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ABSTRACT

This paper presents a new development in the magnetic particle tracking (MPT) technology that measures the translational and rotational
motions of a small particle. A main advantage of MPT is that it is able to track objects in an opaque environment without using radioactive
material or X-rays. In addition, it can provide information about the orientation and rotation of the object, which is difficult to obtain
using other technologies. However, the reconstruction process of MPT using standard optimization approaches is very time consuming and,
therefore, limits its applications. In this work, two new MPT reconstruction algorithms are examined and the results are compared with
the optimization approach. The extended Kalman filter (EKF) algorithm has the same accuracy as the optimization method but is orders
of magnitude faster. The speed of the sequential importance sampling approach is between those of the above two methods. The accuracy
of position obtained using EKF is about 0.6%, and the uncertainty of orientation is less than 1.5°. The MPT is applied to measure a dense
granular shear flow to investigate the spatial distribution of a tracer particle.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100739

I. INTRODUCTION source can be determined. In addition, X-rays have also been used
to measure motion in an opaque environment, such as air bubbles
in gas-solid fluidized beds and gas-liquid reactors."* '® Heindel and

co-workers have reviewed the X-Ray applications in the visualization

Tracking the motion of an object plays a crucial role in the

study of turbulent mixing, granular flow, sedimentation, and cellu-
17,18

lar biology. * Advanced particle tracking technologies are usually
optical based (e.g., Lagrangian particle tracking’), and some algo-
rithms are proposed to improve the accuracy.”” Their precision
is high, but they have limited use in opaque multiphase flows or
granular motions, and it takes a lot effort to extract the rotational
information of the object.”” A group of nonintrusive and nonopti-
cal tracking methods have been developed for opaque environments.
For instance, radioactive particle tracking (RPT) and positron emis-
sion particle tracking (PEPT) are used to obtain the kinetics of
particles in a fluidized bed.”"” The RPT directly uses the gamma
radiation emitted in the beta-decay of a source particle. The PEPT
uses radioactive material such as '°F, ® Cu, and ®*Ga to label a par-
ticle. These materials emit positrons, which annihilate with elec-
trons and generate back-to-back gamma rays. The gamma rays can
be monitored by gamma detectors, from which the position of the

of multiphase flows.

However, the methods listed above have shortcomings
(Table T). The optical methods are not operable in opaque flows.
Although the RPT, PEPT, and X-rays can be used, they require
expensive equipment and special radioactive material operating
expertise. In addition, the RPT and PEPT can only monitor the par-
ticle’s translation, but not the orientation or rotation, which carries
important granular dynamics information. The X-ray tomography
is only able to detect the orientation of needlelike objects. The limits
of measurement technologies and the lack of experimental results
have delayed the development of granular dynamics theory and
modeling."”

A magnetic particle tracking (MPT) technology’””' has
recently been proposed to address the above issues. The MPT was
introduced in the medical field for examining the gastrointestinal
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TABLE 1. Pros and cons of the widely used particle tracking technologies.

Method Optical-based methods RPT/PEPT/X-rays MPT

Cost Expensive Very expensive Inexpensive

Working condition  Transparent only Transparent or opaque  Transparent or opaque
Safety requirement ~ Laser operation Radiation protection None

Spatial resolution High Relatively low Relatively low
Rotation motion Difficult Generally, no Yes

22

tract without the risk of radiation exposure.””* In other early efforts,
the MPT method was used to track large objects in dense gas flu-
idized beds with different densities and air flow rates.”* >° Recently,
Kohler et al. studied the mixing and segregation of fuel in a bub-
bling fluidized bed, where he used the MPT method to determine
the vertical distribution of the tracer in a down-scaled cold unit,”**
and Zhang et al. used MPT to measure the particle trajectory in a
rotating drum.”” The far field of a magnet is uniquely determined by
the magnet’s position and orientation. Therefore, the field strength
at multiple locations is sufficient to relocate the magnet and its ori-
entation. Consequently, the translational and rotational motions of
the magnetic particle can be calculated simultaneously. Compared
with other noninvasive techniques, the MPT only needs a few mag-
netometers and a magnetic bead. Therefore, the cost is significantly
lower than the RPT, PEPT, and optical-based tracking techniques. In
addition, the MPT setup poses no hazardous radiation threat. The
advantages and disadvantages of prior techniques are summarized
in Table I.

However, the state-of-the-art MPT technology has a severe lim-
itation; its reconstruction process is too slow. The reconstruction is
an optimization process of finding the magnet’s position and ori-
entation. Hu et al. used the Levenberg-Marquardt method.” Later,
Buist and his group identified the sequential quadratic program-
ming (SQP) as the best optimization algorithm.””**" However, the
cost function in the optimization is highly nonlinear and possesses
many local minima. Hence, the reconstruction, which aims to find
the global minimum, is time consuming.

In this paper, we develop two new reconstruction methods
using the extended Kalman filter (EKF'>") and Sequential Impor-
tance sampling with Resampling (SIR*"*). These two methods are
based on the reformulation of the MPT as a state space model, which
is widely used in science and engineering to identify the state of a
system from an uncertain model supplemented by a stream of noisy
data. Because their performances depend on the specific problem,
we test both of them and compare with the SQP method to identify
the best approach. In the state space model, the state of the system
is regarded as a stochastic process, and its conditional probability
distribution based on the given data is approximated. The condi-
tional mean will give the minimum mean square error estimation
of the state, and the uncertainty is given by the covariance. If the
model and the observation function are both linear and the noises
(in the model and observation) are Gaussian, the conditional mean
and covariance can be calculated by the Kalman filter.”*”” The EKF
is an extension of the Kalman filter. It is capable of handling com-
plex dynamics and nonlinear observation functions, but the noises
in both model and observation are still assumed to be Gaussian.

34,35,38

The SIR is one of the particle filters,” """ which can be used for
general nonlinear non-Gaussian situations. We compare the results
obtained using the EKF and SIR with those from the SQP. The
numerical experiments show that the EKF provides the same accu-
racy as the SQP, but it is orders of magnitude faster. The efficiency
of the SIR falls between the EKF and SQP. The organization of this
article is as follows: In Sec. II, the field of a magnetic dipole and the
proposed reconstruction methods are discussed. In Sec. 111, we dis-
cuss using a synthetic magnetic motion to test the SQP, SIR, and
EKF algorithms and the uncertainties of these methods are com-
pared. Section IV shows a validation experiment that evaluates the
uncertainty of the MPT method. Finally, in Sec. V, the MPT is
applied to study the kinetics of one particle in a dense granular shear
flow.

Il. COMPUTATIONAL ALGORITHM

The MPT method uses a small magnet as the excitation source.
Far away from the magnet, the field is modeled as a dipole field given

by the following equation:

3n-(m-n)-m
B(r,ro,m) = @—[ ( )3 ], (1
4 |r — r0|

where r is the magnet’s location, ry is the location of a magnet sen-
sor, n is the normal vector in the r — ry direction, m is the mag-
netic moment, and o is the magnetic permeability. Figure 1 is an

M Dipole

Magnetometer

G Magnetometer

FIG. 1. An illustration of the coordinate system of the MPT. The magnet ball
translates and rotates in a certain domain. The cubes stand for an array of
magnetometers.
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illustration of the coordinate and measurement setup. Since a mag-
netometer usually measures the field component in a particular
direction S, the sensor observation should be B - S, i.e., the data from
the i-th sensor should be

D; = B(r,roi,m) - Si, el

where i = 1,2, 3, ..., N and N is the total number of sensors. Note
that this equation is highly nonlinear. The real observation O from
a sensor contains measurement noise and is generally different from
this D.

Since the position and direction of the sensor can be calibrated
accurately, ro; and S; are known. The task of MPT is to solve Eq. (2)
and determine the unknown variables r and m using a set of mea-
sured signals. The total degree of freedom (DOF) for the magnet is
6. Nevertheless, if the total magnetic moment of the ball is measured
in advance, the DOF reduces to 5. Therefore, at least five indepen-
dent signals are needed to determine the magnetic field. In reality,
the strength of a magnetic field decays as |r — ro|™; hence, the sig-
nal will be very weak if the magnet is far from the sensor. To ensure
that the signal-to-noise ratio is high enough, in the following sim-
ulations and experiments, we use an array of four 3-axis probes to
cover the entire measurement domain (Fig. 1). The total number of
signal channels is 12. For an arbitrary sensor arrangement, Eq. (2)
has no simple analytical solution. Therefore, the task becomes an
optimization problem, i.e., to find the proper r and m to minimize
the following cost function:

J(r,m) = ZX,|0; - B(r, roi,m) - Si|, (3)

where O; is the real observation or measurement from the ith sensor.
The SQP is an iterative method for constrained nonlinear optimiza-
tion. The constraint here is that m? + mﬁ + m? must be a constant. If
there are no constraints, the SQP method reduces to the well-known
Newton’s method that finds the point where the gradient of the cost
function vanishes. With a constraint, the SQP algorithm solves a
sequence of subproblems that optimize a quadratic model of the cost
function. The MATLAB program provides the SQP package. For the
MPT application, the optimization begins with a global search for
the first step. Subsequently, at step k, ry and my are calculated by
minimizing the cost function in Eq. (3), whereas the results from the
previous step, rx—1 and my_1, serve as the initial guess for the opti-
mization. Once we know r and m at all time steps, we can reconstruct
the whole trajectory.

Alternatively, we can reformulate the MPT problem as a state-
space model and use different algorithms for the state-space model
to solve the MPT reconstruction problem. Let the state variable

Tk . . .

X = ( ) be the particle status at time step k. Given Xj—1, Xj
my

can be modeled as follows: The location of the magnetic particle rg

depends on its position and velocity at previous step k — 1 and can

be modeled by a kinematic equation,
T = Feoy + W At + Wy,
The rotation of the magnetic particle can be calculated using a
quaternion g as
M = QM g+ W

where u;_1 is the velocity of the magnet at time k — 1, At
is the time interval, wj and w}' are two independent Gaussian

ARTICLE scitation.orgljournal/rsi

variables, which represent unknown perturbations or random noises
in the motion and rotation equations, and q = (cos %, Wy Sin %,
wy sin %, w, sin %) (wx, wy, w;) is a unit vector along the axis
of rotation, and Q is the magnitude of angular velocity. # and q can
be estimated using historic trajectory data. Therefore, we obtain our

forward model of the state variable Xj as

r
X, = ( k ) = F(X_1) + Wi (4)
my
where
Tr_1 + U At
F(kal) = ( —1 )>
G 1Mi-19; 1
and

.
Wi

Wk = m |-
Wi

We assume that the mean of wy is zero and the covariance
matrix is Q. The observation (measurement) equation for the jth
sensor at time step k is

Oj,k = Dj(Xk)(l + vj,k)) (5)

where
Di(Xy) = B(Xy) - St

D(Xy) = Dj(Xk):'B(Xk)'Sj ,

Dn(X) :'B(Xk) .Sy

and vy is a vector of Gaussian random variables, which are indepen-
dent of wy and represent the measurement uncertainties. We assume
that v, has a zero mean and the covariance matrix is Rg.

Equations (4) and (5) together form a state-space model. The
task of MPT reconstruction is equivalent to estimating the state vari-
able X based on the measurements from time step 1 to k Oy.
Due to the nonlinearity of our model, we will estimate X sequen-
tially using EKF and SIR methods. In both cases, one needs to
work on the conditional probability distribution of the state Xj
given the measurement Oy, denoted by p(X|O1.x). The mean of
p(Xi|O1:x) will give the minimum mean square error estimate
of the state Xj, and the uncertainty is given by the covariance
of p(Xi|Or.x).

In the EKF, p(X,|Oy) is approximated by a Gaussian distri-
bution, which can be completely characterized by the mean and
covariance matrix. We assume that the mean at time step k — 1
is Xi—1 and the covariance is Px—i. Subsequently, the mean Xj
and the covariance Py are obtained in two steps: prediction and
analysis.

(a) Inthe prediction step, the predicted mean of the trajectory X;.
is obtained using the model equation (4),

_ f’}; rr_1 + U1 At
xi = (1) = roxen - M e
My Q1 Mi-19;_,
The covariance matrix Py is updated to P, as

- T
Py = FPr1 Fr + Qs
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where Fj = g—; (Xk-1) is the Jacobian of the model function F 0025 [ 0.025 ‘\f\ a—
evaluated at Xj_;. 002 S S 0_02‘. Sox, o
(b) In the analysis step, O, the measurement at time step k, is 0015 % > SR 0.015 % LSk
used to update X; and P, by the Kalman formula as follows: x 001 'ﬁﬁ " o 0_01} % -
LY ' 4 LY £ '
- - 0.005¢ % F4 0.005 % 7
Xy = Xi +Ki(Or - D(Xy)), ?) Y e \ %
or Pt 0‘ Yot
P, = (I - KyH;)Pg, (8) a-)o 1009 0 40 60 80 0005 20 40 60 80
time step time step
where the matrix Ky is the standard EKF correction matrix as 002 : ‘ 002 "
4 g
B B o £ !
Ky = P H{ (HiPCHY + ViR Vi ) . o \\ y o f \\ I
OD /e . . i o0 f ‘ o002 f
Here, Hy = %2(X}) is the Jacobian matrix of the measure- I R f ) -
oX k 80 4 Synthetic| ;’ Synthetic|
ment function D evaluated at X; and Vi = 5% is the Jacobian of 0041t " So | 0085 " Sor
. . Losr | \ Losr |
the observation with respect to vy. . . s o s o w0 s p s “ w0
In the SIR method, instead of the mean and covariance matrix, b) time step time step
the conditional (posterior) probability distribution of the state vari- S S
ables of the whole trajectory p(Xo.x|O1:x) is presented by a set of 0.02 MA%“ g ooz A . B¢
samples with associated weights. Suppose at time step k — 1, we have 7 P, > SR f’%f K”g > SR
. N, . 'P )
presented p(Xo.x—1]|O1:x-1) by a set of samples {Xg.k_l}i | with the oo Y Mt 1 N
- = b X 13 [y
. . . N, . . X % Y i
associated weights {wg.k_l}i \» Where Ny is the number of virtual . [ % . L
. = r » 3 F
samples. In this paper, 5000 samples are used in the MPT recon- NE %’%;
struction. At time step k, we first use the model equation (4) to oo 001
propagate the samples tostepkasi=1,..., N, 9 ° 20 4 60 80 ' 0 40 60 80
time step time step
i x103 - x10° o .
i Tk i i £ I
Xe=| )= F(Xieh) + o ) s 2 ol £y
mk : D, »ﬂh : E', ’f"‘b
2‘ ¢ % w‘ 1 2 4 1Y w',w—»» L
where w, is a realization of the Gaussian variable wy with a zero Z0R [ 4 Zo% ! 1
mean and a covariance Q. 21t ! —— 7 1
. . . . : nthetic: 4 Synthetic:
The observation equation (5) is used to calculate the likelihood 4t b 4 ‘ . gygz ‘ a4t P ’ : SE: I
X 3 Fs k #
P(Ok[X;), and the weight for each virtual sample is updated as oL o SR RN > SR ’
d)O 20 40 60 80 0 20 40 60 80
i i i time step time step
Wi = wk—lp(ok‘Xk)' (10) 0.015 0.015
Finally, these weights are normalized as their sum should be 1. 001 , 001 ——
If the variance of the weights is too large, resampling is used to 0005 A\/"*’\ . J
make the weight uniform (see algorithm 3 in Ref. 34 for details). z £ z ;W
3 R ° £ v
4 Synthetic I'g Synthetic
20005+ [ EKF 0.005+ EKF
3 . SR . Sk
oot Es
e)omo 20 40 60 80 001 20 40 60 80
0.04 time step time step
0.01 0.01f ) A :
0.02 ’”Vﬂ‘ VN
N 0.005 ¢ (VN 0.005 ¢ (Wa sy
L3 »
0 R 4 £ o 2
-0.02 -0.005 | zir;meﬁc' z’% -0.005 [~ Synieti ;k
0.05 R IS
0.05 Rl 20 40 60 80 o 20 40 60 80
f) time step time step
y -0.05  -0.05 X FIG. 3. Sample trajectory sections reconstructed using the SQP, SIR, and EKF

with no noise (the left column) and 3% added noise (the right column). (a), (b), and
(c) are for x, y, and z component, respectively; (d), (e), and (f) are for My, My, and
Mg, respectively. The unit of x, y, and z is meter and that of My, My, and M; is

Am?.

FIG. 2. The blue path is the synthetic trajectory of a magnetic ball, and the red
arrows represent the orientation of the magnet. The square boxes represent the
magnetometers in the simulations. The unit of the axis is meter.
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TABLE II. The position and rotation error vs the level of noise.

Error Method No noise 1% 3% 6% 10% 20%
SQP 0.003 0.21 0.6 1.1 1.49 8.41

Position error (%) EKF 0.24 0.3 0.52 0.94 1.51 9.88
SIR* 0.41 0.5 0.86 1.56
SQP 0.053 0.30 0.83 1.61 2.6 5.73

Rotation error (deg) EKF 0.76 0.81 1.10 1.78 2.7 5.54
SIR" 1.43 1.43 1.74 2.77

“In the SIR computation, 5000 samples were used.

The estimation of X at step k is approximated by the weighted
mean of the samples, i.e., Xj = Zf\flw};Xﬁ;. The uncertainty is approx-
imated by the weighted sample covariance. In both the EKF and
SIR, we only need to solve the optimization problem [Eq. (3)]
at the beginning of a trajectory to obtain the initial state of the

system.

12.00%
10.00%
8.00%
6.00%
4.00%
2.00%

0.00%
No 1% 3% 6% 10% 20%
noise

e QP e FKF  em—CS|R

O B N W A 01O N

11l. PERFORMANCES OF ALL RECONSTRUCTION
ALGORITHMS

We use several simulations to evaluate the performances of the
SQP, SIR, and EKF methods in the reconstruction of trajectories.
Not to lose generality, a synthetic trajectory is created by randomly

———

No 1%

noise

3%

6% 10%

e SOP e EKF  sm—S|R

20%

FIG. 4. (a) Position error dependence on
the noise and (b) the rotation error vs the
noise level.

FIG. 5. A top view of the validation experiment. A cap is
floating on the water contained in a plastic bottle. The mag-
netic ball is glued to the cap center. A black marker near
the edge of the cap is used to indicate the orientation of the
magnet. Four 3-axis magnetometers are placed near the
measurement domain.
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perturbing the motion of an object so that the velocity becomes dis-
continuous along the trajectory (Fig. 2). The magnet moment is set
to be 0.0105 Am?. A real magnet with this moment is used in the
following experiments. The blue curve indicates the location of the
magnet, and the red quivers represent the magnet moment. To eval-
uate the robustness of SQP, SIR, and EKF at multiple noise levels,
Gaussian noise is added to the synthetic sensor readings. Specifically,
for the ith sensor at each time step, O; is set to be B(r, roi, m) - S; -
(1 + €), where € has a normal distribution with a zero mean. The
standard deviation of € is selected to be 0.01, 0.03, 0.06, 0.1, and
0.2 in different simulations. Multiple trajectories are reconstructed
based on the data with these noise levels. Figure 3 shows a compar-
ison of the synthetic and reconstructed trajectories. The total time
step in the synthetic trajectory is 5000, but only a section (with no
noise and 3% added noise) is presented for clarity.

To set a standard in estimating the accuracy of MPT recon-
struction, we define the relative error as the difference between the
real and reconstructed positions divided by the domain size. For the
x component, E; = mean(|xf — xj|)/Lx. Here, Ly is the size of the
domain in the x direction, Ly = [max(x) — min(x)], xj* is the real
value of the position. In the simulation, it is the position of the syn-
thetic trajectory. Similarly, we can calculate the errors in the y and
z directions. Consequently, the average relative position error of all
components is %(Ex +E, + E;). The orientation error can be mea-
sured using the mean angle between the measured vector m and the
real m”.

Table 1I shows the uncertainties in the position and direction
obtained from the above simulations, and the same results are plot-
ted in Fig. 4. We notice that the SIR may not return a useful value
when the noise level is too high. The noise level of a typical magne-
tometer is smaller than 5%. Taking the 3% noise case as an example,
the relative position error of EKF results is 0.52%, better than the
SQP and SIR. In the lower noise cases, the SQP is slightly better.
With 3% noise, the angular accuracy of MPT is in the order of 1°.
The SQP orientation result is better than the other two approaches.
We can compare the position errors with that of optical methods.
The image-based position uncertainty can be estimated as 1 pixel,
and the field of view is typically 1 K x 1 K. Hence, the relative error
is in the order of 0.1%. Therefore, the accuracy of MPT position
reconstruction is not very far from that of optical methods.

Despite the above methods having similar robustness against
noise, their processing speeds differ significantly. The SIR takes
about one third the time of the SQP; and the EKF is about 1000
times faster than the SQP. The reason is that the SQP solves mul-
tiple suboptimization problems without the guidance of a model
equation, i.e., it breaks one time step into multiple small steps. By
contrast, the EKF directly estimates the most probable position of
one particle in one step. As for the SIR method, since it generates
and follows thousands of virtual samples, its speed is much slower
than the EKF. Considering both accuracy and speed, the most cost-
effective method is the EKF. Therefore, we use it to process our data
in the following experiments.

IV. EXPERIMENTAL EVALUATION
OF RECONSTRUCTION NOISE

A floating magnet is used to experimentally evaluate the MPT
uncertainty. The magnetic particle is made of neodymium rare

ARTICLE scitation.orgljournal/rsi

earth with a diameter of 3 mm. As shown in Fig. 5, a plastic bottle
cap containing the magnetic ball is floating on the surface of water.
A black marker is used to indicate the orientation of the magnet
(the angle 6). The cap is driven by random disturbances. In order
to obtain an independent measurement of the motion, a high-speed
camera is used to record the magnet’s trajectory from the top at a

0.03

Reconstructed
———Camera result | |

0.02f )
0.01
|
x Or
0.01}
0.02} |

a) -0.03 : : : :
0 2000 4000 6000 8000 10000
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0.06 i
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0.05+ / ——Camera result | |
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FIG. 6. The comparison between the reconstructed trajectory and the result from
a camera for (a) the x component, (b) the y component, and (c) the rotation angle.
The units in (a) and (b) are meter, and 6 is measured in radian.

Rev. Sci. Instrum. 90, 065116 (2019); doi: 10.1063/1.5100739
Published under license by AIP Publishing

90, 065116-6


https://scitation.org/journal/rsi

Review of

Scientific Instruments

frame rate of 1000. We can identify the magnet position and orien-
tation through processing the images. Four Bartington M612 probes
(three-axis fluxgate magnetometers) are distributed around the mea-
surement domain. Their sensing range is [-90 y'T, 90 uT]. The sam-
pling frequency is set to be 1000 Hz and synchronized with the cam-
era. The coordinates of each sensor are precisely determined by an
accurately machined holder. At the beginning of each experiment,
the empty domain without any magnet is measured as the offset.
Thereafter, the magnetic ball is introduced into the domain, where
the sensor array measures the magnetic field change. All devices are
fixed on a wooden table, and ferromagnetic materials are kept away
from the workbench. The noise level is about 3% of the measured
value.

Figure 6 shows that the MPT reconstructed trajectory and
the camera-based results almost overlap. Note that the range of
rotation angle is —m/2 to m/2, so there are sudden jumps between
the upper and lower limits in the 6 trajectory. Since the image-
based results have higher accuracy, we use them as the ground
truth to evaluate the uncertainty of the MPT with EKF recon-
struction. The average relative position error %(Ex +E,) is 0.65%,
and the error in 6 determination is 1.44°. These results show that
the MPT method successfully captures the motion of the tracer
particle, which is consistent with the simulation results discussed
in Sec. 1.

V. APPLICATION OF MPT IN A GRANULAR
SHEAR FLOW

Granular materials are widely used in industry, but granu-
lar flow is far from being understood. This is partially because of

rotating disk

magnetometer

brass ball

ARTICLE scitation.orgljournal/rsi

technical difficulties in measuring this type of flow. To demonstrate
the usefulness of MPT, we applied it to investigate a granular shear
flow. We generate this flow in a cylindrical container with a rotat-
ing disk at the bottom, as shown in Fig. 7(a). The rotating disk is
connected by a shaft to a DC motor that is located 0.5 m away from
the measurement domain. Such a distance is sufficient to prevent the
motor magnetic field from interfering with the MPT measurements.
In addition, there is no ferromagnetic material near the magnetome-
ter. The inner diameter of the cylindrical container is 101 mm, and
the rotating disk diameter is 63.5 mm. There are 385 brass balls ran-
domly packed in the container [Fig. 7(b)], each with a diameter of
10 mm. One of the balls encapsulates a magnetic bead, which serves
as the tracer particle. The weight of this tracer ball is 3.604 g, and that
of the normal balls is 3.709 g. Therefore, the tracer has nearly the
same mechanical property as the normal balls. The rotation speed of
the bottom disk is 10 rpm. The Bartington M612 probes are installed
on two rings with a distance of 37.5 mm between them [Fig. 7(a)].
The magnetometers are located 67.5 mm away from the center of the
container.

The experiment procedures have been described in Sec. IV.
Specifically, the background magnetic field is the same as that in the
validation test, which confirms that the motor has very little effect
in the measured domain. The sampling frequency is set to be 50 Hz,
which is sufficient to capture the slow motion. Figure 8 displays the
reconstructed path using the EKF. Since the grain diameter is large
and the driving rotation is only 10 rpm, the balls show a layered dis-
tribution. The tracer ball, which was initially near the center, is able
to reach five layers in the radial direction and 4 layers in the vertical
direction (Fig. 8). The probability of staying at each layer is not the

FIG. 7. (a) An illustration of the device used to generate a
granular shear flow. (b) The top view of the brass balls in the
cylindrical container. The tracer ball is hidden among these
balls.
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FIG. 8. The top view (a) and side view
(b) of the trajectory of a tracer particle in
a granular shear flow. The unit is meter.
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FIG. 9. The probability distribution in the x-y plane (a) and
in the vertical direction (b). The unitin (a) is meter.
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same. We calculated the radial and azimuthal probability distribu-
tion. The tracer has a higher chance of staying at the periphery and
at the center [Fig. 9(a)]. This periphery diameter is about 70 mm,
and there are two more layers of balls between this periphery and
the cylinder wall. However, over the investigated time period, the
tracer was not able to penetrate into these outer layers. The proba-
bility distribution in the vertical direction is shown in Fig. 9(b). The
top three vertical layers have significant probability, but the bottom
layer has little.

VI. SUMMARY

In this research, we have developed a tracking system that uses
the magnetic field to measure the motion of a particle. A great advan-
tage of the MPT method is that it does not rely on any hazardous
radiation such as the X-rays to measure the motion in an opaque
environment. The cost is therefore much lower. Another important
feature of MPT is that it can simultaneously measure the position
and orientation of a particle, whereas the orientation is difficult to
obtain using other technologies.

We tested two new algorithms (the SIR and EKF) to recon-
struct the MPT trajectory and orientation. Their accuracies are
comparable to that of the state-of-the-art optimization approach,
but the EKF reconstruction speed is orders of magnitude faster.
Specifically, the validation experiment shows that the MPT position
uncertainty can reach 0.6% and the angular error is 1.44° for a mea-
surement domain with a size of about 10 cm. The position accu-
racy is lower but comparable with that of advanced image-based
methods.

The MPT technology was used to track the motion in a dense
granular shear flow. Our results demonstrate that the MPT is able
to capture the trajectory of a tracer particle, from which it is pos-
sible to obtain the spatial probability distribution in both horizon-
tal and vertical directions. Because of the above advantages and its
high accuracy, MPT is a powerful tool for studying dense granular
flows.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Huazhen Fang for helping
us develop the Particle filter and Kalman filter for the MPT, and we
are grateful to Dr. Kay Buist for discussing with us the SQP algo-
rithm. In addition, we acknowledge Wes Ellison for his help on the
hardware and Randi Hacker and John Haug for the preparation of
this manuscript.

This project is supported by the University of Kansas General
Research Funding.

REFERENCES

TF. Charru, B. Andreotti, and P. Claudin, Annu. Rev. Fluid Mech. 45, 469 (2013).
2F. Toschi and E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009).

3N. Chenouard, 1. Smal, F. De Chaumont, M. Maska, L. F. Sbalzarini, Y. Gong,
J. Cardinale, C. Carthel, S. Coraluppi, M. Winter, A. R. Cohen, W. J. Godinez,
K. Rohr, Y. Kalaidzidis, L. Liang, ]. Duncan, H. Shen, Y. Xu, K. E. G. Magnusson,
J. Jaldén, H. M. Blau, P. Paul-Gilloteaux, P. Roudot, C. Kervrann, F. Waharte, J. Y.
Tinevez, S. L. Shorte, J. Willemse, K. Celler, G. P. Van Wezel, H. W. Dan, Y. S. Tsai,
C. O. De Solérzano, J. C. Olivo-Marin, and E. Meijering, Nat. Methods 11, 281
(2014).

“A. Amon, P. Born, K. E. Daniels, ]. A. Dijksman, K. Huang, D. Parker,
M. Schroter, R. Stannarius, and A. Wierschem, Rev. Sci. Instrum. 88, 051701
(2017).

5N. T. Ouellette, H. Xu, and E. Bodenschatz, Exp. Fluids 40, 301 (2006).

8X. Guo, J. Tang, J. Li, C. Shen, and J. Liu, “Attitude measurement based on imag-
ing ray tracking model and orthographic projection with iteration algorithm,”
ISA Trans. (in press).

7X. Guo, J. Tang, J. Li, C. Wang, C. Shen, and J. Liu, Rev. Sci. Instrum. 90, 033704
(2019).

8].S. Lin, M. M. Chen, and B. T. Chao, AIChE J. 31, 465 (1985).

°D. Parker, D. Allen, D. Benton, P. Fowles, P. McNeil, M. Tan, and T. Beynon,
Nucl. Instrum. Methods Phys. Res., Sect. A 392, 421 (1997).

19D, Parker, R. Forster, P. Fowles, and P. Takhar, Nucl. Instrum. Methods Phys.
Res., Sect. A 477, 540 (2002).

p. J. Parker, M. R. Hawkesworth, C. J. Broadbent, P. Fowles, T. D. Fryer, and
P. A. McNeil, Nucl. Instrum. Methods Phys. Res., Sect. A 348, 583 (1994).

12p, ]. Parker, C. J. Broadbent, P. Fowles, M. R. Hawkesworth, and P. McNeil,
Nucl. Instrum. Methods Phys. Res., Sect. A 326, 592 (1993).

3R. D. Wildman and D. J. Parker, Phys. Rev. Lett. 88, 064301 (2002).

147 B. Romero and D. W. Smith, AIChE J. 11, 595 (1965).

15E. W. Grohse, AIChE J. 1, 358 (1955).

T6X. Chen, W. Zhong, and T. J. Heindel, AIChE . 65, 520 (2019).

177T.7. Heindel, J. Fluids Eng. 133, 074001 (2011).

18H. Nadeem and T. J. Heindel, Powder Technol. 332, 331 (2018).

19C. Scholz and T. Péschel, Phys. Rev. Lett. 118, 198003 (2017).

20K, A. Buist, T. W. Van Erdewijk, N. G. Deen, and J. A. M. Kuipers, AIChE ]. 61,
3198 (2015).

2VH. Wu, in AIAA Scitech 2019 Forum (AIAA, 2019), p. 272.

22W. André, H. Danan, W. Kirmsse, H. H. Kramer, P. Saupe, R. Schmieg, and
M. E. Bellemann, Phys. Med. Biol. 45, 3081 (2000).

ZC. Hu, M. Li, S. Song, W. Yang, R. Zhang, and M. Q. Meng, IEEE Sens. . 10,
903 (2010).

24G. Mohs, O. Gryczka, and S. Heinrich, Chem. Eng. Sci. 64, 4811 (2009).

25V, Idakiev and L. Mérl, J. Chem. Technol. Metall. 48, 445 (2013).

2E, E. Patterson, J. Halow, and S. Daw, Ind. Eng. Chem. Res. 49, 5037 (2010).

Rev. Sci. Instrum. 90, 065116 (2019); doi: 10.1063/1.5100739
Published under license by AIP Publishing

90, 065116-8


https://scitation.org/journal/rsi
https://doi.org/10.1146/annurev-fluid-011212-140806
https://doi.org/10.1146/annurev.fluid.010908.165210
https://doi.org/10.1038/nmeth.2808
https://doi.org/10.1063/1.4983052
https://doi.org/10.1007/s00348-005-0068-7
https://doi.org/10.1016/j.isatra.2019.05.009
https://doi.org/10.1063/1.5084799
https://doi.org/10.1002/aic.690310314
https://doi.org/10.1016/s0168-9002(97)00301-x
https://doi.org/10.1016/s0168-9002(01)01919-2
https://doi.org/10.1016/s0168-9002(01)01919-2
https://doi.org/10.1016/0168-9002(94)90805-2
https://doi.org/10.1016/0168-9002(93)90864-e
https://doi.org/10.1103/physrevlett.88.064301
https://doi.org/10.1002/aic.690110408
https://doi.org/10.1002/aic.690010315
https://doi.org/10.1002/aic.16485
https://doi.org/10.1115/1.4004367
https://doi.org/10.1016/j.powtec.2018.03.035
https://doi.org/10.1103/physrevlett.118.198003
https://doi.org/10.1002/aic.14949
https://arc.aiaa.org/doi/abs/10.2514/6.2019-0272
https://doi.org/10.1088/0031-9155/45/10/322
https://doi.org/10.1109/jsen.2009.2035711
https://doi.org/10.1016/j.ces.2009.08.025
https://doi.org/10.1021/ie9008698

Review of

Scientific Instruments

27A. Kohler, D. Pallares, and F. Johnsson, Fuel Process. Technol. 162, 147
(2017).

28 A Kéhler, A. Rasch, D. Pallarés, and F. Johnsson, Powder Technol. 316, 492
(2017).

91, Zhang, F. Weigler, V. Idakiev, Z. Jiang, L. Mérl, J. Mellmann, and E. Tsotsas,
Powder Technol. 339, 817 (2018).

30K. A. Buist, A. C. van der Gaag, N. G. Deen, and J. A. M. Kuipers, AIChE . 60,
3133 (2014).

51K, A. Buist, P. Jayaprakash, J. A. M. Kuipers, N. G. Deen, and J. T. Padding,
AIChEJ. 63, 5335 (2017).

ARTICLE scitation.orgljournal/rsi

32Y. Shi and H. Fang, Int. J. Control 83, 538 (2010).

33F, Gustafsson, Adaptive Filtering and Change Detection (Wiley, New York,
2000).

34M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal
Process. 50, 174 (2002).

35A. Smith, Sequential Monte Carlo Methods in Practice (Springer Science &
Business Media, 2013).

36 A. Gelb, Applied Optimal Estimation (MIT Press, Cambridge, 1974).

57R. E. Kalman and R. S. Bucy, J. Basic Eng. 83, 95 (1961).

38 A.J. Chorin and X. Tu, Proc. Natl. Acad. Sci. U. S. A. 106, 17249 (2009).

Rev. Sci. Instrum. 90, 065116 (2019); doi: 10.1063/1.5100739
Published under license by AIP Publishing

90, 065116-9


https://scitation.org/journal/rsi
https://doi.org/10.1016/j.fuproc.2017.03.018
https://doi.org/10.1016/j.powtec.2016.12.093
https://doi.org/10.1016/j.powtec.2018.08.057
https://doi.org/10.1002/aic.14512
https://doi.org/10.1002/aic.15854
https://doi.org/10.1080/00207170903273987
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/78.978374
https://doi.org/10.1115/1.3658902
https://doi.org/10.1073/pnas.0909196106

