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Machine Learning Approaches
Identify Genes Containing Spatial
Information From Single-Cell
Transcriptomics Data
Phillipe Loher and Nestoras Karathanasis*

Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, United States

The development of single-cell sequencing technologies has allowed researchers to
gain important new knowledge about the expression profile of genes in thousands
of individual cells of a model organism or tissue. A common disadvantage of this
technology is the loss of the three-dimensional (3-D) structure of the cells. Consequently,
the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized
the Single-Cell Transcriptomics Challenge, in which we participated, with the aim to
address the following two problems: (a) to identify the top 60, 40, and 20 genes of the
Drosophila melanogaster embryo that contain the most spatial information and (b) to
reconstruct the 3-D arrangement of the embryo using information from those genes. We
developed two independent techniques, leveraging machine learning models from least
absolute shrinkage and selection operator (Lasso) and deep neural networks (NNs),
which are applied to high-dimensional single-cell sequencing data in order to accurately
identify genes that contain spatial information. Our first technique, Lasso.TopX, utilizes
the Lasso and ranking statistics and allows a user to define a specific number of features
they are interested in. The NN approach utilizes weak supervision for linear regression to
accommodate for uncertain or probabilistic training labels. We show, individually for both
techniques, that we are able to identify important, stable, and a user-defined number of
genes containing the most spatial information. The results from both techniques achieve
high performance when reconstructing spatial information in D. melanogaster and also
generalize to zebrafish (Danio rerio). Furthermore, we identified novel D. melanogaster
genes that carry important positional information and were not previously suspected.
We also show how the indirect use of the full datasets’ information can lead to
data leakage and generate bias in overestimating the model’s performance. Lastly,
we discuss the applicability of our approaches to other feature selection problems
outside the realm of single-cell sequencing and the importance of being able to handle
probabilistic training labels. Our source code and detailed documentation are available
at https://github.com/TJU-CMC-Org/SingleCell-DREAM/.

Keywords: single cell sequencing, machine learning, feature selection, LASSO, neural networks, scRNA-seq,
Drosophila, zebrafish
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has been rapidly
gaining popularity and allows biologists to gain knowledge about
the abundance of genes for thousands of cells, individually,
from a given tissue. Such an approach does not suffer from the
drawback of standard approaches where the aggregation of a large
starting population of cells obscures the ability to detect cell-
to-cell variation. Unfortunately, scRNA-seq approaches do not
typically maintain the spatial arrangement of the cells (Karaiskos
et al., 2017). Several strategies have been suggested to tackle
this problem. One approach is a to employ a reference atlas
in combination with the scRNA-seq data at hand (Satija et al.,
2015; Karaiskos et al., 2017). The reference atlas is a database
that contains the expression of genes across the tissue or model
organism of interest. An example of a reference database is the
Berkeley Drosophila Transcription Network Project (BDTNP)
(Fowlkes et al., 2008), which is used in this study, and includes
the in situ hybridization of 84 genes (herein referred to as
“inSitu genes”) across the Drosophila embryo. In Karaiskos
et al. (2017), BDTNP in combination with scRNA-seq data was
used to map the cells of a Drosophila embryo to their three-
dimensional (3-D) location, resulting in DistMap, an R package
that automates the computations. Even though DistMap tackled
this task effectively, it lacks the ability to identify the top inSitu
genes containing the most spatial information or to identify
genes that are not available in the in situ data and contain
spatial information.

For more than a decade, the Dialogue on Reverse Engineering
Assessment and Methods (DREAM) (Stolovitzky et al., 2007)
initiative has driven crowd-sourced open science scientific
contests in different areas of biology and medicine. Recently,
the DREAM Single-Cell Transcriptomics Challenge (Tanevski
et al., 2020), in which we participated, focused on tackling
the reconstruction of the 3-D arrangement of cells using
predefined number of genes. Specifically, the goal of this DREAM
challenge was to use Drosophila melanogaster embryo as a model
system and seek to determine whether one can reconstruct
the spatial arrangement of cells from a stage 6 embryo by
using only a limited number of genes. The challenge piggy-
backed off previously published scRNA-seq datasets and a
computational mapping strategy called DistMap, which leveraged
in situ hybridization data from 84 genes of the BDTNP, which
was shown to uniquely classify almost every position of the
D. melanogaster embryo (Karaiskos et al., 2017). Of these 84
genes (herein referred to as “inSitu genes”) and without using
hybridization data, the participants were asked to identify the
most informative 60, 40, and 20 genes for subchallenges #1,
#2, and #3, respectively. In addition to gene selection, each
subchallenge also required participants to submit 10 locations
predictions (X, Y, Z coordinates) for each of the cells using only
the selected genes (Tanevski et al., 2020).

Abbreviations: DREAM, Dialogue on Reverse Engineering Assessment and
Methods; scRNA-seq, single-cell RNA sequencing; Lasso, least absolute shrinkage
and selection operator; NN, neural networks; BDTNP, Berkeley Drosophila
Transcription Network Project; MCC, Matthews correlation coefficients; CV,
cross validation; VIP, variable importance; ZFIN, The Zebrafish Model Organism
Database.

In order to identify the most informative genes, we describe
two independent feature selection strategies. The first, which
we named Lasso.TopX, leverages linear models using the least
absolute shrinkage and selection operator (Lasso) (Tibshirani,
1996; Friedman et al., 2010) and ranking statistics. Lasso has
a few important characteristics that made it desirable to use.
Specifically, the models are easy to interpret because each feature
gets assigned a coefficient, and the coefficients are combined
linearly. It is also useful for dimensionality reduction because the
resulting coefficients can be exactly zero, essentially eliminating
features (James et al., 2013; Friedman et al., 2010). Our second
feature selection strategy leverages deep neural networks (NN).
NNs are making major advances in problem solving by allowing
computers to better discover structure in high-dimensional data
(LeCun et al., 2015). By linking multiple non-linear layers
together, we sought to use deep learning in order to discover
subsets of genes that would not have otherwise been possible with
more traditional linear approaches.

In what follows, we describe our techniques and the novel
elements that allowed us to meet the objectives of the DREAM
challenge. Notably, Lasso.TopX allows a user to specify the
exact number of key features they are interested in. And to
take advantage of DistMap’s probabilistic mapping where a cell’s
location is not always unique, we also describe how NNs can be
trained using weak supervision (Zhou, 2018) for use in linear
regression. Importantly, although not an objective of the DREAM
challenge, we extend our techniques to other genes by looking for
non-inSitu genes that also carry spatial information.

METHODS

In summary, we used two methodologies to identify the most
informative features (D. melanogaster genes): an approach based
on deep NN models and an approach based on Lasso models and
ranking statistics, which we call Lasso.TopX. Both are supervised
approaches that use training data. We then utilized inference
techniques on the trained models to obtain a list of the most
important 60/40/20 inSitu genes. In order to help baseline our
results prior to the end of the competition, we also leveraged
a process (herein named Random) that picked genes randomly.
For the selected genes using NN, Lasso.TopX, and Random, we
passed only those genes into DistMap (Karaiskos et al., 2017) to
obtain the spatial predictions.

Data Made Available by Competition
Organizers
Below is a summary of the data provided to us by the
DREAM challenge:

• Reference database: The reference database comes from the
expression patterns (Fowlkes et al., 2008) of the in situ
hybridizations of 84 genes from the BDTNP project. The
in situ expression of 84 genes is quantified across the 3,039
D. melanogaster embryonic locations.

• Spatial coordinates: X, Y, and Z coordinates were supplied
for the 3,039 locations of the D. melanogaster embryo
(Karaiskos et al., 2017).
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• scRNA-seq: Three expression tables were provided; the raw,
normalized, and binarized expression of 8,924 genes across
1,297 cells (Karaiskos et al., 2017).

• DistMap source code was provided, and it was used
to identify the cell locations in the initial publication
(Karaiskos et al., 2017).

• Zebrafish data: In order to test the generalizability of our
techniques outside of D. melanogaster, we applied them
to zebrafish embryos using scRNAseq datasets from Satija
et al. (2015) and in situ hybridizations from the ZFIN
collection (Howe et al., 2013) as further described in
Tanevski et al. (2020).

Cell Locations
For each cell (n = 1,297) available in the RNA sequencing
data, we generated training labels representing their 3-D
positions by running DistMap (Karaiskos et al., 2017) with the
following inputs:

- scRNA-seq expression data, both raw and normalized
- the Reference database
- the spatial coordinates

Briefly, DistMap calculates several parameters, a quantile value
and one threshold per inSitu gene, to predict the cell locations. It
employs these values to binarize the expression of the genes’ and
calculate the Matthews correlation coefficients (MCC) for every
cell-bin (embryo location) combination. By doing this, DistMap
maps a cell to multiple likely positions. Lasso.TopX and NN
approaches (described below) use these MCC values to determine
the training labels.

Feature Selection Approaches
Random
As a baseline approach, among the 84 inSitu genes from which
we were allowed to pick, we randomly selected 60, 40, and 20
of them for the respective subchallenges. This random selection
allowed us to benchmark (see section “Results”) how Lasso.TopX
and NN feature selection approaches compared against a random
process. We performed this selection step 10 times, one for each
outer cross-validation (CV) fold, see Postchallenge Outer Cross-
Validation. The importance of this comparison is to evaluate if the
cost of building a method, both timewise and computationally,
has any advantage over a simple approach, that does not leverage
machine learning (Karathanasis et al., 2014).

Lasso.TopX
This approach is implemented in the R programming language
and leverages the glmnet package (Friedman et al., 2010)
to build generalized linear models with Lasso (Tibshirani,
1996) and ranking statistics in the final feature selection step.
Lasso.TopX allows for the identification of the most informative
N features, where N is 60, 40, and 20 for subchallenges 1, 2,
and 3 respectively.

Preprocessing
We used the following data to identify the most important genes:

- scRNA-seq: We subset the provided normalized single-cell
RNAseq dataset to include only the 84 in situ genes.

- Top cell locations: For training labels, we identified the
locations of the cells using DistMap with the code
provided from the challenge’s organizers, see Cell Locations
above. For each cell, we use the bin (embryo locations)
corresponding to the maximum MCC. In our feature
selection process, we employed only the cells that are
mapped uniquely to one location (1,010 out of 1,297 cells),
Supplementary Figure S1.

Training flow and feature selection
We performed the following steps to identify the important
features employing Lasso.TopX:

(1) In order to identify the most important 60/40/20 features,
we performed a repeated fivefold CV process. The CV
was repeated 20 times for 300 different values of lambda.
Lambda is Lasso’s hyperparameter, which the user needs
to optimize. Intuitively, fewer features will be selected as
lambda increases. The range of the lambda values was
defined manually, using 70% of the data and only one
time, in order for models with 60/40/20 features to be
produced. In relation to the competition, we retrieved
lambda ranges from glmnet packages, 100 values, and
tripled the density to include 300 values. In total, we fitted
5 ∗ 20 ∗ 300 = 30,000 models. Importantly, in order to
avoid overfitting, during each CV fold only the training
data corresponding to this fold are standardized, and the
resulting model is applied to the test data (Friedman et al.,
2010). Lasso was used in the multiple Gaussian family
mode, which can deal with multiple outputs, in order to
make predictions for each of the X, Y, and Z locations.

(2) For each model, we extracted the following information:

(a) The error from the model: The Euclidean distance of the
predicted XYZ location to the top location.

(b) The number of features that were used and their
corresponding coefficients.

(3) We selected the best lambda value by calculating the
mean error per lambda across the repeated fivefold CV
(Figure 1). The best lambda was producing the minimum
mean error and models with the desired number of
features. We retained only the models corresponding to
this lambda value. One lambda value and 100 models
(fivefold CV ∗ 20 times) were selected per subchallenge.

(4) For each one of the selected models, we extracted their
features and calculated two metrics.

(a) Stability: The number of times a feature was selected
as important across the repeated CV procedure
(Figure 1B, left, for subchallenge 3), and

(b) Mean coefficient: The mean value of the coefficients that
a feature was assigned across all coordinates (Figure 1B,
right), for subchallenge 3.

(5) Finally, we utilized the RankSum statistic to combine
these two metrics and calculate the overall importance of
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the selected features. In cases where we had more than
the desired number of features in our final feature list,
we kept the features with the higher RankSum statistic
(Figure 1). Having more than the desired number of
features is possible as models with the same lambda may
select different features during the repetitive CV process.

NN-Based Approach Using Weak Supervision
In this approach, we perform weakly supervised learning (Zhou,
2018) using NNs. After training the models, we calculate variable
importance (VIP) scores to rank each gene. We describe several
techniques that we used to help eliminate overfitting and make
sure our model generalizes well. Because the training labels were
not given to us directly and because we could not assume the max
MCC from DistMap was always correct, we devised a technique
that is able to use multiple training labels for the same set of
input neuron values.

Preprocessing
All genes (n = 8,924) from the normalized RNAseq dataset,
“dge_normalized.txt,” were used as predictor variables. For
generating the training labels for the 1,297 cell locations, we used
the MCC-based procedure also used by Lasso.TopX, but with one
modification. Instead of using only the location (X, Y, Z) from
the max MCC score, we used all locations that had an MCC score
greater or equal than 95% of the max MCC score.

NN architecture and loss function
Model training and inference were all performed using Python
3.5, the PyTorch (Paszke et al., 2017) machine learning library,
and the numpy and pandas packages. We used a fully connected
NN architecture described below.

• Input neurons: One input neuron per RNAseq gene.
• Hidden layers: Two hidden layers were used, each with

100 neurons.
• Output neurons: Three output neurons were used (X

position, Y position, and Z position).
• Loss function: Euclidean loss using all three output neurons.
• Activation function: Rectified linear units (Hahnioser et al.,

2000; Nair and Geoffrey, 2017).
• Optimizer: Adadelta (an adaptive learning rate method) was

used for gradient descent (Zeiler, 2012).
• Regularization: To help avoid overfitting and allow the

model to generalize better, we used Hinton Dropout
which can be seen as a stochastic regularization technique
(Srivastava et al., 2014), set at 10% for both the hidden
and input layers. While we did not utilize it, additional
regularization (weight decay, L2 penalty) can be set when
initializing the Adadelta optimizer.

Training flow
Using the preprocessed data, we performed fivefold CV 40
times for a total of 200 models. Before training, the genes
were first standardized to have a mean of 0 and unit
variance. For each model and to prevent bias (Ambroise and
McLachlan, 2002), the parameters used for this adjustment were
determined from the training splits only and then applied to the
validation split.

Similarly, using the training splits only to avoid selection bias
(Ambroise and McLachlan, 2002; Smialowski et al., 2009), we
removed correlated genes by first identifying genes that (1) were
not an inSitu-gene and (2) had a Pearson correlation with at
least one inSitu-gene of ≥0.6 or ≤–0.6. We then removed these

FIGURE 1 | Selecting 20 genes, Lasso.TopX. (A) Lambda selection: the mean Euclidean distance error across the repeated fivefold CV in relation to the natural
logarithm of lambda is presented for one out of 10 outer CV runs. Several models with 20 features (red dots) are produced with their lambda values ranging from
14.00083, log(14.00083) = 2.64, to 11.93777, log(11.93777) = 2.48. The lambda that produced the models with the minimum mean Euclidean distance error was
selected. The same process was followed for both 40 (green dots) and 60 (light blue dots) features. (B, Left) Stability, the number of times a feature was selected as
important across the repeated cross-validation procedure. Twenty genes are shown in one out of the 10 outer cross-validation runs. Each gene was selected at least
one time by the best performing models during the repeated cross-validation (lambda = 11.93777). Twenty genes with the higher RankSum statistic were selected
(blue), the last three genes (red), had the lowest RankSum statistic and left out of the final list. (B, right) The distribution of the absolute value of the coefficients of
the selected genes. The mean value of the coefficients is shown with a black point character.
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RNAseq genes from all splits. This allowed us to remove non-
inSitu genes that might prevent VIP scores of inSitu genes from
showing up, which we thought might be helpful because the
subchallenges only asked us to report inSitu genes.

For every CV fold, we made sure that a cell’s gene expression
values were never found in both the training and validation
splits. During training, minibatch sizes of 100 were used. To
help prevent the model from overfitting on the training data, we
also performed early stopping by stopping the training process
once the Euclidian loss on the validation fold did not improve
after 50 epochs and keeping the model with the lowest loss.
Because looking at the validation fold’s loss function could
potentially overestimate a model’s performance, we evaluated our
subchallenge scores on an external hold-out set from a separate
outer CV fold (see Results).

Weak supervision enablement
There are two points mentioned previously that are important
for enabling weak supervision in this workflow. We highlight
them here:

- Our preprocessing step preserves all cell locations that had
an MCC score greater than or equal to 95% of the max
MCC score. More specifically, this means that cells that
had more than one designated location were represented
in the training dataset in multiple rows/observations, with
identical observed input variables (gene expression) but
differing observed output variables (locations).

- During the training flow, we made sure the training and
validation partitions never contained information from
the same cell, even if the locations were different. We
accomplished this by splitting on cell names versus the
row indices.

The results attributed to these decisions are further outlined in
Considerations for Weak Supervision.

Feature selection
Variable importance scores were calculated and ranked for
each of the 200 NN models used in the training process. We
implemented (and include in our source code) Gedeon’s method
(Gedeon, 1997) to come up with VIP scores for each model. For
each model, we only kept the genes with the highest 60/40/20
VIP scores depending on the subchallenge. We then sorted the
lists by consensus vote to obtain one list per subchallenge. For
the subchallenges, only inSitu genes were selected.

Location Predictions
The following steps were used by Lasso.TopX, NN, and Random
approaches in order to predict 10 locations per cell:

In order to prevent overfitting, DistMap parameters were
estimated using the following:

(1) Only the cells belonging in the training sets
(2) Only the genes selected during the feature selection stage,

which also did not use information from the test sets

The resulting DistMap parameters were then used to binarize
the expression data of the cells belonging in the test set.

Finally, similar to Cell Locations above, for the cells in the
test set, we calculated the MCC for every cell-bin combination,
and we selected the 10 bins that correspond to the top 10
highest MCC scores.

Postchallenge Outer CV
In the postchallenge phase, the organizers split the data in 10
folds, on which our approaches were rerun for stability and
overfitting evaluation (Tanevski et al., 2020). Separately for each
of the 10 iterations, only the respective nine training folds
were used for feature selection and to train DistMap. The cells’
locations were predicted for the remaining validation fold. We
refer to this postchallenge CV as the “outer CV” because any CVs
described in our feature selection approaches occurred using data
only within the training-folds of this outer CV.

Blind Evaluation Metric
Prior to the competition ending, in which contestants did not
have access or insight into the challenge organizers’ scoring
functions, we evaluated our location predictions by calculating
for each cell the mean Euclidean distance of the top 10 predicted
locations from the cell location with the maximum MCC
(MeanEuclDistPerCell). For the cells that did not map uniquely,
we used the first bin among the ties as returned by R.

Then, we calculated the mean of the MeanEuclDistPerCell
per outer CV fold across all cells, which we refer
to as MeanEuclDistPerFold. Finally, the mean of the
MeanEuclDistPerFold across all 10 outer CV folds was calculated
and referred to as MeanEuclDistAllFold.

RESULTS

Challenge Submission (Lasso.TopX or
NN)
We ran both the Lasso.TopX and NN approaches for all three
subchallenges. Because the challenges final scoring algorithms
were not available to any participants until after the competition
concluded, we compared our two feature selection approaches
using a blind evaluation metric (see section “Methods”) we
devised and thought might be a proxy to a good leadership score.
Because the teams were allowed only one final submission to
each subchallenge, we used this blind metric to determine if the
results from either NN or Lasso.TopX would be submitted to
each subchallenge. This blind metric was calculated individually
for both feature selection techniques and for each subchallenge.
Our evaluation metric suggested that Lasso.TopX may perform
slightly better than NN for some subchallenges (data not shown).
Based on this, our final submission used results based on
NN for subchallenge 2 and Lasso.TopX for the other two.
Our submitted results ranked 10th, 6th, and 4th in the three
subchallenges, respectively, among ∼40 participating teams
(Tanevski et al., 2020).

Evaluation Postchallenge
After the challenge ended, the organizers devised a postchallenge
CV scheme [see section “Methods” and Tanevski et al. (2020)
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for more detail] to evaluate the robustness of the methods. It
was only after this resubmission phase did the organizers make
the true scoring functions (“s1,” “s2,” and “s3” scores) publicly
available. Figure 2 and Supplementary Figure S2 show the
results of our blind, s1, s2, and s3 metrics across the outer 10-
fold CV. As expected, both Lasso.TopX and NN behaved better
than Random. The results of the three true scoring schemes
(Figure 2) are consistent with our previous findings using our
blind metric and in agreement with the challenge paper (Tanevski
et al., 2020) show that our scores have little variability and that
our approaches generalize well. We also note that as illustrated by
a t-test analysis, Supplementary Table S1, none of the observed
differences between Lasso.TopX and NeuralNets are statistically
significant apart from: subchallenge #1, s3, subchallenge #2 s2,
and subchallenge #3 s3. The different behavior across metrics
is expected as they measure different aspects of a solution
as described in Tanevski et al. (2020). Because of the higher

s2 score in subchallenge #1 for NN (Figure 2), we note the
possibility that our NN approach could have ranked more
favorably in subchallenge #1 when compared to the submitted
Lasso.TopX predictions.

Additionally, in order to test the generalizability of our
approaches, we applied them on a dataset generated from a
different species, zebrafish. As further described in Tanevski et al.
(2020), our solutions successfully reconstructed the locations of
cells from a zebrafish embryo.

Considerations for Weak Supervision
When generating training labels during the preprocessing step of
NNs (see section “Methods”), there were several reasons why we
allowed multiple training labels for the same cell. First, it allowed
all locations of the 287 cells (Supplementary Figure S1) that did
not uniquely map to be used during training. Also, we could not
be certain that the max MCC was always the right value to use

FIGURE 2 | Comparison of different methods, organizers scoring functions. (A) For subchallenge 1, Lasso.TopX performed better than NeuralNets for s1 and s3.
(B) For subchallenge 2, NeuralNets performed better for all scores, and for subchallenge 3 (C), Lasso.TopX performed better for s1 and s3 scores. In all
subchallenges, both methods performed better than random. White Xs correspond to the mean value of the respective distribution.
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FIGURE 3 | Ambiguous labels leveraged in NN approach. (A) Shows that most Drosophila cells contain more than one spatial location (mean of 7) when using
DistMap’s predictions and thresholding at 95% of the max MCC. (B) Shows the mean Euclidean distance between the cells with non-unique training labels that meet
the same 95% threshold. Cells that are selected at this threshold have mean Euclidean distances much lower than random and highlight the probabilistic nature of
the training data.

and wanted to better leverage the probabilistic mapping strategy
enabled by DistMap.

Figure 3A shows that in the vast majority of the time, there
exists more than one spatial location for a cell when using the
95% cutoff. The most common number of selected training labels
per cell location is 5, with a mean of 7. When allowing multiple
training labels per cell, our dataset became much larger: 11,491
observations instead of only 1,297 observations when only the
value with the max MCC was used. One pleasant consequence
of having more training data is that it makes it harder to overfit
an NN, which is especially problematic in high-dimensionality
settings (Bellman, 1961; Verleysen et al., 2003).

In Figure 3B, we also show that the surviving training labels
per cell generally represent similar spatial coordinates when
compared with randomly shuffled locations in the training data.
This suggested that allowing multiple training labels per cell
during training could guide the model to generalize to less-
specific spatial regions without being pegged to any one location
that could have been incorrectly classified.

Importantly, as mentioned in section “Methods,” when
generating training and validation partitions, we made sure that
a cell’s gene expression values were never found in both sets.
We accomplished this by splitting on cell names versus the row
indices. This is especially important because the preprocessing
steps allowed the same cell to be found multiple times but with
different training labels (Figure 3A). We found that if we did not
split this way that we would overfit, have indirect data leakage
(Luo et al., 2016), and significantly overestimate the performance
of our models because the validation split could contain identical
predictor variables (gene expression levels) as the training splits

but with training labels that had similar (though not identical)
spatial locations (Figure 3B).

Measuring and Avoiding Data Leakage
During Location Prediction
We also sought to determine what our scores would have looked
like if data leakage occurred during the location prediction
stage. In machine learning and statistics, data leakage can
lead to inflated performance estimates when data from the
validation or test set are used during training (Luo et al., 2016).
Overfitting because of data leakage would have been easy to
do by mistake because the provided binarized expression data,
generated by DistMap, were produced using all expression data
and consequently should never be used at any step of training or
testing. For example, one might think that instead of modifying
DistMap to perform the two-step approach described in section
“Methods,” a contestant could have used the provided binarized
data to directly calculate the MCC scores and the 10 cell positions.
However, as is evident from Supplementary Figures S2, S3,
this will lead to overestimation of performance irrespective of
the scoring functions (blind, s1, s2, s3) for all the solutions
(NNs, Lasso.TopX, Random) used. In both figures, we present
bars and boxplots, which correspond to the overfitted location
predictions using the unmodified and provided binarized data
(extension “PB”) and compare it to the approach we used
(extension “selGenes”).

InSitu Genes With Spatial Information
We observed that the genes selected across the outer 10 CV
folds were stable (Supplementary Table S2). More specifically,
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in the Lasso.TopX case, 74, 54, and 27 genes were selected in
total for subchallenges 1, 2, and 3, respectively, with 44 (60%),
25 (46%), and 15 (56%) of them to be selected across all folds,
Figure 4A. Similarly, in the NNs case, 64, 47, and 23 genes
were selected, with 58 (91%), 33 (70%), and 13 (57%) of them
to be selected across all folds, for subchallenges 1, 2, and 3,
respectively (Figure 4B). As expected, Random did not show the
same trend (Figure 4C) with zero genes selected across all folds.
We observed agreement in the in situ genes selection between
our two distinct feature selection strategies despite differences
in preprocessing, features used during training, and inference
models. Specifically, we observed a mean of 80, 76, and 64%
agreement for subchallenges 1, 2, and 3, respectively, across the
outer CV folds (Supplementary Figure S4).

Non-InSitu Genes With Spatial
Information
While not a focus on this competition, we additionally ran
both our approaches using RNASeq data information from both

the non-inSitu and inSitu genes, and we were able to discover
many informative non-inSitu genes that also contain positional
information. The list of 20/40/60 genes using the NN approach
would have been composed of 56, 50, and 52%, respectively, of
non-inSitu genes (Supplementary Table S2). In the Lasso.TopX
case, 67, 66, and 70% of the selected genes were non-inSitus when
selecting the most informative 20/40/60 genes (Supplementary
Table S2). Similar to the inSitu genes analysis, we calculated
the stability of the selected genes across the outer CV folds.
In the Lasso case, 36.6, 28.7, and 23.7% of genes were selected
across all folds of the outer CV, when selecting for 20, 40, and
60 genes, respectively (Supplementary Figure S5a). In the NNs
case, 46, 59, and 67% of genes were selected across all folds
when selecting 20, 40, and 60 genes, respectively, Supplementary
Figure S5b. Furthermore, we observed that on average 52, 57,
and 51% of genes identified by NN and Lasso.TopX were in
common across the 10-fold outer CV folds, when selecting 60,
40, and 20 genes, respectively (Supplementary Figure S4b).
Interestingly, we observed (Figure 5) that several non-inSitu

FIGURE 4 | Feature stability in Nested CV using inSitu genes. The percentage of common selected genes across the 10-fold nested cross-validation is shown. (A) In
the Lasso.TopX case, 27 genes were selected across all folds for subchallenge 3, red dots. Four genes or 15% percent were selected in only onefold; two genes or
7.4% percent were selected by threefold, etc. Fifteen or 56% percent were selected in all 10-fold. (B) Similarly for the NNs case, out of a total of 47 genes selected
across all folds for subchallenge 2, green dots; 33 genes or 70% percent were selected across all 10-fold of the nested cross validation. (C) In the random case, 74
genes were selected across all folds for subchallenge 3, red dots. Twelve genes or 16.2% percent were selected in only one fold; 21 genes or 28.4% were selected
by twofold, etc. Importantly, for all subchallenges, 0 genes were selected in all 10-fold.
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FIGURE 5 | More frequently identified genes. Several inSitu and non-inSitu genes were selected across most subchallenges, methods, and cross-validation folds.
Twenty-nine genes, 14 inSitu (arrow) and 15 non-inSitu, were selected in at least 30 of a total of 60 feature selection runs, x axis. Lasso.TopX and NNs are shown in
shades of blue and green, respectively. Dark, regular, and light shades correspond to selecting 60, 40, and 20 genes, respectively.

genes were selected consistently across all 60 feature selection
runs (60 = 2 techniques ∗ 3 subchallenges ∗ 10 outer CV folds).
Specifically, 142 genes were identified across all runs consisting
of 38 inSitus and 104 non-inSitus. As expected, due to the fact
that inSitu genes contain spatial information, they were selected
on average more often, 25 times out of 60, than non-inSitus, 14
out of 60. However, focusing on the most stable genes, genes that
were selected in at least 30 out of the 60 runs, 15 out of 29 are
non-inSitus (Figure 5).

DISCUSSION

Here in we presented a detailed description of our techniques
and solutions we submitted in the DREAM Single-Cell
Transcriptomics Challenge (Tanevski et al., 2020), namely,
Lasso.TopX and NN, where we successfully identify genes

containing spatial information from single-cell transcriptomics
data in both D. melanogaster and zebrafish (Danio rerio).

A typical Lasso workflow consists of first identifying the best
lambda, using CV, and then employing that lambda to train
on the full dataset to identify the most informative features
(James et al., 2013). Importantly, however, this process does
not allow the user to specify a discrete number of features
they are interested in because the selected lambda is not tied
to a user-defined number of features (Friedman et al., 2010).
Also, running the typical workflow multiples times could lead to
slightly different optimal lambda values as the data splits during
the CV could differ, and thus, this could lead to slightly different
features and different number of features. Another approach that
could be employed to meet the subchallenge requirements is to
have performed the typical workflow and then select the top
20/40/60 genes from the resulting list of genes. This approach
is suboptimal; for example, if someone could select the best
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20 features, these 20 features would not necessarily be a
subset of the best 40 features (James et al., 2013). Considering
the above, we developed Lasso.TopX, which leverages Lasso
and is able to identify the most important user-defined
number of features, employing repeated CV to make the
results less dependent on any particular choice of data split.
Lasso.TopX can be applied to classification or regression
problems where finding important, stable, and user-defined
number of features is important.

We also note that Lasso.TopX will provide the most value
if the user-defined number of features is fewer than what the
traditional Lasso workflow would have chosen. Taking as an
example, Figure 1A, we see that Lasso’s error is decreasing in
the beginning as we move to higher values of lambda (from
left to right), and then there is a local minimum [close to
log(lambda) = 0], and then the Lasso error increases again. At
the local minimum, Lasso provides the best features given its
underlying assumptions. We suggest the user to run regular
Lasso, to identify Lasso’s optimal performance point and then to
define the desired number of features on the right-hand side of
that point (higher lambda values).

For our NN approach, we show that a cell’s training labels
do not have to be unique. This is especially useful to take
advantage of training data generated from DistMap’s probabilistic
mapping output. We demonstrate how to properly split training
and validation data when non-unique (Figure 3A) but correlated
(Figure 3B) training labels are used in order to prevent data
leakage. We hope that our approach will be helpful in the
active research field of weak supervision (Zhou, 2018) and as
probabilistic training labels become more commonplace. A lot
of the research in weak supervision for NNs has focused only
on logistic regression. We hope that our findings extend the
research of weak supervision to linear regression and to the
genetics domain.

In relation to the stability of the InSitu genes’ selected
across the outer 10 CV folds, Figure 4, we observed that
both approaches presented similar behavior for subchallenge
3 (20 features). For the other two subchallenges NNs feature
stability was higher than Lasso.TopX’s. We believe that this
is due to the following reasons. Lasso’s L1 regularization
will remove, somewhat arbitrarily depending on the data
splits (Friedman et al., 2010), highly correlated variables
from the final model. Lasso is not a greedy method; a
model with more variables will not necessarily include all
variables of a model with fewer variables. Our NN method
took a greedy approach in which features from subchallenge
3 are a subset of those from subchallenge 2. Similarly,
the features from subchallenge 2 are a subset of those
from subchallenge 1.

Not all decisions were consistent between Lasso-TopX and
NN feature-selection approaches. For instance, the number
of features (no. of genes from RNASeq data used) and
training labels (max MCC vs. 95%) used during training
differ between the approaches. Therefore, differences in
performance (Figure 2 and Supplementary Figures S2, S3,

and Supplementary Table S1) and feature stability (Figure 4
and Supplementary Figure S5) also reflect various decisions
made during the preprocessing stages. We also suspect
that NN’s performance did not more substantially separate,
Supplementary Table S1, from our Lasso model because the
organizers’ scores (s1, s2, and s3) were based on ground
truth values that used only the most probable locations
and the organizers’ discarded cells in which the MCCs tied
(Tanevski et al., 2020).

Lastly, while identifying non-InSitu genes was not a focus
of the competition, we show that our approaches were able to
identify non-InSitu genes that also contain spatial information.
We show that the Lasso.TopX and NN approaches both
reported similar genes. Surprisingly, when focusing on the
most stable genes, slightly more than half (15 or 29) were
non-InSitu genes (Figure 5 and Supplementary Table S2).
We believe that these D. melanogaster genes would be good
candidates for exploring in future work involving spatial
information. We would like to note that these techniques
are extendable to other regression or classification problems
and could benefit the scientific community outside of scRNA-
seq applications.
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