

Thomas Jefferson University Jefferson Digital Commons

Phase 1

Class of 2023

2-2021

## Assessment of the Diagnostic Accuracy of Core Needle Biopsy in the Diagnosis of Lymphoma

Christopher A. Gardner

Xiangyun Ye

Catherine Tucker, MD

Austin Redilla

Guldeep Uppal, MD

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/si\_ctr\_2023\_phase1

Part of the Translational Medical Research Commons
<u>Let us know how access to this document benefits you</u>

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Phase 1 by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

#### Authors

Christopher A. Gardner; Xiangyun Ye; Catherine Tucker, MD; Austin Redilla; Guldeep Uppal, MD; and Adam F. Binder



## Assessment of the Diagnostic Accuracy of Core Needle Biopsy in the Diagnosis of Lymphoma

Christopher A. Gardner, Xiangyun Ye, Catherine Tucker, MD, Austin Redilla\*\*, Guldeep Uppal, MD, Adam F. Binder, MD\*

(\*) indicates primary project advisor

(\*\*) indicates another student who is declaring the same project as primary for SI



## Introduction & Objectives

- Excisional biopsy (EB) of an involved lymph node or tissue is the gold standard for diagnosing lymphoma.
- Recent literature suggests that novel diagnostic techniques (e.g. IHC, FC, FISH/Cytogenetics) enhance the accuracy of less invasive diagnostic procedures like Core needle biopsy (CNB)
- At TJUH, CNB has been ordered with increasing frequency
  - from 2016-2018 CNB for diagnosis of lymphoma increased from 19% to 31.6%
- CNB is less invasive, cheaper
- <u>Objective</u>: To determine if CNB are diagnostically adequate compared to EB



## Research Question & Hypothesis

- <u>Question</u>: Does CNB with ancillary studies yield similar diagnostic adequacy rates compared to EB in patients with lymphoma at TJUH?
  - Variables: pathologist, class of lymphoma, site, FNA performed, number of passes, gauge size, subsequent biopsy, ancillary studies
- <u>Hypothesis</u>: CNB yields similar diagnostic adequacy compared to excisional biopsies
  - Adequacy determined by reviewing pathologist and whether subsequent biopsy was performed



# Approach and Methods

- Retrospective cohort study
- TJUH patients from 01/01/2016 12/31/2019 who received a lymphoma dgx
- Intervention: CNB
- Comparison group: EB
- **Outcome Measured**: Was a diagnosis achieved?
- EPIC, Data collected in REDCap
- Diagnostic odds ratio and confidence interval (Baptista-Pike)



- A total of **579 biopsies** were collected for review, **122** were excluded
- Excisional biopsy adequacy: 96.8% (328)
- <u>CNB adequacy</u>: 56.8% (67)
- Diagnostic odds ratio of CNB was determined to be 0.03583, [95% confidence interval {CI}: 0.01695 to 0.07532] (Baptista-Pike), p < 0.0001 (Chi square).</li>
- Number needed to harm: 2.5

### Sidney Kimmel Medical College at Thomas Jefferson University

## Breakdown of Biopsies

|                                    | Excisional Biopsy N (%) | Core Needle Biopsy N (%) |
|------------------------------------|-------------------------|--------------------------|
| Total Samples                      | 339 (74.2%)             | 118 (25.8%)              |
| Adequacy of sample                 | 328 (96.8)%             | 67 (56.8%)               |
| Diagnosis                          | ÷                       |                          |
| Benign                             | 154 (45.4%)             | 50 (42.4%)               |
| Diffuse Large B Cell Lymphoma      | 30 (8.5%)               | 12 (10.2%)               |
| Other Large B Cell Lymphoma        | 13 (3.8%)               | 6 (5.1%)                 |
| Hodgkin Lymphoma                   | 38 (11.2%)              | 7 (5.9%)                 |
| Follicular Lymphoma Grade 1/2/3A   | 29 (8.6%)               | 8 (6.8%)                 |
| Follicular Lymphoma Grade 3B       | 4 (1.2%)                | 0 (00%)                  |
| Mantle Cell Lymphoma               | 9 (2.7%)                | 2 (1.7%)                 |
| Marginal Zone Lymphoma             | 7 (2.1%)                | 1 (0.85%)                |
| SLL/CLL                            | 7 (2.1%)                | 3 (2.5%)                 |
| Peripheral T Cell Lymphoma, NOS    | 6 (1.8%)                | 0 (0.0%)                 |
| Angioimmunoblastic T Cell Lymphoma | 4 (1.2%)                | 0 (0.0%)                 |
| ATLL                               | 1 (0.3%)                | 0 (0.0%)                 |
| Other T cell Lymphoma              | 4 (1.2%)                | 0 (0.0%)                 |
| Solid tumor                        | 19 (5.6%)               | 18 (15.3%)               |
| Other                              | 13 (3.8%)               | 10 (8.5%)                |
| Lymphoplasmacytic Lymphoma         | 1 (0.3%)                | 0 (0.0%)                 |
| Low Grade NHL, NOS                 | 0 (0.0%)                | 1 (0.85%)                |
| Biopsy Location                    | 2. 20                   | 2003 20 2                |
| Cervical                           | 136 (40.1%)             | 10 (8.5%)                |
| Supraclavicular                    | 21 (6.2%)               | 14 (11.9%)               |
| Axillary                           | 58 (17.1%)              | 41 (34.7%)               |
| Mediastinal                        | 6 (1.8%)                | 2 (1.7%)                 |
| Retroperitoneal                    | 1 (0.3%)                | 12 (10.2%)               |
| Intra-abdominal                    | 14 (4.1%)               | 13 (11.0%)               |
| Stomach                            | 1 (0.3%)                | 0 (0.0%)                 |
| Other                              | 17 (5.0%)               | 6 (5.1%)                 |
| Inguinal                           | 79 (23.3%)              | 17 (14.4%)               |
| Iliac                              | 6 (1.8%)                | 3 (2.5%)                 |
| Reviewing Pathologist              |                         | 2227 2 189               |
| Hematopathologist                  | 300 (88.5%)             | 84 (71.2%)               |
| Non-Hematopathologist              | 39 (11.5%)              | 34 (28.8%)               |



## Conclusions

- Our diagnostic OR was less than expected, suggesting CNB is not as effective as EB at diagnosing lymphoma
- These findings challenge literature suggesting CNB is non-inferior to EB (Allin D., et al 2017)
- Our findings beg the question why TJUH has been moving away from EB in recent years, as well as the decisions to include or exclude certain ancillary studies with CNB



## Future Directions

- Currently analyzing 2020 lymphoma diagnoses
- Better understand the rationale for choosing CNB over EB at easily accessible EB sites
- QI project to reduce the number of CNB for suspected biopsies



Acknowledgements

- Dr. Adam Binder
- Dr. Catherine Tucker
- George Ye
- Austin Redilla