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Inferring the genetic architecture of evolution in the fossil record is difficult because genetic 9 

crosses are impossible, the acquisition of DNA is usually impossible, and phenotype-genotype 10 

maps are rarely obvious. However, such inference is valuable because it reveals the genetic basis 11 

of microevolutionary change across many more generations than is possible in studies of extant 12 

taxa, thereby integrating microevolutionary process and macroevolutionary pattern. Here, we 13 

infer the genetic basis of pelvic skeleton reduction in Gasterosteus doryssus, a Miocene 14 

stickleback fish from a finely resolved stratigraphic sequence that spans nearly 17,000 years. 15 

Reduction in pelvic score, a categorical measure of pelvic structure, resulted primarily from 16 

reciprocal frequency changes of two discrete phenotypic classes. Pelvic vestiges also showed 17 

left-side-larger asymmetry. These patterns implicate Pitx1, a large-effect gene whose deletion 18 

generates left-larger asymmetry of pelvic vestiges in extant, closely-related Gasterosteus 19 

aculeatus. In contrast, reductions in lengths of the pelvic girdle and pelvic spines resulted from 20 

directional shifts of unimodal, continuous trait distributions, suggesting an additional suite of 21 

genes with minor, additive pelvic effects, again like G. aculeatus. Similar genetic architectures 22 

explain shared but phyletically independent patterns across 10 million years of stickleback 23 

evolution. 24 

 25 

We studied the last ~16,500 years of a ~108,275 year-long fossil G. doryssus sequence1,2. The 26 

entire sequence contains two lineages of G. doryssus. Lineage I existed during the first 92,012 27 

years of the sequence and had a vestigial pelvic girdle and fewer than three dorsal spines, on 28 

average. At 92,012 years, lineage I was replaced within 125 years by lineage II (Extended Data 29 

2), whose source was a parapatric G. doryssus population from outside the depositional basin3. 30 

At the replacement event, lineage II invariably had a robust pelvis and three dorsal spines2. 31 
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Lineage II subsequently evolved vestigial armor phenotypes, similar to those of lineage I1, under 32 

directional natural selection4 over 16,750 years3. Armor reduction in Lineage II included 33 

reduction in the size and complexity of the pelvic girdle and pelvic spines.  34 

Such pelvic reduction exists in many extant lake populations of G. aculeatus5 and is 35 

likely also driven by natural selection6,7. The major gene underlying pelvic reduction in G. 36 

aculeatus is usually Pitx1 (Pituitary homeobox 1)7-12 (but see 13). Loss occurs through deletion 37 

mutations in the Pel enhancer region that reduce pelvis-specific Pitx1 expression7,12. Deletion 38 

mutations of Pel act recessively and their phenotypic effects on pelvic score (PS: a categorical 39 

metric of pelvis size and complexity; Methods) segregate in multimodal, near Mendelian fashion 40 

in G. aculeatus9,10. Moreover, because a paralogous gene, Pitx2, presumably also contributes to 41 

pelvic girdle formation but is expressed more on the left side than the right14, reduced Pitx1 42 

expression results in a directionally asymmetrical, left-larger pelvic vestige in G. 43 

aculeatus5,9,11,13,15 (as well as other vertebrates9,14,16). Because Pitx1 has repeatedly played a 44 

major role in pelvic reduction in G. aculeatus, and because G. aculeatus is closely related to G. 45 

doryssus17, Pitx1 is a good candidate gene for pelvic reduction in G. doryssus. To infer whether 46 

Pitx1 is responsible for major pelvic reduction in G. doryssus1,3, we examined our fossil data for 47 

a Mendelian pattern of pelvic scores and for left-larger pelvic vestige asymmetry (Question 1). 48 

Pelvic reduction in extant G. aculeatus also mapped to several genomic regions with 49 

minor, additive effects9-11,18. To infer whether genes with small effects also contributed to pelvic 50 

reduction in G. doryssus (Question 2), we used the fact that pelvic score in G. doryssus did not 51 

decline immediately after the fully armored lineage II appeared in the temporal sequence3. 52 

Although reduction of other, non-pelvic armor traits (i.e., numbers of dorsal spines and touching 53 

predorsal pterygiophores) began to evolve immediately3, pelvic score remained static in lineage 54 

II for ~3,500 years before declining. We examined new data for pelvic girdle length and pelvic 55 

spine length to ask whether those traits had also experienced delayed reduction. If yes, this 56 

suggests that natural selection for armor loss did not initially include selection for reduced 57 

pelvises. If not, however, and reduction began immediately, this suggests that pelvic reduction in 58 

G. doryssus was polygenic and that there was variation in minor genes that allowed some pelvic 59 

reduction in response to natural selection before the appropriate, hypothesized mutations in Pitx1 60 

arose and became the basis for more extensive pelvic reduction.  61 

 62 
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Results 63 

Question 1. Is Pitx1 responsible for the reduction of pelvic score observed in lineage II of G. 64 

doryssus, ~3500 years after lineage II appeared? We measured the lengths of the right and left 65 

pelvic vestiges from 815 specimens from temporal sequence L (Methods, Extended Data 2). A 66 

paired t-test indicated that pelvic vestiges were significantly larger on the left side (mean right-67 

minus-left difference = -0.29mm, t814 = -8.39, p < 0.0001). The left vestige was larger in 73.5% 68 

of pelvic-reduced specimens, significantly more than half (𝜒!! = 95.31, p < 0.0001; Figure 1), 69 

corroborating a preliminary finding using a much smaller sample size13. This left-bias was not 70 

strongly influenced by the extent of pelvic reduction (i.e., pelvic score category; Methods; 𝜒!!  = 71 

13.05, p = 0.16, Table S1).  72 

The distributions of pelvic scores (PS) of lineage II specimens were multimodal during 73 

reduction. In temporal sequence L, all but three of the 595 specimens in the first 12 samples 74 

following replacement of lineage I by lineage II had a full pelvis (PS 3.0; Figure 2), spanning the 75 

first 2,750 years of lineage II (Table S2). Then, mean PS declined to PS 2.92, where it remained 76 

static for another 750 years (Figure 2, Table S2). This decline to 2.92 was caused by appearance 77 

of only two specimens with extreme pelvic reduction (PS ≤ 1) out of 66 (Table S2). After 78 

another 500 years, a third mode formed at PS 2.0, driven mostly by an increase of fish with 79 

vestigial pelvises of PS 1.0  (Figure 2, Table S2). PS declined after that to a mean value of about 80 

1.0 by 10,000 years after replacement (Figure 2, Table S2). This new phenotype is 81 

indistinguishable from pelvic vestiges that had characterized lineage I for 92,012 years before 82 

lineage II appeared1,3. Specimens that lack the pelvis entirely appear near the middle of the 83 

sequence but never become very frequent (maximum PS 0 = 16.7%, 13,750 years after 84 

replacement; Table S2). We are unsure why PS 3.0 individuals do not disappear completely, 85 

though low frequency dispersal from the lineage II source population could explain this pattern; 86 

occasional full-pelvis migrants were also detected in the first 92,012 years of the fossil sequence1 87 

(Extended Data 2; Methods). 88 

Our evidence thus suggests that Pitx1 was indeed the major gene responsible for pelvic 89 

reduction in G. doryssus lineage II. First, the reduction in mean pelvic score through time (Figure 90 

2, Figure 4) resulted largely from changes in the relative frequencies of specimens in two 91 

discrete, contrasting phenotypic classes (i.e., PS 1.0  and 3.0; Figure 3, Table S2) rather than 92 

from a gradual change from PS 3.0 toward PS 1.0 in the position of a single mode. This is 93 
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consistent with the action of an allele of large effect, like deletion of a pelvic enhancer of 94 

Pitx17,9,15. Second, left-larger directional asymmetry of pelvic vestiges (Figure 1) implicates 95 

Pitx1 as the primary factor for pelvic reduction in lineage II of G. doryssus because (i) only six 96 

genes in the vertebrate genome are known to be related to directional asymmetry in limb bud 97 

tissue during development14; (ii) left-biased asymmetry is a known outcome of deletion 98 

mutations that reduce expression of Pitx1 in vertebrates15; and (iii) in extant G. aculeatus, 99 

vestigial pelvic phenotypes that map to the Pitx1 locus tend to be larger on the left side9.  100 

Third, the lag time of 3500 years observed before reduction of pelvic score in G. doryssus 101 

lineage II (Figure 2, Figure 4) can be explained by a recessive mutation like Pitx1, as follows. 102 

Natural selection favored armor reduction in lineage II immediately following its replacement of 103 

lineage I3,4 5,6,19 20,21. This is evident from immediate reduction in the mean number of dorsal 104 

spines (armor structures22), the mean number of touching pre-dorsal pterygiophores3 (which are 105 

structurally and likely functionally related to the dorsal spines), as well as in mean pelvic girdle 106 

length and mean pelvic spine length (this study; see Question 2, Figure 4). Despite selection for 107 

armor reduction4, however, pelvic score remained at 3.0 for several thousand years (Table S2). 108 

This suggests that the founders of lineage II initially lacked a Pitx1 allele for pelvic reduction, or 109 

carried it at such low frequencies that individuals that expressed the reduced allele (ie., 110 

homozygotes) were too rare for directional selection to act efficiently. This could make sense 111 

because the parapatric source population for lineage II could have been under purifying selection 112 

to remove pelvic-reducing deletion mutations of large effect in Pitx12; this source population 113 

coexisted with predatory fishes that were present elsewhere in the larger drainage (but not in the 114 

depositional environment sampled here) 2,23,24. Fish predators select for armor 5,6,19-21.  115 

Eventually, however, reduction of pelvic score proceeded in Lineage II based on alleles 116 

that reduce Pitx1 expression during development of the pelvis. Where would low-armor Pitx1 117 

variants have come from? In extant G. aculeatus, de novo deletion mutations of the PelA 118 

enhancer occur at a remarkably high rate12.  PelA lies within a stretch of fragile DNA that 119 

experiences deletion mutations nearly four orders of magnitude faster than in other parts of the 120 

threespine stickleback genome and than is typical of vertebrate genomes12, increasing the 121 

likelihood that enhancer mutations will be generated. Several G. aculeatus populations have 122 

evolved pelvic loss over the last 15,000 years by independently acquiring deletion mutations in 123 

the PelA enhancer region of Pitx17. This suggests that appropriate Pitx1 mutations in G. doryssus 124 



	 5	

lineage I could have arisen often in the environment sampled here. However, if they were also 125 

recessive (as in modern stickleback9,10), these mutations would have had to drift to an 126 

appreciable frequency before homozygotes would occur and selection could drive the deletion 127 

mutation toward fixation. This drift component of the fixation process is consistent with the 128 

occasional appearance of vestigial pelvises during early lineage II samples when mean pelvic 129 

score remained near 3 (Table S2, Figure 2). A delay of ~3500 years before pelvic reduction is 130 

within the range of simulated lag times in pelvic reduction found by population genetic modeling 131 

by Xie et al. 12 (see figure 4D in 12 and figures S6 and S7 in the Supplementary Materials of 12), 132 

given known mutation rates in the Pel enhancer region, reasonable selection coefficients for 133 

pelvic loss (0.1 > s > 0.01), and relevant G. aculeatus population sizes. They found that the 134 

probability of generating and fixing a de novo mutation in a fragile genome region was 1.0 for 135 

reasonable stickleback population sizes (103 < N < 106) within 10,000 generations. When 136 

selection was s = 0.01, predicted time to fixation was less than 5000 generations. When selection 137 

was s = 0.1, predicted time to fixation was less than 2000 generations. Assuming that G. 138 

doryssus had a generation time of two years25, the observed delay of ~3500 years to begin 139 

reduction and then another ~3000 years to reach a mode of PS 1 is reasonably close to 140 

population genetic modeling for de novo mutation in the Pel enhancer region. 141 

Thus, we conclude that major pelvic reduction in lineage II G. doryssus likely depended 142 

on a new mutant (or very rare standing) recessive allele of Pitx1. 143 

 144 

Question 2. Does immediate reduction in pelvic girdle length and pelvic spine length reveal the 145 

presence of alleles of minor, additive effects? We used samples from a different temporal 146 

sequence, K (Methods), but the same section of rock to answer this question. We first tested 147 

whether pelvic girdle length and pelvic spine lengths declined immediately following the 148 

replacement event of lineage I by lineage II (i.e., immediately have a negative slope for the trait 149 

mean vs. time), while pelvic score delayed reduction (i.e., has an initial slope of zero) . To do 150 

this, we used a piecewise (“broken-stick”) regression model, which estimates the slope and 151 

intercept for two different pieces of a regression line, before and after a break point where the 152 

slope is estimated to change significantly. Consistent with the visually obvious lag time before 153 

pelvic score reduction (Figure 4), the first ‘stick’ inferred by the piecewise regression for pelvic 154 

score against time had an intercept of 3.0 (the maximum possible pelvic score), a slope of zero, 155 
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and a breakpoint between temporal samples five and six (Table 1). After this breakpoint, the 156 

slope coefficient became negative (Table 1). In contrast, for fish with PS 3.0 (i.e., when the fully 157 

functional dominant allele of Pitx1 is hypothesized to be at high frequency), mean size-corrected 158 

lengths of both pelvic girdle and pelvic spines began to decline immediately after appearance of 159 

lineage II (Figure 4). The slope of the first ‘stick’ was significantly negative for both traits (Table 160 

1). This implies available genetic variation unlinked to Pitx1.  161 

Moreover, these significant trends for reduction of mean size-corrected pelvic girdle and 162 

pelvic spine lengths both resulted from gradual shifts to smaller sizes by unimodal (Figure 5, 163 

Table S3), normally distributed frequency distributions (Table S3). This finding is consistent 164 

with multiple genes acting additively. Pearson correlations between pelvic girdle and pelvic 165 

spine lengths calculated for each of the first ten samples in temporal sequence K averaged only 166 

0.38 (sd = 0.28; max = 0.74; min = -0.19), suggesting that the two traits might be reduced in part 167 

via different genetic changes. A QTL study in G. aculeatus from a cross between populations 168 

with complete and missing pelvises found that the two traits shared four QTL for length, but that 169 

pelvic spine length also has a unique QTL that explains 5.6% of its variance9. Thus, in that QTL 170 

cross at least, there was potential for independent variation in the lengths of pelvic spine and 171 

pelvic girdle, consistent with observation in the fossils. 172 

We further measured pelvic vestige lengths for a subsample of 305 fossils with PS 1.0 173 

(Table S4)—that is, individuals likely to have been homozygous for a null allele of Pitx1 in the 174 

pelvis. The distribution of lengths did not deviate from unimodal (Dip statistic Dn = 0.02, p = 175 

0.67). Last, we note that the pelvis did not completely disappear once the hypothesized deletion 176 

mutations arose in Pitx1; i.e., PS 0 was not common. The persistence of intermediate pelvic 177 

scores (i.e., PS 2.8 to 1.2; Figure 2, Figure 3) and the unimodal distribution of vestigial pelvic 178 

girdle lengths in fish with PS = 1.0 further suggest that other genes besides Pitx1 were also 179 

involved in pelvic development and reduction in G. doryssus. 180 

Thus, we infer that Pitx1 likely was not the sole genetic cause for pelvic reduction in 181 

lineage II. Pelvic reduction also involved a suite of additive alleles with small effects. Such 182 

alleles in lineage II G. doryssus would rarely produce strong pelvic reduction in any one 183 

individual and could be carried even when selection favored full pelvises, as in the putative 184 

source population of lineage II2. However, once selection for pelvic reduction began in lineage II 185 

of G. doryssus (i.e., following appearance of lineage II to our depositional environment), these 186 
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loci would have facilitated immediate reduction of pelvic girdle and pelvic spine lengths (Figure 187 

4). 188 

This inference is consistent with evolution in G. aculeatus, in which quantitative trait loci 189 

(QTL) with small, additive effects on pelvic elements contribute to pelvic reduction9-11,18.  190 

However, we note that there are phenotypic differences in the order of structural reduction of the 191 

pelvic skeleton between extant G. aculeatus and fossil G. doryssus26. In G. doryssus, the pelvic 192 

spine is lost first, at which point the pelvic girdle breaks into separate anterior and posterior 193 

elements that correspond to different developmental structures27. The size of the vestigial 194 

posterior element can vary in the fossils, but it is usually absent. In fossil specimens with PS 1.0 195 

(i.e., no posterior element), the anterior element varies in size and can also be lost unilaterally or 196 

on both sides. In contrast, in extant G. aculeatus, pelvic reduction usually proceeds through loss 197 

of the pelvic spine without the pelvic girdle dividing into separate anterior and posterior 198 

elements. Following spine loss, the posterior process gets shorter, leaving only a diminutive 199 

ascending branch emanating from the anterior process. Next, the ascending branch gets shorter,  200 

until it eventually leaves a structure that is indistinguishable from the tear-drop shaped anterior 201 

element in the fossils. Finally, like the fossils, the anterior element is reduced in size and lost 202 

unilaterally or bilaterally. These phenotypic differences in the order of loss and the separation of 203 

anterior and posterior pelvic elements suggests that the number, identity, and expression of small 204 

effect genes differs between G. aculeatus and G. doryssus. However, in both species, it is the 205 

posterior half of the pelvic girdle that is most often reduced or missing. In G. aculeatus, the 206 

posterior process develops separately from the anterior process 27 and it is thus likely that the 207 

posterior and anterior processes in G. doryssus also are underlain by separate developmental 208 

modules. 209 

 210 

Discussion 211 

Despite being separated by 10 million years, our data suggest that G. aculeatus and G. doryssus 212 

have both used Pitx1 during evolution of major reduction of their pelvic armor. Inference of the 213 

gene(s) responsible for skeletal change in the fossil record is very rare. For example, Schmid and 214 

Villagra28 attributed discontinuities in scale and skeletal variation among species of Triasssic 215 

Saurichthys to two growth factors (i.e., Ectodysplasin, Fibroblast Growth Factor) or their 216 

receptors. They argued that involvement of these genes in development of homologous structures 217 
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in extant species implicates them in evolution of Saurichthys morphology. However, the 218 

temporal, phylogenetic, and morphological differences between Saurichthys and the modern 219 

analogues allows only preliminary conclusions. Similarly, Meredith et al.29 document repeated 220 

transitions in the gene enamelin from a functional gene in extant mammals with enameled teeth 221 

to a pseudogene in those lacking enamel or without teeth. They suggested enamelin was likely to 222 

have been responsible for losses in the fossil record. Qu et al. 30 made a similar argument for the 223 

role of enamalin and several other genes during tooth gain and loss in stem osteichthyans. 224 

Finally, Zhu and colleagues 31,32 proposed that loss of sparc1 in stem Chondrichthyans caused a 225 

secondary loss of perichondral bone in that clade. We were not able to find additional, relevant 226 

examples during a literature search in March 2019, searching “fossil gene*” and related queries 227 

on scholar.google.com.  (We did find, however, that that inferences of broader genetic 228 

architecture responsible for change in the fossil record are more common (e.g.33-37).) 229 

This paucity of examples arises in part because claiming that a specific gene caused 230 

phenotypic variation in a fossil lineage assumes that no other regions of the genome can generate 231 

similar phenotypic effects. In other words, a plausible but ultimately untestable alternative 232 

hypothesis exists: a different gene(s) was involved. Indeed, for stickleback, evidence is 233 

accumulating that phenotypic parallelism does not necessarily imply genetic parallelism38,39. 234 

However, for the following four reasons, we argue that our evidence meets a reasonable burden 235 

of proof to infer the role of a specific gene, Pitx1, in pelvic reduction in a fossil species. (i) First, 236 

many genes involved in pelvis development also play a role in development elsewhere in the 237 

body. Pitx1 is no exception and is expressed in the jaw, pituitary gland, and other tissues during 238 

development; mice with null mutations in the coding region of Pitx1 die before birth or as 239 

neonates and exhibit developmental abnormalities of the jaw, pituitary, and other structures7,40,41. 240 

However, Pitx1 stands out among candidates because its expression can be modulated 241 

specifically in the pelvis without disrupting development elsewhere. Mutations to the PelA 242 

enhancer region reduce expression of Pitx1 in the pelvis7,12. (ii) Second, reduction of Pitx1 243 

expression is clearly involved in generating left-larger asymmetry in hindlimb elements through 244 

Pitx1’s interaction with Pitx215. Pitx2 is one of only six genes known to generate left-larger 245 

directional asymmetry in vertebrate lateral plate mesoderm, the source of limb buds14. (iii) Third, 246 

the PelA enhancer of Pitx1 lies in a fragile portion of the genome that shows mutation rates ~4 247 

orders of magnitude higher than background12 and shows signatures of positive natural 248 
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selection7,12, suggesting that favored variation might arise often at this locus. (iv) Fourth, pelvic 249 

loss in Canadian and European populations of ninespine stickleback (Pungitius pungitius) maps 250 

to Pitx1, suggesting that a parallel genetic mechanism for pelvic loss persisted across at least 7.2 251 

to 6.9 million years of divergence from a common ancestor with G. aculeatus42,43; this timescale 252 

is similar to our comparison between fossil G. doryssus and G. aculeatus. This result, combined 253 

with the repeated use of Pitx1 during pelvic loss by multiple independent populations of G. 254 

aculeatus as well as in manatees9,11,16 suggests that Pitx1’s role in  pelvic reduction can be 255 

remarkably parallel across distantly related and phenotypically diverse vertebrates. Thus, though 256 

we can never disprove the alternative hypothesis that a different gene causes parallel phenotypic 257 

outcomes in fossil G. doryssus and extant G. aculeatus, we feel that such a hypothesis is less 258 

plausible than the simpler conclusion: Pitx1 is the likely gene of major effect in this fossil 259 

system.  260 

 261 

Methods 262 

The Fossil System 263 

The fossil stickleback Gasterosteus doryssus (Extended Data 1) is abundant and well preserved 264 

in a Miocene (10 million year old) lake deposit with annual layers, providing both excellent 265 

samples and fine temporal resolution (reviewed by 2). We focused on the evolution of lineage II 266 

because we could observe evolution from an armored form, with full pelvic girdles and both 267 

pelvic spines, to a vestigial form with reduced pelvic girdles and fewer, smaller pelvic spines. 268 

 269 

Location and fossil sampling 270 

Fossil G. doryssus were collected from an open pit, diatomaceous earth mine at 39.526° N, 271 

119.094° W, near Reno, Nevada, USA. In the field, we used sharpened putty knives to split the 272 

rock along arbitrary bedding planes to find fossils. Each fossil’s approximate stratigraphic 273 

position was measured in relation to volcanic ash layers. Specimens were prepared in the 274 

laboratory under a dissecting microscope, using probes to remove the matrix that covered 275 

bones1,3. All specimens of G. doryssus, as well as lithological samples and associated field notes, 276 

have been deposited in University of California Museum of Paleontology. 277 

 278 

Temporal Sequence Correlations 279 
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Note that a ‘section’ is a span of stratigraphic thickness of rock. A ‘sample’ comprises multiple 280 

fossil specimens that are all mined from the same section. Multiple samples make up a ‘temporal 281 

sequence’. 282 

Fossil stickleback specimens used in this study come from two temporal sequences, K2 283 

and L3, which comprise separate specimens collected with different sampling designs. However, 284 

K and L came from the same stratigraphic section in the same exposure, they overlap in time, 285 

and they occupy the upper 17% of the stratigraphic section covering temporal sequence D, 286 

reported by 1. D includes 26 samples made mostly at 5000-year intervals and spans an estimated 287 

108,275 years (Extended Data 2). Temporal sequence K spans 16,363 years (Extended Data 2) 288 

and comprises 18 samples made at about 1000 year intervals (Table S4, Table S5). Each sample 289 

was made from a narrow time interval of one to several consecutive years. L is one continuous 290 

sequence spanning about 21,250 years (Extended Data 2). Following Bell et al. 3, we binned 291 

specimens from L into 250-year samples for analysis (Table S2). D, L, and K can be correlated 292 

(+75 years) by aligning replacement of lineage I by lineage II observed in all three sequences. 293 

This replacement event occurs ~92,012 years after the start of D1 (Extended Data 2).   294 

 295 

Data use  296 

We used existing pelvic score data 3 and new left-right pelvic vestige length data from lineage II 297 

fossils from temporal sequence L to characterize the presence of pelvic-score multimodality and 298 

directional asymmetry of pelvic vestiges (Question 1). We used existing and new data from 299 

lineage II fossils from temporal sequence K to test whether the lengths of the pelvic girdle and 300 

the pelvic spines began to decline immediately after lineage II replaced lineage I, and to infer 301 

whether the evolution of these traits is consistent with polygenic, additive genetic architecture 302 

(Question 2).  303 

  304 

Phenotyping 305 

Ordinal pelvic scores (PS) were assigned by MAB to pelvic phenotypes by visual inspection of 306 

all fossils in both L and K, using marked figures from reference 26 as a standard (Extended Data 307 

3). An individual with a full pelvic girdle (i.e., anterior and posterior processes, ascending 308 

branch) and both pelvic spines present was scored PS 3.0. Reduction from 3.0 always starts with 309 

loss of pelvic spines and concurrent division of the pelvic girdle into anterior and posterior 310 
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elements on at least one side. Pelvic scores from 2.8 to 1.2 were assigned in intervals of 0.2 311 

points based on the size and complexity of the posterior process of the pelvic girdle. Reduction 312 

of PS from 1.2 to 1.0 indicates that the anterior pelvic plate vestige is present on at least one side 313 

but posterior vestiges have been completely lost. The jump from PS 1.0 to PS 0 indicates loss of 314 

anterior pelvic plate elements on both sides3. Extended Data 3 provides drawings from reference 315 
26 and photograph examples to illustrate how PS was scored. PS is significantly correlated with 316 

digitized pelvic girdle area between PS 1.0 to 3.0 (r2 = 0.82)3. Between PS 2.8 and 1.0, PS 317 

mostly reflects a continuous distribution of size of the posterior process of the pelvic vestige. PS 318 

compresses the phenotypic scale between scores of 0 and 1.0 because it does not take into 319 

account whether one or both sides of the anterior pelvic vestige are present or the size of the 320 

vestige within this range.  321 

For specimens in temporal sequence K, standard length was measured as the distance 322 

from the tip of the upper jaw to the end of the last vertebra (hypural plate), using ‘measure mode' 323 

in tpsDIG44 on digital images of each fossil. Specimens with gaps between the vertebrae were 324 

excluded, and protrusion of the premaxilla was taken into account. Standard length was often 325 

measured in segments to limit the effect of postmortem (i.e., taphonomic) curvature of the 326 

vertebral column. Pelvic girdle and pelvic spine lengths were also measured using tpsDIG. 327 

Pelvic girdle lengths were measured differently depending on PS. Specimens with a full pelvis 328 

(PS 3.0) were measured along the midline from the most anterior point of the anterior process to 329 

the posterior tip of the posterior process of the pelvis on the side with the best preservation45. The 330 

pelvic vestige of specimens with PS 1.0 was measured from the pointed anterior tip to the most 331 

distal point on the rounded posterior edge. In specimens with PS 1.2 to 2.8, the length of the 332 

posterior element along the median edge was measured and added to the length of the anterior 333 

element. Specimens with no pelvic vestige (PS 0) were assigned a value of 0.0. Pelvic spine 334 

lengths were measured from distal tip to the proximal base of the condyles by which they 335 

articulate with the pelvic girdle. 336 

For a subset of specimens in temporal sequence L, the lengths of the anterior and 337 

posterior pelvic vestiges were measured as described above for K specimens. However, unlike 338 

for K, we measured both the right and left sides for specimens in which overlap of the vestiges 339 

between sides allowed us to distinguish right from left. 340 

 341 
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Analysis 342 

All analysis was conducted in R version 3.6.1, (2019)46. Unless noted otherwise, statistical 343 

functions come from this version’s base ‘stats’ package. Functions are indicated by italics. The 344 

statistical analysis described here was not preregistered. 345 

 346 

Question 1. Is Pitx1 responsible for the major pelvic reduction observed in lineage II of G. 347 

doryssus? We estimated directional asymmetry from the pelvic vestiges of temporal sequence L 348 

specimens for which pelvic vestige lengths were measured on right and left sides. We excluded 349 

fish with pelvic scores of 3.0, as they would not have had the hypothesized deletion mutation in 350 

Pel that reduces Pitx1 expression7,12 and analyzed only fish with pelvic scores less than 3.0 and 351 

greater than or equal to 1.0. We summed the lengths of vestigial anterior and posterior pelvic 352 

elements on the same side before quantifying length asymmetry between sides. For fish with 353 

pelvic scores of 1 (i.e., no posterior elements), we compared length asymmetry in anterior 354 

elements only.  355 

Directional asymmetry was calculated as percent asymmetry, 356 

[rpv – lpv] / [rpv + lpv] * 100, 357 

where rpv and lpv are the right and left pelvic vestige lengths, respectively.  Thus, specimens 358 

with a larger left vestige had negative asymmetry values. We used a two-sided paired t-test 359 

(t.test) to test whether right versus left pelvic vestige lengths are significantly asymmetric. We 360 

used a two-sided Chi-square test (chisq.test) to test whether the number of specimens with larger 361 

right or left vestiges deviated significantly from 50%.  362 

We also used a two-sided Chi-square to test whether the frequencies of specimens with 363 

larger and smaller left vestiges were influenced by pelvic score. That is, we asked if frequency 364 

distributions of vestiges with a larger pelvic vestige on the left or right side within each pelvic 365 

score class (i.e., 1.0, 1.2, … 2.6, 2.8) differed from the pooled frequency distribution (Table S1). 366 

If all vestigial pelvic phenotypes (i.e., PS 1.0 to 2.8) are caused by reduction of Pitx1 expression 367 

during pelvic girdle development, we would not expect the frequency distribution to vary among 368 

pelvic score categories9.  369 

Finally, if recessive alleles of a gene of large effect (i.e., Pitx1) underlie pelvic score 370 

evolution, then we would expect frequency distributions of pelvic score to have discrete peaks, 371 

deviating from unimodality. We verbally described the reduction in mean pelvic score through 372 
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time using the fine-scale temporal resolution of temporal sequence L. We illustrated the change 373 

in frequency distributions of pelvic score through time within temporal sequence K, using its 374 

chronologically discrete and more sparse sampling for clearer plotting and presentation (Figure 375 

3).  376 

 377 

Question 2. Does reduction in continuous pelvic traits implicate the action of genes with minor, 378 

additive effects?  379 

To examine the role of minor genes in G. doryssus pelvic evolution, we measured the 380 

lengths of one pelvic spine and of the pelvis (as described above) in temporal sequence K 381 

specimens with PS 3.0. We used just PS 3.0 individuals to infer whether genes with small effects 382 

contributed to pelvic reduction before a gene with major effects on PS arose to obscure the 383 

effects of the minor genes. We restricted our analysis to the first 10 samples of K, as only those 384 

samples included enough specimens (i.e., 5 or more) with full pelvic scores to compute 385 

reasonable means for pelvic spine and pelvic girdle lengths. Lengths for both continuous traits 386 

were size-corrected using standard length, following47-49 (Supplementary Information). 387 

We plotted means for pelvic score and the two size-corrected traits against time to 388 

visualize the timing of reduction of pelvic spine length, pelvic girdle length, and pelvic score 389 

after lineage II appeared. For statistical support, we fit piecewise regressions (i.e., “broken stick” 390 

models) to the trait means. If pelvic girdle and spine lengths dropped immediately while pelvic 391 

score remained static, the first ‘stick’ for both pelvic spine and girdle lengths would have a 392 

significantly negative slope, while the first stick for pelvic score would have a slope of zero. For 393 

each trait, we modelled the linear relationship between mean trait values and time since lineage 394 

II first appeared. Each model allowed one breakpoint along the temporal sequence of samples, 395 

such that we estimated two sets of slopes and intercepts before and after the proposed breakpoint. 396 

For each trait, we iterated through models that differed by where in the temporal sequence the 397 

breakpoint was proposed. Then we chose the model with the lowest residual error as our best 398 

estimate for the first temporal breakpoint. We limited our potential breakpoints to the first seven 399 

samples because visual inspection suggests that significant differences in ‘first stick’ slope 400 

between pelvic score and the other traits occur in this span (Figure 4). Moreover, the eighth 401 

sample contains an increase in trait means (Figure 4). We note that with only seven values (i.e., 402 
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seven samples), significance tests of slope and intercept have low power. Thus, we are mainly 403 

interested in the sign and estimate of the model parameters. 404 

Next we plotted the frequency distributions for pelvic spine length and pelvic girdle 405 

length within each of the first 10 temporal samples for only individuals with PS 3.0. If the minor 406 

alleles underlying evolution of these traits are additive, we would expect these distributions to be 407 

normal and unimodal. We used Shapiro-Wilk Normality tests (shapiro.test ) within each sample 408 

for each trait to test for deviations from normality. Complementarily, we used Hartigan’s Dip 409 

Statistic, Dn
50, to test for deviations from unimodality (dip.test in the package ‘diptest’ 51). We 410 

calculated Pearson correlations (cor) to quantify the relationship between pelvic spine length and 411 

pelvic girdle length for each sample; a strong correlation might imply the same genetic 412 

mechanism for reduction. Finally, we pooled all individuals from temporal sequence K with PS 413 

1.0 (i.e., likely homozygous for the null Pitx1 allele) and, as above, asked whether pelvic girdle 414 

length was unimodal and normal. If so, it would further corroborate evidence that minor alleles 415 

contributed to pelvic reduction. 416 

 417 

Data and Code Availability 418 

Data and code are available at datadryad.org (https://doi.org/10.5061/dryad.02v6wwq18 419 
). 420 
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Figures legends 558 
 559 
Figure 1. The pelvic vestige was larger on the left side in significantly more than half of all 560 
specimens of G. doryssus with vestigial pelvic structures. The magnitude of asymmetry was 561 
greater when the left vestige was larger than when the right vestige was larger. Asymmetry of 562 
pelvic vestiges was calculated for 877 specimens from temporal sequence L. Each vertical bar 563 
shows asymmetry for one specimen. The vertical line represents zero asymmetry. Individuals to 564 
the left of the line have larger left vestiges.  565 
 566 
Figure 2. Mean pelvic score declines through time in temporal sequence L after a delay. The last 567 
sample in which every fish had a pelvic score of 3.0 occurred 2,500 years after lineage II 568 
replaced lineage I (Table S2). Reduction accelerated about 3,750 years after replacement (Table 569 
S2). Means minus one standard error are shown. 570 
 571 
Figure 3. Relative frequency distributions of pelvic score through time from temporal sequence 572 
K. Pelvic score is multimodal, suggesting Mendelian expression of Pitx1 during pelvic reduction. 573 
Analysis and discussion in the main text describe the more finely resolved sampling of temporal 574 
sequence L. Samples from K are plotted here for ease of visualization. The patterns are 575 
qualitatively the same. k.T is the complete replacement of lineage I by lineage II. Time proceeds 576 
down the first column and then into the second column. Mean deposition time since the 577 
replacement event for each section is reported in years, as well as the mean pelvic score in the 578 
sample. Lines represent the proportion of specimens in each pelvic score category. Numbers 579 
above the lines are counts. 580 
 581 
Figure 4. Reduction of size-adjusted pelvic girdle length (pgl) and pelvic spine length (psl) in 582 
temporal sequence K began immediately following replacement of lineage I by lineage II. In 583 
contrast, pelvic score, did not evolve substantially for another  ~3750 years. Mean values are 584 
plotted with standard error bars. Arrows denote the first inferred breakpoint for each trait from 585 
piecewise regression. The slope of the first ‘stick’ is significantly negative for both pelvic girdle 586 
length and pelvic spine length. The slope of the first ‘stick’ for pelvic score is zero. Sample sizes 587 
are in Table S5. 588 
  589 
Figure 5. Frequency distributions of (A) pelvic girdle length and (B) pelvic spine length for 590 
specimens with pelvic scores of 3.0 from temporal sequence K. Unimodality and normality 591 
suggest that multiple genes with additive effects underlie evolution in these traits. Time proceeds 592 
down. The oldest sample in this sequence is k.T, just after transition between lineage I and 593 
lineage II. Years since lineage II appeared are reported for each sample (Table S5), after which 594 
individuals with PS 3.0 become too rare to calculate a reasonable mean (Table S5). Black dots 595 
indicate sample means. 596 

597 
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Tables 598 

Table 1. Piecewise regression models using data from temporal sequence K confirm that 599 

reduction of pelvic girdle length and pelvic spine length began in lineage II immediately after it 600 

replaced lineage I. In contrast, pelvic score had a lag time of ~3750 years before reduction began. 601 

(A) Pelvic girdle length 
Coefficient 

estimate 
Standard 

error 
t-value P 

After-break intercept 11.68 0.118 98.60 < 0.001 
Time† -5.14 x 10-4 3.3 x 10-5 -15.7 0.001 
Before-break* 1.09 0.163 6.7 0.006 
Time x Before-break time‡ -1.34 x 10-3 5.95 x 10-4 -2.3 0.109 
* Add to after-break intercept for before-break intercept: 11.68 + 1.09 = 12.77 
† The slope of the after-break ‘stick’: -5.14 x 10-4 
‡ Add to after-break slope (†) for before-break slope: -5.14 x10-4 + -1.34 x10-3 = -1.86 x 10-3 

Model significance: F3,3 = 326.2, P = 0.0003, Adj. R2 = 0.99 

     

(B) Pelvic spine length 
Coefficient 

estimate 
Standard 

error 
t-value P 

After-break intercept 5.60 0.165 34.0 <0.001 
Time† -1.86 x 10-4 4.54 x 10-5 -4.1 0.026 
Before break* 2.33 0.227 10.3 0.002 
Time x Before-break time‡ -3.75 x 10-3 8.27 x 10-4 -4.5 0.020 
* Add to global Intercept for before-break intercept: 5.60 + 2.33 = 7.93 
† The slope of the after-break ‘stick’: -1.86 x10-4 
‡ Add to after-break slope (†) for before-break slope: -1.86 x10-4 + -3.75 x10-3 = -3.94 x 10-3 

Model significance: F3,2 = 126.8, P = 0.001, Adj. R2 = 0.98 

     

(C) Pelvic score 
Coefficient 

estimate 
Standard 

error 
t-value P 

After-break intercept 4.67 0.00 8.8 x 1015 < 0.001 
Time† -4.53 x 10-4 0.00 -4.3 x 1014 < 0.001 
Before break * -1.67 0.00 -3.1 x 1014 <0.001 
Time x Before-break time ‡ 4.53 x 10-4 0.00 3.9 x 1014 <0.001 
* Add to global Intercept for before-break intercept: 4.67 + -1.67 = 3.00 
† The slope of the after-break ‘stick’: -4.53 x10-4 

‡ Add to after-break slope (†) for before-break slope: -4.53 x10-4 + 4.53 x10-4 = 0.00 

Model significance: F3,3 = 13.53, P < 0.001, Adj. R2 = 1 

 602 

603 
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Figures legends 604 
 605 
Figure 1. The pelvic vestige was larger on the left side in significantly more than half of all 606 
specimens of G. doryssus with vestigial pelvic structures. The magnitude of asymmetry was 607 
greater when the left vestige was larger than when the right vestige was larger. Asymmetry of 608 
pelvic vestiges was calculated for 877 specimens from temporal sequence L. Each vertical bar 609 
shows asymmetry for one specimen. The vertical line represents zero asymmetry. Individuals to 610 
the left of the line have larger left vestiges.  611 
 612 
Figure 2. Mean pelvic score declines through time in temporal sequence L after a delay. The last 613 
sample in which every fish had a pelvic score of 3.0 occurred 2,500 years after lineage II 614 
replaced lineage I (Table S2). Reduction accelerated about 3,750 years after replacement (Table 615 
S2). Means minus one standard error are shown. 616 
 617 
Figure 3. Relative frequency distributions of pelvic score through time from temporal sequence 618 
K. Pelvic score is multimodal, suggesting Mendelian expression of Pitx1 during pelvic reduction. 619 
Analysis and discussion in the main text describe the more finely resolved sampling of temporal 620 
sequence L. Samples from K are plotted here for ease of visualization. The patterns are 621 
qualitatively the same. k.T is the complete replacement of lineage I by lineage II. Time proceeds 622 
down the first column and then into the second column. Mean deposition time since the 623 
replacement event for each section is reported in years, as well as the mean pelvic score in the 624 
sample. Lines represent the proportion of specimens in each pelvic score category. Numbers 625 
above the lines are counts. 626 
 627 
Figure 4. Reduction of size-adjusted pelvic girdle length (pgl) and pelvic spine length (psl) in 628 
temporal sequence K began immediately following replacement of lineage I by lineage II. In 629 
contrast, pelvic score, did not evolve substantially for another  ~3750 years. Mean values are 630 
plotted with standard error bars. Arrows denote the first inferred breakpoint for each trait from 631 
piecewise regression. The slope of the first ‘stick’ is significantly negative for both pelvic girdle 632 
length and pelvic spine length. The slope of the first ‘stick’ for pelvic score is zero. Sample sizes 633 
are in Table S5. 634 
  635 
Figure 5. Frequency distributions of (a) pelvic girdle length and (b) pelvic spine length for 636 
specimens with pelvic scores of 3.0 from temporal sequence K. Unimodality and normality 637 
suggest that multiple genes with additive effects underlie evolution in these traits. Time proceeds 638 
down. The oldest sample in this sequence is k.T, just after transition between lineage I and 639 
lineage II. Years since lineage II appeared are reported for each sample (Table S5), after which 640 
individuals with PS 3.0 become too rare to calculate a reasonable mean (Table S5). Black dots 641 
indicate sample means. 642 
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