

nerve-electrode contact. It is recommended to use a current-controlled stimulator instead of a 

voltage-controlled stimulator to consistently deliver the desired charge for nerve stimulation. 

Current-controlled stimulation compensates for variations in electrode impedance and 

promotes consistency in current and charge delivery. In contrast, charge delivery in voltage-

 

Figure 7. TNF dose response in endotoxemia. Mice were injected intraperitoneally with endotoxin 

and after 90 min blood was collected. Serum TNF levels were measured by ELISA. Bar graphs 

represent mean TNF ± SEM.  
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controlled stimulation is sensitive to variations in impedance and may fail to deliver adequate 

charge for depolarization if impedance increases. 

Biphasic waveforms are preferred over monophasic waveforms for VNS because of safety 

reasons – reducing the risk of nerve and tissue damage. Biphasic cathodic leading waveforms 

are less likely to lead to faradaic reactions which may cause tissue damage (94,95). Optimal 

stimulation parameters to activate the inflammatory reflex are not known, however we have 

previously investigated suitable settings in experimental endotoxemia, i.e. current-controlled 

stimulation, biphasic waveform, 250 µs pulse width, 10 Hz, that yield reproducible results with 

consistent reduction of serum TNF concentration in endotoxemia. Recently however, specific 

waveform combinations for electrical stimulation of the vagus nerve in the absence of 

inflammation have been found to alter cytokine levels differently (96). These findings suggest 

that depending on the waveform and stimulation pattern used, electrical vagus nerve 

stimulation may not only reduce release of pro-inflammatory cytokines, but also enhance it. 

Different stimulation parameters can elicit different physiological effects such as anti-

inflammatory (perhaps attributed to A- and B- fiber activation) or cardioinhibitory (perhaps 

attributed to B-fibers) (65,97). It is therefore important moving forward to determine optimal 

stimulation combinations of current, pulse width, and frequency that are closer to optimal for 

specific and different fiber recruitments.  

 

 

 

Figure 8. Maintaining constant current. (A) Oscilloscope tracing depicting voltage output from the 

digital-to-analog interface (bottom blue tracing, scale 1 V/square) at the desired impedance and 

voltage measured over the electrode leads (top orange tracing, scale 5 V/square). (B) Oscilloscope 

tracing depicting electrode-nerve interface with a high impedance level (top orange tracing, scale 50 

V/square).  
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4.3 VAGUS NERVE STIMULATION INCREASES SPECIALIZED PRO-
RESOLVING MEDIATORS AND ACCELERATES RESOLUTION OF 
INFLAMMATION BY A MECHANISM THAT REQUIRES ALOX15 AND 
CHOLINERGIC SIGNALING (PAPER III)   

The mechanisms that regulate resolution of inflammation are not fully understood, however it 

is known that neural reflexes regulate the intensity of inflammation, for example through 

signals in the vagus nerve, suggesting that activation of the vagus nerve may play a role in 

resolution of inflammation. To address this hypothesis experimentally, mice were subjected to 

VNS- or sham-treatment prior to the induction of peritonitis. Neutrophil numbers in peritoneal 

exudates of VNS-treated mice compared with sham-treated mice subjected to zymosan were 

significantly reduced 12 h after zymosan challenge (Figure 9). VNS-treated mice had a 

shortened resolution interval and increased efferocytosis compared with sham-treated mice 

(Figure 9). Furthermore, VNS-treatment shifted the peritoneal exudate lipid mediator content 

 

Figure 9. Electrical vagus nerve stimulation shortens resolution time. Mice were subjected to 

vagus nerve stimulation and zymosan-induced peritonitis. Peritoneal exudates were collected 4, 12, 

24 and 48 h later. Peritoneal exudates were analyzed by flow cytometry. Results are plotted as 

mean ± SEM. *p < 0.05. 
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in peritonitis toward a more pro-resolving profile through promotion of the Alox15 pathway. 

This was evident in the enhanced production of specific DHA- and DPA-derived SPM (Figure 

10A) – in particular, VNS-treatment enhanced biosynthesis of the protectin (PD) and maresin 

(MaR) families (Figure 10B). This was further demonstrated through identification of 17R-

PD1 and MaR2 as well as their pathway markers 10S,17S-diHDHA (PDX) and 7S,14S-

diHDHA.  

These observations infer that VNS-treatment accelerated inflammation resolution by activating 

the Alox15 biosynthetic pathways, which was further supported in observations that effects of 

VNS-treatment on neutrophil numbers and efferocytosis were lost in mice deficient of Alox15 

(Figure 11). Furthermore, this effect was also lost in α7nAChR-deficient mice (Figure 11), 

suggesting the α7nAChR was required for the VNS-mediated effects on resolution of 

inflammation in peritonitis. Findings from this study indicate electrical activation of the 

inflammatory reflex promoted resolution of inflammation. 

 

Figure 10. VNS increases levels of lipoxygenase-derived SPM. Peritoneal exudates from VNS- 

and sham-treated mice were collected 12 h after intraperitoneal zymosan injection. Levels of lipid 

mediators in peritoneal exudates were measured using LC-MS/MS. (A) Levels of total SPM 

identified from the metabolome families DHA, EPA, EPA, and AA. (B) Levels of identified DHA- and 

DPA-derived SPM. Results are shown as mean ± SEM. *p < 0.05, **p < 0.01. 
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4.4 ORGANIC ELECTROLYTIC PHOTOCAPACITORS CAN POTENTIALLY 
ENABLE WIRELESS VAGUS NERVE STIMULATION IN MICE (PAPER IV) 

Electrode technology for chronic nerve activation in mice are lacking. With the availability of 

genetic mouse models to study disease mechanisms, electrodes for chronic nerve activation 

would enable improved mechanistic studies of peripheral nerve regulation of inflammation in 

health and disease. Recent advances in OEPC technology have facilitated development of 

suitable alternatives to wired interfaces (77,78), and could potentially be utilized for 

development of a wireless electrode for peripheral nerve stimulation in mice. Accordingly, we 

set out to investigate OEPC technology for stimulation of the mouse vagus nerve and activation 

of the inflammatory reflex (Figure 12). 

Under anesthesia, mice were implanted with an OEPC or sham device on their cervical vagus 

nerve and the electrode was illuminated using deep-red light. The device was removed, the 

wound closed and after recovery the mice were injected intraperitoneally with endotoxin. 

Serum TNF levels of sham- and VNS-treated mice were analyzed by ELISA. While the mean 

TNF level of VNS-treated mice were lower compared with the sham-treated mice, the 

difference did not reach statistical significance. We postulated that this photocapacitor 

technology was promising but needed to be developed further for stimulation of mouse 

Figure 11. Electrical vagus nerve stimulation reduces neutrophil numbers in vivo through a 

mechanism that requires cholinergic signaling and Alox15. Mice were subjected to left cervical 

vagus nerve stimulation and zymosan-induced peritonitis. Peritoneal exudates were collected 12 h 

after zymosan challenge and analyzed by flow cytometry. Neutrophil numbers in (Left) C57BL/6 

sham- compared with VNS-treated mice, (Middle) α7nAChR-deficient sham- compared with VNS-

treated mice, and (Right) Alox15-deficient sham- compared with VNS-treated mice. Results are 

plotted as mean ± SEM. *p < 0.05. 
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peripheral nerves and proceeded to develop a wired MEA with variable stimulation contacts to 

investigate the effectiveness in nerve stimulation using different configuration arrangements.  

Since activation of the vagus nerve is known to slow heart rate, heart rate reduction can be used 

to validate activation of vagal fibers. Stimulation-induced heart rate reduction is an appealing 

method for these experimental purposes because it can be monitored in real-time using pulse 

oximetry with relative simplicity, thus it is reasonable to verify effective electrode stimulation 

of the vagus nerve using this setup. We investigated MEA stimulation-evoked reduction of 

heart rate to determine suitable stimulation parameters and electrode layout for OEPC device 

fabrication. Indeed, this experiment investigates vagus nerve activation and heart rate, not 

primarily vagus nerve stimulation and regulation of inflammation, yet it serves as a reasonable 

proxy to investigate functionality of the electrode technology in vivo. We observed that a 

longitudinal configuration required a relatively limited current to activate the vagus nerve and 

thus appears suitable for design of the OEPC device (Figure 12A). Since light intensity will be 

reduced as it traverses the skin and tissues on its way to an implanted OEPC device, it is 

beneficial to find an electrode configuration that does not need to produce a high current to 

depolarize the nerve sufficiently. Accordingly, a longitudinal configuration was chosen and the 

configuration of an OEPC device adapted to approximate this design.  

Mice were implanted with the OEPC device and exposed to illumination of deep-red light. 

Stimulation-induced heart rate reduction was observed by pulse oximetry. As the electrode was 

illuminated by the deep-red light, we observed a reduction in heart rate. Thus, we conclude that 

OEPC devices with this configuration placed on the vagus nerve can induce heart rate reduction 

in mice (Figure 12B).  In other words, these OEPC devices are capable of electrically activating 

the cervical vagus nerve as they are exposed to the deep-red light. 

Initial findings from this study lay the foundation for potentially implementing light-activated 

photocapacitors as small peripheral nerve stimulators with low energy requirements. However, 
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further work is required and underway to improve OEPC layouts and illumination parameters 

for a more optimal design and setup. 

 

 

 

Figure 12. Stimulation-induced heart rate reduction with a longitudinal electrode 

arrangement.  (A) Stimulation-induced heart rate reduction while stimulating with the longitudinal 

bipolar MEA configuration at 5 Hz, 100 pulses, 266 µs pulse width (PW), 20 µA/electrode. (B) 

Longitudinal OEPC-device induced heart rate reduction upon OEPC stimulation of the right cervical 

vagus nerve. Light illumination parameters: 5 Hz, 100 light pulses, with a light pulse width (LPW) of 

1000 µs. 
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5 CONCLUSIONS 

This thesis reveals several previously unknown mechanisms in neural control of inflammation, 

including cholinergic activation of adenylyl cyclase in regulation of TNF release and 

cholinergic control of SPM release and inflammation resolution time. The work in this thesis 

also provides evidence that implanted, wirelessly controlled electrodes can activate the cervical 

vagus nerve. This novel approach promises to enable greatly needed mechanistic studies of 

peripheral nerve activation in a wide range of experimental models of disease. 

Bioelectronic medicine is a rapidly evolving field with many opportunities for new discoveries 

in therapeutic monitoring and stimulation to treat and detect inflammation. The inflammatory 

reflex is one of many reflex circuits and there are still gaps in our understanding of neural 

reflexes and regulation of immunity. However, observations described in this thesis provide a 

glimpse of the future direction of possible therapeutic modalities through which vagus nerve 

stimulation can regulate excessive inflammation and its resolution.  

With the growing interest in neural reflex control of inflammation, it is important that 

implementation of VNS for activation of the inflammatory reflex is consistent. With the next 

generation of neural interfaces for bioelectronic medicine it is crucial to update and provide 

clear methodology to perform VNS for the study of experimental inflammation in order to yield 

reproducible results across laboratories. While we have shared methodology that in our 

experience yields reproducibility, recent progress in neural interfaces and development in more 

sophisticated technology call for updated methodology and design of integrated research 

workflows. Even in the time this thesis was being written, we have continually improved our 

experimental setup and physiological monitoring of mice (e.g. upgraded how temperature 

sensors and warming devices, pulse oximeters, and electrodes are used) Improved consistency 

and reproducibility of results are achieved with better control of experimental variables. 

Our findings that electrical vagus nerve stimulation regulates resolution of inflammation in vivo 

demonstrate for the first time that signals in the inflammatory reflex not only regulate 

inflammation but also promotes resolution of inflammation. This opens a new avenue of 

exploration in therapeutic stimulation, and further experiments are ongoing on mechanism to 

determine if other components of the inflammatory reflex are involved in resolution of 

inflammation. 

Observations that inflammation was sustained for over 24 h after vagus nerve stimulation in 

endotoxemia shed light on an important time frame of intervention in acute experimental 

inflammation (92). Although a single electrical vagus nerve stimulation has effects on 
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inflammation that persist for over 24 h, there is a critical need for persistent and long-term 

electrodes for repeated stimulations to study chronic inflammatory disease. Thus, to contribute 

to solving this technological barrier, we sought to investigate new, wireless technology for 

chronic nerve stimulation. We adapted organic electrolytic photocapacitor technology for 

replacement of wired electrodes for vagus nerve stimulation. Further work is still needed to 

confirm observations that a longitudinal configuration is suitable for activation of the 

inflammatory reflex. We have yet to exploit the numerous configurations the MEA electrode 

is capable of testing and may find even more suitable configurations to activate the vagus nerve. 

We are currently continuing to explore this, as well as assessing various OEPC device layouts 

and illumination parameters. Results from our pilot experiments are promising, and findings 

from this thesis already demonstrate the potential for photocapacitors to wirelessly stimulate 

the vagus nerve and activate the inflammatory reflex, preceding future research and 

development of wireless neural interfaces for peripheral nerve applications for therapeutic 

intervention. 

The findings here improve our understanding of how activation of the vagus nerve regulates 

inflammation. Hopefully, the advancements in experimental procedures and techniques 

developed here will enable and expand the study of electrical activation of the vagus nerve – 

and perhaps other peripheral nerves – in experimental models of chronic diseases. Perhaps 

these efforts will improve our mechanistic understanding of the regulation of inflammation and 

provide important elements missing in our knowledge of immune system function that can 

contribute to both improving health and treating disease. 
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