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Abstract Variable selection in ultra-high dimensional data sets is an increas-
ingly prevalent issue with the readily available data arising from, for example,
genome-wide associations studies or gene expression data. When the dimension
of the feature space is exponentially larger than the sample size, it is desirable
to screen out unimportant predictors in order to bring the dimension down
to a moderate scale. In this paper we consider the case when observations
of the predictors are missing at random. We propose performing screening
using the marginal linear correlation coefficient between each predictor and
the response variable accounting for the missing data using maximum likeli-
hood estimation. This method is shown to have the sure screening property.
Moreover, a novel method of screening that uses additional predictors when es-
timating the correlation coefficient is proposed. Simulations show that simply
performing screening using pairwise complete observations is out-performed
by both the proposed methods and is not recommended. Finally, the proposed
methods are applied to a gene expression study on prostate cancer.

Keywords maximum likelihood estimator · correlation coefficient · EM
algorithm · missing at random · ultrahigh dimensionality

1 Introduction

With the advances of biotechnologies in sequencing genomes of a wide variety
of organisms, new statistical challenges arise and methodological development
is essential to locating genes underlying important traits. The selection of genes
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whose expression levels significantly contribute to the prediction of the prob-
ability of a certain disease (cancer for instance) has been the focus of several
(interdisciplinary) genome-wide association studies (GWAS), see for example
[19], [73], [30], [5], [45], [63], [18], [78], [68] among several more. Including in-
significant variables in the model increases the complexity and decreases its
interpretability and predictive power. For this reason, high-dimensional data
such as those recorded in genetic studies, have inspired pioneer statistical re-
search in developing parsimonious predictive models.

There is a large number of papers in the statistics literature dedicated
to variable selection in high-dimensional models, see [32], [77], [58], [37], [44]
and references therein. An interesting overview can be found in [27]. In the
last two decades, an effective approach based on the minimization of a con-
strained penalized likelihood has been the focus of several authors, including
the Lasso [70], Smoothly Clipped Absolute Deviation penalty (SCAD) [25],
Adaptive Lasso [85], Least Angle Regression [20] and the Dantzig Selector [9].
Nevertheless, these methods may fail to correctly identify the significant co-
variates for ultra-high dimensional models, that is, when the dimension of the
feature space is exponentially larger than the sample size. This drawback is ob-
served due to complicated stability of the algorithms, computational burden
and statistical accuracy ([28]). Practical examples of ultra-high dimensional
data where there is a much larger number of variables than the sample size
are found in a variety of cutting-edge research such as biomedical imaging,
genomics, tumor classifications, and finance, just to cite a few. In order to al-
leviate the computational complexity and difficulties in ultra-high dimensional
statistical analysis, [26] established theoretical grounds for screening out unim-
portant predictors in linear models, thereby reducing the dimensionality to a
moderate scale. The idea is to rank the importance of each covariate using its
estimated marginal linear correlation with the response variable and select a
set of covariates with the highest correlation. They showed that with proba-
bility tending to 1 exponentially fast, a well-chosen subset of predictors with
highest estimated correlations will contain the true set of predictors that sig-
nificantly contribute to the underlying predictive model, hence the name Sure
Independence Screening (SIS). Since then, a number of authors have explored
this idea in different areas, see for example [47], [13], [53], [83], and references
therein.

In practice, it is not uncommon to come across missing or incomplete data
([38], [35]) in a wide variety of applied statistical settings including cost effec-
tiveness analysis ([29]), education ([11]), spatial data ([41], [4]), AIDS research
([34]), genome-wide association studies ([55,8,57,15,46]), or gene expression
studies ([48],[72],[23],[82]). The simplest method for handling missing data
is to remove records with missing values. This, however, can lead to biased
statistical results unless the missingness mechanism is completely at random
(MCAR). More principled methods for addressing the missing data issue in-
clude the well-known maximum likelihood estimation (MLE) ([49]), which can
be implemented for more complex likelihoods via the EM algorithm [17]. An-
other common method is multiple imputation ([65]), which fills in the missing
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values in the data by drawing randomly from an appropriate distribution to
generate multiple completed data sets. Analysis can then proceed using each
of the full data sets and results can be combined across imputations to ar-
rive at a final result. Many of these procedures that handle missing data were
developed decades ago when high and ultra-high dimensional data were still
squarely in the future. In high-dimensional space, multiple imputation is dif-
ficult to perform and research in this area is still rudimentary [84,16].

Some methods for variable selection have been developed in the case of
missing covariate or response values for regression models with moderate di-
mension. [40] use the EM algorithm to develop a novel model criteria for
covariates missing at random in regression models or longitudinal response
variables and covariates. [31] propose a method for selecting variables in the
presence of missing data for Cox proportional hazard models. Garcia et al.
(2012) propose an adaptation of the SCAD and Lasso penalized approaches
and introduced an algorithm to simultaneously optimize the penalized likeli-
hood and estimate the penalty parameters. [12] proposes MI-LASSO, which
employs the group LASSO penalty to perform variable selection after multiple
imputation. [51] combines multiple imputation with the random Lasso pro-
cedure ([75]) and simultaneously performs variable selection. Other methods
include [59,39,81,40,14,67,52,79,80] and references therein. However, none of
these methods were designed to deal with ultra-high dimensional data.

Therefore, statistical inference with missing data in ultra-high dimensional
spaces is an important applied problem that needs to be explored. However,
screening high-dimensional models in the presence of missing data is a mostly
unexplored area despite its crucial practical importance.

While in recent years some authors have studied the problem of screen-
ing with missing data (e.g. [43], [69], [74]), they are all primarily concerned
with missing data only in the response variable whereas the proposed method
addresses the case of missing covariate values. To the best of our knowledge,
there is no method in the literature of statistics that addresses the challenge
of screening covariates with missing values in ultra-high dimensional feature
spaces. In this paper we propose a screening procedure based on the max-
imum likelihood estimator of the linear correlation coefficient under MCAR
and MAR missing mechanisms. We show the sure screening property of the
proposed method under the assumption of marginal bivariate normality of the
predictors and the response variable. When the marginal bivariate distribu-
tion is not known, the EM algorithm can be used to estimate the correlations.
Moreover, we propose a two-stage screening procedure that first uses screen-
ing for imputing the missing values of covariates, and then performs screening
with the rankings of the covariates according to their correlations with the re-
sponse. Simulations suggest that the use of the proposed screening procedure
yields higher probability of retaining the true significant predictors compared
to screening after simply removing records with missing values, especially for
covariate spaces with high correlations.

The remainder of the paper is organized as follows. Section 2 discusses the
asymptotic properties of the correlation coefficient estimated through maxi-
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mum likelihood in the presence of missing data and introduces the two pro-
posed screening methods. In Section 3 we investigate the finite-sample perfor-
mance of the proposed methods through Monte Carlo simulations with com-
parisons to existing methods. Finally, a data set is analyzed in Section 4 with
the new and existing screening procedures, and the results of the different
analyses are compared.

2 Sure Independence Screening

Let Y denote the response variable, X = (X1, . . . , Xd) the vector of avail-
able predictors, and with some abuse of notation, let Xij be the i-th obser-
vation of the j-th covariate. Assume that n samples from the response Y are
observed, however for the data pair (Y,Xj), only nj observations are complete,
that is, rj = n− nj observations of Xj , j = 1, . . . , d, are missing. We consider
the ultra-high dimensional setting where the dimension d of the predictor space
greatly exceeds the sample size n. The usual assumption in high-dimensional
analysis is sparsity of the covariate space, that is, only a small number of pre-
dictors belong to the true underlying regression model. In this case, variable
selection procedures that identify the significant predictors can improve model
interpretability with parsimonious representation and greatly increase model
accuracy by eliminating irrelevant covariates.

In [26] Sure Independence Screening, the covariates are ranked according
to their marginal correlation coefficient with the response. A simple applica-
tion of SIS would be to disregard the rows of observations whose X values are
missing, however this approach neglects the possible information contained in
the excluded data. A better method would be to estimate each marginal cor-
relation using all the intrinsic information that can be extracted from the full
dataset, through maximum likelihood or an algorithm such as the Expectation
Maximization (EM).

2.1 The correlation coefficient when data is missing

Denote the bivariate distribution of the random vector (Xj , Y ) by fXjY

with mean vector (µj , µy) and finite covariance matrixΣ = [σ2
j , σjσyρj ;σjσyρj ,

σ2
y]. It is well known that the maximum likelihood estimator of the linear cor-

relation coefficient ρj when nj complete pairs of observations are available,

namely ρ̃j =
∑nj

i=1(Xij − X̄j)(Yi− Ȳ )/
√∑nj

i=1(Xij − X̄j)2
∑nj

k=1(Yk − Ȳ )2, is

consistent and has asymptotic distribution ([3], p.122, Theorem 4.2.4)

√
nj(ρ̃j − ρj)

d→ N
(
0, (1− ρ2j )2

)
. (1)

Consider the case when the distribution of (Xj , Y ) is bivariate Gaussian
and denote the density fXjY by
N2(y, x|µj , µy;σ2

j , σ
2
y; ρj). When one of the variables has observations missing
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at random, the likelihood estimator of θj = (µj , µy, σ
2
j , σ

2
y, ρj) can actually be

derived algebraically. [2] writes the bivariate probability density as the product
of the marginal density of Y and the conditional density of Xj given Y , more
specifically

N2(y, x|µj , µy;σ2
j , σ

2
y; ρj) = N(y|µy, σ2

y)N(x|µj.y − βjyy, σ2
j.y),

where µj.y = µj − βjyµy, βjy = ρjσj/σy and σ2
j.y = σ2

j (1 − ρ2j ). In this way,

the parameter vector θj = (µj , µy, σ
2
j , σ

2
y, ρj) can be expressed in terms of the

parameter vector φj = (µy, σ
2
y, µj.y, βjy, σ

2
j.y), where µj = µj.y + βjyµy, σ

2
j =

β2
jyσ

2
y + σ2

j.y, and ρj = βjyσy/
√
β2
jyσ

2
y + σ2

j.y. [2] then shows that the log-

likelihood
`(·|φj) := −(2σ2

j.y)−1
∑nj

i=1(xij−µj.y−βjyyi)2−(1/2)(nj log(σ2
j.y)+n log(σ2

y))−
(2σ2

y)−1
∑n
i=1(yi − µy)2 is maximized at

µ̂y =
1

n

n∑
i=1

yi σ̂2
y =

1

n

n∑
i=1

(yi − µ̂y)2 β̂jy = sjy/s
2
y

µ̂j.y = x̄j − β̂jy ȳ σ̂2
j.y = s2j − s2jy/s2y,

where x̄j = 1
nj

∑nj

i=1 xij , ȳ = 1
nj

∑nj

i=1 yi, s
2
y = 1

nj

∑nj

i=1(yi−ȳ)2, s2j = 1
nj

∑nj

i=1(xij−
x̄j)

2, and sjy = 1
nj

∑nj

i=1(yi−ȳ)(xij−x̄j). Thus, the estimator θ̂j of the param-

eter vector θj can be written according to the estimator φ̂j , more specifically
for the correlation coefficient we have

ρ̂MLE
j = ρ̂j = ρ̃j

(
σ̂y
sy

)(
s2j(

s2j − (1− σ̂2
y/s

2
y)s2jy/s

2
y

))1/2

=
sjy
sjsy

σ̂y
sy

sj
σ̂j
, (2)

where σ̂2
j = s2j − (1 − σ̂2

y/s
2
y)s2jy/s

2
y. Note that the estimator ρ̂j is a weighted

version of ρ̃j , based on an adjustment computed with the ratio σ̂2
y/s

2
y, so that

when σ̂2
y = s2y, i.e. there is no missing data, we have ρ̂j = ρ̃j .

To gain insight about the efficiency of the MLE ρ̂j compared to that of the
estimator ρ̃j , which is based only on the complete pairs of observations, we
now look at the asymptotic distribution of ρ̂j . By computing the large sample

covariance matrix of (θ̂j − θj) through the inverse of the information matrix,
we obtain the following theorem.

Theorem 21 Assume nj complete pairs of observations from (Xj , Y ) and
an additional n − nj univariate observations of Y are available, where the
missing observations of X are missing at random (MAR). Assume (Xj , Y ) ∼
N2(µ, Σ), where µ = (µj , µy) and Σ = [σ2

j , ρjσjσy; ρjσjσy, σ2
y]. The max-

imum likelihood estimator of the correlation coefficient has, as n → ∞ and
nj →∞, asymptotic distribution(1− ρ̃2j )2

(
σ̂2
y

s2y

)(
1

nnj

) ρ̃2j (nj − n)/2 + n(
ρ̃2j (

σ̂2
y

s2y
− 1) + 1

)3


−1/2

(ρ̂j − ρj)
d→ N(0, 1).
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Note that if there is no missing data, i.e. n = nj and σ̂y = sy, the result in
Theorem 21 is equivalent to the convergence in (1).

An alternative method to the maximum likelihood estimator when an ex-
plicit solution of the likelihood equation is not feasible is to estimate the cor-
relation coefficient with the EM algorithm. The algorithm starts by filling in
the missing observations of the covariate Xj with some initial values, say the

average of the Xj observations. Denote this artificial data by {(X(0)
ij , Y )}ni=1.

The M step consists of maximizing the likelihood to find the parameter vector

θ̂
(0)

. The E step then replaces the missing values of the original data with

their expected value conditional on θ̂
(0)

. In the case of a Gaussian distribution
for example, the missing value Xij is replaced with

x̄
(0)
j +

σ̂
(0)
j

σ̂y
(yi − µ̂y),

where x̄
(0)
j and σ̂

(0)
j are the mean and variance respectively of the artificial

data {X(0)
ij }ni=1. The iteration of steps E and M yields the k-th artificial data

set {(X(k)
ij , Y )}ni=1. The algorithm stops when ||θ̂(k)j − θ̂

(k−1)
j || is suitably small.

When the number of available covariates is ultra-high, one would like to
reduce the dimension of the predictor space by screening out those covariates
that are likely to be uncorrelated with the response. In Section 2.2 we establish
the sure independence screening property when ranking the covariates accord-
ing to their estimated correlation ρ̂j with Y , computed after the imputation
of the missing values via maximum likelihood.

To conclude this section, we provide an insight on the advantages and possi-
ble disadvantages of using ρ̂j instead of ρ̃j as a ranking utility for screening. We
estimate via bootstrap the variance and bias of the correlation estimators ρ̂ and
ρ̃ of the correlation ρ between X and Y when (X,Y ) are bivariate Normal both
with variance 1. Figure 1 shows the bootstrap variance and average absolute
value of the bias of ρ̂ and ρ̃ computed from 1000 simulated datasets {Xi, Yi}ni=1,
for n = 400, when the true value of ρ ranges from -1 to 1 for the following miss-
ing patterns. Let ri = I(Xi is missing), where I() is the indicator function.
We consider the missing patterns: a) P (ri = 1|Yi) = exp(2Yi)/(1 + exp(2Yi)),
b) P (ri = 1|Yi < 0) = 0.3 and P (ri = 1|Yi ≥ 0) = 0.7, c) P (ri = 1||Yi| <
1) = 0.7 and P (ri = 1||Yi| ≥ 1) = 0.3, and d) P (ri = 1||Yi| < 1) = 0.7 and
P (ri = 1||Yi| < 1) = 0.3.

Note that the variance of ρ̂ is slightly lower for high (in absolute value)
values of ρ but higher for small (in absolute value) values of ρ for missing pat-
terns a) b) and d), however the opposite is observed in case c). As expected,
when X and Y are uncorrelated, the variance of ρ̂ is larger than that of ρ̃
since the complete pairs of observations may, by chance, contain spurious cor-
relation, inflating (or deflating) the estimator ρ̂. Interestingly, when most of
the missing data happens within the 2nd and 3rd quartiles of Y , that is case
c), the variance of ρ̂ is smaller than that of ρ̃, which may be due to the little
effect these missing values in the center of the data have on the correlation
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estimator. The bias of ρ̂ is always smaller than that of ρ̃ for large values (in
absolute value) of ρ, however it tends to be larger when X and Y have weak
correlation.

For the screening procedure this means that, when the covariate Xj is
uncorrelated with Y , the larger bias and variance of ρ̂j compared to that of ρ̃j
may cause the ranking assigned to Xj to be less accurate more often. Given
the assumption of sparsity of the model, this will likely cause a disarrangement
of many of the rankings assigned to the uncorrelated covariates. This effect
should also be observed with the use of ρ̃j as ranking utility, yet with a smaller
proportion of disarrangement given it has a slightly smaller bias when ρj ≈ 0.
On the other hand, the MLE ρ̂j is a more precise estimator (smaller bias and
variance) of the correlation coefficient ρj when |ρj | is large, so that the high
rankings of significant covariates will be more accurately maintained.
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Fig. 1 Bootstrap variance (top row) and absolute value of bias (bottom row) of ρ̂MLE

and ρ̃ (complete pairs only) from 1000 simulation runs for the missing patterns: from left
to right a) P (ri = 1|Yi) = exp(2Yi)/(1 + exp(2Yi)), b) P (ri = 1|Yi < 0) = 0.3 and
P (ri = 1|Yi ≥ 0) = 0.7, c) P (ri = 1||Yi| < 1) = 0.7 and P (ri = 1||Yi| ≥ 1) = 0.3, and d)
P (ri = 1||Yi| < 1) = 0.7 and P (ri = 1||Yi| < 1) = 0.3.
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2.2 Sure Screening Method

Consider the maximum likelihood estimator ρ̂j of ρj defined in (2). Let
A = {1 ≤ j ≤ p : βj 6= 0} be the active set of predictors that compose the
underlying true sparse model. The proposed method aims at identifying a set
Â = {j : |ρ̂j | ≥ cn−κ}, where c and κ are pre-specified threshold values defined
below, such that it contains with high probability the true set A.

For theoretical proofs of the sure screening property, assume the following
conditions:

(C1) for all small positive constants m, supd maxj=1,...,dE[exp(m(Yi −
Yk)(Xij −Xkj))] <∞,

(C2) minj∈A |ρj | ≥ 2cn−κ, for some constants c > 0 and 0 ≤ κ < 1/2.

Conditions C1 and C2 are similar to those considered in [26], [46], and
[24]. In fact, condition C1 holds when X and Y are uniformly bounded or
have a multivariate Normal distribution. Condition C2 assumes that the sig-
nal strength, measured by the true correlation coefficient ρj , is not too weak,
and can be detected by the proposed approach. Theorem 22 shows that the
estimated set Â contains the true set A with probability increasing to 1 expo-
nentially fast as the sample size increases.

Theorem 22 Under condition C1, for any 0 < γ < 1/2 − κ, there exists
constants c1 > 0 and c2 > 0 such that

P (|ρ̂j − ρj | ≥ cn−κj , for all j) ≤
d∑
j=1

O([exp(−c1n1−2(γ+κ)j ) + nj exp(−c2nγj )]), and

P ( max
j=1,...,d

|ρ̂j − ρj | ≥ cn−κj ) ≤ O(d exp(−c1 min
j
n
1−2(γ+κ)
j ) + max

j
{nj exp(−c2nγj )}).

Consequently, if C2 is also true, then

P (A ⊆ Â) ≥ 1−
∑
j∈A

O(exp(−c1 min
j
n
1−2(γ+κ)
j ) + max

j
{nj exp(−c2nγj )}).

The first part of Theorem 22 establishes the exponential convergence rate
in probability of the estimators ρ̂j to the true parameters ρj , j = 1, . . . , d. The
probability rate of their maximum absolute difference is based on the minimum
and maximum number of complete pairs of observations between the response
Y and the d covariates. Consequently, the second part of the theorem shows
that the estimated reduced set Â contains all covariates in the true model,
defined by A, with overwhelming probability, that is, the proposed screening
method posesses the sure screening property. Note that the total number of
covariates d, as well as the number of significant covariates in the model |A|
(size of A), are allowed to increase with the sample size n.

The individual convergence rates of ρ̂j are proportional to the rates of ρ̃j ,
namely, their order is based on nj , the number of complete of observations of
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each (Xj , Y ) pair. However, the convergence rate stated in Theorem 22 con-
tains information about the missing data extracted from the joint distribution
of Xj and Y , since the missing values were imputed with maximum likelihood
estimation. Such information is not taken into consideration when using ρ̃j .
Hence, although asymptotically equivalent, for small samples sizes the propor-
tion of information gained with the use of ρ̂j may increase the probability that

Â contains A.
Remark 1 Variable screening procedures may fail to detect significant

covariates that are marginally uncorrelated but jointly correlated with the
response. Another drawback of screening methods is the identification of spu-
rious correlations, that is, when the procedure selects covariates that are un-
correlated with the response but are correlated with significant covariates of
the model. An iterative version of the screening method proposed in this sec-
tion, similar to the Iterative SIS, Iterative DCSIS and INIS in [26], [46], and
[24] respectively, can be used to reduce the impact of these issues.

2.3 Two-Stage Screening

The objective of using the MLE ρ̂j , instead of ρ̃j , for the computation of

the set Â, is to improve the accuracy of the ranking. However, ρ̂j is calculated
using solely the pairwise data from (Xj , Y ), not taking into consideration the
information about the missing values of Xj , which is possibly also available in
the remainder of the covariates X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xd). This is
specially important in the case of highly correlated covariates. In fact, a more
precise estimation of the missing values of Xj can be obtained by maximizing
the likelihood function (or using the EM algorithm) of the entire set of available
variables (Y,X), which in consequence can yield a more precise estimation of
ρj , j = 1, . . . , d.

Although this approach would produce the most accurate values possible
for the missing data based on the available observations, it is an extreme
solution to variable screening due to its very high computational complexity.

Using all variables for imputation would require the estimation of d(d−1)
2 + d

parameters in the covariance matrix alone, which for large values of d quickly
becomes intractable (e.g. for d = 1000, the number of parameters in over
500000, and for d = 1000000, the number of parameters is over 500 billion).

To solve this problem, we propose a pre-screening step to select a set of
variables Bj which should be included in the likelihood for the estimation of
the correlation between Xj and Y . Let ηj denote the size of the set Bj . When
considering how large ηj should be, two separate interests need to be balanced.
By choosing ηj too small, one potentially misses out on useful information
about the missing values of Xj contained in other variables that may be highly
correlated with Xj that will not be included in Bj . Choosing ηj too large,
however, can lead to complicated high dimensional likelihoods that may be
intractable. We, therefore, seek a value of ηj that is large enough to contain
most useful information from other variables, while still being small enough to
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be computationally feasible. A simplistic solution is to pick a fixed moderate
value of ηj (e.g. 10 or 20) for all j. However, this can lead to biased imputation
when few (or even none) of the variables are correlated with the target variable
Xj . If all covariates were completely independent, by fixing ηj to be 10, for
instance, one would include the ten covariates that happen to be the most
highly correlated, but only by chance, with Xj . A better solution is to let the
data dictate the value of ηj . We propose choosing ηj based on the [7] false
discovery rate (FDR) correction on the hypothesis tests for the significance of
the correlation coefficient between Xj and Xk, k = 1, . . . , j − 1, j + 1, . . . , d.
For computational purposes, let the maximum value of ηj be Mη, which can
be useful when many covariates are highly correlated and the FDR method
would select computationally infeasible sizes ηj . In simulation studies we use
Mη = 10.

The proposed method, which we call Two-Stage screening, defines the set
Â = {j : |ρ̂Bj | ≥ cn−κ}, where ρ̂Bj is computed as follows.

1. Compute the maximum likelihood estimator ρ̂jk, k = 1, . . . , j − 1, j +
1, . . . , d, of the correlation coefficient ρjk between (Xj , Xk) from maximizing
the likelihood L(·|Xj , Xk, Y ).

2. Let πjk = 1 − Ftn−2

(∣∣∣∣ ρ̂jk√
(1−ρ̂jk/(n−2))

∣∣∣∣) , k = 1, . . . , j − 1, j + 1, . . . , d

be the p-value for the test H0 : ρjk = 0, where Ftn−2(·) is the cumulative
distribution function of the t-student distribution with n−2 degrees of freedom.

3. Let γj = max

{
` : πj(`) ≤ `

d−1
α∑d−1

j=1 j
−1

}
, where α is the desired level of

the test, and πj(1), . . . , πj(d−1) denote the ordered p-values from step 2.

4. Let ηj = min{γj ,Mη}.

5. Compute Bj = {k : |ρ̂jk| ≥ |ρ̂jk|(d−ηj)} where |ρ̂jk|(q) is the q-th order
statistic of |ρ̂j1|, · · · , |ρ̂j(j−1)|, |ρ̂j(j+1)|, · · · , |ρ̂jd|.

6. Finally compute ρ̂Bj as the maximum likelihood estimator of the correla-
tion between Y and Xj from maximizing the likelihood L(·|Xj , XBj

, Y ), where
XBj

= {X` : ` ∈ Bj}.

The response variable Y is included in the likelihood for the estimation of
each ρjk because we assume Y is fully observed and the missingness mechanism
can only depend on Y . Therefore, excluding Y from the likelihood in this
setting could lead to great loss of information, bias and, more importantly, a
violation of the MAR assumption. Obviously, the Two-Stage screening is more
computationally expensive than simply using the m.l.e. ρ̂j from the pairwise
likelihood. However, the number of parameters (mean vectors and variance
matrices) to be estimated in the Two-Stage screening method is significantly
reduced from computing all parameters in the likelihood of the full set of
predictors.
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3 Simulation Study

In this section we analyze the finite sample properties of the two proposed
screening methods. The first uses the MLE ρ̂j defined in (2) as ranking util-
ity and will from here on be called Maximum Likelihood Sure Independence
Screening (ML-SIS). The second method is the Two-Stage screening described
in Section 2.3, which will be denoted as TS-SIS. For comparison purposes, we
also include the results of the screening procedure that uses ρ̃j as ranking util-
ity, which is based only on the complete pairs of observations and is denoted
by CP-SIS (Complete Pairs-SIS), and the ideal screening that uses the full set
of n observations before missingness is imposed to the data, which is denoted
by FULL-SIS.

In this simulation study we generate the data from the linear model Y =
Xβ + ε, where ε ∼ N(0, σ2

ε ) and β = (β1, . . . , βd) with β1 = β2 = β22 =
2, β12 = 3 and βj = 0 for j /∈ {1, 2, 12, 22}. The predictor variables X are gen-
erated from a multivariate Normal distribution with zero mean and covariance
matrix Σ = (σk`)d×d for three different covariance structures

1. σk` = 0.5|k−`| for all k, ` (medium exponential decay),
2. σk` = 0.9|k−`| for all k, ` (large exponential decay),

3. σk` =

{
1 if k = `

0.6 if k 6= `
(full matrix of medium correlation).

We fix the sample size n to be 100 and the number of variables d = 1000. After
the generation of the dataset, the following four missing data mechanisms are
imposed. Let qγ be the empirical γ-th percentile of the observations {yi}ni=1

and let rij = I(Xij is missing) for i = 1, . . . , n and j = 1, . . . , d, and consider

– MAR0 (MCAR): P (rij = 1) = 0.25, that is, Xij is missing completely at
random (MCAR).

– MAR1: P (rij = 1|Yi ≤ 0) = 0.65 and P (rij = 1|Yi > 0) = 0.35.

– MAR2: P (rij = 1) = expit(0.15Yi) = e0.15Yi

1+e0.15Yi
.

– MAR3: P (rij = 1) = expit(−1 + 0.2|Yi − q0.50|) = e−1+0.2|Yi−q0.50|

1+e−1+0.2|Yi−q0.50| .

Figure 2 illustrates the four missingness scenarios considered.

Fig. 2 Visual illustration of the missingness mechanisms considered in the simulation study.
Columns represent the d = 1000 covariates: red is missing and black is observed.
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Note that in this simulation we consider for simplicity the case where the
missing pattern of each predictor depends on the fully observed response vari-
able, however the missing pattern could depend on other fully observed vari-
ables. We repeat each experiment 500 times, and evaluate the performance of
the screening methods by computing the minimal model size S to include all
active predictors.

Tables 1 and 2 show the results for the exponential decay covariance struc-
ture and σε = 4 and σε = 8 respectively. As expected, the ideal situation where
no observations are missing (FULL-SIS) yields the smallest model sizes, while
the screening methods applied to datasets with missing observations (TS-SIS,
ML-SIS and CP-SIS) require a larger model size to include all active predic-
tors.

MAR Method σk` = 0.5|k−`| σk` = 0.9|k−`|

50% 75% 90% 95% 50% 75% 90% 95%
MAR0 FULL-SIS 7.00 22.20 71.30 122.60 20.00 22.00 22.10 23.00

TS-SIS 16.00 52.20 153.20 262.10 20.00 22.00 23.00 24.00
ML-SIS 17.50 53.20 168.40 298.00 20.00 23.00 27.00 36.00
CP-SIS 17.00 52.00 170.00 295.50 20.00 23.00 27.00 36.00

MAR1 FULL-SIS 7.00 22.20 71.30 122.60 20.00 22.00 22.10 23.00
TS-SIS 75.50 213.50 534.10 723.50 20.00 23.00 27.10 34.00
ML-SIS 79.00 219.80 526.90 722.20 22.00 34.00 73.00 130.30
CP-SIS 77.00 235.20 535.20 734.20 22.00 33.20 83.20 128.00

MAR2 FULL-SIS 7.00 22.20 71.30 122.60 20.00 22.00 22.10 23.00
TS-SIS 107.50 235.20 489.80 641.80 20.00 24.00 35.10 54.10
ML-SIS 108.00 236.20 491.50 640.30 23.00 38.00 100.20 217.10
CP-SIS 110.00 248.20 517.10 653.10 23.00 40.20 106.00 226.10

MAR3 FULL-SIS 7.00 22.20 71.30 122.60 20.00 22.00 22.10 23.00
TS-SIS 190.50 419.20 676.10 828.20 23.00 33.20 75.20 124.40
ML-SIS 191.50 424.00 666.50 808.90 50.00 112.20 256.70 423.10
CP-SIS 200.00 425.50 677.00 828.70 50.00 121.20 277.90 465.00

Table 1 Percentiles of the minimum model size S out of 500 replications for exponential
decay covariance structure of predictors and σε = 4.

It is interesting to note that most percentiles of model sizes in the case
σk` = 0.5|k−`| are larger than those when σk` = 0.9|k−`|. This may be due
to the fact that there is a chance any of the d covariates can randomly be-
come correlated with the response variable when observations go missing. On
the other hand, when there is high correlation between covariates, the effec-
tive dimension of the covariates is less then d, so that less random spurious
correlation will appear when missingness is imposed.

When covariates have relatively low correlation (σk` = 0.5|k−`|), all meth-
ods have similar performance for all missingness patterns considered. When
σε = 4, FULL-SIS requires an average set size of 71.3 to capture all of the true
covariates 90% of the time. For other methods the average 90-th percentile of
S is approximately 163.8, 531.2, 499.4, and 673.2 for MAR0, MAR1, MAR2,
and MAR3 respectively. When σε = 8, much larger model sizes are needed to



Sure Independence Screening in the Presence of Missing Data 13

MAR Method σk` = 0.5|k−`| σk` = 0.9|k−`|

50% 75% 90% 95% 50% 75% 90% 95%
MAR0 FULL-SIS 84.00 230.00 481.80 695.20 21.00 28.00 55.10 91.00

TS-SIS 155.00 359.20 671.60 848.00 22.00 30.00 64.60 119.10
ML-SIS 163.00 376.20 639.10 875.00 25.50 47.20 128.30 223.10
CP-SIS 165.50 378.50 655.40 871.10 25.00 46.00 130.30 211.00

MAR1 FULL-SIS 84.00 230.00 481.80 695.20 21.00 28.00 55.10 91.00
TS-SIS 331.00 609.00 834.50 930.00 25.00 48.00 112.50 211.40
ML-SIS 328.50 608.20 844.20 934.00 60.50 150.00 342.30 474.10
CP-SIS 334.50 600.20 848.00 937.10 54.50 148.50 359.00 484.30

MAR2 FULL-SIS 84.00 230.00 481.80 695.20 21.00 28.00 55.10 91.00
TS-SIS 485.00 708.00 867.00 935.00 40.00 108.20 278.40 447.20
ML-SIS 473.00 715.80 869.00 934.00 107.00 262.20 481.30 721.30
CP-SIS 482.00 712.50 880.00 934.00 102.00 266.20 492.00 722.00

MAR3 FULL-SIS 84.00 228.20 472.90 695.20 21.00 28.00 55.10 91.00
TS-SIS 669.50 864.50 964.00 983.00 215.00 489.00 742.10 869.10
ML-SIS 670.50 862.50 963.00 980.10 403.50 719.20 881.00 937.30
CP-SIS 678.50 870.00 962.20 982.00 405.50 733.00 887.10 944.00

Table 2 Percentiles of the minimum model size S out of 500 replications for exponential
decay covariance structure of predictors and σε = 8.

capture all the true predictors 90% of the time, from 481.8 for FULL-SIS to
as large as 964 for the other methods.

When there are some covariates that are highly correlated to each other
(σk` = 0.9|k−`|) and σε = 4, all methods have similar performance for MAR0,
however, the advantage of TS-SIS over the other procedures becomes clear
for MAR1, MAR2, and MAR3. Specifically for MAR1 and MAR2, TS-SIS
maintains all percentiles very close to that of FULL-SIS, and for MAR3 the
95th percentile is just above the sample size 100. On the other hand, both
CP-SIS and ML-SIS require much larger set sizes to include all significant
predictors in comparison to TS-SIS, reaching up to 4 times TS-SIS set size for
high percentiles.

For the case when the residuals have large variance, that is σε = 8, the set
sizes required by all methods become much larger. When there is low correla-
tion between covariates, similar results to those with σε = 4 are obtained. For
large exponential decay correlation, TS-SIS maintains set sizes much smaller
than those of the other methods in all cases, with set sizes about the order of
the sample size n = 100 up to the 95th, 90th, and 75th percentiles for MAR0,
MAR1, and MAR2 respectively. However, for CP-SIS and ML-SIS the quan-
tiles near the sample size correspond to the 90th, 75th, and 50th for MAR0,
MAR1, and MAR2 respectively. MAR3 poses a challenge for all methods deal-
ing with the missing data given the large variance of the errors, with TS-SIS
having again much lower set sizes especially below the 75th percentile.

Table 3 shows the results for covariance structure 3., full matrix of medium
correlation, with σε = 1 and σε = 4, which poses a challenge to all methods
including FULL-SIS. This constant correlation between all covariates inflates
S because of the numerous spurious correlations introduced in the data, which
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causes serious disarrangement of the screening rankings. In all missing data sce-
narios considered, ML-SIS outperformed CP-SIS. Under MCAR and MAR3,
TS-SIS has set sizes only slightly larger than those of ML-SIS, and hence
smaller than those of CP-SIS. However, under MAR1 and MAR2, TS-SIS re-
quires larger sets than CP-SIS to include all active predictors. This is probably
due to the fact that, when observations go missing more at one end of the spec-
trum (see Figure 2 for MAR1 and MAR2), several spurious correlations with
each gene are created with possible inaccurate relationships. This may cause
the first step of the TS-SIS method to select covariates that do not have useful
information about the missing values of the gene to be imputed. Nevertheless,
the performance of TS-SIS could be improved with an increase in the number
of covariates allowed for the first step in the algorithm, namely Mη, however
this increases the computational burden and was not investigated.

MAR Method σε = 1 σε = 4

50% 75% 90% 95% 50% 75% 90% 95%
MAR0 FULL-SIS 16.00 48.00 116.30 217.00 26.50 78.20 167.10 237.10

TS-SIS 50.00 122.50 245.10 356.00 74.50 185.00 305.00 425.00
ML-SIS 41.00 103.20 216.10 338.00 66.50 161.20 290.00 366.60
CP-SIS 59.00 133.00 254.10 393.20 89.00 186.50 338.30 455.40

MAR1 FULL-SIS 16.00 48.00 116.30 217.00 26.50 78.20 167.10 237.10
TS-SIS 222.00 387.20 604.30 719.50 248.50 432.00 655.40 736.10
ML-SIS 115.00 217.50 348.50 471.10 149.00 260.20 460.50 590.70
CP-SIS 160.00 323.00 473.00 585.00 192.00 360.20 540.40 665.50

MAR2 FULL-SIS 16.00 48.00 116.30 217.00 26.50 78.20 167.10 237.10
TS-SIS 218.00 407.00 634.20 770.10 257.00 470.00 692.20 802.00
ML-SIS 129.00 275.50 441.20 587.80 173.00 348.20 510.00 648.20
CP-SIS 174.00 313.20 547.30 677.00 223.00 394.50 582.00 715.10

MAR3 FULL-SIS 16.00 48.00 116.30 217.00 26.50 78.20 167.10 237.10
TS-SIS 227.00 426.00 611.40 715.30 296.00 502.20 696.70 796.10
ML-SIS 226.50 402.00 613.30 709.10 276.00 461.00 663.10 778.40
CP-SIS 297.50 477.00 675.10 767.10 334.50 541.00 719.50 830.20

Table 3 Percentiles of the minimum model size S out of 500 replications for full matrix of
medium correlation.

Simulations not reported here show that in a scenario where P (rij = 1|Yi ≤
q.25) = P (rij = 1|Yi > q.75) = 0, and P (rij = 1|q.25 < Yi ≤ q.75) = p ∼
beta(50, 50), that is, when data is missing in the middle of Y (opposite of
MAR3), all screening methods have similar performance. This is likely due to
the fact that missing observations in the center of the data do not cause much
loss of information.

For additional insight on the properties of the screening methods, we com-
pute P, the probability that all significant predictors are selected for a user-
specified model size for the exponential decay correlation cases. Table 4 shows
the results for model sizes d1 = n − 1, d2 = 2n/log(n), and d3 = nlog(n).
When the predictor variables have low correlation, unsurprisingly, there is lit-
tle difference in the probability of capturing all the relevant variables between
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CP-SIS, ML-SIS, and TS-SIS. However, there are some covariates with high
correlation, TS-SIS uniformly outperforms both CP-SIS and ML-SIS, with
gain in probability reaching up to 29%. Tables not included here for the sake
of space show that the proposed ML-SIS outperforms TS-SIS and CP-SIS for
the case of a full matrix of constant correlation, as can be expected from the
conclusions based on Table 3.

σε = 4 σε=8

Size σk` MAR FULL-SIS TS-SIS ML-SIS CP-SIS FULL-SIS TS-SIS ML-SIS CP-SIS
d1 0.5|k−`| MAR0 0.93 0.85 0.85 0.84 0.54 0.40 0.39 0.39

MAR1 0.93 0.56 0.55 0.56 0.54 0.15 0.14 0.15
MAR2 0.93 0.49 0.49 0.47 0.54 0.08 0.07 0.08
MAR3 0.93 0.31 0.32 0.31 0.54 0.01 0.01 0.01

0.9|k−`| MAR0 1.00 1.00 0.99 0.99 0.96 0.94 0.85 0.86
MAR1 1.00 0.99 0.93 0.93 0.96 0.89 0.65 0.67
MAR2 1.00 0.98 0.90 0.89 0.96 0.73 0.49 0.49
MAR3 1.00 0.93 0.72 0.70 0.96 0.25 0.09 0.09

d2 0.5|k−`| MAR0 0.74 0.57 0.55 0.56 0.20 0.08 0.05 0.06
MAR1 0.74 0.20 0.20 0.22 0.20 0.01 0.01 0.01
MAR2 0.74 0.16 0.15 0.16 0.20 0.00 0.00 0.00
MAR3 0.74 0.05 0.04 0.04 0.20 0.00 0.00 0.00

0.9|k−`| MAR0 0.70 0.71 0.65 0.65 0.51 0.46 0.36 0.36
MAR1 0.70 0.64 0.45 0.49 0.51 0.38 0.15 0.16
MAR2 0.70 0.60 0.41 0.41 0.51 0.24 0.08 0.08
MAR3 0.70 0.43 0.17 0.19 0.52 0.03 0.01 0.01

d3 0.5|k−`| MAR0 0.85 0.72 0.71 0.71 0.36 0.20 0.19 0.18
MAR1 0.85 0.34 0.34 0.35 0.36 0.04 0.04 0.05
MAR2 0.85 0.27 0.27 0.29 0.36 0.02 0.02 0.02
MAR3 0.85 0.12 0.12 0.13 0.36 0.00 0.00 0.00

0.9|k−`| MAR0 0.99 0.99 0.97 0.96 0.86 0.84 0.73 0.73
MAR1 0.99 0.97 0.82 0.81 0.86 0.72 0.39 0.41
MAR2 0.99 0.93 0.78 0.76 0.86 0.53 0.27 0.27
MAR3 0.99 0.82 0.44 0.46 0.86 0.11 0.02 0.02

Table 4 The proportion P that all significant predictors are selected for user-specified
model sizes d1 = n− 1, d2 = n/log(n), and d3 = 2n/log(n).

4 Real data application

In this section we present an application of the proposed method to a real
data set. The data in this example comes from the gene expression study on
prostate cancer of [71]. The data consists of 104 observations of cDNA micro-
array data across 20,000 gene locations. Of these 20,000 genes, 18,106 contain
at least 1 missing value and 2,570 variables are missing more than half of
their observations, making this data set an ideal example with p >> n and a
substantial amount of missing data.

As a preliminary step, prior to any application of screening, genes were
excluded from the analysis if they were missing 90 or more of the 104 ob-
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servations, since imputation of 90% of data missing is unreliable. Hence the
number of remaining genes in the dataset is 19,363. We perform four different
analysis using BRCA1, BRCA2 ([62,10]), HOXB13 ([22,56,6,61]), and STAT3
([1,60]) as response variables in each analysis, which have all been previously
associated with prostate cancer.

These four genes have different numbers of missing observations. Specif-
ically, all 104 values are observed in STAT3, whereas BRCA1, BRCA2, and
HOXB13 have 81, 77, and 102 values observed, respectively. Thus, only rows
with an observed target variable are considered, i.e. only 81 observations are
used in the BRCA1 analysis for instance. For each target gene as response
variable, screening is performed to find the set of genes with highest predic-
tive power among all available genes in the data using TS-SIS, ML-SIS, and
CP-SIS. We examine the results for a fixed set size of n

log(n) .

Fig. 3 Correlation plot of 100 randomly chosen genes arranged using their first principal
component: white means 0 correlation, dark blur means high correlation in absolute value
and red means not enough data to compute correlation.

Figure 3 shows the correlation plot of 100 randomly chosen genes arranged
using first principal component order. It can be seen that each gene has high
correlation with only a few other genes. This structure suggests that the pro-
posed Two-Stage screening method should be used since, as seen in simula-
tions, it yields the highest probability of retaining the important predictors.
It is also prudent to evaluate the top predictors ranked by ML-SIS, as in some
cases medium-to-high correlation is observed among several genes. Since the
true set of important predictor genes for each case is unknown, we compare
the predictor genes top ranked by each method.

The top 22 genes ranked for STAT3 as the response gene are displayed in
Table 5. There are 7 genes that are in the top ranked in all three screen-
ing methods, namely IMAGE.35807, CCNG1, NFIX.2, SSC.23, ADRA2A,
CCSER2.2, and IMAGE.1377071. Five genes are in the top ranked by CP-
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SIS only (SSC.13, IMAGE.46647, RPL10.1, CNBP.2, and ANAPC16) and
four genes are identified by TS-SIS only (DPYSL2.1, ST8SIA2, PXDN, and
PTCH1.1). There are no genes that are uniquely ranked as top 22 by the ML-
SIS method. Note that TS-SIS and ML-SIS select genes ST8SIA2 and PTCH1,
which are not selected by CP-SIS. ST8SIA2 is potentially related to the ex-
pression of polysialic acid (PSA) ([21]), which has been found to be associated
with neuroendocrine tumor progression. Additionally, PTCH1.1, which acts
as a receptor for sonic hedgehog, has been found to be related to certain types
of tumors ([76]).

CP-SIS ML-SIS TS-SIS
IMAGE.35807 CNG1 CCNG1
CNTRL.A20 SSC.23 SSC.23
GCC1 IMAGE.35807 CNTRL.CASP14
CCNG1 AP3D1 SSC.83
RAB11B CNTRL.A20 EGFR.1
NFIX.2 CNTRL.CASP14 ARNTL
GKAP1 SPPL2B IMAGE.35807
SSC.13 SSC.83 SLC9A9.1
SSC.23 EGFR.1 ADRA2A
IMAGE.46647 GCC1 IMAGE.1377071
SPPL2B ARNTL EMX1
CNTRL.IRAK2 CNTRL.IRAK2 IMAGE.125665
NBL1 GKAP1 RAB11B
ADRA2A ADRA2A SSC.2
IMAGE.839579 EMX1 NFIX.2
RPL10.1 IMAGE.1377071 DPYSL2.1
IMAGE.795840 SLC9A9.1 CCSER2.2
CCSER2.2 SSC.2 ST8SIA2
CNBP.2 IMAGE.125665 PXDN
ANAPC16 IMAGE.795840 PTCH1.1
IMAGE.1377071 NFIX.2 IMAGE.839579
AP3D1 CCSER2.2 NBL1

]

Table 5 Top genes selected by each of the three screening methods for STAT3 as the
response variable.

The 18 genes top ranked with BRCA1 as the response variable are shown
in Table 6. Of these, 11 of them are found using all three methods. The sets
chosen by ML-SIS and TS-SIS are exactly the same and yield seven genes
that are not selected by CP-SIS, namely GRIA2, SMYD2, ZNF599, SSR1,
LRRC8A, HDGFRP3, and RNF208. SMYD2 is notable as it has previously
been found to be related to gastric cancer ([42]), and LRRC8A has been found
to be associated with volume-regulated channels for anions (VRAC) which
have reduced levels in drug resistant cancer cells ([33]).

With 77 observed values of BRCA2, n
log(n) yields a set size of 17. The result

is found in Table 7. The 5 genes that are ranked top 17 by both ML-SIS and
TS-SIS but not CP-SIS are FTO, IMAGE.139490, TECRL, RAB2A.1, and
SSC.44. CNTRL.RIP is chosen by ML-SIS only and SLC6A15.2 is chosen by
TS-SIS only. Two genes that are identified by ML-SIS and TS-SIS that are of
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CP-SIS ML-SIS TS-SIS
IMAGE.289742 NUDT1 NUDT1
CNTRL.IRAK2 GRIA2 GRIA2
FUT8 IMAGE.289742 IMAGE.289742
COL6A2.1 SLC1A6 SLC1A6
ZNF92 CNTRL.IRAK2 CNTRL.IRAK2
HRSP12 SMYD2 SMYD2
SOX17 ZNF599 ZNF599
RNF113A SSR1 SSR1
NUDT1 HRSP12 HRSP12
NOL8.1 IMAGE.825583 LRRC8A
IMAGE.78217 LRRC8A IMAGE.825583
SLC1A6 GJA4.1 GJA4.1
IMAGE.825583 FUT8 FUT8
IMAGE.309119 IMAGE.78217 IMAGE.78217
GJA4.1 NOL8.1 NOL8.1
AP2B1 COL6A2.1 COL6A2.1
IMAGE.139490 HDGFRP3 HDGFRP3
IMAGE.898259 3 RNF208 RNF208

Table 6 Top genes selected by each of the three screening methods examined with BRCA1
as the response variable

interest are FTO, which has been found to be associated with cancer ([36])
and RAB2A.1, which plays a role in breast cancer ([54]).

CP-SIS ML-SIS TS-SIS
SSC.215 SSC.215 SSC.215
IMAGE.731426 SEMA3D SEMA3D
SEMA3D CCNG1 CCNG1
CCNG1 IMAGE.731426 IMAGE.731426
SYBU FTO FTO
ITIH2 ITIH2 ITIH2
GDPD3 IMAGE.139490 IMAGE.139490
IL10RB GDPD3 TRAF4
C4BPA RAB2A.1 GDPD3
TRAF4 TRAF4 PLIN3.1
KLRC2 TECRL TECRL
KLHDC9 PLIN3.1 RAB2A.1
SSC.52 ST8SIA2 ST8SIA2
PLIN3.1 CNTRL.RIP IMAGE.839829
ST8SIA2 IMAGE.839829 SSC.44
IMAGE.839829 SSC.44 C4BPA
LIMK1 C4BPA SLC6A15.2

Table 7 Top genes selected by each of the three screening methods examined with BRCA2
as the response variable

The HOXB13 gene has 102 observations in this data yielding a set size
of 22. Results are shown in Table 8. There are 9 genes ranked top 22 by all
three methods. Genes IMAGE.201264 and SSC.48 are selected by TS-SIS and
ML-SIS but not by CP-SIS. The most notable gene top ranked is CDK9 which
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has been shown to be related to prostate cancer [64] and is chosen by CP-SIS
and ML-SIS, however missed by TS-SIS.

CP-SIS ML-SIS TS-SIS
ERGIC1 ERGIC1 ERGIC1
GOLGA7 AADAT GOLGA7
CR1L SETD7 CR1L
AADAT ANK3.1 HINFP
HINFP CDK9 AADAT
ARF1 IMAGE.201264 ARF1
SETD7 TRIM64 SETD7
SLC39A13 SSC.48 ANK3.1
CDK9 LRRIQ3 SLC39A13
ANK3.1 GMPR PPP1CA
PPP1CA PPP1CA.1 IMAGE.201264
FAAH TXNRD2.1 SSC.48
TRIM64 VIPR1 TRIM64
ACLY.1 APLP2 FAAH
GMPR NAPA ACLY.1
CEBPD CAPNS1 LRRIQ3
RAB11B LTBP4 CEBPD
PPP1CA.1 ATP5J2 GMPR
LRRIQ3 IRF3 RAB11B
ERBB2.1 CLSTN1 PPP1CA.1
VIPR1 IMAGE.884766 ERBB2.1
APLP2 CSPG4 APLP2

Table 8 Top genes selected by each of the three screening methods examined with HOXB13
as the response variable

5 Discussion

In this paper we study the problem of performing ultra-high dimensional
variable screening in the presence of incomplete data that is missing at ran-
dom. The sure screening property is shown for the screening method that uses
as ranking utility the marginal correlation coefficient of each predictor and
the response that is computed after imputation of the missing values with
maximum likelihood (ML-SIS). In order to use the information about the
missing values of each predictor contained in other predictors, we propose a
new screening method composed of two steps: for each predictor, first select
the other predictor variables that significantly correlate with it and perform
the imputation of its missing values using maximum likelihood on their joint
distribution together with the response variable; then perform screening using
the correlation coefficient computed after the imputation as ranking utility.
This Two-Stage method, called TS-SIS, was compared in simulation studies
to the ML-SIS method and screening performed after dropping the missing
rows of observations. First, it is unsurprising but important to note that there
were no scenarios under consideration in the simulation study where CP-SIS
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outperformed MLE-SIS. TS-SIS outperforms both complete case analysis and
MLE when covariates are highly correlated with a few other covariates (i.e.
σk` = 0.9|k−`|). Alternatively, when the covariance structure of the data has
moderate correlation throughout (i.e. σk` = 0.6 for all k,`) among all pair of
variables, there are certain patterns of missingness where we observe TS-SIS
performing worse than not only MLE, but also complete case analysis.

Simulations not reported in the paper for the sake of brevity suggest that
the performance of the screening methods considered follow a similar pat-
tern when the assumption of normality is not valid. Note that the use of the
EM algorithm to estimate the parameters allows one to perform the MLE or
the two-stage screening for any type of distributions, while empirical results
support the suggestion of using these methods instead of simply using the
complete pairwise observations.

The manuscript then concludes with a real data application of micro array
dataset from a prostate cancer study and compares the results of the three
methods. Four different response variables (STAT3, HOXB13, BRCA1, and
BRCA2) that are all associated with prostate cancer were considered as the
response variable for screening and in all of those cases there was significant
overlap in the sets that were chosen between the three methods. In all cases,
we observe genes in the top genes ranked by TS-SIS or ML-SIS that are not in
the top ranked by CP-SIS. Because most genes are correlated with a few other
genes, we suggest the use of TS-SIS to select the top set of active predictors.

In conclusion, we do not recommend the use of only complete pair of ob-
servations CP-SIS for screening on a data set with missing data. Instead, we
recommend first studying the empirical structure of the covariance matrix. If
there is high correlation between many variables, the proposed MLE-SIS is rec-
ommended, whereas if high correlation is observed between a few predictors,
the proposed Two-Stage screening is recommended.
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6 Appendix

Proof of Theorem 21

Proof Recall that the log-likelihood of φj is
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Since ρ̂j is the maximum likelihood estimator computed from a Normal dis-
tribution, it follows that [D(ρj)H

−1
φ
| ˆφj

D(ρj)
T ]−1/2(ρ̂j − ρj) converges to a

standard Normal distribution.
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Proof of Theorem 22

Proof First note that the estimated covariance sjy based on the completely
observed pairs is, except for a scale of (nj − 1)/(nj), a U-statistic (Kowalski
and Tu, 2007)
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1
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i=1Xij and hj(Yi, Yk, Xij , Xkj) = (Yi − Yk)(Xij −Xkj) is the

kernel of the U-statistic s∗jy. Note that E(s∗jy) = σjy := σjσyρj .

We follow steps similar to those in [46]. First write
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σjy,2 := E(s∗jy,2) = E[hj(Yi, Yk, Xij , Xkj)I(hj(Yi, Yk, Xij , Xkj) > M)].

Because s∗jy,1 can be written as an average of averages of i.i.d. random variables
([66] - sec. 5.1.6), for any t > 0 and ε > 0 we have
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where m = [nj/2] and the last inequality follows from Theorem 5.6.1A in [66].
Choose t = 4εm/M2 so that P (s∗jy,1 − σjy,1 ≥ ε) ≤ exp(−2ε2m/M2) and by
symmetry of the U-statistics

P (|s∗jy,1 − σjy,1| ≥ ε) ≤ 2 exp(−2ε2m/M2). (3)
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Now we deal with s∗jy,2. Note that using Cauchy-Schwarz and Markov inequal-
ities we have

σ2
jy,2 ≤ E[(Yi − Yk)2(Xij −Xkj)

2]P [(Yi − Yk)(Xij −Xkj) ≥M ]

≤ E[(Yi − Yk)2(Xij −Xkj)
2]E[exp(s(Yi − Yk)(Xij −Xkj))] exp(−sM)

for any s > 0. Using assumptions C1, if we chooseM = cnγj for 0 < γ < 1/2−k,
then σjy,2 ≤ ε/2 when nj is sufficiently large. Consequently,

P (|s∗jy,2 − σjy,2| > ε) ≤ P (|s∗jy,2| > ε/2) ≤ P (∪{(Yi − Yk)(Xij −Xkj) > M}
≤ njP ((Yi − Yk)(Xij −Xkj) > M)

= njP [exp(s(Yi − Yk)(Xij −Xkj)) > exp(sM)]

≤ nj exp(−sM)E(exp{s(Yi − Yk)(Xij −Xkj)}) = njC exp(−sM),

for any s > 0. Hence

P (|s∗jy − σjy| > 2ε) = P (|s∗jy,1 + s∗jy,2 − σjy,1 − σjy,2| ≥ 2ε)

≤ P (|s∗jy,1 − σjy,1| > ε) + P (|s∗jy,2 − σjy,2| > ε)
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. Using similar arguments, one can show that the

convergence rate of sy, sj , σ̂y and σ̂j have the same form of (4) and hence by
Lemma S4 in [50] so does ρ̂j , so that we have

P (|ρ̂j − ρj | ≥ cn−κj ) ≤ P (|ρ̂j − ρj | ≥ cn−κj )
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If A 6⊆ Â, then there exists a j ∈ A such that ρ̂j < cn−κj . From condition

C2 it follows that |ρ̂j − ρj | > cn−κj for some j ∈ A. This implies that {A 6⊆
Â} ⊆ {|ρ̂j − ρj | > cn−κj for some j ∈ A}. Then

P (A ⊆ Â) ≥ P (|ρ̂j − ρj | ≤ cn−κj , for all j ∈ A) = 1− P (|ρ̂j − ρj | > cn−κj , for some j ∈ A)

≥ 1−
∑
j∈A

P (|ρ̂j − ρj | > cn−κj )

= 1−
∑
j∈A

O(exp(−c1 min
j
n
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j
{nj exp(−c2nγj )}).
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