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Abstract: Rock brittleness is pivotal in the development of the unconventional reservoirs. However,
the existence of various methods of calculating the brittleness index (BI) such as the mineral-based
brittleness index (MBI), the log-based brittleness index (LBI), and the elastic-based brittleness index
(EBI) lead to inconclusive estimations of the brittleness index. Hence, in this work, the existing
correlations are applied on prolific unconventional plays in the U.S. such as the Marcellus, Bakken,
Niobrara, and Chattanooga Formation to examine the various BI methods. A detailed comparison
between the MBI, LBI, and EBI has also been conducted. The results show that a universal correlation
cannot be derived in order to define brittleness since it is a function of lithology. Correlation
parameters vary significantly from one shale play to another. Nevertheless, an overall trend shows
that abundant quartz and carbonates content yield high brittleness values, while the high clay content
and porosity lower the rock brittleness.

Keywords: rock brittleness; hydraulic fracturing; unconventional reservoirs; brittleness index;
fracability index; Young’s modulus; Poisson’s ratio; Marcellus Formation; Bakken Formation;
Niobrara Formation; Chattanooga shale

1. Introduction

Brittleness is a key parameter in the development of unconventional shale reservoirs and tight
carbonate reservoirs since it plays a role in the design of hydraulic fractures as well as the selection
of sweet-spot locations for perforation and fracture initiation. These reservoirs are defined by
heterogeneities within a complex geological setting [1]. These reservoirs are characterized by low
matrix permeability. Hence, hydraulic fracturing should be used to achieve commercial production
rates [2]. More surface area becomes available by propagating a wide fracture network [3]. According
to the U.S. Energy Information Administration (EIA), 69% of wells drilled within the US in 2016 were
hydraulically fractured [4]. Furthermore, EIA lists a 17% increase of crude oil production in 2018,
which is attributable to the production from tight rock formations, where both horizontal drilling and
hydraulic fracturing were applied [5]. Since this appears to be the future, a qualitative analysis of the
lithology, especially brittleness, is crucial for effective fracturing, as highly brittle formations are more
prone to hydraulic stimulation [6].

The brittleness index (BI) is utilized to indicate if the formation rocks are brittle, which are
preferable to form a complex network of fractures, [3] or ductile, which would be more resistant to
fracture growth and failure. It describes the rock failure [7], which can be interpreted as a complex
function of lithology, mineral composition, total organic carbon (TOC), effective stress, reservoir
temperature, diagenesis, thermal maturity, porosity, and type of fluid [8]. Many correlations have been
developed for different purposes, which can be investigated by geo-mechanical and mineralogical
properties analysis [9]. However, there is a wide variety of BI methods in the literature that lead to
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inconclusive BI values. The sweet spots for hydraulic fracturing cannot be located and identified
by a single BI since the rock brittleness is controlled by a combination of factors including in situ
stress, mineralogical composition (especially clay content), elastic moduli, the presence of pre-existing
fractures, and the well completion methods [10].

2. Review of Brittleness Index Correlations

Various concepts of brittleness are suggested in the literature. The BI can be derived based on
the stress-strain ratio, Young’s Modulus and Poisson’s ratio, energy balance analysis, unconfined
compressive strength, Brazilian tensile strength, penetration, impact and hardness test, the mineral
composition, porosity analysis, grain size, internal friction angle, the over-consolidation ratio, and
geophysical analysis on Lame’s parameter and the density [11]. This review focusses on four parameters:
Stress-strain ratio, Young’s Modulus and Poisson’s ratio, mineral composition, and porosity analysis.

The BI can be derived in various ways. Differentiation can be obtained between the Mineral-based
Brittleness Index (MBI) and the Fracability Index (FI). Furthermore, FI is divided into the Log-based
Brittleness Index (LBI) and the Elastic-based Brittleness Index (EBI), which is further divided into static
and dynamic FI (Figure 1).

Geosciences 2019, 9, x FOR PEER REVIEW 2 of 21 

 

mineralogical properties analysis [9]. However, there is a wide variety of BI methods in the literature 

that lead to inconclusive BI values. The sweet spots for hydraulic fracturing cannot be located and 

identified by a single BI since the rock brittleness is controlled by a combination of factors including 

in situ stress, mineralogical composition (especially clay content), elastic moduli, the presence of pre-

existing fractures, and the well completion methods [10]. 

2. Review of Brittleness Index Correlations 

Various concepts of brittleness are suggested in the literature. The BI can be derived based on 

the stress-strain ratio, Young’s Modulus and Poisson’s ratio, energy balance analysis, unconfined 

compressive strength, Brazilian tensile strength, penetration, impact and hardness test, the mineral 

composition, porosity analysis, grain size, internal friction angle, the over-consolidation ratio, and 

geophysical analysis on Lame’s parameter and the density [11]. This review focusses on four 

parameters: Stress-strain ratio, Young’s Modulus and Poisson’s ratio, mineral composition, and 

porosity analysis. 

The BI can be derived in various ways. Differentiation can be obtained between the Mineral-

based Brittleness Index (MBI) and the Fracability Index (FI). Furthermore, FI is divided into the Log-

based Brittleness Index (LBI) and the Elastic-based Brittleness Index (EBI), which is further divided 

into static and dynamic FI (Figure 1). 

 

Figure 1. Workflow to derive the Brittleness Index. 

The mineral-based brittleness index (MBI), which is a method based on the mineral composition 

of the formation [12], can be derived from laboratory core testing or well logging data using mineral 

logging or calculated using a matrix inversion. The output of this derivation is the mineral fraction, 

which is leading to the BI using different MBI correlations. The LBI on the other hand can be directly 

derived from wireline logging using the Neutron Porosity (NPHI) or the compressional slowness. 

Empirical equations yield to the BI [13]. The EBI can be subdivided into static and dynamic properties. 

Static properties are usually derived from laboratory testing, such as triaxial testing, to essentially 

obtain the static Young’s modulus and Poisson’s ratio. Dynamic properties are derived from bulk 

compressional slowness, shear slowness, and bulk density, to ultimately obtain the dynamic Young’s 

modulus and Poisson’s ratio. 

Figure 1. Workflow to derive the Brittleness Index.

The mineral-based brittleness index (MBI), which is a method based on the mineral composition
of the formation [12], can be derived from laboratory core testing or well logging data using mineral
logging or calculated using a matrix inversion. The output of this derivation is the mineral fraction,
which is leading to the BI using different MBI correlations. The LBI on the other hand can be directly
derived from wireline logging using the Neutron Porosity (NPHI) or the compressional slowness.
Empirical equations yield to the BI [13]. The EBI can be subdivided into static and dynamic properties.
Static properties are usually derived from laboratory testing, such as triaxial testing, to essentially
obtain the static Young’s modulus and Poisson’s ratio. Dynamic properties are derived from bulk
compressional slowness, shear slowness, and bulk density, to ultimately obtain the dynamic Young’s
modulus and Poisson’s ratio.
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2.1. Mineral-Based Brittleness Index Correlations

The lithology has a significant impact on the brittleness. Some minerals increase the brittleness,
while others decrease it. Numerous correlations were derived to estimate the brittleness based on
the mineral weight fraction. The correlations were derived from testing on different formations, and
those formations vary in mineral content, TOC, burial depth, porosity, permeability, and geologic age,
respectively. However, most of the correlations exist for the Barnett Shale.

Jarvie et al. [12] performed tests on the Mississippian Barnett Shale in north-central Texas.
The Barnett Shale is considered a low-porosity (6%) and low-permeability shale play [12]. The
formation is dominated by fine-grained particles, whereas the system can be divided into three
lithofacies, laminated siliceous mudstone, laminated argillaceous marl and skeletal, and argillaceous
lime packstone, containing abundant pyrite and phosphate, respectively [14]. Therefore, the formation
can be described as shale bounded by limestone. The mineral fraction is showing a high abundance of
quartz (~50%), slightly lower values of clay (~45%), and low values for calcite (~5%) on average [12].
The tested wells have a thermal maturity of 0.80–0.90% Ro with an average TOC content of 6.41% [12].
Based on the testing results Jarvie et al. [12] suggested, the following equation to derive the brittleness
is shown below.

MBI =
Q

Q + Carb + Cly
(1)

where Q = quartz, Carb = carbonate, and Cly = clay in weight fraction, respectively.
Quartz is considered to be a brittle mineral, while carbonate and clay are considered to be less

brittle and non-brittle, respectively. This equation would lead to accurate results for formations that
contain high amounts of quartz and clay and low carbonate content. However, for formations with a
significant amount of carbonate, this equation would underestimate the brittleness.

Wang and Gale [8] modified the correlation. Dolomite could be, apart from quartz, considered as a
brittle mineral while increasing the brittleness. Since TOC is anticipated to decrease the brittleness [15],
it is added in the denominator of the equation as follows.

MBI =
Q + D

Q + D + Cal + Cly + TOC
(2)

where D = dolomite, Cal = calcite, and TOC = total organic carbon in weight fraction, respectively.
The petrophysical properties demonstrate that dolomite should be considered a brittle mineral.

This equation would yield to more accurate results of brittleness for formations where dolomite
is abundant. However, for formations containing both calcite and dolomite, this equation would
underestimate the brittleness.

Therefore, Glorioso and Rattia [16] modified the previous equation based on studies on the
Late Jurassic Neuquén Basin in Argentina. The basin is associated with low porosity (8%) and
low permeability argillaceous siliceous and calcareous mudstone with an average TOC content of
2.5–3.5% [16]. The dominant carbonate minerals within the calcareous mudstones are calcite and
dolomite. Since calcite tends to increase the brittleness as well, the Glorioso and Rattia [16] suggest
considering not only dolomite but the entire carbonate weight fraction as brittle minerals. Hence, the
equation was modified for the MBI [16].

MBI =
Q + Carb

Q + Carb + Cly + TOC
(3)

Buller et al. [17] used the same approach, stating the brittle minerals in the nominator and the
brittle and ductile minerals in the denominator. Studies were performed on the Jurassic Haynesville
Shale in the Texas part of the play. The lithology varies between calcite-rich shale with little clay to
silica-rich shale with large amounts of bedded clay and less calcite [17]. The effective porosity was
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determined to be 8% and a TOC content ranging between 3% and 6% [18]. The following equation was
found [17].

MBI =
(abM1 + abM2 . . .)

(abM1 + abM2 + abM3 . . .)
(4)

where M = mineral, a = mineral-specific brittleness factor, and b = mineral distribution factor.
Each mineral is multiplied by a brittleness coefficient considering the mechanical properties,

the texture, and the overall mineral distribution in the rock [17]. The relative abundance of quartz
and carbonate as brittle minerals is compared to the clay content. This equation leaves room to take
other formation factors in consideration. Known information about the formation can be assigned
to the equation. This equation is accessible if numerous information is provided, and if the mineral
distribution is the main factor to derive the brittleness, while taking other properties in consideration
as well.

However, Jin et al. [19] reported, based on studies on the Barnett Shale, that other minerals
contribute to the brittleness as well. Beside carbonate and quartz, the weight fraction of feldspar
and mica are considered brittle minerals as well. All minerals including both brittle and non-brittle
minerals should be considered in the denominator.

MBI =
Q + F + M + Carb

tot
(5)

where F is the feldspar and M is the mica in weight fraction, respectively, and tot is the total weight
fraction.

To prove the validity of this equation, Jin et al. [19] applied the result on the Woodford Shale,
Barnett Formation, and Eagle Ford Shale. Considering overall carbonate and silica as brittle minerals
and clay as a non-brittle mineral, this shows that the equation is applicable on individual formations.
The Eagle Ford Shale contains most carbonate, while the Barnett Formation is dominated by silica and
the Woodford Shale is rich in clay minerals. It shows that this equation is applicable for a wide range
of lithologies with varying predominant minerals.

Alzahabi et al. [20] found a new MBI for the Wolfcamp Formation, with Late Pennsylvanian
to Permian age. The porosity of this formation is relatively high (~10%) and the TOC ranges at
about 2.3% [20]. This formation is highly heterogeneous in its mineralogy, TOC, and other reservoir
properties. The weight fractions reported from XRD measurements indicate average values of 60%
silicates, 20% carbonates, and 20% clay [21]. This formation varies strongly in its calcite content, which
ranges from 0% to 84% [20]. It is, overall, mostly shale-rich, except the upper part, which is rich in
carbonate [20]. Studies led to the following equation [20].

MBI = 1.09×
(

Q + F + P
Q + F + P + Cal + D + Cly

)
+

( 1
8.8

)
(6)

where P is indicating the pyrite weight fraction.
This equation considers quartz, feldspar, and pyrite as brittle minerals. Calcite and dolomite are

taken in account as non-brittle minerals. However, previous equations [16,19] have shown that the
weight fraction of carbonates as brittle minerals lead to more accurate results in order to determine
the MBI. Pyrite has a high bulk density as well as a very low compressional slowness, which indicate
brittle properties. However, pyrite is not highly abundant in formations, which makes a correlation
between MBI and pyrite hard to derive.

Rybacki et al. [22] developed a new correlation based on shales in Europe (Posidonia Shale, Lower
Jurassic age, Germany, Alum Shale, Lower Cambrian age, Denmark) and the Barnett Shale. The
composition of the Alum shale is variable, containing 17–62 vol% clay (illite, illite-smectite, kaolinite),
0–50 vol% carbonates, 7–46 vol% quartz, 0–10 vol% feldspar, and 0–7 vol% pyrite [22]. Overall, most
samples are poor in carbonates and rich in clay with a porosity of 1–4.1% and a TOC content of
2–20.7% [22]. The Posidonia Shale contains 40–60 vol% clay, 25–45 vol% carbonates, and 10–25 vol%
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quartz, feldspar, and pyrite. The porosity ranges from 6.5% to 8% and the TOC ranges from 17% to
22.4%. The Barnett Shale samples in this study contain clay and TOC contents ranging from 40% to
65 vol%, carbonates ranging from 5% to 20 vol% and quartz, feldspar, and pyrite ranging from 30% to
50 vol% [22]. The porosity ranges from 0.5–1.2% and the TOC from 5.1–13.9%. Applications lead to the
following equation.

MBI =
Q + F + P

Q + F + P + (0.5× (Cal + D)) + PHIT
(7)

where PHIT is the total porosity.
Each mineral should be taken into account as a volume percentage. Quartz, feldspar, and pyrite

are considered as mechanically strong minerals, whereas carbonate is mechanically intermediate. Clay
and TOC components are mechanically weak [22]. As the porosity affects the strength, it is considered
in the denominator of the equation as well.

Various equations to derive the MBI exist. These correlations take different minerals as brittle or
non-brittle in account. As a brittle mineral, quartz [12], dolomite [8], calcite [6], feldspar, mica [19],
and pyrite [20,22] were identified. However, brittle minerals have a different contribution in the
prediction of BI, whereas quartz is more brittle, which is followed by dolomite and calcite [23]. Overall,
different concepts of MBI lead to different results based on the consideration of the minerals as brittle or
non-brittle. These equations have been summarized in Table 1. However, the mineral weight fraction is
only an approximation in determining the BI. Two rocks with the same mineralogy can have different
values of brittleness, as the mineralogy is not the only parameter that has an impact. Therefore, further
parameters, such as Young’s modulus and Poisson’s ratio, should be taken in consideration as well.

Table 1. Summary of MBI correlations based on the mineral composition.

Correlation for MBI Formation Age Lithology Φ (%) TOC (%) Reference

Q
Q+Carb+Cly Barnett Carb.

Shale
bounded by

limestone
6 1–3 Jarvie et al.

[12]

Q+Dol
Q+D+Cal+Cly+TOC Barnett Carb.

Shale
bounded by

limestone
6 1–3 Wang and

Gale [8]

Q+Cal+D
Q+Cal+D+Cly+TOC

Neuquén
Basin,

Argentina
Jur. Mudstones 8 2.5–3.5 Glorioso and

Rattia [16]

(abM1+abM2...)
(abM1+abM2+abM3...) Haynes-ville Jur.

Calcite to
silica-rich

shale
8 3–6 Buller et al.

[17]

Q+F+M+Carb
tot Barnett Carb.

Shale
bounded by

limestone
6 1–3 Jin et al. [19]

1.09×(
Q+F+P

Q+F+P+Cal+D+Cly

)
+

(
1

8.8

) Wolf-camp Carb. - Perm. Shale, minor
limestone 10 2.3 Alzahabi et al.

[20]

Q+F+P
Q+F+P+(0.5×(Cal+D))+PHIT

Shales in
Europe and

Barnett
Camb. – Jur.

Shale
bounded by

limestone
0.6–11 15 Rybacki et al.

[22]

2.2. Fracability Index Correlations

The fracability index (FI) is a parameter that can be used to quantify the BI in terms of elastic
properties. Differentiation was made between Log-based Brittleness Index (LBI) correlations and
Elastic-based Brittleness Index (EBI) correlations.

2.2.1. Log-Based Brittleness Index Correlations

The LBI describes a method, which is empirically derived and only depends on the well log
response such as total porosity and sonic logs. Porosity has a significant influence on flow ability
through a rock mass and its strength and deformation behaviors [11]. Confining pressure and diagenetic
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processes yield to a lower porosity. However, the mineralogical brittleness is not correlated well
with the density porosity (DPHI), while it is correlated well with the neutron porosity (NPHI) [13].
Jin et al. [13] reported empirical correlations for Woodford Shale, Barnett Shale, and Eagle Ford Shale
as well as a global correlation.

The Devonian-age Woodford Shale is an organic-rich, siliceous shale with 38% to 56% quartz and
feldspar, 3% to 38% carbonate, 2% to 31% clay, and 2% to 3% pyrite [24,25]. It is considered a low
porosity (0.5% to 3%), low permeability formation [13] with a TOC content of 5.01% to 14.81% [26].
The following correlations were reported for this formation.

LBI = −1.5314×NPHI + 0.8575 (8)

LBI = −0.012×DTC + 1.4921 (9)

where NPHI is neutron porosity and DTC is a compressional slowness log response.
As previously mentioned, the Barnett Shale has a high abundance of silicates and clay and contains

only small amounts of carbonates. The following equation was derived for this formation.

LBI = −1.4956×NPHI + 0.9763 (10)

LBI = −0.01104×DTC + 1.4941 (11)

The Eagle Ford Shale contains the most carbonates in comparison to the Woodford Shale and
the Barnett Shale. It can be described as a carbonate mudstone with stringers of dense calcite [27].
The porosity ranges from 2% to 9% and the TOC content from 2.1% to 6.86% [27]. The LBI can be
empirically derived using the following equations.

LBI = −2.3115×NPHI + 1.0104 (12)

LBI = −0.0116×DTC + 1.6231 (13)

Jin et al. [13] found a global correlation for shale reservoirs using well logs from Woodford Shale,
Barnett Shale, and the Eagle Ford Shale.

LBI = −1.8748×NPHI + 0.9679 (14)

LBI = −0.0142×DTC + 1.7439 (15)

The results were compared and verified with the MBI. The correlations, using the neutron porosity
to predict the brittleness, can assist in developing the unconventional shale and tight carbonate plays,
when neither mineral logging nor dipole sonic logging is available.

The LBI presents an estimate of brittleness especially when only limited data are available.
However, careful handling with these empirical equations is important for application on other
formations. Jin et al. [13] suggested correlations for Woodford, Eagle Ford, and Barnett Shale [13].
The global correlation is derived from the combination of these formations. As unconventional
reservoirs are strongly heterogeneous [2], it is key to evaluate every formation and its geo-mechanical
and mineralogical properties. If the properties match the existing equations, they can be applied.
Otherwise, new correlations should be developed for the formation of LBI use. A summary of the LBI
correlations is shown in Table 2.
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Table 2. Summary LBI correlations based on compressional wave travel time (DTC) and neutron
porosity (NPHI).

Correlation for LBI Formation Age Lithology Φ (%) TOC (%) Reference

−0.012×DTC + 1.4921
−1.5314×φ+ 0.8575 Woodford Dev. Shale bounded

by limestone 0.5–3 5.01–14.81 Jin et al. [13]

−0.01104×DTC + 1.4941
−1.4956×φ+ 0.9763 Barnett Carb. Shale bounded

by limestone 6 1–3 Jin et al. [13]

−0.0116×DTC + 1.6231
−2.3115×φ+ 1.0104 Eagle Ford Creta. Mudstones 2–9 2.1–6.86 Jin et al. [13]

−0.0142×DTC + 1.7439
−1.8748×φ+ 0.9679

Global
Correlation - - - - Jin et al. [13]

2.2.2. Elastic-Based Brittleness Index Correlations

The EBI depends on the Young’s modulus and Poisson’s ratio. The Young’s modulus measures the
ratio of tensile or compressive stress to the corresponding strain. It essentially indicates the stiffness of a
material. On the other hand, the Poisson’s ratio is the measure of the geometric change of shape under
stress. In other words, it is the ratio of transverse to longitudinal strains. In general, the rock brittleness
becomes higher with lower values of Poisson’s ratio, and higher values of Young’s modulus [28].
Furthermore, it was reported that the Young’s modulus has a greater impact on the BI prediction than
Poisson’s ratio [23].

The compressional and shear wave velocities can be determined from sonic logging and the bulk
density. The dynamic Young’s modulus and the dynamic Poisson’s are a function of dynamic shear
and bulk modulus. The shear modulus G can be derived using the following relationship [29].

Gdyn = ρb × vs (16)

where ρb is bulk density in g/cm3 and vs is shear wave velocity in m/s.
The bulk modulus can be derived using the following expression [29].

Kdyn = ρb ×

(
v2

p −
4
3

v2
s

)
(17)

where vp is the compressional wave velocity in m/s.
Moving forward after the determination of the shear modulus (G) and the bulk modulus (K), it is

possible to derive the dynamic Young’s modulus and Poisson’s ratio using the following equations,
respectively [30].

Edyn =
9 K×G
3K + G

(18)

νdyn =
3 K− 2 G
6 K + 2G

(19)

where the dynamic Young’s modulus is in MPa.
Using the previously listed equations to derive Young’s modulus and Poisson’s ratio, Rickman et

al. [28] derived a correlation between the elastic-based brittleness index (EBI) and the elastic properties.
Studies on the Barnett Shale lead to the following assumption.

EBI =
Estat,norm + νstat,norm

2
(20)

where Estat,norm and νstat,norm are the normalized static Young’s modulus and the normalized Poisson’s
ratio, respectively. The values were normalized using the following relationship.

Estat,norm =
E− Emin

Emax − Emin
(21)
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where Emin is the minimum Young’s modulus within the formation of interest and Emax is the maximum
Young’s modulus [28].

The obtained normalized numbers have a value between 0 and 1. The values for the static
normalized Poisson’s ratio were determined using the same procedure. However, these values do
only represent the static properties. Static properties are, as previously mentioned, obtained from
laboratory testing such as triaxial testing. To convert the dynamic properties into static properties,
empirical correlations were derived. Rickman et al. [28] used a correlation from Mullen et al. [31] as
represented in the following equation.

Estat =

( Edyn

3.3674

)2.042

(22)

where Edyn is the dynamic Young’s modulus.
To derive this equation, Rickman et al. [28] performed testing on the Pinedale anticline area in

Southwestern Wyoming. It is a tight gas, Late Cretaceous interbedded sand and shale deposited
by a fluvial/alluvial system [32]. The validation of this equation was confirmed by comparison
between the lab testing of core samples, dipole sonic logging, and the pressure history from the
stimulation treatment.

Sharma and Chopra [33] used an approach combining the bulk density, which is directly derived
from the logs, and the Young’s modulus. They considered Jurassic strata within the Western Canadian
Sedimentary basin. The strata consist predominantly of siliceous-rich cherts and dolomites to
carbonate-rich shale in the one formation [33]. The other formation encompasses fine grained siltstone
grading to fine grained sandstone with limited shale content [33]. The following correlation was
developed for the EBI.

EBI = Edyn ×RHOB (23)

The correlation has proven that brittleness can be defined as the product of Young’s modulus and
bulk density. For a brittle formation, both Young’s modulus and density are expected to be high, so
the product serves as an indicator of high brittleness [33]. This equation is applicable for formations,
where clay is not the dominant mineral fraction. The density of clay varies strongly depending on the
clay minerals. Illite has a high bulk density, but acts ductile. The product would overestimate the BI,
which leads to imprecise assumptions. However, in formations where silicates and carbonates are the
dominant fraction, this equation leads to reasonable estimates for BI.

Sun et al. [34] found a correlation for EBI based on studies in the Western Depression of the Liahoe
Oilfield in China, which was formed during the Paleogene era. Due to its geologically young age, the
burial depth is much shallower than other tested formations. The lithology can be described as shale
containing 38.4–41.9% clay, 40.6–43.5% quartz, and 8.1–11.4% carbonate [34]. It is comparable with the
Woodford Shale lithology. The TOC was found to be up to 2.39% [34].

EBI =
Edyn ×RHOB

νdyn
(24)

For the tested formation, the equation shows feasible results [34]. However, further testing should
be conducted to verify the applicability of this equation by applying it on other formations.

Chen et al. [35] derived an equation for EBI based on studies in tight sandstones and shales with
porosity of less than 10% [35]. The following correlation for the EBI was found [35].

EBI =
E
λ

(25)
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where λ is Lame’s first parameter, which is an elastic modulus, and can be derived using the
following expression.

λ = RHOB×
(
v2

p − 2v2
s

)
. (26)

It has been shown, that the EBI increases with an increasing quartz content and decreasing
porosity [35]. This approach is more applicable for shale. The Young’s modulus is, according to Chen
et al. [35], more sensitive to a high quartz content and low TOC, porosity, and fluid content. The
properties match the criteria for unconventional reservoirs.

Jin et al. [19] found various approaches in the prediction of BI. The models were applied on the
Mississippian Barnett Shale. MBI and FI correlations were applied from well logging data. The fracture
toughness (KIC), the strain energy release rate (GC), and three different EBI correlations were found
and compared. Among those, the Barnett Formation, the Marble Falls, Upper Barnett, Forestburg
Limestone, Lower Barnett, and Viola Limestone were distinguished in terms of pay zones and rock
type [19].

The KIC represents the resistance of rock to fracture propagation from pre-existing cracks [19].
It can either be derived from the tensile strength, uniaxial compressive strength, p-wave velocity, or
Young’s modulus. The following equation shows the correlation between fracture toughness and
Young’s modulus.

KIC = 0.313 + 0.027× Estat (27)

where Estat is the static Young’s modulus in GPa.
Data from the Woodford Shale were accounted by Jin et al. [19] to verify the existing correlations.

As a linear correlation between the static and the dynamic Young’s modulus is assumed, the dynamic
Young’s modulus was used [19]. The fracture toughness can be correlated to existing BI correlations.
With increasing fracture toughness, the brittleness increases as well. Limitations of this equation are
indicated by an error of 23.82% between the predicted and the measured KIC and a coefficient of
determination of R2 = 0.62 [19].

GC is the energy dissipation per unit area during the process of new fracture creation [19]. It
combines the KIC with the dynamic Young’s modulus and the dynamic Poisson’s ratio, as indicated by
the following equation.

GC =
(
1−

(
νdyn

)2
)
×

(
KIC2

Edyn

)
× 103 (28)

However, it was found that GC does not always increase as the Young’s modulus increases [19].
This leads to difficulties in comparing the strain energy release rate to different FI correlations since it
is assumed that the FI grows with an increasing Young’s modulus.

EBI =
EBI Rickman et al.norm + GCnorm

2
(29)

where EBI (Equation (20)) is the normalized brittleness correlation from Rickman et al. [28] and GCnorm

is the normalized strain energy release rate. Values were normalized, according to the following
equations.

EBInorm =
EBI− EBImin

EBImax − EBImin
(30)

GCnorm =
GCmax −GC
Emax − Emin

(31)

where GCmax and GCmin represent the maximum and minimum critical strain energy release rate for
the investigated formation, respectively.

Another approach from Jin et al. [19] is to combine the EBI from Rickman et al. [28] with the
fracture toughness.

EBI =
EBI Rickman et al. norm + KICnorm

2
(32)
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where KICnorm is the normalized fracture toughness, according to Equation (27).

EBI =
EBI Rickman et al. norm + Edyn,norm

2
(33)

Overall, the different correlations do not show a uniform trend. Jin et al. [19] stated that these
variations are due to differences in the fracture toughness. Therefore, a comparison between the
different applications is essential in the prediction of effective fractured formations.

The review has shown that several BI correlations do exist. However, it leaves one question
open. Which correlation results in the most accurate prediction for different formations in the sense of
unconventional reservoirs? Furthermore, which correlation results in accurate predictions for different
rock types within the same formation? Most correlations were applied on the Barnett Shale, but not
every formation has similar lithological attributes as the Barnett. In addition, not every well has all the
required data provided. For instance, if sonic log is not available, then the approach using the MBI
should be taken. Essentially, the more information is available, the more accurate is the prediction for
BI. An overview about the existing correlations can be found in Table 3.

Table 3. Summary of EBI correlations based on elastic properties.

Correlation Formation Age Lithology Φ (%) TOC (%) Reference

EBI = Estat,norm+νstat,norm
2

Barnett Carb. Shale bounded
by limestone 6 1–3 Rickmann

et al. [28]

EBI = Edyn ×RHOB
Western

Canadian
Basin

Jur. Shale and
Sandstone 5–10 - Sharma and

Chopra [33]

EBI =
Edyn×RHOB

νdyn

Liahoe,
China Paleogene Shale 2.39 Sun et al.

[35]

EBI = E
λ

- - Shale and
Sandstone <10 - Chen et al.

[36]

KIC = 0.313 + 0.027× Edyn Woodford Dev. Shale bounded
by limestone 0.5–3 5.01–14.81 Jin et al. [19]

GC =(
1−

(
νdyn

)2
)
×

(
KIC2

Edyn

)
× 103 Barnett Carb. Shale bounded

by limestone 6 1–3 Jin et al. [19]

EBI = FI+GCnorm
2 Barnett Carb. Shale, bounded

by limestone 6 1–3 Jin et al. [19]

EBI = FI+KICnorm
2 Barnett Carb. Shale bounded

by limestone 6 1–3 Jin et al. [19]

EBI =
FI+Edyn,norm

2
Barnett Carb. Shale bounded

by limestone 6 1–3 Jin et al. [19]

3. Methodology

The review of the correlations has shown that the brittleness can be determined in different ways
using the MBI, the LBI, or the EBI. To further understand the applicability of these correlations, the
equations from the literature review were applied on four formations: the Marcellus, Chattanooga,
Bakken, and Niobrara formations. Those formations are important unconventional plays in the United
States. However, there are no specific correlations existing for those formations. The formations
vary in their mineralogical components, so that a broad applicability of the correlations from the
literature can be verified. The Marcellus Formation encompasses higher clay mineral content, while
the Bakken Formation and Chattanooga Shale are dominated by silicates and the Niobrara Formation
by carbonates.

The Marcellus Formation was formed during the Early and Middle Devonian geological age.
By analyzing well data from the Appalachian Basin in northern West Virginia, it is found that the
Marcellus Formation consists primarily of black shale, which is brittle, soft, and carbonaceous with
beds and a high Pyrite content with a TOC content ranging from 2 to 20 wt. % [36]. It is considered
a low porosity, ultra-low permeability shale-gas reservoir [36]. The Bakken Formation is also from
the Devonian-Mississippian geological age and consists of three members, which includes the lower,
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middle, and upper Bakken. However, focus of this study is the middle Bakken Formation, which
consists of calcareous sandstone and siltstone [37]. It is characterized as a low porosity and permeability
formation (<0.1 mD) [12]. The Niobrara Formation, on the other hand, is mainly composed of a
combination of chalk and marl layers with a TOC content in the marls ranging from 2 to 8 wt.%, a low
porosity (<10%), and low permeability (<0.001 mD) [38]. The Chattanooga Shale is the correlative
Kansas equivalent to the Woodford Shale, which is mostly present in Oklahoma [39]. It was formed
during the Late Devonian to Mississippian and is primarily a black to gray shale, which includes some
dolomitic and calcareous shale [39].

As various minerals contribute in a different way to the MBI, it is important to divide the MBI
and FI applications into three major categories, which are: clay dominated, silicate dominated, and
carbonate dominated (Figure 2).

Geosciences 2019, 9, x FOR PEER REVIEW 11 of 21 

 

middle, and upper Bakken. However, focus of this study is the middle Bakken Formation, which 

consists of calcareous sandstone and siltstone [37]. It is characterized as a low porosity and 

permeability formation (<0.1 mD) [12]. The Niobrara Formation, on the other hand, is mainly 

composed of a combination of chalk and marl layers with a TOC content in the marls ranging from 2 

to 8 wt.%, a low porosity (<10%), and low permeability (<0.001 mD) [38]. The Chattanooga Shale is 

the correlative Kansas equivalent to the Woodford Shale, which is mostly present in Oklahoma [39]. 

It was formed during the Late Devonian to Mississippian and is primarily a black to gray shale, which 

includes some dolomitic and calcareous shale [39]. 

As various minerals contribute in a different way to the MBI, it is important to divide the MBI 

and FI applications into three major categories, which are: clay dominated, silicate dominated, and 

carbonate dominated (Figure 2). 

 

Figure 2. Ternary diagram showing the average mineral content for the following formations: 

Niobrara Formation [40], Eagle Ford Shale [27], Marcellus Formation [41], middle Bakken Formation 

[43], Woodford/ Chattanooga Shale [25], Wolfcamp Formation [20,21] , and Barnett Formation [12]. 

The MBI can be derived either from wireline logging using tools such as the LithoscannerTM or it 

can be calculated from well logs using matrix inversion techniques. Therefore, gamma ray, bulk 

density, neutron density, formation resistivity, and compressional slowness were applied to derive 

the weight fraction for both methods using inversion techniques. The minerals expected in the 

formation need to be determined in advance. This information can be obtained from X-ray diffraction 

(XRD) measurements or from the literature. Given the properties for the minerals from the literature 

and the log responses, the authors used matrix inversion to calculate the weight fraction for each 

mineral, respectively, over depth. As the mineralogy changes over depth, lithofacies were assigned 

and matrix inversion was conducted for each facies, respectively. The mineral weight fraction of each 

formation was applied to derive the MBI. 

For the FI correlations, two approaches were used. The first one is the LBI, which can be derived 

from wireline logging using compressional slowness, shear slowness, and bulk density. The EBI, on 

the other hand, can be divided into two subcategories, which are the static FI and the dynamic FI. 

The static FI is determined from laboratory testing such as triaxial testing. However, the Young’s 

modulus that is obtained by the dynamic methods is greater in value than the static ones, due to a 

decreasing porosity during the static testing [43]. Since the lithology is mostly strongly 

heterogeneous, several tests should be performed to get a reasonable estimation for the brittleness, 

which are costly and time-consuming. Therefore, the EBI uses the dynamic elastic properties such as 

Figure 2. Ternary diagram showing the average mineral content for the following formations: Niobrara
Formation [40], Eagle Ford Shale [27], Marcellus Formation [41], middle Bakken Formation [42],
Woodford/ Chattanooga Shale [25], Wolfcamp Formation [20,21], and Barnett Formation [12].

The MBI can be derived either from wireline logging using tools such as the LithoscannerTM or
it can be calculated from well logs using matrix inversion techniques. Therefore, gamma ray, bulk
density, neutron density, formation resistivity, and compressional slowness were applied to derive the
weight fraction for both methods using inversion techniques. The minerals expected in the formation
need to be determined in advance. This information can be obtained from X-ray diffraction (XRD)
measurements or from the literature. Given the properties for the minerals from the literature and
the log responses, the authors used matrix inversion to calculate the weight fraction for each mineral,
respectively, over depth. As the mineralogy changes over depth, lithofacies were assigned and matrix
inversion was conducted for each facies, respectively. The mineral weight fraction of each formation
was applied to derive the MBI.

For the FI correlations, two approaches were used. The first one is the LBI, which can be derived
from wireline logging using compressional slowness, shear slowness, and bulk density. The EBI, on
the other hand, can be divided into two subcategories, which are the static FI and the dynamic FI.
The static FI is determined from laboratory testing such as triaxial testing. However, the Young’s
modulus that is obtained by the dynamic methods is greater in value than the static ones, due to a
decreasing porosity during the static testing [43]. Since the lithology is mostly strongly heterogeneous,
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several tests should be performed to get a reasonable estimation for the brittleness, which are costly
and time-consuming. Therefore, the EBI uses the dynamic elastic properties such as Young’s modulus
and Poisson’s ratio to derive the brittleness of the entire formation when well logs exist.

Brittleness is also influenced by the porosity [8]. With increasing porosity, the BI tends to
decrease [9]. Therefore, the MBI correlations from Glorioso and Rattia [16] as well as Jin et al. [19]
were modified. Two modifications were made: first, instead of the mineral weight fraction, these
correlations use the volume fraction of each mineral, respectively. Second, the total porosity is added
in the denominator, as can be seen in Table 4.

Table 4. Modified MBI correlations showing the total porosity (PHIT) as an additional parameter in the
denominator, which decreases the brittleness.

Formula Reference
Q+Cal+D

Q+Cal+D+Cly+TOC+PHIT Modified Glorioso and Rattia [16]
Q+F+M+Carb

tot+PHIT Modified Jin et al. [19]

4. Results and Discussion

It has been shown that different concepts of brittleness follow different trends. High quartz and
carbonate content results in a high brittleness [17]. The correlation from Glorioso and Rattia [16] was
applied on the Marcellus Formation (Figure 3). Quartz is showing higher values of MBI for a higher
mineral weight fraction. Carbonate indicates the same trend with a higher MBI for higher mineral
content. Therefore, applications on the Marcellus Formation has proven that quartz and carbonate play
the most important role in shaping the trend for MBI. However, the results indicate that a correlation
between mineral content and MBI is only applicable for weight fractions higher than 0.1.
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Figure 3. Comparison between the MBI derived using the Glorioso and Rattia [16] correlation and the
mineral weight fraction applied on the Marcellus Formation. (a) Comparison with a quartz weight
fraction. (b) Comparison with a carbonate (calcite and dolomite) weight fraction.

Application on the Marcellus Formation has shown that the clay content has a strong impact
on the brittleness (Figure 4). The higher the clay content, the lower the values of the MBI using the
correlations from Glorioso and Rattia [16]. Small amounts of clay influence the MBI significantly and
lead to smaller values of MBI.
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Figure 4. Correlation between the clay (illite) content and the MBI based on the correlation from
Glorioso and Rattia [16] applied on the Marcellus Formation. The data are derived from the Marcellus
Formation in West Virginia.

Overall, the MBI, LBI, and EBI correlations were applied on the Marcellus, Bakken, Niobrara, and
Chattanooga formations. It was found that the MBI correlations from Glorioso and Rattia [16] and
Jin et al. [19] lead to the most accurate results for all four formations when compared to the LBI and
EBI results.

The Marcellus Formation shows varying BI correlations (Figure 5). It was found that, at depths
with high MBI values, the quartz content is very high, too. EBI correlations show no clear trend for
formations, which are strongly heterogeneous.
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Figure 5. BI correlations from the Marcellus Formation applied over depth. Black colors show LBI
correlations and red colors show MBI correlations.

The applied BI correlations on the Bakken Formation show a clear separation between the
upper, middle, and lower Bakken (Figure 6). LBI correlations show the lowest values for BI for the
middle Bakken. It has been shown that the LBI correlations that were proposed for the Woodford
Formation lead to the most accurate results. Both formations have a high content in silicates. Higher
values were found using the modified MBI correlations (Table 4) from Glorioso and Rattia [16] and
Jin et al. [19]. The highest values were found for the EBI correlations using the correlation from Sharma
and Chopra [19,39]. The EBI correlations show great sensitivity, which indicates the highest values of
BI for the middle Bakken and the lowest values for the upper and lower Bakken.
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Figure 6. BI correlations from the middle Bakken formation applied over depth. Black colors show LBI
correlations, green colors modified MBI correlations (Table 4), and blue colors indicate EBI correlations.
The interval from 3087.5 to 3102 m depth shows the middle Bakken formation. It shows a clear trend to
the upper and lower Bakken since the clay content in these formations is significantly higher [42].

The results of the BI correlations for the Niobrara Formation indicate overall high values of
brittleness. This formation is dominated by brittle carbonates (Figure 7). The LBI correlations are
used from the Eagle Ford Shale correlation from Jin et al. [13]. LBI and MBI show agreement in BI
over depth. However, the MBI and EBI correlations show more lateral fluctuations. The Niobrara
Formation encompassed alternating chalk and marls [38], which would lead to different values of BI.
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Figure 7. BI correlations from the Niobrara Formation applied over depth. Black colors show LBI
correlations, red colors show MBI correlations, and blue colors indicate EBI correlations. The EBI is
overall significantly lower than LBI and MBI correlations.

The Chattanooga Shale is separated into two parts, which are separated through an increase in
brittleness. The upper part is dominated by siltstones, and the lower part is dominated by dolomite,
which increase the values of BI significantly. The values for MBI show the highest values of BI (Figure 8).
It has been shown that the global correlation from Jin et al. [13] leads to higher conformity in the results
compared to EBI and MBI, for formations with high clay content like the Chattanooga Shale, and for
strongly heterogeneous formations like the Marcellus Formation.
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Figure 8. BI correlations from the Chattanooga Shale applied over depth. Black colors show LBI
correlations, red colors show MBI correlations, and blue colors indicate EBI correlations. The sharp
change at 1506 m depth is due to a change in lithology from a silt dominated lithology with lower BI
values to a dolomite dominated lithology with significantly higher values for BI.

The proposed brittleness evaluation in this study is based on the idea that brittleness is strongly
dependent on the lithology. Different indexes of brittleness lead to different results when it comes to
selecting frackable zones. The mineralogy and the identification of brittle minerals have a significant
impact on the brittleness. Quartz and carbonate were identified as brittle minerals. The overall mineral
distribution of brittle minerals is pivotal. On the other hand, the clay content has a great influence on
the brittleness, even in small weight fractions. Therefore, non-brittle minerals are more sensitive and
have a greater impact in deriving the brittleness. Apart from clay, the TOC is anticipated to decrease
the brittleness as well [15]. It was found that the porosity influences the brittleness negatively. Hence,
the porosity lowers the brittleness.

This review paper demonstrated that using a universal index to represent LBI, MBI, or EBI results
in misleading results related to selecting zones for perforation. Therefore, it is recommended for each
rock type to be assigned an index based on its lithology and mineralogy.

5. Summary

It has been shown that the rock brittleness is a complex function of lithology. Several correlations
to derive the brittleness exist in the literature (Table A1). However, these correlations were derived for
different formations with varying mineral content and varying elastic properties. There is no universal
correlation to derive the brittleness since it is a function of lithology. Therefore, it is important to
understand the lithology, before applying a BI correlation. Formations can be divided into four classes:
silicate dominated formations, carbonate dominated formations, clay dominated formations, and
strongly heterogeneous formations, which are not primarily dominant in either silicates, nor carbonates
or clay.

An effective hydraulic fracturing candidate consists overall of high amounts of silicates and
carbonates. TOC is anticipated to lower the brittleness while a mature source rock is also important
for a proper oil and gas production. Depending on the available data, the MBI, LBI, and EBI can
be used to estimate the brittleness. If elastic properties are unknown, it is recommended to use the
MBI correlations. Two correlations lead to reasonable results. Glorioso and Rattia’s [16] equation is
applicable, when the TOC content is known. If the TOC is unknown, it is recommended to use the
correlation proposed from Jin et al. [19]. If only NPHI or DTC are known, it is recommended to apply
the empirical correlations from Jin et al. [13]. Depending on the predominant minerals in the targeted
formation, the Woodford, Eagle Ford, or the Global correlations should be applied.
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An overview about the significant dependency of correlations with the predominant mineral
weight fraction can be found in Table 5. Overall, a summary of all findings can be found in Table 5.

Table 5. Summary of MBI correlations based on the mineral composition.

BI Silicate Dominated Carbonate Dominated Clay Dominated Strongly
Heterogeneous

MBI
MBI = Q+Cal+D

Q+Cal+D+Cly+TOC [16]

MBI = Q+F+M+Carb
tot [19]

LBI [13] −0.012×DTC + 1.4921
−2.3115×φ+ 1.0104 −0.0142×DTC + 1.7439

−1.5314×φ+ 0.8575

EBI Edyn ×RHOB [33]
0.313 + 0.027× Estat [13]

Estat,norm+νstat,norm
2

[28]
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Appendix A

Table A1. Overall summary of existing correlations for the brittleness index.

Correlations for BI Formation Geologic Age Lithology Φ (%) TOC (%) Reference

MBI = Q
Q+Carb+Cly Barnett Carboniferous Shale bounded by LS 6 1–3 Jarvie et al. [12]

MBI = Q+Dol
Q+D+Cal+Cly+TOC Barnett Carboniferous Shale bounded by LS 6 1–3 Wang and Gale [8]

MBI = Q+Cal+D
Q+Cal+D+Cly+TOC

Neuquén Basin,
Argentina Jurassic Mud-stones 8 2.5–3.5 Glorioso and Rattia [16]

MBI = (abM1+abM2...)
(abM1+abM2+abM3...) Haynes-ville Jurassic Calcite to silica-rich

shale 8 3–6 Buller et al. [17]

MBI = Q+F+M+Carb
tot Barnett Carboniferous Shale bounded by LS 6 1-3 Jin et al. [19]

MBI =
1.09×

(
Q+F+P

Q+F+P+Cal+D+Cly

)
+

(
1

8.8

) Wolf-camp Carboniferous -
Permian. Shale, minor LS 10 2.3 Alzahabi et al. [20]

MBI = Q+F+P
Q+F+P+(0.5×(Cal+D))+PHIT

Shales in Europe and
Barnett Cambrian – Jurassic Shale bounded by LS 0.6–11 15 Rybacki et al. [22]

LBI = −0.012×DTC + 1.4921
LBI = −1.5314×NPHI + 0.8575 Woodford Devonian Shale bounded by LS 0.5–3 5.01–14.81 Jin et al. [13]

LBI = −0.01104×DTC + 1.4941
LBI = −1.4956×NPHI + 0.9763 Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [13]

LBI = −0.0116×DTC + 1.6231
LBI = −2.3115×NPHI + 1.0104 Eagle Ford Cretaceous Mudstones 2–9 2.1–6.86 Jin et al. [13]

LBI = −0.0142×DTC + 1.7439
LBI = −1.8748×NPHI + 0.9679 Global Correlation - - - - Jin et al. [13]

EBI = Estat,norm+νstat,norm
2

Barnett Carboniferous Shale bounded by LS 6 1–3 Rickman et al. [28]
EBI = Edyn ×RHOB Western Canadian Basin Jurassic Shale and Sandstone 5–10 - Sharma and Chopra [33]

EBI =
Edyn×RHOB

νdyn
Liahoe, China Paleogene Shale 2.39 Sun et al. [35]

EBI = E
λ

- - Shale and Sandstone <10 - Chen et al. [36]
KIC = 0.313 + 0.027× Edyn Woodford Devonian Shale bounded by LS 0.5–3 5.01–14.81 Jin et al. [19]

GC =
(
1−

(
νdyn

)2
)
×

(
KIC2

Edyn

)
× 103 Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [19]

EBI = FI+GCnorm
2 Barnett Carboniferous Shale, bounded by LS 6 1–3 Jin et al. [19]

EBI = FI+KICnorm
2 Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [19]

EBI =
FI+Edyn,norm

2
Barnett Carboniferous Shale bounded by LS 6 1–3 Jin et al. [19]
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