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ABSTRACT

Soil extracellular enzyme activity (EEA) is a strong predictor for soil health. EEA cycle 

nutrients within terrestrial systems, processing carbon, nitrogen, and phosphorous, while also 

mineralizing and stabilizing gas. These processes are susceptible to disruption from global 

change drivers. How EEA responds to global change drivers remains poorly understood, 

however. My objectives were to examine how EEA is affected by drought treatment.

Here I conduct a global meta-analysis to observe the EEA of 7 enzymes in response to 

drought using 384 paired observations from 37 studies. These studies are globally distributed and 

encompass multiple ecosystems. I then calculated natural log response ratios of EEA values 

under drought treatment to the control. I tested whether the natural log response ratios differed 

from zero, and whether they were influenced drought intensity, drought duration, soil depth and 

aridity. Within this analysis, I evaluated the response of enzymes by distinguishing class, nutrient 

cycle, and individual identity. This allowed for the comparison between hydrolytic and oxidative 

functioning while also examining how specific nutrient cycles were impacted. 

On average across all studies, EEA did not show a significant response to drought 

treatments. When analyzed by individual groups, the responses of neither hydrolytic nor 

oxidative enzymes to drought were statistically significant on average. Similarly, there was no 

significant responses when EEA were classified by element cycles, i.e., carbon, nitrogen, and 

phosphorous. Among all individual enzymes studied, only alkaline phosphomonoesterase 

displayed the significant response to drought treatment, showing reduced average alkaline 

phosphomonoesterase activity under drought than in the control. Further, contrary to our 

hypothesis, drought intensity and drought duration on average did not significantly influence 

EEA response to drought. However, the responses of EEA were dependent on soil depth and 



4

aridity EEA in the topsoil’s (<10 cm) experienced decreases in activity, whereas those in subsoil 

(>10 cm in depth) experienced significant increases. Across a global gradient of aridity index 

(0.092 to 2.28), the responses of EEAs to drought treatments decreased as climatic humidity 

increased, showing null or even positive responses in arid climates but negative responses in 

humid climates. 

My finding showed the evidence that responses of EEA to drought are EEA type-, soil 

depth- and aridity-dependent responses. This study indicates a stimulation of enzyme activity in 

deeper soil layers under drought conditions. Furthermore, this increase in EEA response to 

drought is exacerbated by aridity, wherein more arid regions showed higher susceptibility to 

increases in EEA under drought. Therefore, arid regions can be expected to be most adversely 

affected by drought, through the potential vulnerability of soil organic matter loss due to an 

increase in EEA. 

Key words: soil enzyme, enzyme, drought, terrestrial nutrient cycling
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CHAPTER ONE: GENERAL INTRODUCTION

Anthropogenic activity has contributed to increases in land use intensity (Herold et al. 2014), 

nitrogen deposition (Fenn et al. 2003), biodiversity loss (Duran et al. 2020), and has impacted 

global climate systems leading to altered precipitation patterns . In response to these increased 

pressures to natural systems, the Intergovernmental Panel on Climate Change created the IPCC 

2015 report, which generated multiple predicted climate scenarios in response to anthropogenic 

activities (Pachauri et al. 2014). These climatic predictions anticipate changes in regional 

precipitation patterns and temperatures that may adversely impact terrestrial systems (Pachauri et 

al. 2014). Recent research has focused on the impact these projected precipitation changes will 

have on terrestrial ecosystem functioning (Alster et al. 2013, Knapp et al. 2015, Hedo de 

Santiago et al. 2016, Li 2018, Hinojosa et al. 2019). 

Following the release of the IPCC 2015 report, projected climate scenarios, including 

increases in atmospheric CO2, and elevated mean temperatures (Pachauri et al. 2014), were 

examined across multiple sites globally. Additionally, nitrogen deposition rates are expected to 

increase as a result of anthropogenic activities (Pachauri et al. 2014). In response, new 

experimental designs such as FACE (Free-air CO2 enrichment) have been developed to examine 

ecosystem processes under projected climatic conditions (Souza et al. 2017). Collectively, this 

work has contributed to a better understanding of global change drivers on net primary 

production, plant biomass, and respiration rates (Sardans et al. 2017). Studies investigating global 

change drivers on soil microbes have focused on traits such as microbial biomass carbon, fungi to 

bacteria ratio, and relative microbial abundance (Zhang et al. 2018). However, an oversight exists 

between studies examining global change drivers and the effects that they have on soil 

extracellular enzyme activity (EEA).
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Global change drivers threaten natural systems by disrupting historical climate patterns 

and biological diversity, leading to altered biological functions responsible for nutrient cycling 

(Pachauri et al. 2014, Bouskill et al. 2016). Alterations to natural systems disrupt established 

biological processes and result in decreases in process activity (Li et al. 2018b). Degradation of 

organic matter and nutrient mobilization by extracellular enzymes are one such biological process 

that play a pivotal role in terrestrial nutrient cycling. Soil microbial communities use extracellular 

enzymes to metabolize complex molecules, releasing nutrients into the soil where they can be 

accessed by plants and other terrestrial lifeforms such as microbes (Kennedy and Smith 1995, 

Balser and Firestone 2005). Microbial communities further contribute to mineralization and 

stabilization of CO2 (Allison 2005, Ficken and Warren 2019), as well as decomposition of plant 

litter (Nguyen et al. 2018). Nutrient cycling functions performed by the soil microbial community 

are achieved through extracellular enzymes (Bouskill et al. 2016). Enzyme function, however, is 

dependent on the microbial community along with soil properties (outlined below) (Balser and 

Firestone 2005, Chaer et al. 2009). 

Extensive research has focused on characterizing soil microbial communities. This work 

has largely explored the influence of abiotic and biotic factors on the composition and function of 

soil microbes. Abiotic factors which have been previously examined include soil properties such 

as nitrogen and carbon pools, dissolved organic carbon, soil pH, soil moisture, and soil 

temperature (Banerjee et al. 2018). Previously explored biotic factors include above-ground plant 

community dynamics, including species richness and evenness, presence of plant functional 

groups, and plant litter inputs (Leloup et al. 2018, Porazinska et al. 2018, Boeddinghaus et al. 

2019). Focused on the soil environment, this research provides a foundational understanding of 

the surrounding soil environment’s influence in determining the composition and function of the 
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soil microbial community, though how increasing CO2 levels, reduced precipitation, and nitrogen 

deposition alter the composition and function of microbial communities remains unclear. 

Disturbances to the soil environment disrupt soil microbial community composition and 

impact soil processes (Bastida et al. 2017a). Soil microbial communities are susceptible to 

disturbances such as land-use intensity (Allan et al. 2014) and increases in N-deposition (Ramirez 

et al. 2010). Additionally, rising atmospheric CO2 concentrations (Edwards and Zak 2011) and 

naturally occurring extreme weather events, such as drought (Bouskill et al. 2016), have been 

shown to impact soil communities. How the disrupted microbial community functions as a result 

of these factors, however, remains unclear. With increasing frequency of drought events and 

continued pressure on natural systems from anthropogenic activities, the implications of global 

change factors on soil processes need to be understood. 

Previous meta-analyses have amassed recent data on experiments examining global 

change drivers on soil process (Xiao et al. 2018, Abbasi et al. 2020). These analyses demonstrate 

a contemporary focus on literature about responses of increased temperature, increased CO2, and 

nitrogen deposition on microbial determinants and soil chemical properties. Despite their limited 

inclusion in previous meta-analyses, soil microbial processes during drought conditions have 

received more recent research attention. New experimental designs such as the DRI-Grass 

experiment in Power et al. (2016) have been designed to approach the question of ecosystem 

function under projected climatic conditions. Although the repurposing of older designs, such as 

BACE (Boston-Area Climate Experiment) in Steinweg et al. (2013), and LTER (Long-term 

Ecological Research) in Knapp et al. (2015), have allowed for the examination of soil processes 

under predicted climatic conditions, this work has presented no consistent response of soil 

processes to predicted climate conditions such as increased droughts. 
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Drought, which represents a significant disturbance to soil microbial communities, is 

projected to increase in intensity and duration (Pachauri et al. 2014, de Vries et al. 2018). Soil 

microbial communities, even those in regions with regular drought patterns (Bouskill et al. 2016, 

Ochoa-Hueso et al. 2018), have been shown to be susceptible to drought. Drought not only 

directly impacts soil microbes, but further alters and affects soil physiochemical properties 

(Hartmann et al. 2013, Juckers and Watmough 2014). Altered soil physiochemical properties can 

be long lasting and impact EEA further (Sofi et al. 2016). Thus, increased drought intensity and 

duration represents firstly an immediate disturbance to the microbial community, and secondly a 

prolonged hinderance to EEA. Expanding our understanding of how drought will influence soils 

in the proposed climate conditions is then paramount to accurately assessing soil functions.
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CHAPTER TWO: GLOBAL ACTIVITY RESPONSE OF SOIL MICROBES 

IN RESPONSE TO DROUGHT

Introduction

Microbial enzymes are crucial to nutrient cycling in terrestrial ecosystems (Bouskill et al. 

2016). Nutrient specific extracellular enzymes within soil facilitate nutrient cycles involving 

carbon, nitrogen, and phosphorus (Sinsabaugh et al. 2009). Therefore, extracellular enzyme 

activities (EEA) are frequently studied as predictors of ecosystem health (German et al. 2011). 

EEA are sensitive to change and have been demonstrated to be impacted by global change drivers 

such as nitrogen deposition and precipitation alterations (Saiya-Cork et al. 2002, Chaer et al. 

2009, Alster et al. 2013). Studying the response of EEA to global change drivers allows insights 

into how soil functions will be impacted by future global climatic conditions. Recent studies, 

however, have focused on the impact global change drivers have had on these soil activities, with 

conflicting results. 

Identified by the IPCC (Intergovernmental Panel on Climate Change), severe weather 

events such as drought, are projected to occur more frequently and with greater intensity 

(Pachauri et al. 2014).. How EEA will respond to drought remains unclear. For example, Moreno 

et al. (2019) found that β-1,4,-glucosidase (BG) activity increased under drought conditions, 

while Bastida et al. (2017b) found decreasing BG activities in response to drought. 

Understanding why EEA do not have a consistent response to drought is important for creating 

more accurate models of ecosystems, thus facilitating better carbon budgeting. Furthermore, as 

extracellular enzymes are used as indicators of soil health, an understanding of how EEA 

responds to drought would allow for accurate predictions of soil vitality.
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Several reasons can help explain these divergent responses. First, individual enzymes can 

respond differently to droughts. For instance, polyphenol oxidase (PPO) has been shown to 

respond positively under drought conditions, but urease (URE) decreased in activity (Alster et al. 

2013, Moreno et al. 2019). Second, for each given enzyme, its responses to drought can differ 

with drought intensity and drought duration. For instance, Li (2018) reports increased activities 

for BG under elevated drought conditions relative to lower drought conditions. Further, Ochoa-

Hueso et al. (2018) reports divergent EEA at two different lengths of time, indicating that 

drought duration impacts enzyme response. Third, the responses of EEA can differ with 

background conditions such as soil depth and aridity (Webster et al. 2014, Ochoa-Hueso et al. 

2018, Moreno et al. 2019). Regions which are already dry may be more sensitive to drought, as 

there are established moisture constraints on the system. Decreasing moisture availability to a 

system with established moisture limitations may result in too much strain being exerted on the 

system to maintain normal function. Finally, enzyme class determines the required conditions to 

function, leading to possible divergent EEA between hydrolytic and oxidative enzymes (Alster et 

al. 2013). Examining these factors may provide invaluable insight into why soil EEA is not 

uniformly impacted by drought. 

Divergent responses to drought conditions have been observed amongst soil enzymes. 

Activities of PPO increased under an imposed precipitation reduction as shown in Alster et al. 

(2013). Similarly, peroxidase (PER) activities showed an increase in activity when soils were 

subjected to a precipitation reduction in Su et al. (2020). PPO and PER both facilitate the 

oxidation of their respective substrates and so are classified as oxidative enzymes (German et al. 

2011, Matulich et al. 2015). While the activities of acid phosphatase (AP) and BG were 

demonstrated to decrease when subjected to drought conditions; both enzymes are hydrolytic and 

utilize water to lyse their respective substrates(Jeoh et al. 2005, Manrubia et al. 2019). 
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Furthermore, a decrease in activity of URE, N-acetyl-glucosaminnidase (NAG), and leucine-

amino peptidase (LAP) was observed when exposed to drought conditions, aligning with the 

decreased activities of AP and BG (Li et al. 2018a, Nickel et al. 2018, Monokrousos et al. 2020). 

AP, BG, URE, NAG, and LAP comprise a representative sample of hydrolyzing enzymes, which 

accordingly are classified as hydrolytic enzymes (German et al. 2011). Possible reasoning for the 

divergent response of EEA to drought conditions includes enzyme class. Enzyme class is 

determined by the mechanism through which an enzyme functions; either hydrolytic or oxidative. 

Examining EEA by enzyme class offers further explanation for the plausible mechanisms 

driving the response activity. Drought reduces soil moisture and changes water potential (Ψ) 

(Bouskill et al. 2013, Bouskill et al. 2016), thus impacting the mechanisms for which both 

oxidative and hydrolytic enzymes function. The mechanism by which hydrolytic enzymes 

function requires the presence of water in order to hydrolyze their targeted substrate (Jeoh et al. 

2005). Similarly, oxidative enzymes require oxygen to oxidize their respective substrates (Koval 

et al. 2006). The efficiency of  hydrolytic enzymes under drought conditions decreases, which 

could be attributed to mechanism limitations for hydrolytic enzymes under reduced water 

availability (Alster et al. 2013).  

The goal of this research is to examine and synthesize current research on altered global 

precipitation patterns, here droughts, and their impacts on EEA. Drought is determined regionally 

by a reduction in seasonal or annual mean precipitation totals more than two standard deviations 

below the long-term average (Hogg et al. 2008, Dai 2011, Sheffield et al. 2012). Here, we 

collected 386 experimental observations from 37 studies encompassing most terrestrial 

ecosystems and examined the effects of regional drought on the activities of β-1,4- glucosidase 

(BG), N-acetyl-glucosaminidase (NAG), L-leucine aminopeptidase (LAP), acid phosphatase 

(AP), alkaline phosphomonoesterase (APA), p-phenol oxidase (PPO), urease (URE), and 
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peroxidase (PER). These enzymes were examined as they are commonly used as indicators of 

soil health (Weedon et al. 2011). Furthermore, we examined the EEA by nutrient cycle 

association to further isolate drought effects. Our working hypotheses are as follows: 1) Drought 

negatively affects soil extracellular enzyme activity, and is more pronounced on hydrolytic class 

enzymes compared to oxidative class enzymes.  2) The negative effects of droughts on 

extracellular enzyme activity are amplified by the intensity of the drought and the duration of the 

drought. 3) Droughts effects on both hydrolytic and oxidative enzymes will be exacerbated by 

regional aridity. Regions which are more arid will show a larger decrease in EEA compared to 

more humid regions, as determined by aridity index values.  

Methods

Data collection

A systematic search of peer-reviewed journal articles that examined the impacts of drought on 

soil enzyme activity was conducted using Web of Science and Google Scholar. Various keyword 

combinations were used such as (enzyme OR soil enzyme) AND (plant diversity OR 

monoculture OR mixed OR plant biodiversity OR water reduction). Subject field used was 

grassland OR drought. Inclusion criteria for selecting studies is as follows: (a) accessible peer-

reviewed articles published in scientific journals, (b) studies were designed to test the effects of 

drought on EEA, (c) they had at least one drought treatment and a corresponding control, and (d) 

they had the same initial climatic and soil properties in the drought and control treatment plots. A 

total of 37 publications meeting exclusion criteria were retrieved and retained (Figure 1). The last 

search was conducted on October 20, 2020. The literature search was conducted following the 
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guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(Moher et al. 2009); Figure 1.

Data extracted from these 37 studies was quantified in the following way: ‘Enzyme 

activity’ for BG, NAG, LAP, AP, URE, APA, PPO, and PER were recorded as reported in their 

source material. Activities reported as 0, were included as 0.001 to accommodate detection 

limitations of equipment; ‘geographical location’ with longitudinal and latitudinal coordinates; 

and ‘climatic factors’ including mean annual precipitation (MAP) in millimeters and mean annual 

temperature in degrees Celsius. Aridity for each experimental site was calculated using open 

source data and sample site coordinates (Trabucco and Zomer 2009). ‘Soil physio-chemical 

properties’ are in their respective units (grams carbon per cubic kilogram soil). 
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Figure 1. PRSIMA selection criteria for meta-analysis data.

Study Sites

To encompass a global scale, data was collected from 37 different studies representative of North 

America, Europe, Asia, and Australia. The studies selected within this research comprise a wide 

range of ecosystem types, mean annual temperature and annual aridity indices. European and 

Asian regions included in this study offer a range of aridity. This allows for a comprehensive 
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examination of not only region-specific response trends but allows for an analysis of global 

trends, despite geographic location. 

Figure 2. Global distribution of sampling sites.

Data Analysis

Calculations

The response of soil microbial EEA to drought was examined, with drought intensity, 

drought duration, aridity, and soil depth as explanatory factors. A natural log-transformed 

response ratio (lnRR) was used as the effect size to examine the impact of drought on soil EEA. 

The response ratio was calculated as follows:

 (1)

where Xt and Xc are the observed and expected values, respectively, in a study (Chen et al. 2019). 

Variance within meta-analyses can consist of between study variance and within study variance 

(Hedges et al. 1999). These variations can be accounted for by including an error value for 

studies (equation 3) and the weighting of individual study estimates. The methodology in this 
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study adopted those of Chen et al. (2019). To avoid few observations being assigned substantial 

importance, weighting was determined by the number of observations within each study:

  (2)

where Wr  is the weight for each observation and Nt  and Nc  are the numbers of replicates in 

treatment and controlled conditions, respectively (Chen et al. 2019).

Statistical Analyses

The EEA of each enzyme, class, and nutrient affiliation in response to drought was 

examined to determine if it differs significantly from zero. The effects of drought intensity (Dt), 

duration (t) in days (to accommodate for studies less than one year in length), soil depth (SD), 

and aridity index (AI) were examined in combination through a linear mixed effects model to 

examine their influence in determining the natural log response ratio (Equation 3):

  (3) 

where β is the coefficient being determined;  is the random effect of study that accounts for 

autocorrelation among observations within each study; ε is total sampling error. Analysis was 

conducted using R 3.5.2 with the lme4 package. Wr was used for the weight of each 

corresponding observation. Predictor values were scaled (minus mean and divided by one 

standard deviation) as done in (Chen et al. 2019). Aridity index values were generated using the 

method described in Trabucco and Zomer (2009),.. The model (equation 3) was retained as it met 

the criteria of the core hypothesis to keep Dt, t, SD, and AI. Correlation of predictor values was 

assessed to ensure independence. To isolate individual predictor effects on enzyme activity, the 

natural log response ratio of enzyme activity was plotted using a linear model with one fixed 

effect. lnRR and its confidence intervals (CI) were transformed back to percentage change as:

 (4)
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for ease of interpretation graphically. Where CIs do not encompass zero, the predictor effect is 

significant at α=0.05 between controls and treatment.

Results

The Average Effect of Drought on Enzyme Activity by Class 

When evaluated by class, EEA did not show significant reductions in activity. Activities 

of hydrolytic enzymes did not change with drought (P = 0.864) while oxidative enzyme activity 

nonsignificantly decreased by a mean of 13% (95% confidence interval, -57.5 to 30%; P = 0.146) 

(Figure. 3).

Effect of Drought on Nutrient Specific Extracellular Enzyme Activity

When assessed by nutrient affiliation, EEA remained stable for carbon and nitrogen, with 

nonsignificantly decreased activity for phosphorous (P = 0.708, 0.497, 0.206, respectively for 

carbon, nitrogen, and phosphorous; Figure 3). Phosphorous related enzymes decreased in activity 
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by a mean of 11.7% (-48.3 to 24.9%) (Figure 3). 
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Figure 3. Enzyme activity percentage change by class and nutrient cycle. Values are mean ± 95% 

confidence intervals of the percentage effects between the drought and control treatments. The 

number of observations is outside parentheses, the number of studies within parentheses. HYD, 

OXI, CBN, NIT, and PHS represent hydrolytic, oxidative, carbon, nitrogen, and phosphorous 

enzymes, respectively.
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Table 1. The mean effect of each predictor variable on extracellular enzyme activity by class and 

nutrient affiliation. Where Lower CI is “lower confidence interval” and Upper CI is “upper 

confidence interval. Dt, t, SD, and AI represent “Drought intensity”, “Duration”, “Soil depth”, 

and “Aridity index” respectively. Bold mean effect values were significant at P=0.05.

Predictor Trait Observations Journal 

articles

Lower 

CI

Upper 

CI

Mean effect 

(%)

Dt

Hydrolytic 302 36 -27.92 16.84 -5.54

Oxidative 84 15 -49.19 66.23 8.52

Carbon 187 31 -31.99 16.52 -7.73

Nitrogen 86 21 -46.22 9.33 -18.44

Phosphorous 90 27 -49.97 16.02 -16.98

t

Hydrolytic 302 36 -33.66 6.30 -13.68

Oxidative 84 15 -20.20 188.09 83.95

Carbon 187 31 -38.75 8.21 -15.27

Nitrogen 86 21 -36.09 21.46 -7.23

Phosphorous 90 27 -44.58 22.68 -10.95

SD

Hydrolytic 302 36 16.21 57.46 36.84

Oxidative 84 15 -45.87 22.51 -11.68

Carbon 187 31 -26.90 11.99 -7.45
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Nitrogen 86 21 13.71 78.24 45.97

Phosphorous 90 27 1.34 82.49 41.91

AI

Hydrolytic 302 36 -6.59 40.02 16.71

Oxidative 84 15 -69.71 -21.27 -45.49

Carbon 187 31 -20.32 24.90 2.29

Nitrogen 86 21 -24.81 34.79 4.99

Phosphorous 90 27 -24.44 49.99 12.77
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Figure 4. Enzyme activity percentage change by enzyme. Values are mean ± 95% confidence 

intervals of the percentage effects between the drought and control treatments. The number of 

observations is outside parentheses, the number of studies within parentheses. BG, NAG, LAP, 

AP, URE, APA, PPO, and PER represent β-1-4 glucosidase, N-acetyl-glucosaminidase, L-leucine 

aminopeptidase, acid phosphatase, urease, alkaline phosphomonoesterase, P-phenol oxidase, and 

peroxidase, respectively.



29

Individual Extracellular Enzyme Activity

No significant effect of drought on the activities of BG and NAG was observed. URE and 

PPO remained relatively unchanged with 2.77% (-30.0 to 35.6%; P= 0.883) and -0.55% (-49.1 to 

48%; P=0.606) respectively (Figure 4). While LAP, AP, and APA all experienced decreases in 

activity, only APA was found to be significant (-55.4 to 35.1%; P= 0.382, -42.1 to 23.4%; P= 

0.410 and -35.6 to  -15.8%; P<0.005, respectively)(Figure 4). 

Effect of drought intensity and duration on enzyme activity

Contrary to our second hypothesis wherein drought intensity and duration would amplify 

negative affects of drought on EEA drought intensity did not significantly impact enzyme activity 

regardless of class, nutrient affiliation, or enzyme (P>0.05; Table. 1). Similar to drought 

intensity, duration of drought, which ranged from 4 to 2190 days, did not result in significant 

changes in enzyme activity (P>0.05; Table. 1). 

Effect of soil depth on enzyme activity

Soil depth was a significant predictor for enzyme activity. The activity of hydrolytic 

enzymes experienced an increase by an average of 36% (16.8-57.5%; P<0.005; Table 1, Figure 

6a) as soil depth increased, whereas those enzymes involved in phosphorous cycling experienced 

an average increase of 41.9% (1.34-82.5%; P<0.05; Table 1) (Figure 6b). Nitrogen cycling 

enzymes significantly increased (P=0.03; Table 1) (Figure 6c), with NAG having increased by an 

average of 63.6% (18-109.2%; P<0.05) ( Figure 6d) and LAP increased on average by 115.4% 

(8.81-222.1%; P=0.03) ( Figure 6e). 

Aridity index effect on the responses of enzyme activity to drought 
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Aridity had a significant effect on oxidative enzyme response activities to drought, 

averaging a negative impact of 45% (-69.7 to -21.3%; P = 0.03) (Table 1,  Figure 7a). The 

activities of APA were decreased by 11.7% on average (-21.6 to -1.82%; P=0.04;  Figure. 7b). 

Figure 5. Natural log response ratio (lnRR) of extracellular enzyme activity in relation to (a) 

lnRR of EEA to drought intensity; (b) lnRR of EEA to drought duration; (c) lnRR of EEA to soil 

depth; (d) lnRR of EEA to aridity index. Enzymes are identified by class and nutrient cycle 

affiliation through colour. The weights of each observation on the linear regression are indicated 

by circle size. See Figure 3. for abbreviations. 
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Figure 6. Natural log response ratio (lnRR) of extracellular enzyme activity in relation to soil 

depth: (a) lnRR of HYD EEA to soil depth; (b) lnRR of PHS EEA to soil depth; (c) lnRR of NIT 

EEA to soil depth; (d) lnRR of NAG EEA to soil depth; (e) lnRR of LAP EEA to soil depth. The 

weights of each observation on the linear regression are indicated by circle size. See Figure 3. for 

abbreviations. 
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Figure 7. Natural log response ratio (lnRR) of extracellular enzyme activity to aridity index. (a) 

lnRR of OXI EEA to aridity index; (b) lnRR of APA EEA to aridity index. The weights of each 

observation on the linear regression are indicated by circle size. See Figure 3. for abbreviations.

Discussion

Global trends in response to drought

By encompassing a global distribution and a range of drought intensities, soil depths, 

regional aridity and duration of drought, our data represents a robust sample of available EEA 

responses. With few exceptions, and across all matrices examined within our work, soil enzyme 
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activity did not significantly respond to increased drought. EEA in response to increased drought 

remained statistically nonsignificant for all but APA. This contradicts our initial hypotheses in 

which we projected an decrease in oxidative enzyme activities along with more pronounced 

decreases in hydrolytic activity. These findings differ from those reported by Xiao et al. (2018), 

which is further discussed below. Our analysis showed that background condition significantly 

influenced the response of EEA to drought. Soil depth and aridity were stronger determinants of 

EEA response than average drought effect, drought intensity or drought duration. 

Average response to drought by EEA remained stable (Figure 3). Enzyme responses to 

drought reported within individual studies include increases in activity surpassing 100%, along 

with decreases in activity exceeding 70% (Steinweg et al. 2013, Nickel et al. 2018). When 

assessed collectively, globally distributed enzyme responses maintained a net neutral activity. 

Observed increases in activity within one study were balanced by an observed decrease in a 

separate study. Our findings indicate that arid regions were predominantly more positively 

impacted by drought conditions compared to their humid region counterparts. This could be 

attributed to arid regions frequent experience of moisture limitation and stress. As a result soil, 

microbial communities developed over evolutionary time scales, selecting for life history traits to 

compensate for moisture stress, resulting in stability under drought conditions (Ochoa-Hueso et 

al. 2018). Humid regions, however, do not posses the same stability as their arid counterparts to 

drought (Bouskill et al. 2016). While regional variation in extracellular enzyme activity response 

to drought exists, our findings suggest enzyme activity remained constant at a global scale. 

Background conditions remain strongest determinants of EEA response

A departure in our findings from previous work can be attributed to research focus. Xiao 

et al. (2018) examined multiple global change factors, including drought effect on the activities 

of soil microbes. They found significant deceases in activities of URE, PPO and oxidative class 
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enzymes in response to drought. The analysis featured a random effects model to determine 

whether the effects of different global change factors were significant or not (Xiao et al. 2018). 

However, the model did not include expressions for background conditions such as soil depth or 

aridity. The exclusion of variables reflective of background conditions, removes the importance 

these conditions have in determining EEA. Further, differences in our results can be attributed to 

limitations on site dispersion. Xiao et al. (2018) featured ten sites examining drought effect on 

EEA, with forty observations primarily within North America, Europe, and East Asia.

Unsurprisingly, aridity index was a significant predictor of EEA response. Soil depth, 

while not part of our initial hypothesis, further proved to be a strong predictor. It is generally 

accepted that enzyme activity varies within soil layers, with upper layers containing higher 

biological activity due to high substrate quality (Webster et al. 2014). Upper layers of soil are 

subject to wider fluctuations in conditions such as drying and oxygenation, allowing for an 

adjustment of EEA to such conditions (Balser and Firestone 2005, Reiche et al. 2009). Deeper 

layers, previously anaerobic in condition, exhibit increases in activity when desiccated (Reiche et 

al. 2009, Bonnett et al. 2017). These responses were observed within our study, supporting 

previous work (Webster et al. 2014). 

Our ability to asses a divergent enzyme activity response based on soil depth is due to 

incorporating deep soil studies (Webster et al. 2014, Wang et al. 2017, Nickel et al. 2018)  

despite the general methodology of limited coring to a depth of 10 cm. While 10 cm is 

representative of the active soil layer, it omits enzyme activity which occurs in deeper soils. As 

demonstrated by Webster et al. (2014), soils in excess of 10 cm at depth, possess EEA which is 

susceptible to change under drought conditions. These findings are further supported by Nickel et 

al. (2018), who identified enzyme activity extending to depths of 30 cm which were altered under 
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drought conditions. The limited literature evaluating altered EEA within deep soil, however, 

creates a barrier to fully understanding drought response by EEA. 

Explanations for the observed increase in EEA within deeper soil levels of peatlands 

include the transition from anerobic to aerobic conditions (Webster et al. 2014). Under new 

aerobic conditions, enzyme activity increases (Freeman et al. 2001). Freeman et al. (2001) 

suggests releasing oxygen limitation allows for the catabolism of enzyme inhibiting compounds 

and the metabolism of new enzymes. Moreover, oxidative stress caused by oxygen and nutrient 

availability, can induce the production of peroxidases (Rabinovich et al. 2004, Sinsabaugh 2010). 

Thus, deep soils transitioning from anerobic conditions to aerobic conditions resulting from 

drying allow for increased EEA.

In our research, arid conditions significantly influenced EEA response to drought. EEA 

follows a trend of decreasing activity along the aridity gradient. Arid regions under drought 

conditions experience an increase in enzyme activity (Ochoa-Hueso et al. 2018, Bastida et al. 

2019), while semi-arid regions remain insignificantly impacted (Moreno et al. 2019). Humid 

regions remain largely contradictory as EEA can both increase in activity (Sanaullah et al. 2011, 

Bouskill et al. 2013, Bouskill et al. 2016) or decrease in activity (Steinweg et al. 2012, Nickel et 

al. 2018, Su et al. 2020). Explanations for this phenomenon include the largely accepted theory of 

the “iron gate”. This theory posits that iron in the form of Fe(II) limits the activity of phenol 

oxidase in organic, humid soils (Freeman et al. 2001, Wang et al. 2017).Our findings align with 

these emerging trends. While data limitations exist for arid regions, those included within the 

analysis featured an increased enzyme activity. 

This increased enzyme activity contradicts our hypothesis that arid regions would show a 

larger decrease in soil enzyme activity. Potential explanations for this contradiction include 

adaptations of the soil microbial community to changes in osmotic pressures. Detailing these 



36

adaptations Schimel et al. (2007) provides a summary of microbial adaptations to osmotic stress. 

In brief, four general “functional” groups of microbes exist classified by their ability to produce 

osmolytes; solutes used to alter their internal water potential to avoid desiccation (Harris 1981). 

Arid soils experience regular osmotic pressures, and thus selective pressures on the microbial 

community would favour life history strategies best suited for moisture limitation and osmotic 

stress (Allison and Martiny 2008). 

Enzyme class and nutrient cycle 

Class determines soil enzyme function along with the optimal conditions under which 

enzymes normally operate (German et al. 2011). Interestingly, when divided by class, no 

significant difference in soil enzyme response to drought was detected. These findings contradict 

Xiao et al. (2018) who showed class along with nutrient cycle affiliation influences enzyme 

response to drought. Furthermore, our findings found no such association between nutrient 

affiliation to be significant. Specialized enzyme function, such as those involved in nitrification 

and denitrification are of particular interest in this case as they are synthesized by “specialists” 

within the microbial community (Chaer et al. 2009, Herzog et al. 2013). While the average 

activities of general enzymes (those widely produced by multiple microbial species)remains 

unchanged, the potential for specialised enzyme activities to be masked by general enzyme 

activity, remained plausible. The enzyme PPO is considered to be a specialist enzyme involved in 

the oxidation of phenolic compounds to quinones (Bukh et al. 2006). When examined however, 

PPO did not show a significant response to drought. Thus, our work suggests that total enzyme 

function, regardless of class, nutrient affiliation, or specialized function, remains unaffected 

globally on average.

Implications of drought on EEA
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The response of EEA to drought is type-, soil depth-, and aridity-dependent. Individual 

EEA response to drought is independent of nutrient cycling. Decreases in an individual EEA does 

not adversely impact the affiliated nutrient cycle, as demonstrated with APA and phosphorous. 

Our research further demonstrates that EEA response to drought is soil depth dependent, with 

subsoils (>10 cm) exhibiting increased EEA. This increased activity is further exacerbated by 

aridity, wherein arid regions displayed an elevated EEA response to drought compared to humid 

regions. Collectively, these results demonstrate that the effects of drought on EEA are not 

uniform. Thus, EEA in response to drought conditions predicted by the IPCC 2015 report will 

differ globally, with arid regions experiencing the largest increase in EEA in subsoils.  

Future considerations and general conclusions

Through our research, we have identified the need for further investigation into the effects 

of drought on soil extracellular enzyme activities. Current available research within the literature 

is limited and thus provides equally limiting insight. Within our study, we identified and assessed 

37 applicable published articles examining the effects of drought on EEA. Comparatively, meta-

analyses examining other global change drivers (nitrogen deposition), were successful in 

identifying 151 studies (Zhang et al. 2018). Furthermore, meta-analyses explicitly examining 

global change drivers on enzyme activity were able to identify 132 studies, with only six 

examining moisture limitation (Xiao et al. 2018). Limited available peer-reviewed articles within 

the literature remains a barrier to clear understanding. Increased available peer reviewed articles 

would improve the statistical strength of analyses, providing clearer mean trends.  

Resulting from our analyses, we identified the potential vulnerabilities of soil systems to 

drought. Increases in EEA were observed following a trend of decreasing aridity index values. 

Regions which have lower aridity index values, and therefore are arid, are susceptible to 

increases in EEA. Discussed above are possible explanations for this observation, however, these 



38

increased activities can result in a loss of stored soil organic matter (Acosta-Martinez et al. 2014). 

Soil organic matter is strongly correlated to soil fertility and health, and therefore, the loss of 

stored organic matter may be detrimental. The potential loss of stored soil organic matter in arid 

regions as a result of increased EEA due to drought, makes arid regions vulnerable to drought.
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Table S2. The effect (P values) of drought (intercept) and predictors (where Dt is drought 

intensity, t is time in days, SD is soil depth, and AI is aridity index) on Natural log response 

ratios (lnRR) of soil enzymes. Where hydrolytic (HYD), oxidative (OXI), carbon (CBN), 

nitrogen (NIT), and phosphorous (PHS) enzymes. Individual enzymes include beta -1,4- 

glucosidase (BG), N-acetyl-glucosaminnidase (NAG), L-leucine aminopeptidase (LAP), acid 

phosphatase (AP), alkaline phosphomonoesterase (APA), p-phenol oxidase (PPO), urease (URE), 

and peroxidase (PER). Bold values indicate P≤0.05. Wald test was used for degrees of freedom 

(df).

Fixed effects Estimate Standard error df t P

HYD

(Intercept) -0.02 0.11 29 -0.17 0.864

Dt -0.09 0.12 47 -0.70 0.489

t -0.17 0.12 43 -1.45 0.154

SD 0.30 0.08 237 3.90 0.000

AI 0.13 0.10 51 1.30 0.200

BG (nmol h-1 

g-1 soil)

(Intercept) 0.12 0.17 21 0.69 0.495

Dt -0.07 0.19 35 -0.40 0.692

t -0.33 0.18 37 -1.81 0.079

SD 0.20 0.13 103 1.55 0.124

AI 0.20 0.15 35 1.29 0.206

NAG (nmol h-1 

g-1 soil)

(Intercept) 0.01 0.23 9 0.06 0.956

Dt -0.34 0.24 17 -1.45 0.165
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t -0.07 0.23 14 -0.30 0.768

SD 0.45 0.15 32 3.10 0.004

AI -0.07 0.19 21 -0.37 0.718

LAP (nmol h-1 g-1 

soil)

(Intercept) -0.25 0.28 19 -0.90 0.328

Dt -0.77 0.37 19 -2.09 0.050

t -0.48 0.49 19 -0.99 0.337

SD 0.63 0.28 19 2.27 0.035

AI 0.35 0.48 19 0.72 0.479

AP (nmol h-1 g-1 

soil)

(Intercept) -0.17 0.19 8 -0.87 0.410

Dt -0.41 0.30 24 -1.36 0.188

t -0.29 0.27 25 -1.06 0.300

SD 0.36 0.20 59 1.84 0.071

AI 0.10 0.22 24 0.46 0.653

URE (nmol h-1 g-1 

soil)

(Intercept) -0.03 0.17 4 -0.16 0.883

Dt 0.20 0.20 5 1.02 0.358

t -0.19 0.19 5 -1.01 0.357

SD 0.03 0.11 16 0.30 0.772

AI -0.10 0.17 4 -0.57 0.598

APA (umol h-1 g-1 

soil)

(Intercept) -0.28 0.06 16 -4.99 0.000

Dt -0.09 0.10 16 -0.97 0.346

t -0.13 0.10 16 -1.37 0.189

SD 0.06 0.05 16 1.02 0.323

AI -0.13 0.06 16 -2.28 0.037
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OXI

(Intercept) -0.30 0.21 79 -1.47 0.146

Dt -0.08 0.30 79 -0.28 0.781

t 0.42 0.33 79 1.27 0.207

SD -0.21 0.21 79 -0.99 0.327

AI -0.72 0.24 79 -2.94 0.004

PPO (umol h-1 g-1 

soil)

(Intercept) -0.14 0.27 44 -0.52 0.606

Dt -0.12 0.46 44 -0.27 0.785

t 0.02 0.49 44 0.05 0.961

SD -0.17 0.28 44 -0.60 0.549

AI -0.30 0.31 44 -0.97 0.340

PER (umol h-1 g-1 

soil)

(Intercept) -0.47 0.49 3 -0.95 0.419

Dt 0.03 0.67 4 0.05 0.961

t 0.76 0.67 4 1.15 0.314

SD -0.63 0.44 12 -1.42 0.182

AI -1.24 0.60 3 -2.09 0.130

CBN 

(Intercept) -0.04 0.11 182 -0.37 0.708

Dt -0.12 0.14 182 -0.85 0.398

t -0.21 0.15 182 -1.42 0.158

SD -0.10 0.11 182 -0.92 0.359

AI 0.00 0.12 182 -0.02 0.983

NIT 

(Intercept) -0.11 0.16 11 -0.70 0.497

Dt -0.27 0.18 18 -1.47 0.160

t -0.13 0.16 21 -0.77 0.448

SD 0.35 0.12 81 3.08 0.003
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AI 0.01 0.15 21 0.05 0.964

PHS

(Intercept) -0.20 0.15 11 -1.34 0.206

Dt -0.27 0.22 29 -1.27 0.215

t -0.19 0.20 32 -0.95 0.349

SD 0.31 0.15 57 2.05 0.045

AI 0.06 0.18 27 0.36 0.723
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R Codes

Codes were written for use with RStudio 1.1.463 with R 3.5.2

library(broom)

library(car)

library(cowplot)

library(data.table)

library(FD)

library(emmeans)

library(gginnards)

library(ggpmisc)

library(ggplot2)

library(ggpubr)

library(ggthemes)

library(gridExtra)

library(grid) 

library(gtable)

library(Hmisc)

library(jtools)

library(labeling)

library(lme4)

library(lmerTest)

library(lsmeans)

library(MASS)

library(multcomp)

library(MuMIn)

library(pastecs)

library(pdp)

library(plyr)

library(raster)

library(rgdal)
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#####Read in data####

SEA<-fread('DEA 2.csv',select=c('t', 'Xc','CSE','Xt','TSE','SD','Dt','nc','Study','Line','AI', "Trait", "Enzyme"))

SEA[,rr:=log(Xt/Xc)]

SEA[,we:=nc*nc/(nc+nc)]

SEA$ID<-as.factor(SEA$Line)

setnames(SEA, c ('t', 'Xc','CSE','Xt','TSE','SD','Dt','nc','Study','Line','AI','Trait','Enzyme','rr','we','ID'))

SEA$Trait<-factor(SEA$Trait, levels = c("HYD", "OXI", "CBN", "NIT", "PHS"))

SEA$Enzyme<-factor(SEA$Enzyme, levels = c( 'BG','NAG','LAP','AP','URE','APA','PPO','PER'))

###Figure 2###

##########WORLD MAP##############

nrow(unique(Arid[,c("Lat", "Lon")]))

world_map <- map_data("world")

p <- ggplot()+ 

  coord_fixed() +

  xlab("") + ylab("")+

  geom_map(dat=world_map,map=world_map, 

           aes(map_id=region), 

           colour="black", fill="#fed976",size=0.2)+

  expand_limits(x = c(-170,177), y = c(-54,90))+

  theme_map()+

  theme(

    panel.background = element_rect(fill = 'lightskyblue', colour = 'lightskyblue'), 

    axis.line = element_blank(), 

    legend.position  = c(0.01,0.03),

    legend.text = element_text(size = 9),
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    legend.key.height=unit(0.4,"line"),

    legend.key.width =unit(0.5,"line"),

    legend.background = element_blank(),

    legend.key = element_blank(), 

    axis.ticks=element_blank(), 

    axis.text.x=element_blank(),

    axis.text.y=element_blank())+

  geom_point(data = Arid,aes(x=Lon,y=Lat),size=3,shape=21,col="black")+

  scale_fill_manual(name  ="",values=c("magenta","forestgreen","purple","red","yellow","pink"))+

  scale_color_manual(name  ="",values=c("magenta","forestgreen","purple","red","yellow","pink"))+

  guides(fill=guide_legend(nrow=3,byrow=TRUE))

ggsave(filename="Plot_Map20200605.tiff",dpi =600, plot=p,width = 9.93, height =4.12, units = "in")

########################ARIDITY Index####################

Arid<-fread('DEA.csv',select=c('Lat','Lon'))

Location<-data.table(read.csv("DEA.csv"))

ai<-readGDAL("ai_yr/hdr.adf")

ai<-raster("ai_yr/hdr.adf")

data.table(Location) 

Location$Lat<-c(7.7)

Location$Lon<-(13.883)

### Turned all lat, lon into 7.7 and 13.883

data.table(Location)

Location$Lat

Location$Lon

#### Kept original Lon Lat data
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lats<-Location$Lat

lons<-Location$Lon

coords <- data.frame(x=lons,y=lats)

points <- SpatialPoints(coords, proj4string = ai@crs)

values <- extract(ai,points)

df <- cbind.data.frame(coordinates(points),values)

write.csv(df,"Weather-Aridity index3.csv")

### Produced AI for each sample location

###HYD Simp####

HYD<-subset(SEA, Trait=="HYD")

FULL_HYD<-lmer(rr~scale(Dt) + scale(t) + scale(SD) + scale(AI) + (1|Study),

               weights=we,

               na.action = na.fail,

               data=HYD)

summary(FULL_HYD,ddf="Kenward-Roger")

HYD_KEN<-data.frame(summary(FULL_HYD,ddf='Kenward-Roger')$coefficients)

write.csv(HYD_KEN,'HYD_KEN.csv')

####OXI Simp####

OXI<-subset(SEA, Trait=="OXI")

FULL_OXI<-lmer(rr~scale(Dt) + scale(t) + scale(SD) + scale(AI) + (1|Study),

               weights=we,

               na.action = na.fail,

               data=OXI)

summary(FULL_OXI,ddf="Kenward-Roger")

OXI_KEN<-data.frame(summary(FULL_OXI,ddf='Kenward-Roger')$coefficients)

write.csv(OXI_KEN,'OXI_KEN.csv')
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####CBN Simp####

CBN<-subset(SEA, Trait=="CBN")

FULL_CBN<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=CBN,

               weights=we,

               na.action = na.fail)

summary(FULL_CBN,ddf="Kenward-Roger")

CBN_KEN<-data.frame(summary(FULL_CBN,ddf='Kenward-Roger')$coefficients)

write.csv(CBN_KEN,'CBN_KEN.csv')

###NIT Simp####

NIT<-subset(SEA, Trait=="NIT")

FULL_NIT<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=NIT,

               weights=we,

               na.action = na.fail)

summary(FULL_NIT,ddf="Kenward-Roger")

NIT_KEN<-data.frame(summary(FULL_NIT,ddf='Kenward-Roger')$coefficients)

write.csv(NIT_KEN,'NIT_KEN.csv')

####PHS Simp####

PHS<-subset(SEA, Trait=="PHS")

FULL_PHS<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=PHS,

               weights=we,

               na.action = na.fail)

summary(FULL_PHS,ddf="Kenward-Roger")

PHS_KEN<-data.frame(summary(FULL_PHS,ddf='Kenward-Roger')$coefficients)
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write.csv(PHS_KEN,'PHS_KEN.csv')

####BG Simp####

BG<-subset(SEA, Enzyme=="BG")

FULL_BG<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                (1|Study),

              data=BG,

              weights=we,

              na.action = na.fail)

summary(FULL_BG,ddf="Kenward-Roger")

BG_KEN<-data.frame(summary(FULL_BG,ddf='Kenward-Roger')$coefficients)

write.csv(BG_KEN,'BG_KEN.csv')

####NAG Simp####

NAG<-subset(SEA, Enzyme=="NAG")

FULL_NAG<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=NAG,

               weights=we,

               na.action = na.fail)

summary(FULL_NAG,ddf="Kenward-Roger")

NAG_KEN<-data.frame(summary(FULL_NAG,ddf='Kenward-Roger')$coefficients)

write.csv(NAG_KEN,'NAG_KEN.csv')

####LAP SImp####

LAP<-subset(SEA, Enzyme=="LAP")

FULL_LAP<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=LAP,

               weights=we,

               na.action = na.fail)
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summary(FULL_LAP,ddf="Kenward-Roger")

LAP_KEN<-data.frame(summary(FULL_LAP,ddf='Kenward-Roger')$coefficients)

write.csv(LAP_KEN,'LAP_KEN.csv')

####AP Simp####

AP<-subset(SEA, Enzyme=="AP")

FULL_AP<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                (1|Study),

              data=AP,

              weights=we,

              na.action = na.fail)

summary(FULL_AP,ddf="Kenward-Roger")

AP_KEN<-data.frame(summary(FULL_AP,ddf='Kenward-Roger')$coefficients)

write.csv(AP_KEN,'AP_KEN.csv')

####APA Simp####

APA<-subset(SEA, Enzyme=="APA")

FULL_APA<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=APA,

               weights=we,

               na.action = na.fail)

summary(FULL_APA,ddf="Kenward-Roger")

APA_KEN<-data.frame(summary(FULL_APA,ddf='Kenward-Roger')$coefficients)

write.csv(APA_KEN,'APA_KEN.csv')

####URE Simp####

URE<-subset(SEA, Enzyme=="URE")

FULL_URE<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=URE,
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               weights=we,

               na.action = na.fail)

summary(FULL_URE,ddf="Kenward-Roger")

URE_KEN<-data.frame(summary(FULL_URE,ddf='Kenward-Roger')$coefficients)

write.csv(URE_KEN,'URE_KEN.csv')

####PPO####

PPO<-subset(SEA, Enzyme=="PPO")

FULL_PPO<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=PPO,

               weights=we,

               na.action = na.fail)

summary(FULL_PPO,ddf="Kenward-Roger")

PPO_KEN<-data.frame(summary(FULL_PPO,ddf='Kenward-Roger')$coefficients)

write.csv(PPO_KEN,'PPO_KEN.csv')

####PER####

PER<-subset(SEA, Enzyme=="PER")

FULL_PER<-lmer(rr~scale(Dt)+scale(t)+scale(SD)+scale(AI)+

                 (1|Study),

               data=PER,

               weights=we,

               na.action = na.fail)

summary(FULL_PER,ddf="Kenward-Roger")

PER_KEN<-data.frame(summary(FULL_PER,ddf='Kenward-Roger')$coefficients)

write.csv(PER_KEN,'PER_KEN.csv')

##AIC of models###

dEpI<-cbind(rbind(AIC(FULL_HYD),AIC(FULL_OXI),AIC(FULL_CBN),AIC(FULL_NIT),AIC(FULL_PHS)))
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data.frame(dEpI)

dEpI<-format(dEpI, digits=1)

write.csv(dEpI,"DEPI6.csv",row.names=c("Hydrolytic","Oxidative","Carbon","Nitrogen","Phosphorus"))

DEPI<-read.csv("DEPI6.csv")

DEPI

###Figure 3###

###Enzyme class & Nutrient Cycle###

eric_boot<-function(model,nsim=1000){

  storefix<-bootMer(model,fixef,nsim)##bootstrap the fixed effects - more stable

  return(t(apply(storefix$t,2,function(x)quantile(x,c(0.025,0.5,0.975)))))##take the lower %2.5, %50 (here, the mean), and 97.5%

}

Df_F<-rbind(eric_boot(FULL_HYD,nsim=1000)[1,],##NOTE - if running too slow, try lowering nsim. default is 1000; 

HOWEVER be careful - need enough simulations to get representative sample

            eric_boot(FULL_OXI)[1,],

            eric_boot(FULL_CBN)[1,],

            eric_boot(FULL_NIT)[1,],

            eric_boot(FULL_PHS)[1,])

Df_F<-data.table(Df_F)

Df_F<-setNames(Df_F,c("cl","mean","cu"))

DT<-data.table(SEA)

N_C<-DT[,.N,by=Trait]

N_S<-DT[,.(NS=length(unique(Study))),by=Trait]

NCS<-merge(N_C,N_S)

Df_F<-cbind(Df_F,NCS)
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Df_F$st<-paste(Df_F$N,"(",Df_F$NS,")")

Df_F$cl_p<-(exp(Df_F$cl)-1)*100

Df_F$cu_p<-(exp(Df_F$cu)-1)*100

Df_F$mean_p<-(Df_F$cl_p+Df_F$cu_p)/2

Df_F

str(Df_F)

Df_F$Att<-c("B","B","B","B","B")

SF1<-ggplot(Df_F)+geom_point(aes(x=Trait, y=mean_p, col=Att),stat="identity",shape=21,size=4)+

  geom_errorbar(aes(x=Trait,ymin=cl_p,ymax=cu_p,col=Att),width=.1,size=0.5)+

  geom_text(aes(label=st,x=Trait,y=50,hjust=0),size=3)+

  coord_flip(ylim=c(-100,100))+

  scale_x_discrete(limits=rev(levels(Df_F$Trait)))+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="blue")+

  xlab("")+ylab("Drought effect (%)")+

  theme_bw()+theme(axis.line=element_line(colour="black"), panel.grid.major=element_blank(),

                   panel.grid.minor = element_blank(),

                   panel.background=element_blank())+

  theme(strip.background=element_blank(),strip.placement = "outside")+

  scale_colour_hue(l=40)+theme(legend.position="none")

SF1

pdf("Simple Fig 1.pdf",width=4,height=5,paper='special') 

SF1

dev.off()

###Figure 4#####

#####Individual Enzyme Response#####
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Df_F2<-rbind(confint(FULL_BG, method="Wald")[3,],confint(FULL_NAG, method="Wald")[3,],confint(FULL_LAP, 

method="Wald")[3,],

             confint(FULL_AP, method="Wald")[3,],confint(FULL_URE, method="Wald")[3,],confint(FULL_APA, 

method="Wald")[3,], 

             confint(FULL_PPO, method="Wald")[3,],confint(FULL_PER, method="Wald")[3,])

Df_F2<-data.frame(Df_F2)

Df_F2$mean<-(Df_F2$X2.5..+Df_F2$X97.5..)/2

Df_F2<-setNames(Df_F2,c("cl","cu","mean"))

DT2<-data.table(SEA)

N_C2<-DT2[,.N,by=Enzyme]

N_S2<-DT2[,.(NS=length(unique(Study))),by=Enzyme]

NCS2<-merge(N_C2,N_S2)

NCS2<-NCS2[-c(1),] ###Removed NA (Non labled enzyme)

Df_F2<-cbind(Df_F2,NCS2)

Df_F2$st<-paste(Df_F2$N,"(",Df_F2$NS,")")

Df_F2$cl_p<-(exp(Df_F2$cl)-1)*100

Df_F2$cu_p<-(exp(Df_F2$cu)-1)*100

Df_F2$mean_p<-(Df_F2$cl_p+Df_F2$cu_p)/2

Df_F2

str(Df_F2)

Df_F2$Att<-c("B","B","B","B","B","B","B","B")

F2<-ggplot(Df_F2)+geom_point(aes(x=Enzyme, y=mean_p, col=Att),
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                             stat="identity",shape=21,size=4)+geom_errorbar(aes(x=Enzyme,ymin=cl_p,ymax=cu_p,col=Att),

                                                                            width=.1,size=0.5)+geom_text(aes(label=st,x=Enzyme,y=70,hjust=0),

                                                                                                         size=3)+coord_flip(ylim=c(-

100,100))+scale_x_discrete(limits=rev(levels(Df_F2$Enzyme)))+geom_hline(aes(yintercept=0),linetype="dashed",colour="blue"

)+xlab("")+ylab("Drought effect (%)")+

  theme_bw()+theme(axis.line=element_line(colour="black"), panel.grid.major=element_blank(),

                   panel.grid.minor = element_blank(),

                   panel.background=element_blank())+theme(strip.background=element_blank(),strip.placement = 

"outside")+scale_colour_hue(l=40)+theme(legend.position="none")

F2

######ANOVA#####

anova(FULL_CBN)

anova_Full_Dt<-rbind(anova(FULL_HYD)[1,],anova(FULL_OXI)[1,],

                     anova(FULL_CBN)[1,],anova(FULL_NIT)[1,],

                     anova(FULL_PHS)[1,])

anova_Full_Dt

write.csv(anova_Full_Dt, 'anova_FUll_Dt.csv')

anova_Full_t<-rbind(anova(FULL_HYD)[2,],anova(FULL_OXI)[2,],

                    anova(FULL_CBN)[2,],anova(FULL_NIT)[2,],

                    anova(FULL_PHS)[2,])

anova_Full_t

write.csv(anova_Full_t, 'anova_FUll_t.csv')

anova_Full_SD<-rbind(anova(FULL_HYD)[3,],anova(FULL_OXI)[3,],

                     anova(FULL_CBN)[3,],anova(FULL_NIT)[3,],
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                     anova(FULL_PHS)[3,])

anova_Full_SD

write.csv(anova_Full_SD, 'anova_FUll_SD.csv')

anova_Full_AI<-rbind(anova(FULL_HYD)[4,],anova(FULL_OXI)[4,],

                     anova(FULL_CBN)[4,],anova(FULL_NIT)[4,],

                     anova(FULL_PHS)[4,])

anova_Full_AI

write.csv(anova_Full_AI, 'anova_Full_AI.csv')

####WALD SUMM#####

summary(FULL_BG, method='Wald')

BG_WAL<-data.frame(summary(FULL_BG)$coefficients)

summary(FULL_NAG, method='Wald')

NAG_WAL<-data.frame(summary(FULL_NAG)$coefficients)

summary(FULL_LAP, method='Wald')

LAP_WAL<-data.frame(summary(FULL_LAP)$coefficients)

summary(FULL_AP, method='Wald')

AP_WAL<-data.frame(summary(FULL_AP)$coefficients)

summary(FULL_URE, method='Wald')

URE_WAL<-data.frame(summary(FULL_URE)$coefficients)

summary(FULL_APA, method='Wald')

APA_WAL<-data.frame(summary(FULL_APA)$coefficients)
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summary(FULL_PPO, method='Wald')

PPO_WAL<-data.frame(summary(FULL_PPO)$coefficients)

summary(FULL_PER, method='Wald')

PER_WAL<-data.frame(summary(FULL_PER)$coefficients)

summary(FULL_HYD, method='Wald')

HYD_WAL<-data.frame(summary(FULL_HYD)$coefficients)

summary(FULL_OXI, method='Wald')

OXI_WAL<-data.frame(summary(FULL_OXI)$coefficients)

summary(FULL_CBN, method='Wald')

CBN_WAL<-data.frame(summary(FULL_CBN)$coefficients)

summary(FULL_NIT, method='Wald')

NIT_WAL<-data.frame(summary(FULL_NIT)$coefficients)

summary(FULL_PHS, method='Wald')

PHS_WAL<-data.frame(summary(FULL_PHS)$coefficients)

###Partial Dependence plots###

FULL<-lmer(rr~scale(Dt) + scale(t) + scale(SD) + scale(AI) + (1|Study),

           weights=we,

           na.action = na.fail,

           data=SEA)

Trait<-subset(SEA, select=Trait)

Dt_PDP<-partial(FULL, pred.var = "Dt",

                train = SEA, plot = TRUE,
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                smooth = TRUE,

                plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Drought Intensity (%)'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=SEA, shape=21, alpha=0.5, aes(x=Dt, y=rr, size = we, weight=we, color=Trait))

Dt_PDP

t_PDP<-partial(FULL, pred.var = "t",

               train = SEA, plot = TRUE,

               smooth = TRUE,

               plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Time in days'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=SEA, shape=21, alpha=0.5, aes(x=t, y=rr, size = we, weight=we, color=Trait), show.legend = FALSE)

t_PDP

SD_PDP<-partial(FULL, pred.var = "SD",

                train = SEA, plot = TRUE,

                smooth = TRUE,

                plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Soil Depth (cm)'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=SEA, shape=21, alpha=0.5, aes(x=SD, y=rr, size = we, weight=we, color=Trait), show.legend = FALSE)
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SD_PDP

AI_PDP<-partial(FULL, pred.var = "AI",

                train = SEA, plot = TRUE,

                smooth = TRUE,

                plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Aridity Index'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=SEA, shape=21, alpha=0.5, aes(x=AI, y=rr, size = we, weight=we, color=Trait), show.legend = FALSE)

AI_PDP

###Figure 5####

plot_grid(Dt_PDP,

          t_PDP,

          SD_PDP,

          AI_PDP,

          labels=c('a','b','c','d'),

          label_x=0.2,

          ncol=2)

###Highlight PDP###

HYD_PDP<-partial(FULL_HYD, pred.var = "SD",

                 train = HYD, plot = TRUE,

                 smooth = TRUE,

                 plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Soil Depth (cm)'))+
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  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=HYD, shape=21, alpha=0.5, aes(x=SD, y=rr, size = we, weight=we))

HYD_PDP

PHS_PDP<-partial(FULL_PHS, pred.var = "SD",

                 train = PHS, plot = TRUE,

                 smooth = TRUE,

                 plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Soil Depth (cm)'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=PHS, shape=21, alpha=0.5, aes(x=SD, y=rr, size = we, weight=we))

PHS_PDP

NIT_PDP<-partial(FULL_NIT, pred.var = "SD",

                 train = NIT, plot = TRUE,

                 smooth = TRUE,

                 plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Soil Depth (cm)'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=NIT, shape=21, alpha=0.5, aes(x=SD, y=rr, size = we, weight=we))

NIT_PDP
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NAG_PDP<-partial(FULL_NAG, pred.var = "SD",

                 train = NAG, plot = TRUE,

                 smooth = TRUE,

                 plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Soil Depth (cm)'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=NAG, shape=21, alpha=0.5, aes(x=SD, y=rr, size = we, weight=we))

NAG_PDP

LAP_PDP<-partial(FULL_LAP, pred.var = "SD",

                 train = LAP, plot = TRUE,

                 smooth = TRUE,

                 plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Soil Depth (cm)'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=LAP, shape=21, alpha=0.5, aes(x=SD, y=rr, size = we, weight=we))

LAP_PDP

APA_PDP<-partial(FULL_APA, pred.var = "AI",

                 train = APA, plot = TRUE,

                 smooth = TRUE,

                 plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Aridity Index'))+
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  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=APA, shape=21, alpha=0.5, aes(x=AI, y=rr, size = we, weight=we))

APA_PDP

OXI_PDP<-partial(FULL_OXI, pred.var = "AI",

                 train = OXI, plot = TRUE,

                 smooth = TRUE,

                 plot.engine = "ggplot2")+

  geom_hline(aes(yintercept=0),linetype="dashed",colour="black")+

  ylab("lnRR") + xlab(bquote('Aridity Index'))+

  theme_bw()+theme(panel.background = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = 

element_blank())+

  geom_point(data=OXI, shape=21, alpha=0.5, aes(x=AI, y=rr, size = we, weight=we))

OXI_PDP

####Figure 6#####

plot_grid(HYD_PDP,

          PHS_PDP,

          NIT_PDP,

          NAG_PDP,

          LAP_PDP,

          labels=c('a','b','c','d','e'),

          label_x=0.2,

          ncol=2)

###Figure 7#####

plot_grid(OXI_PDP,

APA_PDP,labels=c('a','b'),
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label_x=0.2,

ncol=2)


