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The skeleton is well-innervated, but only recently have the functions of this complex

network in bone started to become known. Although our knowledge of skeletal sensory

and sympathetic innervation is incomplete, including the specific locations and subtypes

of nerves in bone, we are now able to reconcile early studies utilizing denervation

models with recent work dissecting the molecular signaling between bone and nerve.

In total, sensory innervation functions in bone much as it does elsewhere in the body—to

sense and respond to stimuli, including mechanical loading. Similarly, sympathetic nerves

regulate autonomic functions related to bone, including homeostatic remodeling and

vascular tone. However, more study is required to translate our current knowledge of

bone-nerve crosstalk to novel therapeutic strategies that can be effectively utilized to

combat skeletal diseases, disorders of low bone mass, and age-related decreases in

bone quality.

Keywords: mechanotransduction, nervous system, bone, skeleton, aging, disuse

INTRODUCTION

The presence and purpose of nerves in bones has been under investigation for many decades,
beginning in earnest with the use of routine histological preparations and electron microscopy
in the 1960s, 1970s, and 1980s (1–3). These studies were motivated by the desire for greater
understanding of skeletal pain, such as that induced by surgical operations to resect tumors or
stabilize broken bones. Many early studies using denervation models to abruptly sever the nerve
supply of bones reported minimal effects of diminished nerve activity on bone mass or accrual
in a variety of animal species. Nonetheless, recent immunohistochemical studies have revealed
abundant sensory, sympathetic, and parasympathetic axons of the peripheral nervous system that
terminate in bone (4–10). As a result, research into each of these nerve populations has revealed the
unique functions of each subtype within the skeletal microenvironment. However, much remains
to be uncovered. In this review, we will discuss the sensory, sympathetic, and parasympathetic
actions on bone, as well as the current understanding of nerve roles during skeletal development,
adaptation to mechanical load, and aging.

SKELETAL INNERVATION

Sensory Nerves in Bone
The somatic nervous system (SNS) includes the sensory nerves distributed throughout the body
after their extension from the dorsal root ganglia during development. Skin is well-innervated
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by sensory nerves, along with the underlying bone, joints,
tendon, and muscle. These nerves serve a variety of important
roles in the body, including the production of signals that
provide spatial orientation (proprioception), interpret pain and
noxious stimuli (nociception), recognize temperature changes,
and allow the perception of non-painful tactile stimuli (11–14).
Most sensory nerves can be categorized by their expression of
channels and receptors (15); these include toll-like receptors
(TLRs), transient receptor potential (TRP) ion channels, and
receptor tyrosine kinases (RTKs) as well as the recently identified
mechanosensitive Piezo channels (15, 16). These receptors are
utilized to initiate the appropriate intracellular signaling as well
as the neuropeptide or neurotransmitter release. In bone, nearly
all of the thinly myelinated and unmyelinated sensory nerves
express neurotrophic receptor tyrosine kinase type 1 (TrkA), the
high affinity receptor for nerve growth factor (NGF) (10, 17).
This specialization is likely due to the NGF expression that occurs
during the initiation of primary and secondary ossification in
endochondral bone formation (18, 19). Nonetheless, innervation
of bone is most dense in the periosteum and marrow spaces,
with relatively few nerves present in the mineralized bone (9, 10).
Furthermore, innervation density is increased at sites nearest to
active bone remodeling surfaces (20).

Function of Sensory Nerves in Skeletal
Pain
One of the original motivations for studying sensory nerves in
bone was to determine the mechanisms of osseous pain. This
objective has been bolstered by the prevalence of musculoskeletal
pain, including lower back pain, joint pain, and fracture pain,
which collectively are the leading cause of disability in the world
(21). Much of this work has been centered on NGF, which is
expressed by osteoblasts and acts directly on sensory nerve axons
present in bone through TrkA receptors to induce skeletal pain;
furthermore, NGF also functions to enhance the activation of
other nociceptive pathways in skeletal sensory nerves (22). As a
result, the blockade of NGF activity has been explored extensively
in a variety of animal models of skeletal pain. For example,
anti-NGF antibodies profoundly reduce osteosarcoma-related
bone pain in mice as well as tumor-induced nerve sprouting
in a preclinical model of metastatic prostate cancer (23, 24).
Furthermore, consistent with the wide-spread expression of NGF
observed in fracture (25, 26), anti-NGF antibodies decrease
fracture-related pain behavior in mice (27, 28). Subsequent
research suggested that analgesia using anti-NGF antibodies
can be achieved without affecting fracture healing outcomes
(29), although others have shown that silencing the activation
of TrkA diminishes innervation and stress fracture healing in
mice (30). This concept of NGF acting as an osteoanabolic
agent is consistent with earlier work, which reported that topical
application of NGF to rib fractures decreased healing time in rats
(27) and improved healing outcomes in distraction osteogenesis
in rabbits (28). Nonetheless, a complete understanding of the
role of NGF-TrkA signaling in bone healing should be a research
priority, since the humanized monoclonal anti-NGF antibody
Tanezumab (Pfizer and Lilly) received FDA Fast Track approval

in 2017 as the first in a new class of non-opioid pain relievers.
This approval followed a halt in Phase III clinical trials in 2010
due to an increased incidence of adverse skeletal events, which
remains incompletely understood (31).

Release of Neuropeptides by Skeletal
Sensory Nerves
Stimulation of sensory nerves in bone may result in the
release of neuropeptides, particularly calcitonin gene-related
peptide (CGRP) and substance P (SP), but may also include
glutamate and pituitary adenylate cyclase-activating polypeptide
(PACAP) (32). A potential role for neuropeptides to act as
bone therapeutics has been investigated extensively, since both
osteoblasts and osteoclasts express the necessary receptors to for
direct cell-autonomous activation (33, 34). In general, CGRP
increases osteoblast bone formation through stimulation of Wnt
signaling and inhibition of apoptosis (35, 36). Furthermore,
CGRP appears to inhibit osteoclast differentiation and function
(37, 38). Consistent with these findings, mice lacking αCGRP
have low bone mass as a result of decreased bone formation
(39). SP appears to increase bone resorption as well as bone
formation, although its contribution toward formation outweigh
its role in bone resorption and lead to impaired material and
structural bone strength (40, 41). These findings are consistent
with results from previous in vitro experimentation that have
demonstrated both mechanisms (42–44). Neuropeptide release
within the skeleton is potentiated by osteoblast-derived NGF,
which increases both basal and stimulus-evoked release of SP
and CGRP from spinal cord slices in vitro (33). Nonetheless,
the therapeutic application of these osteoanabolic neuropeptides
toward diseases of low bone mass may be limited by drug
delivery, since neuropeptides are widely active outside of bone.

Autonomic Nervous System (ANS) in Bone
The peripheral nervous system also includes the autonomic
nervous system (ANS), which is further divided into the
sympathetic and parasympathetic nervous systems. In general,
the action of these two systems oppose each other and serve
to coordinate unconscious activities of the body, such as
breathing and blood pressure regulation. Coordinated action of
these opposing systems involves unique signaling mechanisms:
sympathetic nerves release of norepinephrine to activate α- and
β-adrenergic receptors, whereas parasympathetic nerves release
acetylcholine to activate muscarinic acetylcholine receptors
(mAChR) and nicotinic acetylcholine receptors (nAChR). Both
sympathetic and parasympathetic nerves have been identified
in the bone, and are typically observed in close contact
with large vascular structures in the long bones (5, 7,
34). Tyrosine hydroxylase (TH), the rate limiting enzyme
in the synthesis of catecholamines, is typically used as an
immunohistochemical marker for sympathetic nerves. TH+

axons are typically observed with a spiral morphology in the
bone marrow, essentially wrapping around blood vessels (10, 45).
Conversely, axons expressing vesicular acetylcholine transporter
(VAChT) and choline aceltyltransferase (ChAT), two markers
for parasympathetic nerves, can also be readily observed in the
marrow space of long bones (46). The innervation density of
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these nerve axons is less well-described than sensory nerves, but
is presumed to follow a similar pattern.

Function of ANS in Bone
The major function of the ANS on the skeleton is restraint of
bone remodeling (37). Specifically, activation of the sympathetic
nervous system acts to stimulate bone resorption as well
as negatively affect bone formation (37, 38). Conversely,
the parasympathetic nervous system activity inhibits bone
resorption, which results in bone mass accrual (46). These
activities may also be related to the general circadian rhythm
of the autonomic nervous system. Sympathetic nervous activity
is generally dominant during the day, which is the peak time
for bone resorption, while parasympathetic nervous activity
is generally dominant at night, when bone formation peaks
(47–49). Osteoblasts and osteoclasts express a wide variety of
adrenergic receptors that could be activated in response to
norepinephrine released from sympathetic nerve terminals (50,
51). Similarly, osteoblast and osteoclasts may be able to respond
to the release of acetylcholine from parasympathetic nerve
terminals due to their expression of the α2 and β2 subunits of the
nAChRs; mAChRs expression is absent in these cell types (46).
Due to the expression of these receptors on bone cells, it has been
presumed that the ANS exerts its effect on the skeleton through
the release of neurotransmitters in close proximity to bone cells,
which subsequently bind to their cognate receptors to initiate a
biological response. However, recent work reporting relatively
limited direct interaction of ANS nerve fibers with skeletal cells
suggests that an alternative diffusion-based mechanism may
be plausible (32, 52). Nonetheless, mice lacking β2 adrenergic
receptor in the osteoblast lineage have increased bone mass
in adulthood, due to increased bone formation and decreased
bone resorption (50). This encouraging result, along with the
known safety profile of “β blockers” (β adrenergic antagonists),
suggested that pharmacological blockade of sympathetic nervous
signaling would increase bone mass and decrease fracture
risk in humans. Surprisingly, subsequent preclinical research
utilizing β adrenergic receptor agonist (salbutamol) or antagonist
(isoprenaline) failed to recapitulate the previous findings in
mice; instead, these drugs were both associated with bone loss,
mostly due to increased bone resorption (53, 54). Similarly, a
randomized clinical trial observed no significant effects of either
β2 adrenergic agonists or antagonists on bone turnover in adults
(55). A meta-analysis of 16 studies published in 2014 reported
that the use of β blockers decreased overall fracture risk by
15%, with β1-specific blockers most strongly associated with
the reduction in risk (56). Consistent with this report, a recent
randomized controlled trial utilized the relative selectivity of β-
blockers to show that patients treated with β1-selective drugs
had improved parameters of bone density and turnover (57). In
total, much of the direct and specific effects of the autonomic
nervous system, as well as the potential therapeutic opportunities
in modulating this signaling pathway, remains to be determined.

Release of Neuropeptides by ANS in Bone
Similar to sensory nerve axons of the SNS, sympathetic nerves of
the ANS can also release neuropeptides, particularly in response

to stress. One such neurotransmitter released by sympathetic
nerves is neuropeptide Y (NPY), which can signal through one
of five NPY receptors that are expressed in both the central
and peripheral nervous systems (58, 59). A role for NPY in
bone homeostasis was first recognized in 2002, when Y2 receptor
null mice were found to have significant increased trabecular
bone volume due to increased osteoblastic activity without an
alteration in osteoclast resorptive area (60). Similarly, in the
setting of ovariectomy, mice lacking hypothalamic Y2 receptors
were found to be protected from bone loss through an increase in
osteoblastic activity (61). More recently, mice in which NPY was
expressed exclusively in noradrenergic nerves of mice otherwise
lacking NPY were used to demonstrate that NPY acts both
centrally and peripherally through Y2 receptors to protect against
stress-induced loss of bone mass (62). Consistent with these
studies, in vitro work utilizing primary osteoblasts has revealed
a direct inhibitory effect of NPY on osteoblast differentiation,
indicating NPY exerts its effects both directly and indirectly
on bone (63–65). Similarly, nerve axons expressing vasoactive
intestinal peptide (VIP) have been observed in bone for some
time (4, 66). Recent interest in this neuropeptide secreted from
the ANS has shown that it promotes osteogenic differentiation
in vitro and stimulates bone repair when delivered in vivo (67).
Alternately, VIP appears to be implicated in the progression of
osteoarthritis through actions on subchondral bone sclerosis and
vascularity (68).

Modifiers of Sympathetic Signaling in Bone
Restraint of sympathetic signaling on bone is achieved via
antagonistic sympathetic projections and degradation or
sequestration of sympathetic neurotransmitters; each are
implicated in an aging skeletal phenotype. Endocannabinoids,
such as 2-arachidonylglycerol (2-AG), are generated by bone
cells and act on CB1 receptors on skeletal sympathetic nerve
endings. In support of endocannabinoid restraining the
inhibitory effect of sympathetic transmission of skeletal mass
and microarchitecture, global deletion of the CB1 receptor
(Cnr1) produces a skeletal phenotype characterized by decreased
trabecular microarchitecture, low bone mass, and increased
osteoclast activation (69). However, functional impact of
cannabinoid receptor signaling on restraint of SNS outflow and
resultant skeletal effects are clouded by contrasting results from
different groups, related to choice of mouse models, sex, and
animal age. For example, enhanced bone mass and resistance
to ovariectomy-induced bone loss was recently reported in
congenic Swiss albino ABH and CD1 congenic Cnr1-deficient
mice (70). However, divergent skeletal phenotypes were observed
in C57BL/6J vs. CD1 Cnr1-deficient mice producing both loss
and gain, respectively, of bone mass in the absence of Cnr1.
Furthermore, the divergent skeletal phenotype was sexually-
dimorphic in CD1 Cnr1−/− mice, affecting males but not
females, whereas the effect was independent of sex in C57BL/6J
strain of mice (69).

Neurotransmitter clearance from the synaptic cleft presents
as another mechanism to influence magnitude or duration of
sympathetic signaling on the skeleton. Clearance of NE from the
synaptic cleft by the norepinephrine transport NET (SLC6A2),
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a sodium- and chloride-dependent monoamine transporter.
Provided that sympathetic signaling exerts negative skeletal
effects via RANKL-mediated osteoclast activation and inhibition
of osteoblast function (71), pharmacologic inhibition or genetic
deletion of NET would be expected to produce a high bone mass
phenotype. Whereas, mature osteoblasts express high levels of
NET, its inhibition with reboxetine elicited sexually-dimorphic
reductions in osteoblast number and bone mineralization in
male, but not female, mice, findings which were also recapitulated
in global Slc6a2−/− mice. Clearance of NE may contribute to
aging-associated skeletal wasting, as NE uptake is greater in
young (3 months) than aged (18 months) mice, reflective from
decreased Slc6a2 expression increased tibial NE content with age
(71). These results demonstrate that NE clearance and catabolism
is a fundamental aspect of skeletal homeostasis with a potential
function in involutional bone loss, yet the unexpected results
from pharmacologic inhibition or genetic deletion of Slc6a2−/−

reveal the need for inducible murine knockout models to more
clearly detail where and when loss of Slc6a2 or Cnr1 most
potently influence bone mass.

NERVES IN THE DEVELOPING SKELETON

Timing of Skeletal Innervation During
Endochondral Ossification
The exact location, timing, and subtype of nerves entering
developing bone has been a topic of research interest for
some time. Early work established that the innervation of
bone occurs approximately simultaneously with endochondral
ossification during embryonic development, including studies
in mice illustrating a functional nerve supply in areas of high
osteogenic activity by embryonic day 15 as well as the presence

of CGRP immunoreactive nerves by embryonic day 16.5 (72, 73).
Consistent with these studies, we have recently demonstrated
that TrkA expressing sensory nerves arrive at the perichondrial
surface of developing bone at embryonic day 14.5 in mice
(Figure 1A), in response to the expression of the neurotrophin
NGF by osteoprogenitors and coincident with the initiation of
primary ossification (75). After birth, nerve density in bone
continues to increase, coinciding with the bone modeling and
remodeling necessary for shaping long bones. Sensory nerve
axons expressing CGRP and Substance P are present at postnatal
day 1 in the epiphysis and endosteum of the distal femur
and proximal tibia, and by postnatal day 6, these sensory
nerves appear in the cartilage canal and 2 days later in the
secondary ossification centers (76). Similar to the invasion of
the primary ossification center by sensory nerves, the sensory
nerve axons entering the secondary ossification center through
cartilage canals is in response to the expression of NGF at the
epiphysis and the majority of these nerves express TrkA (75).
Unlike sensory nerves, autonomic fibers staining for NPY do
not appear in bone until postnatal day 4 (72). The autonomic
fibers first appear as single, non-vascular, branching fibers in
the tibial and femoral periosteum. NPY fibers next appear in
the medullary cavity accompanying blood vessels until postnatal
day 14, when the occurrence of the fibers decreases in all
bone compartments.

Effects of Diminished Skeletal Innervation
on Developing Bone
Although the presence of nerves during primary and secondary
ossification is well-documented, their function during skeletal
development remains poorly understood. Denervation and
associated models of nerve inactivation provide some insights

FIGURE 1 | Nerves in developing, young, and aging bone. (A) Thy1-YFP reporter mice were used to visualize nerve axons in the perichondrial region near the primary

ossification center (POC) at embryonic day 15.5. (B) Inhibition of NGF-TrkA signaling using TrkA-F592A mice diminished the density of nerve axons in this region.

Scale bars are 100µm [adapted from (19)]. (C) Utilizing a 120µm confocal z-stack, CD31+ blood vessels (red), CGRP+ sensory nerve axons (green), and TH+

sympathetic nerve axons (yellow) can be readily visualized in the periosteum of 10-day-old (young) mice. (D) In mice 24 months of age (old), sensory and sympathetic

nerve fibers as well as blood vessels remain intact but markedly diminished in the thinner periosteum. Cambium (C) and fibrous (F) layers of the periosteum and

cortical bone (CB) are labeled. Scale bars are 15µm [adapted from (74)].
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into the role of peripheral nerves during bone development.
For example, sectioning the sciatic nerve in 1-month-old rats
reduced metatarsal length 3–5%, while femora and tibiae,
containing femoral and obturator nerves which could potentially
compensate for sciatic neurectomy, were unaffected (77). Notably
in this study, early reductions in bone length were maintained,
and were not exacerbated, up to the end of the 12-week
study. Similarly, sciatic neurectomy prevented gains in bone
mass and improvements in microarchitecture, instead inducing
considerable trabecular bone loss in growing rats, due to
decreased bone formation and increased bone resorption, though
it is unclear how much of these bone changes were due to
disuse (78). In mice either globally- or neuronally-deficient in
semaphorin 3A, an axonal chemorepellant important to axon
guidance, decreases in sensory innervation of trabecular bone
reduced bone mass via decreased bone formation in 8-week
old mice (79). Mice lacking TRPV1 (capsaicin receptor/vanilloid
receptor1), a cation channel involved in nociception found on
sensory nerves, displayed a similar phenotype to wildtype mice,
with similar size and bodyweight. However, TRPV1 knockout
mice exhibited a reduction in the basal levels of the osteoclast
activation biomarker TRAP in the femur (80) and ovariectomy of
these knockoutmice did not cause the elevation in TRAP levels or
bone loss as normally occurs in wildtype mice. αCGRP knockout
mice displayed osteopenia associated with low bone formation
rate without changes in osteoblast number or surface (39). In our
previous study (81), we investigated bone development in mice
treated with capsaicin as neonates to destroy unmyelinated and
small diameter myelinated sensory neurons (82, 83). We found
that neonatal capsaicin treatment in mice modestly decreased
femur length, femur cross-sectional area, and trabecular bone
thickness, but did not reduce mechanical properties or bone
remodeling rates. In another study, we showed that nerve

growth factor (NGF) signaling through neurotrophic tyrosine
kinase receptor type 1 (TrkA) directs sensory innervation
during long bone development to promote vascularization
and osteoprogenitor differentiation (75). Inactivation of NGF
or TrkA signaling during embryogenesis in mice impaired
sensory innervation (Figure 1B), delayed vascularization of
ossification centers, decreased numbers of osteoprogenitors, and
decreased femoral length and volume. In total, these studies
indicate that sensory innervation is required for attaining
normal bone mass and length, as well as vascularization,
during skeletal development. Future work should determine
if any specific osteogenic factors are delivered by sensory
nerves to bone.

NERVES AND SKELETAL ADAPTATION

Bone tissue contains a dense network of sensory and sympathetic
nerve fibers, which appears to play important roles in
bone modeling, remodeling, metabolism, and adaptation (84).
For example, in a study of bone remodeling induced by
maxillary molar removal in rats, investigators found that normal
tibial growth was not impaired by neonatal sympathectomy
(guanethidine treatment) or sensory denervation (capsaicin
treatment), but that osteoclast surface was increased 45%
in sympathectomized animals and decreased 21% in sensory
denervated animals (85). These data indicate that both
sympathetic and sensory nerves play a role in bone adaptation,
and that these unique fiber types may play opposing roles
on skeletal adaptation. We have provided a concise summary
of the previous work that studied the roles of sensory and
sympathetic nerves in scenarios of increased (Table 1) and
decreased (Table 2) mechanical loading.

TABLE 1 | Increased mechanical loading and altered nerve function.

Model of altered nerve function Loading method Effect on bone References

Sensory nerves ↓Sensory function—perineural anesthesia of brachial plexus with

bupivacaine in rats

Ulnar compression ↓Labeled bone area (80)

↓Sensory function—perineural anesthesia of brachial plexus with

bupivacaine in rats

Ulnar compression ↓Labeled bone area (82)

↓Sensory function—inhibition of TrkA signaling by 1NMPP1 in mice Ulnar compression ↓Bone formation rate

↓Wnt/β-catenin activity in osteocytes

↓Periosteal nerve sprouting

(19)

↑Sensory function—exogenous NGF administration in mice Ulnar compression ↑Bone formation rate

↑Wnt/β-catenin activity in osteocytes

(19)

↓Sensory function—neonatal capsaicin treatment in mice Tibial compression ↑Bone mineral content

↑Mineral apposition rate

(84)

Sympathetic nerves ↓Sympathetic function—guanethidine sulfate or propranolol

treatment in mice

Tibial compression No effect (83)

↓Sympathetic function—propranolol treatment in mice Tibial compression No effect (85)

↓Sympathetic function—propranolol treatment in ovariectomized rats Treadmill exercise ↓Trabecular BV/TV and Tb.Th (86)

↑Sympathetic function—salbutamol treatment in rats Treadmill exercise ↓MAR, Tb.Th, ultimate force,

stiffness, Young’s modulus

(53)

↑Sympathetic function—salbutamol treatment in ovariectomized rats Treadmill exercise ↓Trabecular BV/TV and Tb.Th (87)

↓Sympathetic function—genetic deletion of β1-adrenergic receptors

and/or β2-adrenergic receptors in mice

Tibial compression ↓BMD, Tb.Th, MAR, BFR/BS in

Adrb1−/− and Adrb1b2−/− mice

(88)
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TABLE 2 | Decreased mechanical loading and altered nerve function.

Model of altered nerve function Loading method Effect on bone References

Sensory nerves ↓Sensory function—neonatal capsaicin treatment in rats Molar extraction ↓Osteoclast surface (78)

↓Sensory function—capsaicin treatment in adult rats Hindlimb unloading ↑Energy to failure (92)

Sympathetic nerves ↓Sympathetic function—guanethidine treatment in rats Molar extraction ↑Osteoclast surface (78)

↓Sympathetic function—guanethidine or propranolol treatment in mice Hindlimb unloading ↑Trabecular BV/TV

↑MAR, MS/BS, BFR/BS

↓Oc.N and Oc.S

(93)

↑Sympathetic function—isoproterenol treatment in mice Hindlimb unloading No effect (93)

↓Sympathetic function—guanethidine sulfate or propranolol treatment in mice Sciatic neurectomy No effect (85)

↓Sympathetic function—propranolol treatment in rats Hindlimb unloading ↑Trabecular Bone Volume

↑MAR, BFR/BS

↓Resorbing surface

(94)

↑Sympathetic function—dobutamine treatment in rats Hindlimb unloading ↑BMD, BMC, Bone Area

↑MAR, MS/BS, BFR/BS

(95)

↑Sympathetic function—dobutamine treatment in rats Hindlimb unloading ↑BV/TV, Tb.Th, Tb.N

↑OS/BS, Ob.S/BS

↑ MAR, MS/BS, BFR/BS

↓ Osteocyte apoptosis

(96)

Peripheral Nerves Support Load-Induced
Bone Formation
The role of peripheral nerves in sensing and responding
to mechanical stimuli is an area of equal parts interest
and contradiction. Early studies reported that denervation
had essentially no effect on the bone formation response to
mechanical loading. For example, intermittent loading (bending)
initiated similar magnitudes of cortical bone formation in the
denervated rabbit tibia as in intact tibias (86). This led the authors
to conclude that the nervous system has no significant effect
on the functional adaptation of bone. However, recent studies
have established a notable role of peripheral nerves in bone
mechanosensing and adaptation to mechanical stimuli. A pivotal
study used bupivacaine to induce perineural anesthesia of the
brachial plexus of rats to achieve temporary neuronal blocking
prior to ulnar compression (87). They found that temporarily
blocking neuronal signaling reduced bone formation (total
labeled bone area) by 81% in the compressed ulna relative to
sensory intact ulnae. Further studies by this group revealed that
mechanical loading increased bone formation in the contralateral
limb and at other non-loaded skeletal sites, which was modulated
through sensory nerves (88, 89); however, load-induced increases
in contralateral bone formation have been directly contradicted
by others (90) and indirectly by the large number of related
studies that utilize contralateral limbs as an internal control.

Our study investigating bone adaptation to increased
mechanical loading in mice treated with capsaicin to induce
destruction of TRPV1-expression peripheral nerves found that
tibial compression increased cortical bone area in the loaded
tibia, accompanied by changes in bone formation, which was
generally greater in capsaicin-treatedmice than in vehicle-treated
mice (91). In contrast, our study of NGF-TrkA signaling in
sensory nerves in bone showed that elimination of TrkA signaling
attenuated bone formation and reduced Wnt/β-catenin activity
in osteocytes in bones loaded by axial forelimb compression.

Furthermore, administration of exogenous NGF to wild-type
mice significantly increased load-induced bone formation and
Wnt/β-catenin activity in osteocytes (75). The contrasting results
from these two studies of decreased sensory nerve signaling
in bone suggest a heterogenous population of sensory nerves
in bone with non-overlapping functions in strain adaptive
bone remodeling.

The role of the sympathetic nervous system in the
anabolic bone response to mechanical loading is unclear.
One study in mice reported that sciatic neurectomy enhanced
tibial compression-induced cortical bone formation, but
pharmacological blockade of the SNS with guanethidine sulfate
or propranolol did not affect the bone formation response
(90). The same group found that load-induced bone formation
and unloading-induced bone resorption were unaffected by
propranolol or guanethidine sulfate treatment (92). Another
study found that either propranolol treatment or exercise in
ovariectomized rats was able to partially preserve trabecular bone
volume, but these treatments did not have a synergistic effect,
and in fact exhibited an antagonist effect on trabecular bone
(93). Similarly, treatment of rats with a selective β2-adrenergic
receptor agonist (salbutamol) decreased bone mineral density
and increased bone resorption, and salbutamol treatment
mitigated the beneficial effects of treadmill exercise on bone
structure in these rats (53, 94). In genetic mouse models of
β1-adrenergic receptor and/or β2-adrenergic receptor deficiency,
tibial compression induced increases in bone density, trabecular
and cortical microarchitecture, and bone formation in Adrb2−/−

and wild-type mice, but not in Adrb1−/− or Adrb1b2−/− mice,
suggesting that β1, but not β2, has a role in mechanoadaptation
to mechanical stimulation (95).

Peripheral Nerve Impact in Disuse
The initial rapid loss of bone following spinal cord injury
suggests that factors other than disuse osteoporosis may drive the
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catabolic skeletal response (96). Indeed, electrical stimulation of
muscle does not restore bone mass post trauma (97). Similarly,
unilateral sciatic nerve transection causes bone loss not only in
the denervated limb, but in the contralateral limb as well—even
when use remains unchanged (98). Altogether, these data suggest
that peripheral nerve activity may modulate the bone resorption
response during disuse. A study of hindlimb unloading-induced
bone loss in capsaicin-treated rats showed that both capsaicin
treatment and 4 weeks of hindlimb unloading resulted in
considerable loss of trabecular bone at the proximal tibia, but that
hindlimb unloading of capsaicin-treated rats did not promote
further bone loss (99). Altogether, these data suggest that
diminished sensory nerve function diminishes bone volume but
may make the bone less sensitive to the mechanical environment.
Together, these data suggest that diminished sensory nerve
function diminishes bone volume and may make the bone
less sensitive to the mechanical environment. Moreover, results
from a model of disuse-induced remodeling in the mandible is
consistent with this view. Here, significantly decreased osteoclast
surface was observed in rats with decreased sensory nerve
function due to neonatal capsaicin treatment (85).

Sympathetic nerves have a notable effect modulating
unloading-induced bone loss. One study reported that inhibiting
sympathetic nerves in mice using propranolol or guanethidine
suppressed bone loss associated with hindlimb unloading
by diminishing the reduction in osteoblast activity and the
increase in osteoclast activity associated with unloading (100).
Conversely, activating sympathetic nerves using isoproterenol
reduced bone mass in normally loaded mice, but did not cause
additional bone loss in hindlimb unloadedmice. Similarly, others
found that treatment of rats with propranolol or a leptin analog
during 28 days of hindlimb unloading reduced unloading-
associated bone loss; propranolol treatment effectively preserved
bone formation and prevented increased bone resorption, while
leptin analog treatment was only able to prevent changes in
osteoclastic bone resorption (101). Conversely, treatment of rats
with a β1-adrenergic receptor agonist (dobutamine) attenuated
hindlimb unloading-induced bone loss, prevented the decline
in bone formation induced by unloading, and diminished
unloading-induced osteocyte apoptosis (102, 103).

Load-Induced Neurotransmitter
Expression in Bone
The first evidence of mechanical regulation of neurotransmitters
was the observation that ulnar loading in rats decreased
expression of GLAST, a glutamate/aspartate transporter
previously thought to be present only in mammalian CNS
(104). Quantification of CGRP, VIP, and SP in the rat ulna
after mechanical loading (ulnar compression) using ELISA
revealed that CGRP concentrations in both the loaded and
contralateral limbs were reduced 1 h after loading, and that
this reduction was sustained for at least 10 days (87). Bilateral
decreases in SP concentrations were also observed, although
the effect was less persistent. Ulnar VIP concentrations were
increased bilaterally 10 days after mechanical loading at medium
or high strain magnitudes. In contrast, both CGRP and SP
levels were increased in the sciatic nerve after 4 weeks of
cast immobilization (105). Our results partially agreed with

these data, as mechanically loading tibias in mice resulted
in significantly decreased SP concentrations, but increased
CGRP concentrations relative to controls, while unloaded tibias
exhibited trends toward increased concentrations of both CGRP
and SP (91).

NERVES AND THE AGING SKELETON

Chronological aging causes cell and tissue dysfunction, which
compromises individual capacity to maintain homeostasis. In
the context of the skeleton, uncoupled remodeling promotes
net bone loss, characterized by reductions in bone mineral
density and bone strength and increased fracture risk. Suggestive
links between autonomic tone and bone strength with aging
are evident in associations such as increased sympathetic
tone in post-menopausal women (106) who are at risk of
osteoporotic fractures, and hereditary neuropathies with skeletal
manifestations [reviewed in (32)]. Provided the distribution and
patterning of sympathetic and sensory nerves in bone, changes in
fiber presentation, function, or restraint have each been presented
as correlative—if not causative—for bone loss with age.

Fiber Number and Density
Aging reduces nerve fiber frequency and their organization.
A recent study evaluated sensory and sympathetic innervation
of the periosteum, cortical bone, and bone marrow in femora
of C57BL/6 mice at 10 days, 3 months, or 24 months of age
(74). They observed highest density of sensory (CGRP+) and
sympathetic (TH+) neurons in the inner cambial layer of the
periosteum; CGRP+ sensory fibers displayed a linear pattern
along the long axis of the femur, whereas TH+ sympathetic
fibers were highly branched and closely associated with CD31+

blood vessels (Figure 1C). Despite substantial periosteal thinning
with age—∼75% reduction in total thickness, with greatest
reduction in the cambium (∼90% decrease)—which reduced
total fiber number, fiber density was greatest in aged animals,
likely owing to the dramatic reductions in periosteal thickness
in which fibers were located (Figure 1D). Within cortical bone,
CGRP+ and TH+ fibers were observed exclusively in Haversian
canals, and fiber morphology was similar as observed in the
periosteum. TH+ fibers decreased in aged animals (∼48–14%),
whereas a similar fraction (26%) of fibers were CGRP+ in
adult and aged animals, and there was a modest reduction in
CD31+ blood vessels (89% in 3 months vs. 62% in 24 months).
There were no statistically distinct differences in fiber density
in bone marrow as a function of chronological age. However,
other studies do not fully corroborate these findings. Using
a similar approach in a rat model, reductions in cambium
thickness with age were observed without change in fibrous
periosteum thickness or periosteal innervation (107); in a human
study of femora and tibiae of aged individuals (68–99 years),
significant intraindividual differences in periosteal thickness of
tibia and femur were reported, yet there was no correlation of
periosteal thickness of either bone as a function of age or weight
(108). Thus, whereas supportive evidence for decreased periosteal
thickness as a consequence of aging suggests a relationship to
decreased nerve fiber number and/or density, more detailed
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investigation across a number of species is necessary to faithfully
support such conclusions.

Alterations in fiber density with aging may drive reduced
tissue function, specifically aging of the hematopoietic stem cell
niche within the skeleton. By comparing young (8–10 weeks)
and old (20–24-month-old) mice on a Nestin-GFP reporter
background, aging associated with remodeling of bone marrow
vascular architecture: total vascular density (CD31+ CD144+)
increased in aged mice which was driven by reductions in
arteriolar segment length despite cellular expansion away from
the endosteum and which converged on the central vein (109).
Concomitant with arteriolar remodeling were reductions in TH+

fiber density, total nerve density (β-III tubulin), and neural
dysfunction (reduced synaptophysin density as a marker of
synaptic contacts between blood vessels and nerves). Surgical
transection of femoral and sciatic nerves in young mice fully
recapitulated the effect of age, indicated by absence of TH+

fibers, expanded myeloid-biased CD41+ HSCs with reduced
competitive engraftment potential, and vascular remodeling.
Niche-derived noradrenaline maintains HSC function, as β2- or
β3-selective sympathomimetics reduced both absolute numbers
and frequencies of MSCs and ECs in aged mice, comparable
to young mice; further, β3 agonists increased donor HSC
engraftment following transplantation in aged mice and rescued
the premature aging phenotype in denervated mice. Conversely,
constitutive deletion of Adrb3 accelerated HSC niche aging
in young mice. Thus, age-associated alterations in bone
marrow innervation and vasculature drive hallmarks of immune
dysfunction, although the direct impact on skeletal involution
requires elaboration.

Sympathetic Outflow, Aging, and Skeletal
Disease
Restraint of sympathetic outflow in the skeleton presents
as another potential mechanism whereby age-associated
impairment of cell function produces organ-level dysfunction.
For example, sustained presentation of NE within the skeleton—
given its established catabolic effect on the skeleton—may
drive imbalanced remodeling as observed in older animals
and humans. Indeed, differential clearance of NE by the
norepinephrine transporter NET (Slc6a2) was observed to be
a function of age: specific NE uptake from flushed femoral
cortical bone was greater in young (3 months) than aged (18
months) mice (71). Correspondingly, basal NE content was
greater in aged compared to young mice, although this did not
associate with increased sympathetic outflow in older animals.
Thus, inadequate clearance of NE in aged bone may contribute
to skeletal wasting due to sustained β2 adrenergic stimulation.
Similarly, the cannabinoid receptors Cb1 (Cnr1) and CB2
(Cnr2), which restrain sympathetic signaling, are implicated in
age-related bone loss and joint disease. Dual deletion of both Cb1
and CB2 (Cnr1−/−/Cnr2−/−) mice reveal attenuated bone loss
as a function of age or estrogen status resulting from deficits in
osteoclast formation (110). Further, CB receptor agonists protect
against both collagen- (111, 112) and destabilization-induced
arthritis (113), and loss of Cnr2 delays osteoarthritis progression
(113). Whilst illuminating, such studies do not identify which

cells mediate the observed influence: they do not reveal if
cell-autonomous defects in osteoclastogenesis in vivo mitigate
bone loss, nor do they establish sympathetic involvement.

Neurotrophin Presentation With Aging
Despite a name suggesting neural-specific expression and
function, neurotrophins and their receptors are highly expressed
in osteochondrogenic cells during development and repair
[reviewed in (114)] Thus, changes in neurotrophin ligand or
receptor expression in the skeleton can alter the ingrowth or
maintenance of neural fibers in the skeleton. Whether aging
influences presentation of NGF or other neurotrophins, is
unresolved: serum NGF levels appear unaffected by aging (115,
116) or modestly decrease (117), as does serum BDNF levels
(118). While Ngf expression in bone is mechanically regulated,
and is induced less in aged mice compared to younger mice
(119), if attenuated load-induced expression with increasing
age impacts sympathetic or sensory signaling in the skeleton
requires greater elaboration. Further, detailed studies defining
the contribution of NGF to post-menopausal vs. sex-independent
involutional bone loss are lacking.

CONCLUSIONS

Extensive and sustained efforts reveal that the skeleton is
richly innervated by sensory and sympathetic nerves which
appear during and participate in skeletal development; further
investigations have implicated these same nerve fibers in skeletal
homeostasis and adaptation, as well as contributions toward
bone loss with age. Yet, with each discovery, the relationships
become more complex, demanding more precise interrogation
and articulation in order to weave together a precise narrative.
Indeed, the development of this narrative is hampered by a
variety of questions. To what extent conclusions about the impact
of sympathetic or sensory fiber number, density, etc. on the
skeleton limited by an experimental approach that may not
be as robust as assumed. For example, the decalcification of
bone that is necessary for its immunohistological evaluation
can prevent retention of neurologic markers, as demonstrated
in (74), wherein labeling of TrkA, p75, and NGF in the
periosteum and bone marrow was diminished in specimens
that had undergone decalcification. Observations such as these
motivate the opportunity to utilize or develop models whose
results are less ambiguous and with greater fidelity, such as
cell-specific fluorescent reporter mice. Furthermore, despite the
mandate from the National Institutes of Health to include sex
as a biological variable, many of the studies reviewed here
used animals of a single sex. Provided the overwhelming fact
of skeletal sexual dimorphism and evidence supporting sexual
dimorphism in neurotrophin and receptor expression (120–122),
the opportunity to establish correlation, if not causation, is
missed. Indeed, a novel role for kisspeptin-expressing cells within
the arcuate nucleus—wherein estrogen receptor alpha drives
central and peripheral energy metabolism to exert inhibitory
effects on bone mass—was discovered recently in female, but not
male, mice (123). Studies like these, and other reports whose
seeming contradictions with previous reports may originate
in sexual dimorphism, reveal the obligation to evaluate both
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sexes. Furthermore, this study also illuminates another area of
nerve-bone interaction outside scope of the present review—
signaling in the central nervous system. In total, more research
to resolve outstanding issues and improve our knowledge of
nerve-bone interaction may permit the use of these signaling
mechanisms to combat skeletal diseases, effectively treat skeletal
pain, increase bone mass in healthy individuals, and address
age-related declines in skeletal health.
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