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Abstract

We establish a novel measurement of nonprofit organization ideology using 

semantic text analysis and validate it with a large-scale online experiment. 

On average, health- related nonprofits as well as education-related 

organizations, including US universities, are the most left-leaning group. 

Religion-related nonprofits,  on the other hand,  are   the most conservative. 

We then examine whether ”rage donations” for selected lib- eral nonprofits 

right after the Trump  elections documented by  the media hold true   more 

generally across different sectors over  different presidential elections.  We 

find  no evidence that expected shifts in ideology of a government 

systematically influence donations differently depending on nonprofit ideology.
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Introduction

In November and December of 2016 after Donald Trump was elected as the U.S. 

President, there were reports on the media on “rage donations” towards progressive causes 

(Walters, 2016).  The ACLU’s donation website crashed the day after election as visitors 

increased by 7,000%: 120,000 contributions, of more than $7.2 million came pouring in 

that week (cf. 354 donations for a total of $27,800 after Barack Obama’s win in 2012 

during comparable period). Six weeks since the election, Planned Parenthood received forty 

times the normal rate and 70% of the donors had never given to planned parenthood 

before.

Conklin and Foshee (2019) argue that such behavior is not new: for the past four 

presi- dential election years (2004, 2008, 2012, 2016), nonprofits that were politically 

aligned with the losing presidential candidate received a drastic spike in giving compared 

with those aligned with the winner. Their approach, however, was to single out 37 

organizations that were known of their partisanship and compare their annual 

donations the year before and  the year of the presidential elections.

This research examines whether such shift in donations for the limited sample hold 

more generally. In other words, do expected shifts in ideology of a government influence 

donations to nonprofit organizations differently depending on their varying ideologies? 

Answering this question will contribute to the literature on motivation behind giving.  

While there is an inconclusive literature on how individual ideology affects private 

donations- some find that conservatives tend to donate more, while others find the opposite 

(Allan and Scruggs, 2004; Feldman and Zaller, 1992; Bielefeld et al., 2005; Brooks, 2006; 

Karlan and List, 2007). Whether donation behavior respond to political or ideological 

competition has not yet been studied much. One exception is Paarlberg et al. (2019). 

Based on individual and household income tax returns at the county-level for 2012 and 

2013, they find that political ideology and electoral competition affect private donations: as 

the proportion voting Republican in non- Republican-dominated counties increases, the 

predicted levels of charitable giving decreases. In contrast, as the proportion voting 

Republican increases in Republican-dominated counties, charitable contributions increase.

Our study also give us a new angle in thinking about social welfare consequences of 

parti- san governments. If citizens actively choose what public goods to be provided by 

donating to or setting up nonprofit organizations to countervail government influence 

(Rose-Ackerman, 1997), one may not have to be too worried about the elected government 
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being too partisan. The key contribution of our paper is a novel measurement of nonprofit 

organization ideology. More than 170,000 nonprofit organizations are categorized in Section 

501(c)(3) of the Internal Revenue Code of the U.S., including the universe of organizations 

with greater than $50 million in assets, are ranked on a liberal to conservative scale based 

on how their mission statements align with speeches by members of Congress.

To  the best of the  authors’ knowledge,  there  has been no  attempt  to directly 

measure partisanship of nonprofits,  though news sources do occasionally generate list of 

“liberal” or “conservative” organizations for selected sectors (Langbert, 2018; Overberg and 

Adamy, 2019). To estimate the ideology of nonprofits, we use semantic text analysis to 

classify non-profits based on  their  mission  statements.  Language  has  been  often  

used  to  analyze the ideology of the subject since language can be assumed to reflect the 

user’s psychological states and preferences (Preo¸tiuc-Pietro et al., 2017).  For instance,  

the Laver et al. (2003) political position measure applies a naive  Bayes  method  based  

on  the  relative  frequencies of reference texts. Gentzkow and Shapiro (2010) compare 

the text from newspapers to the congressional speeches to construct a media  slant  index.  

Baker et al. (2016) provide  an index for economic policy uncertainty from texts of major 

newspapers. For a summary ofthe textual analysis toolkit, please see Gentzkow et al. 

(2019).

Here, following Gentzkow and Shapiro (2010), we first identify words and phrases that 

are used more often by one party than the other based on the congressional record of the 

112th, 113th and 114th congress (January 3, 2011 - January 3, 2017) obtained from 

Stanford SSDS (Gentzkow et al., 2018).

For instance, we identify “Obamacare” as highly Republican language while Democrats 

often use “affordable care act” instead. Other examples include “illegal immigrants”, “tax 

increase”, “American people” as phrases often chosen by Republicans and “climate 

change”, “tax cut”, “gun violence” as Democratic-leaning phrases. We then collect the 

mission state- ments of nonprofit organizations from their Form 990 filings and a US 

charity evaluator CharityNavigator.org. The assumption is that organization’s ideology is 

reflected in the mission statement text as it comes directly from the organization to 

describe its goals and programs. We adopt the naive Bayes method based on words and 

two-word phrases to con- struct the ideology ranking by measuring the similarity between 

the language used in the mission statement and the congressional speeches of Democrats or 

Republicans.

The calculated ideology score ranking is validated with a large scale online experiment 
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based on Amazon Mechanical Turk which lets the survey takers read the mission statement 

from a sub-sample of the nonprofits,  rate their perceived ideology,  and decide how  

much  of their payment they want  to donate.  The survey takers generate ratings 

consistent with our semantic measure which gives us confidence in our ratings across the 

entire set of US non profits. We also find consistency between our rankings and some 

lists of left-wing and right-wing nonprofit organizations from other sources.

Our ranking suggests some groups of nonprofit organizations are more partisan than 

others. On average, health-related nonprofits are the most left-leaning group. Education- 

related organizations, including US universities, are also left-leaning. This is consistent with 

both intuition and evidence from previous studies. For example, Langbert (2018) shows top 

liberal arts college faculties are mostly Democrats. A 2016 Gallup poll shows more doctors 

consider themselves as Democrats as opposed to Republicans (Overberg and Adamy, 2019). 

On the other hand, religion-related nonprofits are the most conservative.

We find no evidence that presidential elections have affected donors to donate more to 

organizations at the other side of the ideological spectrum.

Data

This section describes the data used for our partisanship metric. Section 2.1 describes 

the congressional speech data and the preprocessing procedure. Section 2.2 describes the 

mission statement data from nonprofit organizations. The details of our online 

survey is discussed  in Section 2.3.

Congressional Record Data

We use the congressional record of the 112th, 113th and 114th congress (January 3, 

2011-January 3, 2017) obtained from Stanford SSDS (Gentzkow et al., 2018) to identify 

words and phrases used more frequently by one party than the other. This includes all 

speeches spoken on the floor of both House and Senate of Congress. Gentzkow et al. 

(2018) download and parse the text of the congressional speeches and the information of 

congress members from thomas.loc.gov and polidata.org.

To reduce the noise in the text data, we apply a standard preprocessing procedure  in- 

troduced by Bird et al. (2009). This step is very similar to Gentzkow  and Shapiro (2010). 

We first remove all procedural speeches, for instance, speeches by the Clerk, since they 

are mostly functional and not relevant to the content of the congressional debate. Next,  
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we  remove a set of procedural words5) suggested by Gentzkow et al. (2018) and a list of 

very common words in English called the “stopwords”.6) The words are then reduced to 

their linguistic roots with a stemming algorithm by Porter et al. (1980). The stemming 

algorithm ensures that words and phrases in different grammatical forms are regarded as 

equivalent. For instance, we treat “children” and “child” as the same word. After the 

stemming, we apply the commonly employed bag-of-words method to represent a document 

by  a word list   and a two-word phrase list.7)

We collect 233,805 speeches from the congressional record, excluding the procedural 

speeches and speeches by independent congressmen. 51.9% of them are from Democrats 

and 48.1% from Republicans. Table 1 shows the word count for congressional speeches. 

Demo- cratic and Republican speeches are very similar in their word count. A 

congressional speech on average contains 260 words. The number of two-word phrases 

contained in each document is the word count less one because two-word phrases are 

constructed by concatenating the consecutive words. This can create strange and 

meaningless phrases. We address this issue

 Table 1: Word Count of Congressional Speeches

Description Mean sd Pct01 Pct25 Median Pct75 Pct99

Democratic 263.21 457.12 3 17 74 324 2,142

Republican 260.94 534.44 3 18 66 279 2,583

Notes: For each congressional speech, we count the number of words it contains. Please note that the number of 
two-word phrases in each document is the total word count less one because we construct two-word phrases by 
concatenating consecutive words.

in Section 3.2.

Nonprofit Organization Data

We focus on the charitable organizations described in Section 501(c)(3) of the Internal 

Rev- enue Code that files Form 990 with Internal Revenue Service (IRS).8) Section 

5) Examples include “absent”, “adjourn”, “chairman”, etc. These commonly-used words in congressional speeches are mostly 
procedural. The full list is available at https://stacks.stanford.edu/file/druid: md374tz9962/codebook.pdf

6) 2This includes “me”, “to”, “is”, etc. They are frequently used in English but very unlikely to be partisan.
A full list is available at http://snowball.tartarus.org/algorithms/english/stop.txt 

7) For example, to process the sentence “This is an example to illustrate text processing”, we first remove the very 
common English words “this”, “is”, “an”, “to”. We then trim the remaining words to their stems and obtain “example 
illustrate text process”. Finally we obtain a word list “example”, “illustrate”, “text”, “process”, and a bigram list 
“example illustrate”, “illustrate text”, “text process”. For more details, please see Gentzkow et al. (2019).

8) Definition from IRS (available at: https://www.irs.gov/charities-non-profits/charitable-org anizations)
The exempt purposes set forth in section 501(c)(3) are charitable, religious, educational, sci- entific, literary, testing for 
public safety, fostering national or international amateur sports competition, and preventing cruelty to children or animals. 
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501(c)(3) allows for federal tax exemption of non-profit organizations that are organized 

and operated exclu- sively for charitable purposes. A 501(c)(3) organization must file its 

annual return with the Internal Revenue Service (IRS) to maintain their tax-exempt status. 

Depending on the size of assets and revenue, the required filing for large public 

organizations is Form 990.9) Form 990 requires the organization to describe its mission or 

most significant activities in text in a short document called the mission statement.

The mission statement is the main input for our  partisan  measure. This  statement 

briefly describes the goals of the organization in text. The language in mission statements 

is compared to the congressional record after the preprocessing procedure described in 

Section

2.1. We obtain the mission statements for Section 501(c)(3) organizations from two 

sources. First, we collect the mission statements from the electronically filed Form 990 

data pub-lished by the IRS.10) Missing the paper-filed 990 forms are a concern but over 

60% of all Form 990 returns are filed electronically as of 2016, and the IRS has 

mandated e-filing for large organizations since 2010.11) We download all electronic filings 

for tax year 2018 published by IRS from its AWS server. This data set includes 172,625 

organizations. Table 2 shows the distribution of the length of the mission statements. An 

average mission statement from the AWS dataset has 25 words. However, a number of 

mission statements contain only several words, for instance, “education”, “community 

betterment”. It is difficult for them to reflect the ideology of the organization accurately.

To alleviate the issue of short mission statement, we also download mission statements 

of nonprofit organizations from CharityNavigator.org, a leading charity evaluator in the US. 

Charity Navigator provides mission statements for charities rated by them. They do not 

cover all organizations but they focus on large public charities with at least 7 years of 

operation and at least $1 million revenue.12) We collect mission statements for all 9,288 

Section 501(c)(3) organizations rated by Charity Navigator. These mission statements are 

The term charitable is used in its generally accepted legal sense and includes relief of the poor, the distressed, or the 
underpriv- ileged; advancement of religion; advancement of education or science; erecting or maintaining public buildings, 
monuments, or works; lessening the burdens of government; lessening neigh- borhood tensions; eliminating prejudice and 
discrimination; defending human and civil rights secured by law; and combating community deterioration and juvenile 
delinquency.

9) Private foundations are required to file 990-PF. Organizations with gross receipts less than $200,000 and assets size less 
than $500,000 can choose to file the short forms 990-N and 990-EZ. Please see https:
//www.irs.gov/charities-non-profits/form-990-series-which-forms-do-exempt-organizations- file-filing-phase-in for more details.

10) Available at https://registry.opendata.aws/irs990/
11) Please see https://www.irs.gov/newsroom/irs-makes-electronically-filed-form-990-data-available-in-new-format, and

https://www.irs.gov/e-file-providers/e-file-for-charities-and- non-profits for details.
12) Only charities meeting certain criteria are rated by Charity Navigator. The criteria include at least $1 million revenue in 

2 years and operating for at least 7 years. Please see
https://www.charitynavigator.o rg/index.cfm?bay=content.view&cpid=32 for details.
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based on the Form 990 filings but they also include text from organization’s websites, 

annual report and brochure. The text comes entirely from the organization. The Charity 

Navigator data significantly increases the length of the mission statement. As shown in 

Table 2, a mission statement downloaded from CharityNavigator.org consists of 96 words 

on average. The partisan ranking produced by this set of mission statements is thus more 

accurate.

In addition to mission statements, we also collect the Form 990 financial statement 

data from 1985 to 2017. This includes the annual total revenue, total donation, government  

grants and other financial data reported on Form 990. Please note that the the IRS started 

to publicize all e-filed Form 990 since 2010. Prior to that, we can only download a 

sample of all 990 forms every year provided by the IRS. This sample focuses on larger 

organizations with a sampling rate ranging from 1% for small-asset organizations to 100% 

for large-asset (greater than $50 million) organizations. The IRS also uses this sample to 

produce their tax-exempt organization statistics and report.13)

Table 2: Word Count of Mission Statements

Description Mean sd Pct01 Pct25 Median Pct75 Pct99

Charity Navigator 95.96 34.54 17 77 100 119 163

AWS 990 Data 25.30 24.79 2 11 20 32 127

Notes: For each mission statement, we count the number of words it contains. Please note that the number of 
two-word phrases in each document is the total word count less one because we construct two-word phrases 
by concatenating consecutive words.

Figure 1: Political Views of Survey Participants

Notes: For each major category, we calculate the average percentile rank by taking the simple average across the 
percentile ranks of all nonprofit organizations in this category.

13) Please see https://www.irs.gov/statistics/soi-tax-stats-charities-and-other-tax-exempt-organizations-statistics.
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Online Survey Data

In addition to the textual analysis, we also conduct an online survey via Amazon 

Mechanical Turk (MTurk). We ask the survey participants to read the mission statements 

and rate the ideology of the organizations. We select a sample of 16,963 mission 

statements. This includes all mission statements from the Charity Navigator data set and a 

random sample from the AWS data focusing on longer statements. The average length for 

the sample is 85 words.

The participants are asked to read a mission statement and rate the perceived ideology 

of the organization from 1 (most liberal) to 6 (most conservative). There are 1,677 

participants in our survey. To ensure the survey participants are not biased, we ask them 

to report their self-identified political standing from 1 (most liberal) to 6 (most 

conservative) before reading the mission statement. Figure 1 shows the distribution of the 

average self-reported political standing for all survey participants. The distribution leaning 

slightly left but the overall political standing of our survey participants is not heavily 

biased.

Measuring Ideology

Our partisanship measure use Congressional speeches to identify the language features 

that distinguish Democrats from Republicans. We then compare the charity’s mission 

statement text to the Congressional speeches to measure the organization’s ideology. We 

apply the generative naive Bayes method to rank the charity ideology. To reduce the noise 

of our measure, we incorporate language feature selection and document length 

normalization into the naive Bayes method. Section 3.1 describes the basic idea of our 

method. Section 3.2 discusses the approaches to select the relevant words and phrases and 

Section 3.3 addresses document length normalization.

Naive Bayes

Our partisanship measure is constructed by the generative naive Bayes method. This is 

a proven method widely used in text classification (please see Murphy 2012 for a textbook 

treatment). The goal is to rank the ideology of nonprofit organizations by  the probability 

that that organization’s mission statement was spoken by a Republican14) lawmaker. An 

14) The probability for an organization’s mission statement to be Democratic and Republican sum to one if we ignore 
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organization is ranked as more conservative if its mission statement has a higher 

probability of soundling like a Republican lawmaker and more liberal if this probability is 

lower.

Our main ideology measure is based on two-word phrases, or bigrams because they 

can capture more information than single words. Having said that, we also consider an 

alternative method using single words, or unigrams. We compare the result of both 

methods in Section 4. For ease of exposition, we use w to represent a word or a 

two-word phrase from a document. The key assumption for naive Bayes method is that 

every unigram or bigram, w, in a text document is chosen independently according to 

some probability distribution P(w|p) depending on the party affiliation p of the author, 

either Democrats D, or Republican R. Suppose a preprocessed mission statement mi from 

some nonprofit organization i consists of distinct words or phrases 

 denote the 

total word count of the mission statement. By the independence assumption, the probability 

to produce mission statement mi conditional on the author’s ideology pi is

We can then use Bayes formula to write down the probability for this mission 

statement to be Republican (R) as

As we can see from the formula, the order of word occurrence is irrelevant in naive 

Bayes since the combinatorial terms cancel out completely in the second equality. The next 

step is to estimate the conditional probability P(w|p) for any w to be chosen in the  

mission statement given the ideology p. This information is extracted from the 

Congressional record. We use the empirical multinomial distribution constructed from the 

middlegrounds. One can also construct a measure with the probabilities to be Democratic. This is equivalent to ours 
except that the ranking is reversed.
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Congressional speeches Pˆ(w|p) to estimate P(w|p). Specifically, we use the 

Laplace-smoothed relative frequency of win speeches of party p as P(w|p) in Equation 115). 

For each mission statement, we can apply Equation 1 to estimate its probability those 

words were uttered by a Republican with prior belief P(p = R) = P(p = D) = 0.5. The 

ranking for nonprofit organization ideology is thus obtained by ranking these probabilities.

Language Feature Selection

The naive Bayes method described in 3.1 is in its most primitive form. All words and 

two- word phrases are considered in the Bayes formula. However, this introduces noise 

into the measure by including rare words and meaningless two-word phrases. The problem 

of noisy language features is more prevalent for two-word phrases since we form them by 

joining consecutive words ignoring whether the resulted phrase is meaningful. This can 

create strange terms such as “receive receive” that are unlikely to be indicative and distort 

our ideology measure. To alleviate this problem, we introduce language feature selection. 

The idea is to select words and phrases that are more relevant to ideology and 

partisanship.  Only the selected words and phrases can enter Equation 1 and affect the 

ideology ranking. We consider two different methods: the data-driven Chi-squared selection 

and the theory- driven moral word selection. Our main method uses the Chi-squared score 

to select two-word phrases.  We also present the result for alternative methods of 

Chi-squared selected words

Chi-Squared Selection

Our first and main approach is to identify words and bigrams that are more likely to 

be partisan-relevant based on the Pearson’s Chi-squared statistic. This method is used in  

Gentzkow and Shapiro (2010) and has proven to be effective.  The Chi-squared statistic  

for  each word or bigram w is defined as

15) If we use the relative frequency to estimate P(w|p) directly, it might happen that some w appears only in the speeches 
of one party but not the other, leading to Pˆ(w|p) = 0 for some w and p.  This is problematic since the zero value 
wipes out the information obtained from other unigrams or bigrams. To solve this problem, we estimate P(w|p) after 
adding one more occurrence for all distinct unigrams and bigrams in the congressional records, that is, we use

is the frequency of w in speeches of partyp, Lp is the total word length of speeches of party 
p, and Vp is the number of distinct words in speeches of both parties. This is typically described as Laplace 
smoothing.
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where 
  denotes the frequency of w in speeches of party p, and 

  denotes the 

frequency of words or phrases other than w in speeches of party p. The Chi-squared 

statistic is a test statistic for the null hypothesis that w is used symmetrically by 

Democrats and Republicans. A larger Chi-squared value indicates that the distribution of w 

is more likely to be correlated with party affiliation. We calculate the Chi-squared value 

for all words and two-word phrases in the congressional record and select the words and 

phrases whose Chi-squared values above the 80th percentile.

Table 3 and 4 show the most partisan words and phrases used more often by 

congressional Democrats and Republicans, ranked in a descending order by the value of 

their Chi-squared statistic. Many of the selected words and phrases are known to be highly 

relevant to partisan discourse. For instance, regarding the health care act, Democrats tend 

to say “affordable care act” while Republicans use the word “Obamacare”. Survey results 

show that mentioning “Obamacare” polarizes people more compared to “affordable care 

act”, which provides sup- port for the underlying partisan purpose of this difference 

(Dropp, 2017). On environmental issues, “climate change”, “pollution”, “oil companies” are 

identified as highly Democratic by our approach while “American energy” is identified as 

highly Republican. This is again consistent with the Republican consultant Frank Luntz’s 

advise to use words like “energy” instead of “oil drilling” for their partisan impact (Luntz, 

2007).

Moral Keywords

The second approach to language feature selection is to actively select the keywords 

guided by  the moral foundation theory.  The moral foundations theory tries to reduce the 

panoply of human values by seeking the anthropological and evolutionary roots of morality 

(please see Haidt and Joseph 2004; Haidt 2007; Haidt and Graham 2007; Graham et al. 

2009). The theory defines five sets of moral foundations as follows: [direct citation]
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Table 3: Most Democratic Words and Phrases

Words
republican women gun
investment student climate
cut pollution violence
education vote communication
family public children
Vermont clean college
infrastructure work million
Rhode island nomination
food poverty proceed
loan protect equal

Two-Word Phrases
climate change middle class tax 
cut gun violence Rhode Island tax 
break
minimum wage student loan African 
American public health affordable 
care voting right
care act immigration reform unemployment 
insurance senate proceed senate republican

carbon pollution congressional black
black caucus clean energy
civil right head start comprehensive 
immigration background check work family
million American
oil company right act New York

Notes: We compute the Chi-squared statistic for each word and phrase in the congressional record. This table 
shows the most partisan words and phrases used more often by congressional Democrats ranked by their 
Chi- squared value.
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Table 4: Most Republican Words and Phrases

Notes: We compute the Chi-squared statistic for each word and phrase in the Congressional record. This table 
shows the most partisan words and phrases used more often by Congressional Republicans ranked by their 
Chi- squared value.
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1. Harm/care: basic concerns for the suffering of others, including virtues of caring 

and compassion.

2. Fairness/reciprocity: concerns about unfair treatment, inequality, and more abstract 

notions of justice.

3. Ingroup/loyalty: concerns related to obligations of group membership, such as 

loyalty, self-sacrifice and vigilance against betrayal.

4. Authority/respect: concerns related to social order and the obligations of hierarchical 

relationships, such as obedience, respect, and proper role fulfillment.

5. Purity/sanctity: concerns about physical and spiritual contagion, including virtues of 

chastity, wholesomeness and control of desires.

Graham et al. (2009) find that liberals tend to rely more on harm and fairness values, 

while conservatives emphasize more on the other three categories. They also create a set 

of 295 moral keywords relevant  to each category of moral foundations16). and show that 

liberals  and conservatives use the moral keywords in a different manner by counting the 

occurrences in religious sermons. Recent studies provide further evidence that the moral 

keywords are highly relevant in ideological narratives (Sagi and Dehghani, 2014; Enke, 

2018). As a result, restricting our attention to the moral keywords is a plausible alternative 

of word selection. We hence consider another ideology measure by applying the naive 

Bayes method with only the moral keywords.

Document Length Normalization

Another improvement to our method is document length normalization. Section 2 

shows that the mission statements are highly heterogeneous in length. The length of the 

statement should not be ideologically relevant. But our method can disproportionately favor 

longer mission statements since they have a higher chance to match the partisan words and 

phrases in Congressional speeches. For example, a long mission statement is ranked more 

Democratic than a short one if it has more left-leaning partisan words even though the 

short statement has a higher density of such words.

Our solution is to normalize the document length. Let mi be the mission statement     

 of nonprofit organization i after preproceessing. It consists of distinct words or phrases 


 , 

 , ... 
  with frequencies 

 , 
 , ... , 

 . We normalize the length of the document

16) available from: https://moralfoundations.org/other-materials/
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the frequencies of words and phrases according to the document length. After the length 

normalization, we apply Equation 1 to rank the ideology with the adjusted frequencies17)

 Our method is supported by the machine learning literature. Singhal et al. (2017) 

compare different text length normalization strategies. Kim et al. (2002) adopt a normaliza- 

tion method similar to ours under a naive Bayes context. They also point out the 

importance of length normalization if the purpose is to give appropriate Bayes scores for 

all documents.

Validation Exercise

To get a sense of the types of mission statements generated by our method, consider 

these two mission statements for two different Planned Parenthoods which make up nearly 

all of the E42 Family Planning non-profits with more than $50 million in assets. For 

analysis purposes, we divide non-profits into quintiles. Not surprisingly, most Planned 

Parenthoods fall into quintile 1 (Most Liberal) under our measure. For example, Planned 

Parenthood  LA’s mission statement reads as follows:

To provide convenient and affordable access to a comprehensive range of quality 

reproductive health care and sexual health information through patient services, education, 

and advocacy.

By contrast, one of the few large Planned Parenthood’s that our metric classifies as 

conservative (quintile 5) is Planned Parenthood Mar Monte, also in California, but in the 

much more conservative part of the State.

The mission of Planned Parenthood Mar Monte, Inc is to ensure that every individual 

has the knowledge, opportunity, and freedom to make every child a wanted child, and 

every family a healthy family.

Notably, this mission statement uses terms like freedom, opportunity and family. Hence 

its conservative classification. While we acknowledge that this is probably a 

misclassification by our algorithm, it also makes sense that this particular Planned 

Parenthood, with a focus on Central California and Northern Nevada, areas that 

17) We allow for fractional frequency counts in Equation 1. Multinomial distribution usually requires integer counts but 
fractional counts are widely used in textual analysis.
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traditionally vote Republican, would choose a mission statement that is more attractive to 

conservative donors.

Table 5 shows the most partisan mission statements in the Charity Navigator sample 

by our bigram approach. The most liberal organizations focus on typical left-wing issues 

such as LGBT right and clean energy. On the other hand, we see a religion-related 

organization and free market advocate on the most conservative side.

Table 5: Most Partisan Mission Statements

Most Liberal Mission Statements
Equality Florida Institute

Equality Florida Institute is a part of Equality Florida, the largest civil 
rights organization dedicated to securing full equality for Florida’s lesbian, 
gay, bisexual, and transgender (LGBT) community. Through education, 
grassroots organizing, coalition building, and lobbying, we are changing 
Florida so that no one suffers harassment or discrimination on the basis 
of their sexual orientation or gender identity.

Acadia Center
Acadia Center is a non-profit organization committed to advancing the 
clean energy future. Through research and advocacy, it works to 
empower consumers and offer real-world solutions to the climate crisis 
for all.

Most Conservative Mission Statements
Open Doors USA

For 60 years, Open Doors has worked in the world’s most oppressive 
countries, empowering Christians who are persecuted for their beliefs. Open 
Doors equips persecuted Christians in more than 60 countries through  
programs  like  Bible  & Gospel Development, Women & Children 
Advancement and Christian Community Restoration. As a result, Open 
Doors has specialized in helping Christians who are persecuted for their 
faith.  However,  we  work with persecuted Christians to reach out  to 
non-Christians, even their persecutors, so that they can reach  them  with  
the message of Christ.

FreedomWorks Foundation
The mission of FreedomWorks Foundation is to educate and empower 
Americans with the principles of individual liberty, small government, and 
free markets.

Notes: This table shows the most liberal and the most conservative mission statements by our bigram Bayes’ scores 
in the Charity Navigator sample. Please refer to Section 3 for more detail.
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Figure 2: Most Liberal and Most Conservative Universities

Notes: This figure shows the political quintiles of the most liberal and the most conservative universities and 
colleges in our Charity Navigator sample. We obtain the a list of most liberal and most conservative 
universities in 2018 from Niche.com and PrincetonReview.com. 61 from the most liberal list and 66 from 
the most conservative list show up in our data. We present the histograms of their political standings.

In addition to looking at specific mission statements, We also obtain a list of 

universities and colleges rated as the most liberal and the most conservative in 2018 by 

Niche.com and PrincetonReview.com and report their political quintiles by our partisan 

measures in Figure2. Our measures are mostly consistent with the external ideology ratings

We also compared the results of our text analysis based metrics with the mean parti- 

sanship ratings from Amazon Mturk workers. (We also did a revealed preference analysis 

where we gave the Mturk Workers the opportunity to donate a fraction of their earnings 

to the charities they were rating. We then compared their revealed preference donation 

choices with their own stated partisanship affiliation to construct a revealed preference 

estimate of partisanship for each organization. This analysis yielded similar results.)

Figure 3 presents binscatter plots of our unigram bayes’ score, the bigram Bayes’ 

score, the moral word count Bayes’ score, against the Amazon MTurk rating. We also add 

a binscatter plot between the MTurk raings and the inferred partisanship of each 

organization based on the 2012 presidential Republlican vote share within the zipcode that 

they filed  their taxes in, as this was a commonly used method to assess partisanship in 

prior work. As we can see in Figure 3, all of these measures (except for Moral Word 

Counts) does a fairly good job matching the MTurk worker rating, but we can also see 

from the correlation Table
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Figure 3: Binscatter: Partisanship Measures vs MTurk Rating
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Notes: Binscatter plots of our Bayes’ Score ratings of non-profit mission statements based on Congressional Record 
Data against the mean rating of those non-profit mission statements by  MTurk  raters. The fourth graph  
plots the MTurk rating against the presidential vote share of the zip code in which the non-profit is based.

6 between the different measures, that each metric is capturing something different.

Results

The remainder of the results will use our normalized bigram metric of partisanship. 

Unigram measures look fairly similar.  Figure 4 plots the percent share of donations to 

each quintile of partisanship for “Big” organizations (with assets over $50 million in a 

given year). The shading of the graph represents control of Congress, with darker shadings 

of red and blue indicating party control of both Congress and the Presidency.

Figure 5 breaks down donations into subsectors between the years 2006 and 2017. We 

highlight in blue and in red, 2008 and 2016 because those were presidential election years. 

Note there are dramatic increases in donations for different ideological quintiles in election 

years, but also we often observed large movements both before and after election years.

One of the largest spikes can be observed in 2017 in the Civil Rights category. This 

spike is almost entirely due to some regional chapters of the ACLU. Our metric places 

these organizations as somewhat more conservative than the median. There are two  

reasons, the first is that roughly 80% of organizations are considered “liberal” according to 

our Bayes’
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Table 6: Correlation Between Metrics

Mturk 
Rating

Presidential 
Vote Share

Unigram 
Bayes Score

Bigram 
Bayes Score

Moral Word 
Bayes Score

Mturk Rating 1.0000

Presidential Vote Share 0.1757 1.0000

Unigram Bayes Score 0.2266 0.1663 1.0000

Bigram Bayes Score 0.1667 0.1304 0.4059 1.0000

Moral Word Bayes Score 0.0485 0.0093 0.2647 0.2022 1.0000

Notes: We compute the ideology rankings by different methods and report the correlation between the percentile 
rankings.

Figure 4: Percent Share of Total Donations by Political Quintile

Notes: This figure shows the percent share of total donations by political quintile of non-profit organizations across 
years. Shaded areas represent control of Congress, dark shaded areas indicate control of Congress and the 
Presidency. Dark blue is most liberal, Dark red is most conservative.
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Figure 5: Percent Share of Total Donations by Political Quintile and NTEE Cat- egory

Notes: Share of total US donations by NTEE category and political quintile (from 1 - most libreal to 5 most 
conservative) between 2006 to 2017. 2008 and 2016 are highlighted as presidential election years.

standard. In other words, 80% of our organizations have mission statements that sound  

more like a Democratic politician than a Republican politician. So the ACLU in the 4th 

quintile is still somewhat liberal. Also, the ACLU, with its focus on civil liberty and bill 

of rights is arguably more conservative (relatively speaking) than most other organizations 

in the category.

Other things to note, Family Planning organizations (mostly Planned Parenthood) did 

see dramatic increases in 2016, and 2017, but we see that those increases started before 

the Trump election in 2015 as well. Also, relatively conservative religious donations and 

relatively liberal environmental donations both saw large increases in 2017, but both were 

part of a trend that began years earlier as well.

Finally, we follow the analysis of Andreoni and Payne (2011) and others, by 

estimating a regression model of the log of donations on year by quintile fixed effects and 

organizational fixed effects. Each parameter estimate represents the percent difference of 

donations to those organizations relative to a median organization.

While parameters were largely zero, we do see a trend toward median partisanship 

orga- nizations beginning in the year 2000, especially if we classify organizations relative 

to their own NTEE Subgroup (e.g. we can say that the most liberal organizations within 

groups like
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Figure 6: Atypical Donation to Political Charities Relative to the Median Quintile
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Notes: Atypical donation to political charities relative to the median quintile. These are coefficients of year by 
quintile fixed effects (with 95% confidence intervals), in regressions of the log of donations received on 
organization fixed effects.

Health or Environment, saw their donations fall relative to the median organization in their 

group in the years after 2000. We also saw similar declines for somewhat more conservative 

organizations within each subgroup as well.)

Discussion and Conclusion

These results are all still somewhat preliminary so we will try not to infer too much. 

The main purpose of this exercise is to take advantage of recent advances in text analysis 

techniques which have recently become more broadly accepted, to offer a new way to 

categorize the partisanship of non-profits. We take advantage of the fact that mission 

statements of non- profits are publicly available  as part of IRS tax forms to construct a 

partisanship metric for non-profit organizations. We validate this metric by comparing our 

metric to that of Amazon Mturk workers, and to measures based on presidential vote 

share. We hope our measure will be a useful tool for future work on non-profits that 

requires a measure of political positioning.
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