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What can change the nature of a man? 
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POPULAR SCIENCE SUMMARY OF THE THESIS 

“Which system is the most important to maintain our country?” I asked myself before the Ph. 

D study. The answer varies between readers: economy, education, agriculture, transport 

system, culture, etc. My answer is “Military,” which protects the people from intense armed 

conflicts. A similar question happened to our body as well. “Which system is the most 

important to maintain your body?” The uncertainty such as viruses, bacteria, fungus, aged cells, 

stress, and cells with the mutation threatens our body. When I write my thesis, the COVID-19 

has been spread worldwide for more than one year. Its spread has left national economies 

counting the costs. Travel plans have been put on hold and gatherings have transformed to 

online meetings. How can we survive this pandemic, and who can we ask for help? I believe 

the answer is ourselves, specifically, our immune system. 

Most of us can still function properly and live life without constantly being sick due to our 

exquisite immune system, which works in a coordinated and synergistic way to exclude and 

clear those dangers. In brief, the innate assassins (Natural Killer cells) could sense and kill 

transformed “foreign” cells then subsequently send the smoke signal (inflammatory cytokines), 

which recruit special agents (myeloid cells), soldiers (T cells), and navy (B cells) to the 

battlefield. Through the release of tons of explosive bombs (perforin, granzymes) or precision- 

guided missiles (antibodies), we could kill those “foreign” invaders and collect the information 

(antigen presentation), which facilitates the army responses when the” foreign” invader comes 

again (memory formation). 

NK cells are born to be at the forefront of the cancer-immunity war. Emerging evidence has 

been proved that higher intratumoral NK cell frequency correlated with better prognostic value 

in solid tumors. In contrast, NK cells could barely be detected from late-stage tumor patients. 

Tumors use various tricks to escape NK cell killing, like to beguile macrophage to immune-

suppressive state and shed the surface identity, to create their unique immune-evade niche. 

However, we found that “eximious” NK cells primed by cytokines could infiltrate tumors more 

than others. The chosen NK cells hold the promise to drive the cancer-immunity cycle from 

dysfunctional to normal. 

The overall goal of this thesis is to understand how NK cell activity is regulated in solid tumors. 

Studies in this thesis focus on identifying “eximious” NK cells that are resistant to various 

immunosuppressive mechanisms, including prostaglandin E2 (PGE2)-Study I, reactive 

oxidative species (ROS) Study II and regulatory T cells (Treg) Study III.  

 

 

 

 

  



ABSTRACT 

Cancer heterogeneity, which enables clonal survival and treatment resistance, is shaped by 

active immune responses. Unchallenged results from clinical trials show the power of 

stimulating our immune system to attack tumor cells.  

Engineered T cells and checkpoint blockade are at the forefront of current immunotherapy 

strategies. Whereas our immune system includes a diverse range of effector cells, which could 

directly or indirectly kill the target cells, and these immune cells must organize in a synergistic 

way to overcome multiple immune-evasion mechanisms and achieve complete tumor 

eradication. 

An essential type of effector cell is natural killer (NK) cell. These are cytotoxic innate 

lymphocytes identified by their splendid capacity to kill virus-infected, stressed or transformed 

cells. Ex vivo expanded NK cells used for hematological malignancies showed promising 

results, associated with in vivo NK cells expansion after infusion. However, due to the limited 

growth factors in the tumor microenvironment (TME), infused NK cells undergo changes in 

their phenotype and ability to survive. 

The type I cytokine family members IL-2 and IL-15 play a pivotal role to maintain homeostasis 

of the innate and adaptive immunity. Endogenous levels of IL-15 have been linked with 

sustained persistence of infused NK cells. Thus, the secret for NK cell resistance in the TME 

could be uncovered by investigating IL-15 primed NK cells under various forms of 

immunosuppression. In study I, we found that IL-15 primed NK cells acquire resistance 

against prostaglandin E2 (PGE2) mediated suppression by upregulation of phosphodiesterase 

4A (PDE4A) in CD25+CD54+ NK cells. These CD25+CD54+ NK cells showed superior killing 

capacity under the suppression of PGE2 in vitro (2D and 3D culture) and in vivo (zebrafish 

model) experiments. In study II, we demonstrated that upregulated mTOR pathway primed 

by IL-15 lead to increased thiol density which protected not only NK cells but other 

lymphocytes against ROS in tumor microenvironment. In study III, we showed that 

upregulation of the IL-2α receptor (CD25) in NK cells enables an immunometabolic 

competition of IL-2 in the TME between Treg and NK cells. 

In summary, this thesis provides mechanistic insights for tumor-NK cell interaction and 

elucidates the potential therapeutic approach for harvesting "eximious" NK cells against solid 

tumors. 
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1 INTRODUCTION 

1.1 Cancer 

Cancer is characterized by the limitless proliferation of mutated cells with the ability to 

metastasize throughout the body. As a heterogeneous disease, cancer patients normally carries 

various genetic driver mutations which makes treating cancer extremely difficult and leads to 

resistance to traditional therapeutic agents (1).  

The clonal selection model suggests that subsequential mutations gained by tumor cells over 

time lead to the selection of “fitter cells” that continue to grow and take over the tumor (2). 

With the help of modern RNA-sequence technology, the “Big Bang model” suggests that for 

some tumors, mutations occur in the initial stage when tumors are smaller, which could not be 

detected and target using traditional treatment (3, 4) (Figure 1).  

 

Figure 1. The Big Bang model of cancer development (left panel) and the ten hallmarks of cancer (right panel). Modified 

from Hanahan and Weinberg, Cell. 2011 Mar 4;144(5):646-74. 

In 2011, Hanahan and Weinberg updated the hallmarks of cancer to include two additional 

immune-related features –"tumor-promoting inflammation" and "avoiding immune 

destruction" demonstrates the profound link between tumor cells and immune system (5) 

(Figure 1). In 2018, The Nobel Prize in Physiology or Medicine was honored to James P. 

Allison and Tasuku Honjo for “their discovery of cancer therapy by inhibition of negative 

immune regulation.” Based on their discovery, the checkpoint blockades proved to be 

strikingly effective in multiple clinical trials, which gives us confidence to clear the” enemy 

(tumor cells)” by using our own” army (immune cells).” 
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1.2 Immunotherapy 

Cancer immunotherapy is a form of treatment 

that uses the ability of the immune system to 

fight cancer. Immunotherapy contains multiple 

strategies such as i) train the immune system to 

recognize and kill tumor cells ii) systematically 

stimulate the immune system to help them 

eliminate cancer iii) provide components to 

improve immune responses.  

Various forms are included in cancer 

immunotherapy, such as: cancer vaccines, 

tumor-specific antibodies, oncolytic viruses, 

immune-modulatory cytokines, immune 

checkpoint inhibitors and adoptive cell transfer 

(6, 7) (Figure 2, Box 1). Immunotherapies are a form of “living drug” since they take advantage 

from living organisms to fight cancer (8). Certain immunotherapies use gene editing method 

to enhance their cancer-fighting ability (9). Many immunotherapy treatments are also used in 

combination with conventional cancer therapies such as radiation, surgery, targeted therapies, 

or chemotherapy to improve their effectiveness. 

Figure 2. Five categories of cancer immunotherapy: Cell based therapy, cytokines, checkpoint inhibitor, oncolytic virus and 

cancer vaccine. Potential therapeutic targets or FDA approved treatments (labeled with red) are listed under each category. 

CAR T/NK- chimeric antigen receptor T/NK cell; IL-2, interleukin 2; IFNα, interferon alpha; PD-1, programmed cell-death 

protein 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4; TIGIT, T cell immunoreceptor with Ig and ITIM domains; 

Tim3, T cell immunoglobulin and mucin domain-containing protein 3; gp100, glycoprotein 100; HER-2, human epidermal 

growth factor receptor 2; NY-ESO-1, New York esophageal squamous cell carcinoma 1; MART-1, melanoma antigen 

recognized by T cells 1. Created with BioRender.com 

1.2.1 Checkpoint Inhibitors 

The immune system with a fine-tuned function of its “machinery” has the ability to control the 

level of the immune response against foreign and self-antigens. “Overheating” immune 

reaction could be suppressed by immune checkpoint, which similar to “break” in our immune 

system (10). Antibodies targeted at these checkpoints can block the effector cells brake and 

unleash the immune system to fight against tumor cells.  

Box. 1 Various categories immunotherapy 

Cytokine: Cytokines are secreted proteins which 

provide signal to regulate cellular maturation, 

growth, and differentiation.  

Oncolytic Virus: The antitumor effect of 

oncolytic viruses acts by directly infecting and 

lysing tumor cells, and simultaneously stimulate 

the immune system against the tumor. 

Cancer Vaccine: Vaccines work by exposing 

individuals to a weakened or inactivated version of 

tumor specific antigen. 

 



 

 5 

One of the most well-studied immune checkpoint is the cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4), which is expressed at high levels on activated and regulatory T cells. 

Through binding to CD80/86 with a higher affinity compared with CD28, negative signal is 

transduced to prevent “overheating” T cells (11). Another checkpoint is called programmed 

cell-death protein 1 (PD-1) which is expressed on T or NK cells and its ligands programmed 

cell-death 1 ligand 1 (PD-L1) and/or PD-L2 which are normally expressed on tumor cells. The 

ligation of PD-L1/PD-L2 and PD-1 leads to inhibition of T and NK cell function. In 2019, there 

were 2975 active clinical trials to test PD-1/PD-L1 monoclonal antibody alone or in 

combination with other therapeutic reagents (12, 13).  

The efficiency of checkpoint blockade is particularly documented in melanoma patients. The 

efficacy of single-agent PD-1 inhibitor in patients with advanced melanoma could reach 33% 

to 45% overall survival. By combining anti-PD-1 and anti-CTLA-4, the response rate could 

improve from 19% (single CTLA-4), or 43.7% (single PD-1) to 58% (14, 15).  

Recently, the combination of the anti-PD-1 and anti-CTLA-4 therapy demonstrated durable 

and long-term clinical responses in NSCLC patients (phase III, Checkmate-227). At three 

years, the overall survival rate was 33 and 34 percent for patients with PD-L1-positive and PD-

L1-negative tumors, respectively, compared with 22 and 15 percent for platinum-doublet 

chemotherapy (16). Furthermore, patients with advanced stages of bladder (NCT02603432), 

kidney (17), small-cell lung cancer (SCLC) (18), microsatellite instability (MSI)-high cancers 

(19) as well as melanoma have responded well to immunotherapy. Promising results from 

clinical trials leads to several checkpoint immunotherapies for multiple cancers become the 

standard of care in some cases (20). 

However, two major questions for checkpoint inhibitors still need to be answered. One is that 

nearly approximately 50% of patients do not achieve significant clinical response; another is 

that a substantial proportion of responders will have a tumor relapse within two years (21-24). 

Collective efforts have been put to decipher the resistance mechanisms to immune checkpoint 

inhibitors. Tumor cells take advantage of TME to limit T-cell activation, tumor infiltration 

partly explained these resistance mechanisms (25). For instance, IFN-γ signaling plays a central 

role in T-cell mediated antitumor immunity. By upregulating MHC-I molecule, IFN-γ could 

promote tumor antigen presentation, which could further facilitate DCs and NK cells 

activation, and inhibit tumor cell proliferation. Decreased expression of IFN related genes have 

been identified in Ipilimumab-refractory melanoma patients. Specifically, loss of interferon-

gamma receptor 1 (IFNGR1), IFNGR2 and interferon regulatory factor 1 (IRF1) in tumor cells 

leads to resistance to anti-CTLA-4 antibody (26).  

A documented mechanism of acquired resistance to immune checkpoint therapy is the 

upregulation of other immune checkpoints on T cells. Upon the gained knowledge of tumor-

resistance mechanism, antibodies targeting such alternative immune checkpoints have been 

developed including antibodies against:  T-cell immunoglobulin and mucin 3 (TIM-3) (27, 28), 

lymphocyte activation gene 3 (LAG-3) (29, 30), V-domain Ig-containing suppressor of T-cell 

activation (VISTA) (31), CD47 (32, 33) and T-cell immunoreceptor with Ig and ITIM domains 

(TIGIT) (34, 35). 
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Other resistance mechanisms of immune checkpoint inhibitor have also been identified such as 

the presence of immunosuppressive cytokines (TGFβ, IL-10) and other immunoregulatory 

factors (e.g. adenosine, PGE2) present within TME (36). Putative therapeutic strategies will be 

boosted by re-gained understanding from ongoing clinical and basic onco-immunology studies.  

1.2.2 Cell-based therapy 

Cell-based immunotherapy is a treatment that builds on harvesting immune effector cells such 

as T or NK cells and stimulating these ex vivo and then transfer back to the cancer patients 

(Figure 3). The differences among categories depend on either source of the effector cells or 

the way to arm effector cells during ex vivo expansion. 

 

Figure 3. The general workflow for cell therapy includes 4 steps: harvest peripheral blood, isolate the effector cells, ex vivo 

manipulate effector cells expansion by either cytokines or gene editing method, and transfer expanded effector cells to patients. 

The graph is created by using Biorender. 

1.2.2.1 Tumor-infiltrating lymphocyte therapy 

The success of employing tumor-infiltrating 

lymphocytes (TILs) to treat metastatic melanoma 

was achieved by Rosenberg's team in the late 

1980s (37). IL-2 was used not only to ex vivo 

expand TILs isolated from a cancer patient, but 

also as cytokine support of infused TILs. The 

objective response rate was 34% in 86 melanoma 

patients; however, the short median duration 

(only 4 months) and few complete responses lead to hesitation for using TILs as a therapeutic 

reagent. However, thanks to the next generation of high-throughput technologies the screening 

and enrichment of neoantigen-specific TILs (Box 2) is achieved in metastatic breast cancer 

patients (38).  Furthermore, knockdown of a JAK/STAT signaling negative regulator of CISH 

shown to boost the anti-tumoral response of TILs therapy in a mouse model  (39). Other 

Box. 2 Neoantigens 

Unique antigens that are not expressed by self-

tissues under normal conditions that manifest in 

the context of pathology. In tumor cells, these 

could be altered proteins/peptides encoded by 

mutated genes. 
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innovative targets to enhance effector cells activity may allow for a more promising treatments 

to be developed. 

1.2.2.2 Chimeric antigen receptor cell therapy 

Due to that synthetic chimeric antigen receptor (CAR) recognizes target molecule on malignant 

cells, CAR T cells could by pass MHC restriction and direct kill the target cells. The clinical 

success of CAR T cell therapy for the treatment of B cell acute lymphoblastic leukemia (ALL) 

(40), chronic lymphocytic leukemia  (41), non-Hodgkin lymphoma (42) is due, in part, to 

targeting the CD19, a specific antigen that has high surface expression in certain B cell 

malignancies. In addition to directly kill target cells, CAR T cells can also reform the 

inhospitable TME and revive exhausted T cells (43). For instance, the suppression of myeloid 

cells and regulatory T cells in the TME could be overcome by CAR T cells engineered to 

produce IL-12, which could also promote CD8+ T cell cytolytic activity and enhance myeloid 

cell recruitment and antigen presentation (44, 45). Despite the hurdles within TME in solid 

tumor, with current successful CAR T cells immunotherapy for B cell malignancies, it will be 

interesting to continue and expand research on this new treatment strategy. 

1.2.2.3 Engineered TCR T cell therapy 

Not all patients have unique T cells that recognize tumor antigen. One of the reasons is that 

these T cells may not be able to be primed and expanded to sufficient numbers for adoptive 

cell transfer (46). To overcome this, engineered TCR T cells therapy has been developed to 

encode receptors that recognize tumor-specific antigens (47). Prolonged survival and migration 

to the tumor site could be achieved by encoding cytokines into engineered TCR T cells (48). 

TCR-T cells recognizing the tumor antigen NY-ESO-1 have been used to treat patients with 

advanced melanoma which can result in durable complete responses (49). Personal cancer 

medicine could be one of the future directions for TCR T cells. By allowing design an “right” 

target for each patient’s tumor and use distinct resources of T cells (γδ T cells) to engineer, the 

therapeutic benefits could offer patients with greater hope. 

1.2.2.4 Natural killer cell therapy 

NK cells recognize tumor cells by mechanisms, that rely on a set of stimulatory and inhibitory 

receptors. These receptors can sense whether a nearby cell expresses a profile of corresponding 

ligands associated with oncogenic transformation leading to NK cells activation and killing 

(50). Due to the lack surface T cell receptors, NK cells have been shown to not cause graft-

versus-host disease (GvHD, Box 3) (51). Thus, NK cells hold promise as an ‘off-the-shelf’ cell 

therapy product, which can be prepared in advance, and injected on demand to multiple 

recipients. Emerging data show an essential role of tumor-infiltrating NK cells to govern 

immunotherapy response (52). 
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According to the principle of “missing self” 

recognition (53-55), NK cells recognize target cells 

that do not express MHC class I molecules. They 

express a series of cell surface inhibitory receptors 

which is killer-cell immunoglobulin-like receptor 

(KIR) family that recognize major histocompatibility 

complex I (MHC-I) on target cells (56), and the 

NKG2A/CD94 heterodimer for HLA-E molecule (57).  

The implementation of NK cell transfer was spurred 

on based on beneficial effects of NK cell alloreactivity 

in the setting of allogeneic hematopoietic cell 

transplantation (allo-HCT) (58). Alloreactivity of NK cells are triggered by mismatched KIRs 

on NK donor cells and MHC-I on recipient cells. Alloreactions mediated by mismatched NK 

cells has been shown to eliminate leukemia through graft-versus-leukemia (GvL, Box3) effect. 

Furthermore, alloreactive NK cells can promote engraftment through depleting recipient T cells 

and protect against graft-versus-host disease (GvHD). Host NK cells can also target recipient 

antigen-presenting cells and thereby also limit GvHD reactions (59, 60).  However, host Treg 

cells maintain and expand effectively when IL-2 is administered after NK cell transfer in 

ovarian cancer, breast cancer and refractory lymphoma (61, 62). The cytolytic ability of NK 

cells impaired by expanded Treg through TGFβ secretion and deprivation of local IL-2 (63, 

64). Miller and colleagues employed a Treg depletion method using IL-2 diphtheria toxin 

together with adoptive NK cells transfer. This combination strategy improved complete 

response rate at day 28 (53% versus 21%; P = 0.02) and disease-free survival at 6 months (33% 

versus 5%; P < 0.01) for AML patients (65). 

Low NK-cell infiltration in solid tumors reveals that the tumor microenvironment might grab 

the key to uncover how to increase NK cell persistence (66). The mechanism of primary and 

secondary resistance to cancer immunotherapy are manifold, deriving not only from the 

intrinsic heterogeneity of cancer cells but also from the intricate interplay between tumor cells 

and their surrounding TME (67).  

 

1.3 Tumor microenvironment – The real battle field 

As discussed previously, cancer progression is not only determined by driver mutation but also 

by the surrounding environment or cells. This environment provides critical factors to interfere 

with immune surveillance and thereby promote cancer progression and tumor dissemination 

(Figure 4). 

Solid tumors comprise of malignant cells as well as vascular endothelial cells, mast cells, 

fibroblast cells, T cells, B cells, and several other cellular components of innate immune system 

including neutrophils, eosinophils, macrophage, NK cells. In addition, the TME constitutes of 

several extracellular soluble factors such as hormones, chemotactic factor, and cytokines. The 

TME also includes specialized cellular subsets including myeloid-derived suppressor cells 

(MDSCs), tumor-associated macrophages (TAMs), and regulatory T (Treg) cells (68). It is also 

characterized by altered pH levels, nutrient balance (glucose and fatty acids, etc.), metabolites, 

Box. 3 GvHD, GvL 

In Graft versus host disease (GvHD), the 

donated bone marrow or peripheral blood 

stem cells view the recipient’s body as 

foreign, and the donated cells/bone 

marrow attack the body.  

Graft-versus-leukemia (GvL) reaction 

describes the ability of immune cells from 

the donor to attack host leukemic cells.  
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and oxygen levels (69-72). Interestingly, recent studies proved that bacterium and fungus could 

benefit tumor growth (73, 74). This unique TME provides essential nutrients, survival signals 

and simultaneously suppresses immune surveillance, together contributing to tumor 

progression and metastasis. 

 

Figure 4. An overview of different cell types within the tumor microenvironment. Several immune cells together with cancer 

associated cells contained in TME surrounding by suppressive factors (PGE2 and ROS). CAF, cancer associated fibroblast, 

ECM, extracellular matrix. The graph is created by using Biorender. 

“Hot” and “Cold” TME 

The understanding of the differential composition 

of immune cells in TME is needed, which had a 

great impact on the responses of various 

immunotherapies. Moreover, the organization of 

immune cells in TME could change among 

different patients. Thus, mapping the distribution 

of immune cell infiltrates and their functional state 

is important in terms of evaluation and the design 

of therapies (75, 76). Here, I present a summary of 

recent novel technologies that might help us gain 

new insights for TME (Box 4). 

The TME can be crudely classified as cold or hot, 

where a cold and hot TME is characterized by low 

and high frequency of T cell infiltration (77). Cold 

tumors are sometimes also described as “immune 

deserts.” (78). In general, patients with hot tumors 

has been found to respond better to immune 

checkpoint therapy with anti-programmed death 

ligand (PD-L)1/PD-1 (79).  

Box. 4 Technologies for TME 

Single cell RNA-seq, next-generation 

sequencing technologies applied to single cell 

level which provide high resolution of cellular 

differences within sample. 

Spatially resolved single-cell RNA-seq, A 

new technology-driven field in which single-

cell genomic data is derived from tissues by 

means to preserve spatial information. 

Expansion microscopy, biological sample 

magnified smoothly and isotropically by 

swellable polyelectrolyte hydrogel where 

molecules in a diffraction-limited region are 

separated in space to greater distances, and 

can therefore be resolved by conventional 

diffraction-limited microscopes.  

Assembloids, assembly of multiple organoid 

structures to gain deeper insights into tissue 

function. 
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There are several factors in the tumor site that drives the TME towards “cold,” which might 

contribute to the failure of immunotherapy, including but not limit to prostaglandin E2 

(PGE2), reactive oxidative species (ROS), and regulatory T cells. 

1.3.1 PGE2 

Several soluble factors produced by tumor cells or tumor-associated cells shape the tumor 

microenvironment and inhibit the function of tumor-infiltrating cytotoxic lymphocytes. One 

such soluble factor is prostaglandin E2 (PGE2) known as a bioactive lipid that elicits multiple 

biological effects associated with inflammation (80, 81). PGE2 can be produced from different 

type of cells, for example, stressed neutrophils, fibroblasts, macrophage, MDSCs and Treg 

cells. The arachidonic acid (AA) mobilized by phospholipase A2 (PLA) family to cytoplasm, 

where cyclooxygenases take responsible to convert AA into prostaglandin H2. Finally, 

prostaglandin E synthase transfer PGH2 to the final formation --- PGE2 (82).  

By binding to prostaglandin E2 receptors  (EP 1-4), which belong to G protein-coupled receptor 

(GPCR) family, PGE2 turns the outside-in signals via cyclic adenosine monophosphate cAMP-

CREB axis (83). As one of the major immunosuppressive factors, pro-inflammatory PGE2 is 

a critical mediator in the crosstalk between tumor epithelial cells and their surrounding immune 

cells in establishing an immunosuppressive tumor microenvironment (84).  

Multifaceted roles of PGE2 has been discussed in cancer progression. As pro-inflammatory 

factors, PGE2 originally discovered to promote the tissue influx of macrophages and 

neutrophils from bloodstream leading to swelling at the site of infection or damaged tissue (85, 

86). However, PGE2 also governs a number of mechanisms that regulate inflammation and 

subsequent tissue repair (87, 88). One important effect of PGE2 is to directly inhibit the 

synthesis of IL-2 and the expression of the IL-2 receptor in Th cells (89, 90). Moreover, PGE2 

suppress anti-tumor activity of NK cells and cytotoxic T cells, partly by down-regulating 

cytokine receptor expression (91, 92). Our recent results showed that PGE2 can indirectly 

downregulate NK cell activity by increase TGF-β production in myeloid derived suppressor 

cells (MDSCs) (93). 

1.3.2 ROS 

The release of ROS by the host immune system is a natural mechanism for effector cells like 

macrophages and neutrophils to respond to pathogens (94). ROS function as important 

messenger molecules that can act intracellularly through the mitochondria (95). ROS contribute 

to tumorigenesis by affect multiple prospect such as cell proliferation, genomic instability, 

inflammation and metabolic reprogramming (96). Despite the intrinsic molecular mechanism, 

another way for ROS to achieve the promotor role in tumor progression is through immune 

suppression (97, 98). Due to their reactiveness, cells have multiple mechanisms to maintain the 

homeostasis of ROS such as scavenging systems of thioredoxin and glutathione (99). 

The tumor microenvironment is known to be rich in ROS. Tumor beguiled cells, for example, 

tumor-associated macrophage, neutrophils and MDSCs can release massive amount of ROS 

(100, 101). Upon exposure to ROS, lymphocytes like T effector cells and NK cells loss their 

anti-tumor activity. 
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1.3.3 Treg-induced suppression 

As a master regulator in our immune system, regulatory T cells (Tregs), identified as 

CD4+CD25+Foxp3+ cells, play crucial roles in maintaining homeostasis of tumor immunity 

(102). Tregs can also suppress the function of immune effector cells through i) cytokine 

deprivation ii) secretion of immunosuppressive cytokines such as TGFβ, IL-10, IL-35; iii) 

direct cytolysis; iv) cell-cell contact ligation (CTLA4-CD80/CD86)(103).  

Lately, reinvigorated efforts have been made to describe the suppressive mechanisms through 

'metabolic disruption.' A long-standing discussion in the Treg-cell field is if the high expression 

of CD25 enables Treg cells to take advantage of local IL-2 and thereby starve activated effector 

T cells or NK cells by consuming the IL-2 (104). A study showed cytokine (specifically IL-2)-

deprivation-mediated apoptosis induced by Treg cells might contribute to a “cold” TME (105). 

Promising results have been shown to combine checkpoint blockade with CD25-Treg-

depleting antibody (106). By using a fucosylated anti-human CD25 antibody, efficient Treg 

depletion with no overt immune-related toxicities was observed in both nonhuman primates 

and humanized mouse model. Strikingly, single dose of anti-CD25 induced a 52% CR. 

Administration of a second dose led to a 70% CR in MCA205 bearing mice (107). 

Depletion of metabolites in a hypoxic TME leads to dysfunction of infiltrated effector cells. 

McLane et al. showed Treg could upregulate the metabolism pathway related to lactic acid 

which make Treg more tolerated in lactic acid enriched TME. By knocking out the key lactate 

transporter gene, MCT1, they found that the MCT1 is required for maintaining Treg function 

in TME, but not in peripheral blood. Thus, the metabolic adaption of Treg could furthermore 

help tumor cells to avoid immune destruction(108). 

 

1.4 NK cells – The assassins 

 

Figure 5. Different mechanisms of NK cell killing. ADCC, antibody-dependent cell-mediated cytotoxicity; TRAIL, TNF-

related apoptosis-inducing ligand; TRAILR, TRAIL receptor. The graph is created by using Biorender. 

In the mid-1970s, NK cells were first identified as a lymphocyte subpopulation with the ability 

to kill transformed cells without prior sensitization (109, 110). NK cells and other lymphoid 

cells originate from the same common lymphoid progenitor cells. The type I cytokine, IL-15, 

has been found to be important to drive the development and maturation of NK cells (111).  
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Donna et al generate the high-resolution map of human tissue-driven NK cells across age. In 

blood, NK cells comprise approximately 2-18% of the total leucocyte pool. In other tissues 

such as BM, spleen, and lung, NK cell frequency can be as high as 50% of total lymphocytes. 

NK cells are broadly classified as CD56bright or CD56dim cells, where the CD56dim NK cell 

population dominates in blood whereas the CD56bright are often observed at higher frequencies 

within tissues (112).  

NK cells as the frontline army, perform complementary roles in an earlier immune response 

against viruses and tumors. Approximately 90% of NK cells in the blood are CD56dim which 

respond directly to infection or cancer through antibody-dependent cell-mediated cytotoxicity 

(ADCC), IFNγ, perforin, granzyme, FasL, or TRAIL (Figure 5) (113). CD56bright NK cells 

occupy nearly 10% of blood NK cells, and they participate in cytokine secreting IFNγ, TNFα, 

G-CSF, GM-CSF, and IL-3, which are generally delivered in late (>16 hours) inflammatory 

response (114). Activation of NK cells are arranged by a suite of activating, co-stimulatory and 

inhibitory receptors. Analogous to an assassin pulling the trigger of a gun, target cell lysis 

occurs when the activating signal (kill) dominates the inhibitory signal (not kill) (115).  

1.4.1 To kill or not to kill: NK cell recognition and signal balance   

 

Figure 6. Examples of activating and inhibitory receptors and ligands in NK cells. Cytokine receptors (top) and suppressive 

factor receptors (bottom) are shown on human NK cells. Inhibitory receptors and activating receptors are shown on the left and 

right side respectively, which could transduce the signal “out-side-in”. The killing decision decided from various signals. The 

receptors and their ligands (in parentheses) are depicted in this graph. DNAM-1, DNAX accessory molecule-1, CFP, 

Complement factor P, LIR-1, leukocyte immunoglobulin-like receptor 1, A2AR, adenosine A2A receptor. The graph is created 

by using Biorender. 

The joint signals from a suite of activating, co-stimulatory and inhibitory receptors determine 

whether an engaged cell is killed or not (Figure 6). The activation signal is transduced from 

engaged receptor via intracellular immunoreceptor tyrosine-based activation motifs (ITAMs) 
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which in turn initiate the phosphorylation cascades. CD16 is the one of the most essential 

activating receptors for NK cells The Fc region of IgG antibodies could crosslink with CD16, 

as known as Fc region receptor III, which activate the ADCC process. Evidences showed 

through binding to same target with but different epitopes, enhanced ADCC effect through NK 

cells was observed in combining trastuzumab and pertuzumab (anti-HER2) (116). 

Another important family members of NK cells are the natural cytotoxicity receptor family 

(NCRs), including NKp46 (NCR1), NKp44 (NCR2), NKp30 (NCR3), NKp40, NKp65 and 

NKp80 can initiate activation signals in NK cells; through binding to viral, bacterial, and 

tumor-associated ligands these receptor could enhance the production of cytokine and cell 

killing (117). Since NKG2D and NKG2C are activating receptors, antibodies developed to 

stimulate their downstream signals has gained more attention. By taking advantage of NKG2D-

null mice, Guerra et al. proved a role for NKG2D in the initiation of spontaneous and 

transplantable tumor mouse models. These results suggested that the selection of lower 

NKG2D ligands could benefit tumor to escape from immunosurveillance at the beginning of 

immunoediting. (118). NKG2C forms a dimer with CD94 and its activation is dependent on 

binding to non-classical HLA- E.   

Engagement of leukocyte function-associated molecule-1 (LFA1) has been shown to potentiate 

NK cell function in vitro, such as the production of TNF and IFNγ. The ligand for LFA1, 

intercellular adhesion molecule 1 (ICAM1) is an integrin that transduce a mechanical signal 

upon binding LFA1 (119-121). Recent studies have provided evidence that the function of 

ICAM1 in tumor cells instead of NK cells, which in our study I showed activating NK cells 

could increase the ICAM1 expression which form more immune cluster in vitro. The spatial 

organization of NK-NK bonds, via ICAM1-LFA1, could be interesting to explore of in tumor 

animal models. 

NK cells also express a wide repertoire of inhibitory receptors, which provide negative-

feedback that can counteract stimulatory signals (122). One of the most studied family of 

inhibitory receptors are the members of the killer cell immunoglobulin-like receptor (KIR) 

family (123). Each individual expresses a specific set of KIRs. 16 KIR genes have been 

described in human, the highly polymorphic of these genes constructed 1,110 variations (IPD-

KIR Database, 2.10.0). Inhibitory KIRs contain immune-receptor tyrosine-based inhibition 

motif (ITIM) sequences in the intracytoplasmic tail responsible for the inhibitory signal. The 

canonical role for KIRs is provide inhibitory signals via ligation with MHC class I molecules. 

However, activating KIRs can associate with ITAM-bearing molecules to transmit an 

activating signal, which could associate with infectious diseases, pregnancy-associated 

disorders and cancers (124, 125). KIRs and other inhibitory receptors with their cognate ligands 

expressed in tumors is an interesting strategy for NK cell-based cancer therapy. 
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1.5 Cancer-NK cell immunity cycle 

Figure 7. Cancer-NK cell immunity cycle. As primary tumor cells grow, NK cells could kill sensitive tumor cells, which 

released tumor-specific antigens that could recruit dendritic cells to the tumor lesion. Then, by homing to the drain lymph node, 

dendritic cells could further stimulate T cells, moving to the tumor site and coordinating with NK cells to kill the tumor cells. 

The results from the elimination determined the stage of immune editing. The graph is created by using Biorender. 

The rationale to use NK cells in the clinic comes from result that NK cells can kill both 

autologous and allogeneic tumor cells (126). NK cell therapy was initially viewed as a strategy 

to debulk tumors. Emerging data suggest that this understanding is inadequate and that the full 

landscape of NK cell functional outcome needs to be reevaluated. Besides the quick release of 

lytic granules upon target recognition, NK cells are the main producer of IFNγ in the early 

tumor recognition phase. The final decision of NK cell killing is controlled by the fine-tuned 

balance of a set of activating and inhibitory signals and is further regulated by its differentiation 

state and factors secreted from local TME. In light of the cancer immunity cycle, NK cells play 

a major role in multiple steps, which drives the cycle towards eliminating cancer cells (Figure 

7).  

1.5.1  “3E” principle for onco-immunology from an NK cell perspective  

The three Es describe the interplay between the immune system and tumor cells. In the 

Elimination phase, the immune system controls tumor growth. Pressure from the immune 

system may shape the tumor to become less immunogenic. During this time, there is a constant 

battle between the immune system and the tumor cells, referred to the Equilibrium phase. 

During this phase, immune-mediated tumor cell killing may become weakened and novel 

mutations allow tumors to progress. Finally, the tumor may lose immunogenicity and attract 

immunosuppressive cell populations that it can ultimately Escape from the immune system.  
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1.5.1.1 Elimination  

During cell transformation, danger signals are first expressed on the cell surface, which could 

be recognized by NK cells. This immune activation is further magnified by the cytokines like 

TNFα, IFNγ and IL-2, following by chemokines' production and other immune cells 

recruitment. The mechanisms by which endogenous NK cells can exert tumor 

immunosurveillance and influence tumor growth are largely unknown. But an increased 

abundance of NK cells in the TME has been linked with better prognosis value in multiple 

tumors (127, 128), pulmonary adenocarcinoma (129), breast cancer (130), gastric cancer (131), 

squamous cell lung cancer (132), non-small cell lung cancer  (133, 134), and renal cell 

carcinoma (135). 

In a liver carcinoma mouse model, NK cells were proved to eradicate senescent tumor cells in 

a manner that was dependent on tumor cell p53 expression. The senescent tumor cells, induced 

by p53, secreted various interleukins (IL-6, IL-15) and chemokines (CCL2) which recruited 

NK cells to tumor lesion (136). Mechanistically, tumor cells that express p53 could induce 

stress related NKG2D ligands such as ULBPs and MICA/B to stimulate NK cells in TME.  

Since NK cells provided another option to tumors that can evade from CD8+ T cell-based 

elimination. Recently, Nicolai et al. used several mouse models to investigate the intratumoral 

STING signaling and tumor ejection. By injection of a STING agonist, cyclic dinucleotide 

(CDN), they showed that CDN induced type I interferons that directly primed NK cells and 

simultaneously enabled an indirect pathway of activation driven by IL-15/IL-15Rα axis from 

dendritic cells (137). This study revealed the critical role for NK cells in tumor elimination 

phrase Overall, if elimination of tumor cells is ineffective, progression towards equilibrium 

will slowly occur. 

1.5.1.2 Equilibrium 

The equilibrium phase involves the continuous elimination of tumor cells and generation of 

resistant variants (138). The Equilibrium phase is difficult to study, possibly due to that it can 

go on for extended periods of time (139). Koebel et al. used a mouse model to study the 

equilibrium phase where mice were injected with small doses of the carcinogen 

methylcholantherene. The mice had small but stable masses at the injection site but developed 

into large cancers when specific immune cells were depleted (140).  

Since its ambiguous definition and poorly understood molecular mechanisms it is difficult 

study the equilibrium phase. Few reports have been described only anecdotally in humans 

(141). Recent studies compared the cellular environment of tumors in equilibrium versus 

escape found that high proportions of effector cells (CD8+ T cells and NK cells) and a low 

amount of suppressive cells such as Treg cells and MDSCs existed in the equilibrium stage 

(142, 143). But the role of NK cells in this phase is not yet fully investigated. Hypoxia induced 

metabolism disruption could play a key role during this long-term interaction. Evidences 

showed that NK cells with conditional deletion of HIF-1a resulted in reduced tumor growth, 

and enhanced anti-tumor activity based on NF-κB activation. Furthermore, IL-18 produced by 

myeloid cells was the prerequisite for NF-κB activation, and elevated NK-IL18-IFNG 

signature in melanoma patients associated with improved overall survival (144). 



 

16 

1.5.1.3 Escape 

Tumor cell employ multiple tricks to escape the host immune system including; reduced 

immune recognition, upregulation of immune checkpoints, increased resistance or survival, 

development of an immunosuppressive TME, extensive review in (6, 145-147). 

Several new insights from NK-tumor interaction in escape phrase could be interesting for 

development of therapeutic reagent. CD73 as a metabolic immune checkpoint orchestrates an 

essential role to maintain the homeostatic of extracellular adenosine, which is a negative 

feedback mechanism for immune system to control overactivated inflammatory responses 

(148). CD73+ NK cells could dampen the immune activation by increasing production of IL-

10 via STAT3, simultaneously suppressing CD4 T cells proliferation and IFNγ production 

which induce local immune suppressive TME. Interestingly, the enriched frequency of CD73 

positive NK cells associated with larger tumor size, which tumor tissue potentially experienced 

escape phrase (149). Thus, by targeting CD73+ NK cells in this later stage could thereby 

enhance current immunotherapies. 

In the hypoxic environment of a solid tumor, NK cells show fragmented mitochondria in their 

cytoplasm, where normal liver NK cells had normal large, tubular mitochondria. This 

fragmentation in NK cells limits their cytotoxic activity and metabolism fitness. These data 

demonstrated an interesting metabolic immune escape mechanism from NK cells (150).  

Recognized as key innate immune cells that limit tumor metastasis, the escape phrase, NK cell-

mediated immune editing might have a substantial effect on the fate of circulating tumor cells 

(CTCs). Lo et al observed that CTCs clusters (polyclonal) metastasize better than single (single 

clonal) CTCs. Depletion of NK cells increase monoclonal but not polyclonal metastases, 

suggesting that CTC clusters may be less sensitive to NK-mediated suppression. 

Mechanistically, cell-cell adhesion and epithelial genes elevated in clustered CTCs which 

associated with decreased expression of NK cell activating signal (151). Interestingly, another 

study found that SOX2hi tumor cells (stem-like features) were sensitive to NK cell-mediated 

killing, whereas SOX9hi tumor cells (alveolar epithelial progenitor features) were resistant to 

NK cells-mediated killing(152). Thus, these two studies elucidate how NK cells construct the 

escape phrase by selecting modify the tumor subpopulation.  

 

1.6 Strategies to augment NK cell activity 

Antibodies targeting the immunological checkpoint axis have reformed present cancer 

treatment. Clinical phase III studies show a five-year survival of 15.3 to 34.2 % in patients with 

metastatic melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (153). 

Encouragingly, patients that respond to initial treatment have long-lasting clinical responses. 

However, many patients who achieve an initial clinical response eventually develop resistance. 

Some of the mechanisms for acquired resistance to anti-PD1 therapy include defects in 

interferon-γ signaling or major histocompatibility complex presentation (154). These tumor 

cells can no longer be targeted by tumor-specific T cells, but instead become sensitive to 

targeting by NK cells.  
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The development of therapies based on activating NK cells, has emerged as a promising 

therapeutic option for patients with advanced cancer (155). Infusion of either allogeneic or 

autologous NK cells has in some patients resulted in long-lasting clinical responses (156). 

However, the majority of patients do not respond to NK cell adoptive cell therapy.  

1.6.1 Cytokines 

IL-2 and IL-15 

The development and homeostasis of T and NK cells is governed by common γ-chain cytokine 

family, which includes interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15 and IL-21(157). 

IL-2 and IL-15 play pivotal roles in controlling the survival and apoptosis of lymphocytes 

(Figure 8). In addition, the heterotrimeric receptors for IL-2 and IL-15 share another subunit - 

IL-2/IL-15Rβ (also known as IL-2Rβ, CD122). Furthermore, the high-affinity forms of IL-2R 

and IL-15R contain a third cytokine-specific receptor α subunit, IL-2Rα (CD25) or IL-15Rα 

(CD215), respectively (158). 

 

 

Figure 8. IL-2 and IL-15 signaling. By binding to different receptors combination, IL-2 and IL-15 showed great differences in 

their binding affinity. The downstream signaling transduced by JAK/STAT5 could alter the expression of Bcl-2, IL-2RA, 

TNFα, and IFNγ production. AICD Activation-induced cell death. SOCS Suppressor of cytokine signaling. Modified from 

Yang, Y., & Lundqvist, A. (2020). Cancers, 12(12), 3586. 
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In early clinical trial conducted by Rosenberg et al, patients with metastatic renal cell carcinoma 

and melanoma were treated with a high-dose IL-2 (600,000 or 720,000 IU/kg) therapy, 

resulting in a 14% overall objective response rate, with 5% complete responses and 9% partial 

responses (159). However, it caused significant toxicity and kept the maintenance of inhibitory 

CD25+Foxp3+ Treg cells instead(160). Therefore, due to the short half-life time and dose-

limiting adverse event, the clinical outcome for IL-2 administration is unsatisfactory (161). 

To improve the therapeutic potential of IL-2, Levin et al. engineered a "super-2", where the 

functional prerequisites for CD25 was excluded but simultaneously the binding affinity for IL-

2Rβ was increased. Compared with native IL-2, super-2 induces T and NK cells' activation and 

thus improves anti-tumor responses in vivo with limited Treg expansion (162). NKTR-214 is 

PEGylated IL-2 preferentially activate CD8 T cells and NK cells through CD122 dependent 

IL-2 signaling. The well-tolerated and promising clinical activity (163) advance combination 

of NKTR-214 and Nivolumab toward phase III clinical trials in advanced solid tumors 

(NCT03635983).  

Another type I cytokine that exhibits therapeutic potential is IL-15, which activates and 

expands NK cells. The IL-15 receptor complex is composed of IL-2Rα/β/γ (164, 165). Despite 

sharing the common γ receptor and the same signaling subunits, the gene expression mark in 

lymphocytes are varied between IL-15 and IL-2 (166). Recently, it has been demonstrated that 

IL-15 treated NK cells are capable of maintaining anti-tumor effects in an immunosuppressive 

TME, while IL-2 treated NK cells are not (167-169). These findings suggest that IL-15 may 

induce a better anti-tumor effect than IL-2. 

Unlike IL-2, IL-15 does not stimulate Treg cells, probably since IL-15 does not bind to CD25. 

In a study where IL-15 was applied to RCC, melanoma, squamous cell head and neck 

carcinoma and non-small cell lung cancer (NSCLC), the number of circulating NK cells 

increased in a dose-dependent fashion as IL-15 was administered. No objective clinical 

responses were observed in this trial, but disease stabilization occurred in several patients, 

including a patient with RCC whose disease was stable for over two years (170).  

Considering the trans-present mechanism of IL-15, ALT-803, a novel IL-15N72D/IL-15Rα-

Fc superagonist complex was evaluated in hematologic malignancy. A 19% clinical response 

was observed including one complete remission lasting for 7 months. Furthermore, ALT-803 

expands NK cells and CD8+ T cells without increasing regulatory T cells (171). Recently, de 

novo computational designed Neo-2/15 with hyper-stable and higher IL-2Rβγc receptor 

binding affinity showed promising in vivo results in melanoma and colon cancer (172). 

Advancements in cytokine development has provoked a series of clinical efficacy in cancer 

patients. Besides, more and more type I cytokines are being investigated for clinical 

applications. For instance, IL-21 has been found to involve in the reversal of NK cell 

exhaustion (173). Additionally, combinations of various cytokines can further boost NK cell 

activity compared to the single cytokine. For example, the cocktail of IL-12, IL-15, and IL-18, 

which stimulates memory formation of NK cells, could enhance IFN-γ production, and 

targeting of leukemia cells in vivo (174-176).  
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1.6.2 NK cell engagers 

Although monoclonal antibody-based therapy has been frequently improved, many patients do 

not benefit from it. In general, monoclonal antibodies usually prime several effector 

mechanisms, antibody dependent cellular cytotoxicity (ADCC) plays an important role to 

engage NK cells with target cells. 

Optimization of the antibody molecule to improve the therapeutic potency is a main area in 

current translational research. For more than two decades, the mechanism of Fc glycosylation 

on ADCC was discovered by using CAMPATH-1H expressed in various tumor cell lines, with 

different glycosylation patterns (177). Since then, a variety of approaches have been developed 

to enhance the ADCC effect. Umana et al. revealed that the glycoengineering of an anti-

neuroblastoma chimeric IgG1 mAb (chCE7) could increase NK cell-mediated ADCC by 20 

times (178). Similar results have been found in rituximab (anti-CD20) and anti-CD19 antibody 

after glycol-modification (179, 180).  

Apart from glycoengineering, amino acids replacement in FcγR binding site could strengthen 

ADCC as well. By using this method Lazar et al. produced an Fc variant anti-CD20 antibody 

with the improved FcγRII/IIIa binding affinity and ADCC effect. Strikingly, for this engineered 

rituximab, its depleted half of the circulating B cells at a nearly 50 times lower dose than the 

non-engineered rituximab (181). Furthermore, similar Fc variants enhancing ADCC activity 

were recent discovered on CD33 and CD133 antibodies against AML (182, 183). 

Since the introduction of bispecific antibody to target CD30 on Hodgkin's lymphoma and 

CD16 on NK cells more than two decades ago (184), next-generation of the bi-specific 

antibody have been developed to engage NK cells and distinct tumor antigens. For example, 

target HER2 for breast cancer (185), CD30 for Hodgkin’s lymphoma (186), CD19 and MHC-

II for B cell malignancies (187, 188), CD33 for AML (189, 190), and EPCAM for carcinomas 

(191), and EGFR (192), which is overexpressed in several epithelial cancers.  

In addition to the engagement of CD16 , bispecific mAbs have been created to target other 

activating receptors such as NKp30 (193) and NKG2D (184, 194). Moreover, after fusing with 

a tumor-targeting variable fragment (Fv), the bispecific mAbs against the MICA or ULBP2 

(NKG2D ligand) were found to induce NK cell-mediated killing (195-197). The link between 

syndecan-1 expressed on tumor cells, and syndecan-1 (BB4) could engage tumor cells with 

NK cells. Von Strandmann et al. showed that the bi-specific engager ULBP2-BB4 targeting 

NKG2D and Syndecan-1(CD138) could enhance NK cell antitumor activity against human 

multiple myeloma in vitro and in vivo (197). 

NK cells' tri-specific engagement with dual targeting of tumor antigens has been explored to 

improve tumor selectivity further. Gantke et al. reported an enhanced in vitro potency of a tri-

specific mAb targeting B-cell maturation antigen, CD16 and CD200, compared with bispecific 

engager targeting CD16 and B-cell maturation antigen or CD200 (198). Gauthier et al., 

described a similar approach where dual engagement of the NK cell receptors NKp46 and 

CD16 coupled with a CD19 targeting domain pointed to a significantly delayed tumor 

progression in vivo (199). A recent study conducted by Vallera et al. showed that IL-15 

combined with a CD33 and CD16 bispecific mAb exhibited extended NK cell activity such as 

cytolytic ability, persistence, and activation in vivo (200). Notably, this tri-specific antibody 

also made NK cells less sensitive to suppression by MDSCs (201).  
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1.6.3 Immune checkpoints for NK cell 

Blockade of inhibitory KIRs by IPH2101 has been shown to increase the killing potential by 

“arrested” NK cells. in preclinical mouse models in AML (202), B cell lymphoma (203) and 

multiple myeloma (204) is promising. However, a phase II trial of IPH2101 failed to show any 

clinical benefit in smoldering multiple myeloma (205). The increased frequency of hypo-

responsiveness NK cells and decreased KIR2D+ NK subpopulation might contribute to the 

IPH2101 failure (205, 206). 

The inhibitory cascade from PD-1 and CTLA-4 serves as a critical regulatory signal for NK 

cells to maintain homeostasis. A study in ovarian carcinoma identified a NK subset with 

abnormal higher levels of PD-1 (207). Extraordinary therapeutic effects have been showed in 

advanced cancer patients as well by using antibodies against CTLA-4 or PD-1 (15, 22), it is 

important to determine and explore the role for NK cells in this context. Interestingly, an in 

vitro study showed that through inhibition of PD-1/PD-L1 NK cells could restore the 

proliferation and antitumor activity in multiple myeloma (208). To refresh the classical immune 

checkpoint blockade with new insight, great efforts are needed for understanding the 

mechanism of NK cells during the anti-PD-1 and anti-CTLA-4 treatment.    

Through engagement of HLA-E,  NKG2A could suppress both T and NK cell activation signal 

(209). As a first-in-class blocking monoclonal antibody target NKG2A, Monalizumab 

(IPH2201), is currently being tested for the safety and antitumor activity in different types of 

cancers (210, 211). The combination of cetuximab (anti-EGFR) and monalizumab in phase II 

showed encouraging results. The objective response for the combination in squamous cell 

carcinoma of the head and neck is 31% (211). In 2020, this combination currently tested in 

phase III for recurrent or metastatic head and neck squamous cell carcinoma of the head and 

neck (NCT04590963). 

A promising NK cell-specific immune checkpoint is the cytokine-inducible SH2-containing 

protein (CIS). CIS is encoded by the CISH gene and is a negative regulator of JAK/STAT5 

signaling in NK cells. CIS knockout in murine NK cells could induce hypersensitivity to IL-

15 and decreased metastasis burden (212). Moreover, CISH-depletion combined with immune 

checkpoint blockade (anti-PD-1, anti-CTLA-4, and anti-CD96) resulted in control of tumor 

metastasis (213). The humanized model using iPSC derived CISH knockout NK cells showed 

elevated antitumor activity and enhanced metabolic fitness (214). 

Interleukin-1 receptor 8, is a member of IL-1 receptor family with unique negative regulatory 

function. Martina et al. showed that human NK cells express higher level IL-1R8 than other 

effectors. By blocking the IL-1R8, NK cells showed significant protection against liver 

carcinogenesis and metastasis (215).  
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2 RESEARCH AIMS 

The overall aim of this thesis is to identify effective NK cells which are resistant to 

immunosuppressive factors within the TME, and to furthermore explore the underlying 

mechanisms of such resistance.  

AIMS:  

Paper I: 

To uncover molecular mechanism of NK cells resistance against PGE2 suppression. 

Paper II: 

To investigate resistance mechanisms of tumor-infiltrating NK cells under oxidative stress. 

Paper III: 

To decipher the survival mechanism for NK cells under Treg-induced IL-2 deprivation. 
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3 MATERIALS AND METHODS 

The detailed methods and materials are listed in publications. Here we describe selected 

methods that have been used in this thesis. 

3.1 Real-time image-based assay. 

 
Figure 9. Real-time image for NK cells-Tumor cells interaction. The tumor cells labeled with red-fluorescent co-cultured 

with NK cells. The medium contained Caspase3/7 dye, which labels apoptosis cells in green. Arrows point out the dead tumor 

cells (yellow). Under help with Incucyte S3 we could we could observe and quantify the apoptosis tumor cells at real-time. 

There is a needed to decipher the interaction between immune effector cells, like cytolytic T 

cells or NK cells and tumor cells, which could further refine gene and cell therapy which 

showed remarkable efficacy in the clinic against both liquid and sold tumors. By employing 

two color coded immune-tumor cells co-culture assay, the cytolytic activity of NK cells in 

contact with tumor cells in various conditions which could be continuously monitored. 

In brief, NK cells were isolated and labeled by Cell tracker Red (Thermo). Labeled NK cells 

were cultured with target tumor cells as designed ratio. The medium contained Caspase-3/7 

Green Dye, which enable for quantification of apoptotic cells by using green channel. Since 

the dead NK cells could be filtered as yellow, we could quantify the dead tumor cells by 

calculating green-only objects (Figure 9). This method was used in Paper I and Paper II. 

3.2 3D tumor spheroid model 

 

Figure 10. The workflow of tumor spheroid coculture assay. The graph is created by using Biorender. 

Spheroids, or tumor cell aggregates, are more representative of in vivo conditions than cell 

monolayers, and tumor cells grown as spheroids exhibit several physiological traits including 

relevant morphology, increased cell survival, and a hypoxic core. By using tumor spheroid 

models the infiltrating lymphocytes could be monitored, and further verification could be done 

by flow cytometry. The general workflow is demonstrated in Figure 10. The Incucyte 2019B 
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was used for quantification and further movie generation. This method has been used in Paper 

I and Paper II. 

3.3 Zebrafish model 

Figure 11. The workflow of zebrafish immune-tumor cells experiment. The graph is created by using Biorender. 

Methods for phenotypic analysis of immune cell interactions with tumor cells have developed 

rapidly. The Zebrafish, as a non-mammalian vertebrate model of cancer, are not new to the 

field. The advantages of optically clear, small scale, less time and cost, the minimal amount of 

sample needed, multiplexing of conditions, and potential for automation bring zebrafish into 

the arena of phenotypic testing of cancer immunotherapy. Specifically, to further investigate 

the tumor-NK interaction, we developed the method using zebrafish larva with sorted NK cells 

and fluorescent-labeled tumor cells. The zebrafish larvae model was used in Paper I. 

3.4 TCGA datasets analysis 

The raw data for overall survival (OS) and progression free interval (PFI) together with clinical 

parameter: smoke history and normalized gene expression data, were exported from TCGA 

database through Xena (http://xena.ucsc.edu). CD160, PRF1, KLRB1, NCR1 and NCR3 were 

used to represent NK cell abundance in tumor samples, which has been used in previous studies 

(216, 217).  

3.5 Statistical analysis 

Unless stated otherwise, all statistical tests were performed using Prism 8 (Graphpad software). 

All results are presented as mean±SD and represented histogram or images were selected based 

on the average values, p<0.05 was considered significant. Two-tailed unpaired or paired 

Student’s t-tests between two groups. In paper I, the difference in overall survival was tested 

using log-rank tests. In paper II, using “survival” and survplot R packages, Kaplan-Meier 

analysis was performed with NK cell signature score or IL15 gene expression split into a binary 

(Low/High) variable based on the median value. 

 

http://xena.ucsc.edu/
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4 RESULTS AND DISCUSSION 

Study I. CD25+/CD54+ NK cells resistant to PGE2 mediated suppression via PDE4A 

upregulation.  

Our previous data shows that in comparison with IL-2, IL-15 provides NK cells with enhanced 

mTOR and JAK/STAT5 signals to maintain their anti-tumor activity in vivo (168). At the time 

I joined the group, our preliminary results showed inhibition of COX-2 restored the anti-tumor 

effect of IL-2 stimulated NK cells in co-culture experiments with melanoma cells. We 

therefore hypothesized that IL-15 could render NK cells resistant against PGE2.  

We found that both proliferation and cytotoxicity were significantly higher in IL-15 NK cells 

compared with IL-2 stimulated NK cells under PGE2 suppression. While the expression of the 

EP2 and EP4 receptors did not change, but the expression of the intracellular phosphodiesterase 

4A (PDE4As), which belongs to cAMP hydrolyzing enzyme family, was significantly 

upregulated in IL-15 primed NK cells. This increased expression was accompanied by reduced 

cAMP concentration upon PGE2 stimulation. cAMP as an intracellular second messenger from 

Gs-coupled receptors, prostaglandin E2 receptor 2 (EP2) and EP4, triggered 

cAMP/PKA/CREB pathway which drives the anti-inflammation response (218, 219). In T 

cells, overexpressed PDE4A renders CD4+ and CD8+ T cells to reverse PGE2 induced adverse 

effect on proliferation, cytokine production and cytotoxicity. Furthermore, the exhaustion 

markers between PDE4A overexpressed T cells and control did not show significant difference, 

which provides the opportunity for long time ex vivo expansion of PDE4A overexpressed T 

cells (220).  

In colorectal cancer cells, inhibition of PDE4D, another PDE4 member, leads to repression of 

the mTOR pathway (168, 221, 222). Similarly, we found that the frequency of pS6 positive 

NK cells was maintained in IL-15 group, but significantly reduced in IL-2 group in the presence 

of PGE2. Furthermore, inhibition of mTOR activity in IL-15 activated NK cells revealed 

decreased expression of PDE4A. Thus, there is a reciprocal cross-talk between mTOR and 

PDE4 activity in IL-15 activated NK cells.  

Analysis of RNA-sequencing data between IL-2 and IL-15 stimulated NK cells showed that 

CD25 and CD54 was significantly upregulated in IL-15 activated NK cells. Min-Oo et al. 

showed that IL-15 upregulates CD25 on NK cells to form memory-like NK cells (223). Several 

studies showed the LFA-1 activation in NK cells is an incipient identification signal for NK 

cell cytotoxicity (224, 225). Here we show that the LFA-1 ligand, CD54 (ICAM-1), is also 

important for NK cell function. Our results support those of Sun R et al. that IL-15 can indeed 

upregulate CD54 in NK cells (226). LFA-1 and ICAM-1 is an important receptor-ligand 

interaction to facilitate cellular clustering and activation (225, 227, 228). We observed similar 

pattern between IL-2 and IL-15 primed NK cells to form cell cluster, but in the presence of 

PGE2, IL-15 activated NK cells formed significantly more cell clusters. Upon blocking CD54 

by antibody, cluster formation was impaired but the cytolytic activity did not change indicating 

that cell cluster does not contribute to the resistance to PGE2 in IL-15 primed NK cells.  

To further validate the finding, we performed cell isolation experiment based on CD25 and 

CD54. Strikingly, purified CD25+/CD54+ NK cells exhibited superior killing activity against 
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K562 and A549 lung cancer cells in the presence of PGE2, regardless if they were stimulated 

with IL-2 or IL-15. This population of NK cells expressed significantly higher levels of 

perforin, TRAIL, CD107a and IFNγ.  

Across 33 TCGA datasets, the prostaglandin E synthase (PTGES) expression was significantly 

higher in LUAD tissue compared with matched normal tissue. We furthermore found that NK 

cells level was significantly lower in tumors compared with normal tissue. However, the higher 

NK cell gene signature showed better survival only in stage I LUAD patients, but not other 

stages, suggesting that NK cells play a pivotal role in the immune surveillance in early stage of 

lung adenocarcinoma. Inflammatory-related pathway enriched in PTGEShiNKhi indicates the 

TME in those patients are more inflamed than PTGEShiNKlow. Thus, the “hot” TME could 

potentially increase the tumor-infiltrating NK cells despite high levels of PTGES. These results 

further support the idea that impaired tumor growth and upregulation of inflammatory genes 

such as: Ifng and Gzmb could be achieved by genetic ablation of COX through PTGS2 knock-

out (229). When tested for their ability to infiltrate tumors, CD25+/CD54+ NK cells showed 

increased infiltration compared with CD25-/CD54- NK cells in vitro and in vivo. In patients 

with lung adenocarcinoma, the frequency of CD54 positive NK cells was significantly higher 

in the tumor central area compared with the invasive margin and normal tissue. These results 

are in line with Ni et al. who observed that activated NK cells under hypoxic condition express 

higher level of CD54 (144).  

 

Figure 12. IL-15 promotes a subset of NK cells that resist PGE2-mediated suppression by mTOR-dependent upregulation of 

PDE4A. Ex vivo expansion of CD25+ CD54+ NK cells for adoptive cell therapy may be used to target tumors with high PGE2 

levels. (Reprinted with permission from Chen, Ziqing, et al.  EMBO reports (2021): e51329.) 

In conclusion, we elucidate a potential mechanism behind IL-15 primed NK cell resistant 

against PGE2 inhibition, though upregulate a cAMP hydrolyzing enzyme PDE4 by enhancing 

mTOR signaling (Figure 12). Another interesting aspect of our study is the identification of 

two surface markers, CD25 and CD54, could be used to define “eximious” NK cells, which 

exhibits superior infiltrating and killing capacity. Approaches to selectively expand “eximious” 

NK cells for adoptive cell therapy or combination with checkpoint inhibitor could be potential 

therapeutic strategy for patients with high PGE2 produced tumor. 
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Study II. Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating 

NK cells 

Reactive oxygen species (ROS) contain a diverse of radical species that have various roles 

depending on their location and concentration (230). ROS is produced by highly metabolic 

cancer cells as well as by activated immune cells like neutrophils, macrophages, regulatory T 

cells and myeloid-derived suppressor cells (MDSCs) (231). Thioredoxin, reduce oxidized 

cysteine residues and remove disulfide bonds. It serves as one of the essential antioxidants to 

keep the ROS homeostasis within cells (232, 233).  Elevated levels of thioredoxin often 

associate with immune activation or survival regulation (234-236).  

At the time I joined the group, our preliminary results showed that activation with IL-15 

increase the expression of cell surface thiols compared with IL-2 primed NK cells. Cell surface 

thiols can act as a safety shield as they get oxidized by external free radicals (237, 238). It has 

been shown that oxidative stress has a durable and profound suppressive effect on NK cells 

(239-241) We hypothesized that IL-15 may confer resistance against oxidative stress. 

We first found that NK cells primed by IL-15, instead of IL-2, revealed superior antitumor 

effect under oxidative stress and this was associated with reduced intracellular ROS in IL-15 

primed NK cells. This result in agreement with another study that elevated thioredoxin and 

peroxiredoxin were observed in NK cells expanded with K562 feeders which express 4-1BBL 

and membrane IL-15 (242).  

Through GSEA analysis, we identified several key elements regarding cellular ROS response, 

which including elevated thioredoxins (TXN1 and TXN2) and reduced TXNIP and TXNRD1 

(inhibitory counterparts of thioredoxins). Indeed, flow cytometry analysis showed that TXNIP 

elevated in IL-2 stimulated NK cells compared with IL-15 stimulated NK cells. Regardless of 

stimulation with either IL-2 or IL-15, NK cells isolated based on high level of cell surface thiols 

revealed superior killing against K562 targets in the presence of H2O2. However, this result 

might somehow be limited by abnormal dose of H2O2 which could not represents the physical 

situation (243). 

In co-culture of activated ROS-producing neutrophils and NK cells, the proliferation of NK 

cells was significantly suppressed. Furthermore, by using thioredoxin-1 inhibitor PX-12, the 

killing capacity of IL-15 primed NK cells were abrogated upon exposure to H2O2. Treatment 

with PX-12 reduced the proliferation of IL-15 primed NK cells to the same levels as PX-12 

untreated NK cells (IL-2 primed). Finally, sorted NK cells with high surface thiol density 

displayed superior capability to infiltrate lung tumor spheroid. Interestingly, the infiltration of 

NK cells in 3D culture happened within hours, this fast, continuous mobility could link with 

the term ---“serial killer” (244), which cytolytic T cells or NK cells processed additional killing 

events after disengaged with dead target. 

After the administration of mTOR inhibitor (Torin-1), the difference of thioredoxin expression 

between IL-2 and IL-15 NK cells diminished. It was previously shown that through inhibition 

of mTOR, cell death could be induced by dysfunctional TXNIP (245). Analysis of NSCLC 

patient samples showed that NK cells with higher surface thiol have the ability to infiltrate into 

the tumor core more frequently compared with those with lower surface thiol.  
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To further validated this result in more general clinical setting, LUAD dataset from TCGA was 

analyzed. As previously described smoking is one of the extrinsic factor to induce tissue ROS 

production (246). Next, we separated the LUAD cohort into smoker and non-smoker group. 

Interestingly, the distinguished overall survival and progression free survival interval only 

happened in smoker cohort. Whereas this trend was not observed in tissue-infiltrating T cells 

compared smoker and non-smoker. With growing evidence showed that NK cells might serve 

as a local “recruiter” for DCs or T cells by secreting inflammatory cytokines in TME, which 

turn the tumor from “Cold” to “Hot” (216, 221, 222).  

In summary, this study provides another potential mechanism that activated NK cells 

employing thioredoxin system to neutralize oxidative stress in TME (Figure 13). By using IL-

15 as adjuvant, which renders immune cells higher capability to higher levels of ROS, future 

investigations could study the combination of IL-15 with other novel cell therapy products 

especially under oxidative stress.  

 

Figure 13. IL-15 renders NK cells resistance against oxidative stress through releasing the power of thioredoxin system by 

activated mTOR pathway.  By providing extra thiols protection, IL-15 primed NK cells promote the T cells recruitment in TME 

which turn the tumor from “Cold” to “Hot”. Furthermore, the extrinsic factor for ROS production, smoking, could influence 

the IL15 and NK cells prognostic value in NSCLC. (Reprinted with permission from Yang, Ying, et al. The Journal of clinical 

investigation 130.10 (2020).) 
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Study III: CD25 bright NK cells display superior proliferative and metabolic activity and 

resist suppression by regulatory T cells 

Regulatory T cells affect the NK cell immune response via the production of TGFβ, IL-10 

adenosine, ROS secretion and inhibitory signaling provided by CTLA4/CD28 ligation (102, 

247). However, another poorly understand mechanism caused by Treg is metabolic disruption, 

especially by IL-2 deprivation. Since we observed that IL-15 increase the expression of CD25 

on NK cells, we hypothesized that these NK cells would survive better under Treg induced 

IL-2 deprivation. 

The upregulation of surface CD25 was correlated with increased level of phosphorylated 

STAT5(Y694). The frequency of pAKT+ pSTAT5+ NK cells was higher in IL-15 stimulated 

NK cells. Notably, phosphorylated AKT can directly activate the mTOR pathway which 

influence cell growth and survival (248, 249). We asked if IL-15 stimulated NK cells could 

survival better under cytokine competition. In co-culture of NK cells and Treg in the presence 

of 100U/ml of IL-2, NK cells treated with IL-15 showed significant higher level of membrane-

bound IL-2. Similar results have been showed by comparing surface IL-2 of Treg cells with 

activated T effector cells (250). Moreover, flow cytometry results revealed significantly 

increased proliferation and IFNγ production in IL-15 primed NK cells. Notably, the viability 

and production of IL-10 by Treg maintained the same level in both groups. Additionally, 

comparable increased NK cell infiltration was observed in both A498 and 786O spheroid 

models. Taken together, IL-15 primed NK cells survival better than IL-2 primed NK cells under 

Treg induced cytokine deprivation. Due to the multiple ways of suppression induced by Treg 

cells, external blocking for TGFβ and CTLA-4 could further validate the effect is only due to 

cytokine deprivation induced by Treg. 

Based on these findings, we next sought to connect the intracellular signaling with surface 

marker which could facilitates in vitro 

evaluation by sorting cell based on the 

expression of CD25. Increased proliferation 

rate and phosphorylated S6 were observed in 

CD25 bright NK cells. Consistently, these 

data agree with our previous results which 

pAKT+pSTAT5+ NK cells may provide 

strong intracellular signal for IL-15 primed 

NK cells to maintain their antitumor activity. 

Thus, the increased intracellular 

AKT/STAT5 signal was correlated with 

surface CD25 expression on IL-15 

stimulated NK cells. It was previously shown 

that the CD25 could be regulated by STAT5a 

and STAT5b, but no study has been showed 

that AKT is needed for this activation (251).  

The mitochondria governs cellular metabolic process (252) and increased mitochondrial 

membrane potential is a hallmark of improved metabolic activity (253).  Seahorse experiment 

revealed a superior basal respiration, maximal respiration, and ATP production in CD25bright 

Figure 14. By upregulating the IL-2 receptor α, IL-15 primed 

NK cells have the ability to compete with Treg for limited IL-2 

in TME, which IL-2 stimulated NK cells could not. 
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NK cells compared with CD25dim and Cd25 negative NK cells. Interestingly, Huang et al. 

reported that CISH-/- iPSC-derived NK cells display enhanced metabolic fitness and anti-tumor 

activity in mice model which confirmed that metabolic activity and mTOR pathway play an 

essential role in NK anti-tumor activity (214).  

In summary, we report that increased CD25 expression on NK cells increases their ability to 

compete for IL-2 with Treg cells (Figure 14). Furthermore, upon IL-15 activation higher 

intracellular phosphorylated STAT5 and AKT provide signaling benefit for NK cell survival, 

together with improved metabolic fitness. These studies support clinical validation of enriched 

superior NK cells for adoptive immunotherapy.  
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5 CONCLUSIONS 

In this thesis we provide new insights into the biology and therapeutic potential for harvesting 

the power of “eximious” NK cells against solid tumors. The key findings presented in three 

papers are summarized below. 

Paper I, we identified the enzyme PDE4A to be enriched in CD54+/CD25+ NK cells and these 

markers may serve to select for NK cells with superior killing capacity against solid tumor 

under PGE2 suppression. 

Paper II, we demonstrated that IL-15-primed NK cells acquired resistance against oxidative 

stress through the thioredoxin system activated by mTOR. Furthermore, the prognostic value 

of IL-15 and NK cell gene signature in tumors may be influenced by tobacco smoking history 

in NSCLC patients. 

Paper III, we showed that CD25bright NK cells have a higher ability to compete for IL-2 with 

Treg cells in the tumor microenvironment. The enhanced mitochondria activity in CD25bright 

NK cells facilitates their survival and anti-tumor activity. 

Taken together, the identification of surface markers and signaling pathways in activated NK 

cells could be essential for the clinical development of adoptive NK cell therapy. 
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6 FUTURE PERSPECTIVE 

Historically, the interval between the implementation of cancer treatments has shortened 

(Figure 15). The unique “missing self” killing mechanism and “off the shelf” property set NK 

cells at the forefront of the next wave of immunotherapy. 

Numerous strategies to develop novel therapeutics to augment the activity of NK cells are 

currently being investigated. In 2020, A phase I/II trial of 11 patients with relapsed or refractory 

CD19-positive cancers observe that most patients (8/11, 73%) respond to CD19-targeting CAR 

natural killer (NK) cells and show few major toxicity effects (254).  

 

Figure 15. (A) The time of various innovations and impact in the treatment of cancer. (B) The new hope for NK cell therapy 

after the development of immune checkpoint inhibitors and synthetic immunity provides two overlapping and potentially 

disruptive treatment paradigm shifts. CAR, chimeric antigen receptor; CIT, cancer immunotherapy; PD-1, programmed death-

1; PDL1, programmed death-ligand 1; XRT, external radiation. (modified from Hegde, P. S., & Chen, D. S. (2020). Immunity, 

52(1), 17-35.) 

Although the future of NK cell-based immunotherapy is promising, there are still hurdles that 

need to be overcome. Below I have listed questions I believe needs to be carefully considered 

in order to develop NK cell-based immunotherapies in patients with cancer. 

• How long do activated NK cells maintain their killing capacity after infusion?  

• How can we generate a large amount of “eximious” NK cells?  

• How will adoptively transferred NK cell communicate with other cells within the tumor 

microenvironment?  

• How will an ex vivo expanded NK cell behave in an altered redox-balance situation 

such as an altered ROS balance and hypoxia?  

• What other cancer therapies can synergize with adoptive transfer of NK cells?  
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你的表述里显得温润, 幽默又透亮。 

  

To my wife, Jijing Wang, you are the reason that another 1/3 of luck I consumed. It is the 

power of destiny, otherwise, how could we explain the amazing journey we experienced? 

With your generous help and tender care, my life becomes easier and brighter. I am sincerely 

grateful to you for joining my life and wish to compensate this love with my following life. 

 

 

 

 

 

 

 

So, what can change the nature of a man?
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