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Abstract: Recently, several studies explored associations between type 1 diabetes (T1DM) and micro
biota. The aim of our study was to assess the colonic microbiota structure according to the metabolic 
control in T1DM patients treated with insulin pumps. We studied 89 T1DM patients (50.6% women) 
at the median age of 25 (IQR, 22-29) years. Pielou's evenness (p = 0.02), and Shannon's (p = 0.04) 
and Simpson's diversity indexes (p = 0.01), were higher in patients with glycosylated hemoglobin 
(HbA1c) > 53 mmol/mol (7%). There were no differences in beta diversity between groups. A linear 
discriminant analysis effect size (LEfSe) algorithm showed that one family (Ruminococcaceae) was en
riched in patients with HbA1c < 53 mmol/mol, whereas one family (Streptococcaceae) and four species 
(Ruminococcus torques, unclassified species of Lactococcus, Eubacteroim dolichum, and Coprobacillus cateni- 
formis) were enriched in patients with HbA1c > 53 mmol/mol. We found that at class level, the following 
pathways according to Kyoto Encyclopedia of Genes and Genomes were enriched in patients with 
HbA1c < 53 mmol/mol: bacterial motility proteins, secretion system, bacterial secretion system, ribosome 
biogenesis, translation proteins, and lipid biosynthesis, whereas in patients with HbA1c > 53 mmol/mol, 
the galactose metabolism, oxidative phosphorylation, phosphotransferase system, fructose, and mannose 
metabolism were enriched. Observed differences in alpha diversity, metabolic pathways, and associations 
between bacteria and HbA1c in colonic flora need further investigation.

Keywords: KEGG pathways; microbiota; next-generation sequencing; type 1 diabetes

1. Introduction

Type 1 diabetes m ellitus (T1D M ) is an autoim m une disease that results from  the 
destruction of the pancreatic beta cells producing insulin  [1]. Because of that, patients 
w ith T1D M  require lifelong insulin therapy that m im ics the basal and m ealtim e release of 
insulin by the pancreas [1]. Intensive insulin therapy involves m ultiple insulin injections 
(MDI) or continuous subcutaneous insulin infusion (CSII) [1].

The pathogenesis of T1D M  is not fully understood [1]. The gen etic-sp ecific  H LA
predisposition, and epigenetic and environm ental factors such as d iet or viral infections, 
are reported to contribute to the developm ent of the disease [1,2]. It has been postulated 
that one of the potential factors contributing to the development of T1DM  or triggering the 
disease could be dysbiosis of interstitial bacterial flora [3 ,4] . The underlying m echanism s 
are unknow n. It has been  proposed, for instance, that alternations in gut m icrobiota can
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cause a decrease in bacteria producing butyrate, a short chain  fatty  acid (SCFA), and as 
a consequence, can cause an increase in  perm eability  and autoim m unity for T1D M  [5 ]. 
Recently, several studies have show n the relationships betw een beta-cell autoim m unity, 
occurrence of T1D M , and m icrobial dysbiosis [6- 14].

The potential association between gut dysbiosis and T1DM  m ay be, however, not only 
casual, bu t it could potentially  affect g lycem ic control in the already developed disease. 
M etabolic endotoxem ia is described as a condition w ithout acute infection w hen there is an 
elevated lipopolysaccharide (LPS) level, a m ain com ponent of the Gram  negative bacteria 
mem brane [15]. Increased fasting and postprandial LPS levels are observed in both T1DM  
and T2DM  [15]. Some data, m ostly based on type 2 diabetes mellitus (T2DM), indicate that 
derangem ents in  the com position of the m icrobiota m ay play a role in the developm ent 
of "m etabolic end otoxem ia" leading to hyperglycem ia based on  im m une independent 
m echanism s [16,17].

A recent m eta-analysis has shown that the m odification of gut m icrobiom e following 
probiotics usage may im prove glycem ic status in T2DM  [18]. Since those m echanism s and 
interventions could be also applicable to T1DM, one could speculate that there could also be 
a relationship betw een gut m icrobiota structure and glycem ic status in T1DM  individuals.

It has been reported that probiotics/prebiotics can decrease glucose level, increase 
SCFAs, diminish the inflammatory pathway, and reduced systematic endotoxem ia in T1DM 
anim al studies [2] . It is hypothesized that prebiotics via changing intestinal m icrobiota 
could lead to better glycem ic control in T1D M  patients [19].

Given reported im provem ent in glucose control after changes in m icrobiota in T1DM  
animal studies, w e hypothesized that colonic flora differs according to the metabolic control 
in T1D M  patients.

The aim  of our study w as to com pare gut m icrobiota structure and their m etabolic 
pathw ays betw een T1D M  patients m eeting the current criteria of glycem ic control [20,21] 
w ith glycosylated hem oglobin (HbA1c) below 53 mmol/m ol (7%) and patients w ith HbA1c 
equal to or greater than 53 m m ol/m ol (7%).

2. Materials and Methods
2.1. Study Setting and Eligibility

The study w as perform ed from  2016 to 2018. N inety-four consecutive patients w ith 
T1DM  treated w ith insulin pum ps at our O utpatients D iabetic Clinic w ere enrolled.

Since the m ain goal of the study w as to assess the relationship betw een m icrobiota 
structure and HbA1c per se, we aimed to perform  our analysis on as hom ogenous a group 
as possible.

Patients w ith T1D M  w ho use an insulin pum p and confirm ed readiness to cooperate 
w ith the research center w ere eligible for the study.

The exclusion criteria w ere chosen carefully  and included clinical conditions and 
patients' behavior, w hich could have a significant im pact on m icrobiota status irrespective 
of glycem ic control. These included the follow ing:

• confirmed infection of the gastrointestinal tract or using probiotics or taking antibiotics 
for up to 30 days before delivery of a stool sam ple,

• chronic inflam m atory bowel disease of unknow n etiology, active cancer (especially of 
the gastrointestinal tract),

• im munodeficiency,
• the presence of advanced late com plications of diabetes, and
• low  and very h igh carbohydrate consum ption defined as below  100 or over 400 g of 

carbohydrates verified by  questionnaire and insulin pum p downloads.

The study received approval from  the Jagiellonian  U niversity  Ethics C om m ittee 
(number KBET/256/B/2014, date 27.11.2014). All participants provided w ritten informed 
consent in accordance w ith the D eclaration of H elsinki.
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2.2. Study Investigations

We obtained reports from personal insulin pum ps (14 days). The reports provided the 
inform ation about average glucose level along w ith standard deviation (SD); basal, bolus, 
and total daily insulin dose; the amount of glucose m easurements per day; and the average 
am ount of carbohydrates eaten per day. The patients w ere asked to com plete the survey 
regarding eating habits. H bA 1c w as assessed (high-perform ance liquid chrom atography 
using the Variant II Turbo analyzer, Hercules, CA, U SA , or H bA1c, Quo Lab H bA 1c, EKF 
D iagnostics) and stool sam ples w ere collected from all patients.

2.3. DNA Isolation and 16S M etagenom ic Sequencing

Bacterial DNA w as isolated using Genom ic M ini AX Stool Spin (A&A Biotechnology, 
Gdynia, Poland), w ith several m odifications, as described in our previous publication [22].

Libraries w ere prepared according to the Illum ina 16S M etagenom ic Sequencing 
Library Preparation protocol. A fter that, the libraries a t a concentration 10 pM  w ith  20%  
PhiX spike-in control w ere sequenced on Illum ina M iSeq (Illum ina, Inc., San D iego, CA, 
USA) using the V3 sequencing kit (300 bp paired-end reads) [22].

2.4. Sequencing Data Analysis

Sam ples were processed and analyzed using the Q uantitative Insights Into M icrobial 
Ecology 2 (Q IIM E2, version 2019.7) [23] custom  pipeline. Briefly, the quality of dem ul
tiplexed paired-end reads from  M iSeq (2 x  300 bp) w as evaluated and the reads w ere 
trim m ed to remove prim ers and poor-quality bases w ith cutadapt [24]. Trimmed pair-end 
sequences w ere denoized and m erged w ith  D A D A 2 [25] to generate am plicon sequence 
variants (ASVs). Next, reference-based chim era filtering w as queried against the reference 
database (Greengenes version 13.8) at 99% sim ilarity w ith vsearch [26].

Low -abundance A SV s w ere elim inated w hen they appeared in less than three sam 
ples or the num ber of counts across all sam ples w as <5. The SA Te-enabled phylogenetic 
placem ent (SEPP) algorithm  w as used to build the tree for phylogenetic diversity com pu
tation [27]. Q IIM E2 diversity  core-m etrics-phylogenetic analyses w ere used to com pute 
alpha and beta diversity  values, and rarefaction curve analysis w as used to estim ate the 
completeness of microbial community sampling. We also computed default alpha and beta 
diversity metrics and generated principal coordinates analysis (PCoA) plots for each of the 
beta diversity m etrics using the EM Peror [28]. The alpha and beta diversity indices of the 
groups w ere com pared using Q IIM E2 longitudinal pairw ise-differences plugin using the 
t-test. Correlations w ith alpha and beta diversity indices were calculated w ith the QIIM E2 
plugins using Spearm an correlation. Generated A SVs w ere assigned to taxonom y using a 
naive Bayes classifier [29] that w as pre-trained on the v3-v4 rRN A  regions in Greengenes 
version 13.8, at 99%  similarity. The bacterial com position w as analyzed at phylum , class, 
order, family, genus, and species levels. Differential abundance between groups at each tax
onomic level w as tested using analysis of the com position of m icrobiom es (ANCOM) [30]. 
Additionally, w e used 'M aA sLm 2; package [31] in R  statistical environm ent to verify the 
m ultivariable association betw een clin ical m etadata and relative abundance of taxa at 
different taxonomical levels. The regression coefficient (coef) in M aAsLin2 is the effect size, 
w hich  represents the rate of change in abundance of taxa per 1 score of m easurem ents. 
Both, ANCOM  and M aAsLin2 control for FDR was at level 0.05. To find taxa and pathways 
that explain differences betw een our group, w e used LEfSe (Linear D iscrim inant Analysis 
Effect Size) [32], w hich  is an  algorithm  for high-dim ensional biom arker d iscovery and a 
tool to identify genom ic features, such as taxa or pathways. The LEfSe w as used w ith the 
default param eters (p < 0.05 and Linear D iscrim inant A nalysis [LDA] score >2.0). First, 
we performed differential abundance on species taxonom ical level, and then we predicted 
K EG G  (Kyoto Encyclopedia of G enes and G enom es) [33] based  on functional profiles 
using PIC R U St (Phylogenetic Investigation of C om m unities by  R econstruction of U nob
served States) softw are v.1.1.4 [34]. Since PIC R U STt requires an operational taxonom ic 
unit (O TU )_ table 'closed-reference' picked against G reengenes database, w e clustered
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our A SVs sequences w ith  G reengenes 13.8 database, at 99%  similarity, using the vsearch 
cluster-features-closed-reference [26] plugin in Q IIM E2 [23].

2.5. Statistical Analysis

Continuous variables are expressed as median (interquartile range (IQR)) or mean ( ±  SD). 
Categorical variables are presented as count (percentages). The norm ality of continuous 
variables was verified using the Shapiro-W ilk test. The equality of variances was checked by 
the Levene's test. Groups were compared using Student's t-test, Welch t-test, M ann-W hitney 
U test, and Fisher's exact test, appropriately. Calculations were performed using Statistica 13 
software (StatSoft Inc., Tulsa, OK, USA) and package R ver 3.6.2 [35].

3. Results
3.1. Study Population

From  all 94  stool sam ples, 5  sam ples w ere excluded due to low  read count after 
D A D A 2 denoising, chim era rem oval, and filtering. Therefore, the final study population 
consisted of 89 patients (50.6% women). The median age of the cohort w as 25 (22-29) years. 
The patients w ere divided into tw o groups according to the H bA 1c level: patients w ith  
HbA1c below 53 mmol/m ol (7%) (n = 43) and patients w ith HbA1c equal to or greater than 
53 m m ol/m ol (7%) (n = 46). There w ere no differences in age, body mass index (BMI), and 
duration of diabetes betw een both groups (Table 1 ).

Table 1. The baseline characteristics of patients with glycosylated hemoglobin below and equal to or greater than 53 mmol/mol
(7%).

Variable All Patients 
(n = 89)

Patients with 
HbAlc Below 53 
mmol/mol (7%) 

(n = 43)

Patients with HbA1c 
Equal to or Greater than 

53 mmol/mol (7%)
(n = 46)

p-Value

Male sex, n (%) 44 (49.4) 24 (55.8) 20 (43.5) 0.29
Age, years 25 (22-29) 26 (23-31) 24 (22-28) 0.16

Duration of diabetes, years 12.5 (7.8-17)1 13 (7-17) 2 11.5 (8-16) 3 0.75
BMI, kg m-2 23.8 (22.1-24.9) 4 23.5 (22.3-24.8) 2 23.8 (22.1-25) 5 0.73

HbA1c, mmol/mol 53 (46-60) 46 (44-50) 60 (56-65) <0.001
154.9 ±  26.2 5 142.1 ±  21.7 167.4 ±  24.3 5Average glucose level, mg/dl (mmol/l) (8.6 ±  1.5) (7.9 ±  1.2) (9.3 ±  1.4) <0.001

Daily carbs, x 10 g 14.4 (10.7-19.2) 6 17.1 (11.2-26) 7 13.6 (9.4-16) 8 0.02
Total insulin dose, IU 44.7 (37.1-55) 4 44.7 (36.6-56.6) 44.7 (37.3-54.8) 4 0.87

Percentage of basal insulin, % 41 ±  9.6 4 39.5 ±  10.5 42.6 ±  8.5 4 0.14
Daily insulin/body mass ratio, IU/kg 0.65 (0.52-0.77) 9 0.67 (0.53-0.77) 2 0.62 (0.52-0.75) 1 0.97

The amount of glucose measurements per day, n/per day 5.9 (4.2-7.9) 4 6.8 (5.7-8.5) 2 5.1 (4-7.3) 5 0.01
Hypothyroidism, n (%) 20 (23.8) 5 13 (31.7) 5 7 (16.3) 4 0.16

Celiac disease, n (%) 2 (2.3) 5 0 (0) 2 2 (4.5) 2 0.49
Current smoking, n (%) 13 (15.5)1 3 (7.1) 2 10 (23.8) 3 0.07

Continuous variables are summarized as median (interquartile range) or mean (± standard deviation), and qualitative variables are 
presented as the number (percentages). HbA1c, glycosylated hemoglobin; BMI, body mass index. 1 Missing in 5 patients; 2 missing in
I patient; 3 missing in 4 patients; 4 missing in 3 patients; 5 missing in 2 patients; 6 missing in 19 patients; 7 missing in 8 patients; 8 missing in
I I  patients; 9 missing in 6 patients.

Patients with HbA1c below 53 mmol/mol (7%) more often measured their glucose level 
and declared higher consum ptions of carbohydrates per day. There w ere no differences in 
daily insulin dose or in dose of insulin per kilogram body w eight between groups (Table 1 ).

Tw enty patients suffered from  hypothyroidism , tw o from  celiac d isease, tw o from  
vitiligo, one patient had autoim m une hepatitis, one patient had A ddison-Bierm er anem ia, 
and four patients had hypertension (Table 1). The groups did not differ in hypothyroidism 
diagnosis. The groups did not differ in general eating habits (Table 2).
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Table 2. The comparison of eating habits between patients with glycosylated hemoglobin below and equal to or greater 
than 53 mmol/mol (7%).

Variable All Patients 
(n = 79) 1

Patients with HbAlc 
Below 53 mmol/mol 

(7%)
(n = 40)

Patients with HbA1c 
Equal to or Greater than 

53 mmol/mol (7%)
(n = 39)

p-Value

The consumption of 4 and more meals per day, 
n (%)

64 (81) 33 (82.5) 31 (79.5) 0.78

Eating fruit at least once a day, n (%) 58 (73.4) 30 (75) 28 (71.8) 0.80
Eating vegetables at least once a day, n (%) 47 (59.5) 21 (52.5) 26 (66.7) 0.25

Snacking maximum 2 times a week between 
meals, n (%) 76 (96.2) 37 (92.5) 39 (100) 0.24

Drinking sweetened beverages or energy drinks,
n (%)

42 (53.2) 19 (47.5) 23 (59) 0.37

Drinking alcohol less than 2 times a week or no 
drinking alcohol, n (%) 63 (79.7) 33 (82.5) 30 (76.9) 0.57

1 10 answers missing out of 89 patients.

3.2. 16S rRNA Sequencing Analysis

After DADA2 denoising, chimera removal, and filtering of 94 patients, 5 samples were 
excluded due to low read count. Sequencing analysis for the 89 patients in the final cohort 
provided a m edian of 14,865 (IQR, 11,067-17,897). The best sam ple contained 33,933 reads, 
w hile the w orst contained 6267 reads. D A D A 2 pipeline resulted in  480, features (A SV s), 
w ith  total frequency of 1,340,777 features. Based on rarefaction curves, tine d iversity 
analysis w as calculated w ith  a m inim um  num ber o f 6267 sequences per sam ples, w hich 
corresponded to she m inim um  frequency.

5.3. D iversity Analysis

We first explored the relationship* betw een m icrobial alpha diversify  (Shannon'x 
diversity  index, observed O TU s, Faith 's Phylogenetic D iversity  and P ielou 's evenness, 
Sim pson 's diversity  index, and C hao index) in  the low  (< 53 m m ol/m ol (7%)) and high 
(>  53 m m olem ol (7%)) H bA 1c level groups. O nly Sh an n on 't diversity  index (p = 0.04), 
P ielou 's evenness (p = 0.02), and Sim pson 's diversity  index (p = 0.01), bu t noS observed 
O TU s (p = 0.34), Faith 's Phylogenetic D iversity (p = 0.9), arid Q ia o  index (p = 0.33), w ere 
higher in the HbA1c high group (>  53 m m ol/m ol )7%)).

Furtherm  cate, HbA lc  level had a positive correlation w ith Shannon's diversity index 
(R = 0.24, p = 0.025), Pielou's evedness (R = 0.28, p = 0.008), and Simp son 's dive rsity index 
(R = 0.3, p = 0.005, Figure l ) .

Figure 1. The relationships between glycosylated hemoglobin (HbA1c) level [ % ( mmol/mol)] and Shannon's diversity 
index (a), Pielou's evenness (b) and Simpson's diversity index ( c).
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Average glucose level w as correlated w ith  P ielou 's evenness (R = 0.26, p  = 0.02) and 
Sim pson's diversity index (R = 0.27, p = 0.01). Standard deviation of average glucose level 
w as not correlated w ith  any analyzed m easure of alpha diversity. Both average glucose 
level and standard deviation of average glucose level were associated with HbA1c (R = 0.63, 
p  <0.001 and R = 0.55, p  <0.001, respectively). D ose of insulin per kilogram  body w eight 
w as negatively  associated w ith  P ielou 's evenness (R = - 0 .2 7 ,  p  = 0.015) and Sim pson 's 
diversity index (R = -0 .2 3 ,  p  = 0.03).

HbA1c groups did not differ in four beta diversity indices: Bray-C urtis dissim ilarity 
(p = 0.18), Jaccard distance (p = 0.26), and unw eighted (p = 0.59) and w eighted  U niFrac 
(p = 0.33). M oreover, patients w ere not separated or clustered according to Principal 
Coordinates Analysis (PCoA) of beta diversity m etrics (Figure 2).

Figure 2. Principal coordinates analysis I’d!oA plots of beta diversity of patients with type 1 diabetes 
(T1DM) and with glycosylated hemoglobin (HbA1c) below 53 mmol/mol (7%) (green dots) and 
T1DM patients -with HbA1c equal to or greater them 53 mmol/mol (7%) (red dots). Differences were 
presented as Bray-Curtis dissimilarity (p = 0.18) (a), Jaccard distance (p = 0.26) (b), unweighted 
UniFrac (p = 0.59) (c), anh weighted UniFrac (h = 0.33) (d).

HbA1c level (as a continuous variable) w as not associated with beta diversity indices, 
B ray -C u rtis  dissim ilarity  (R = 0.03, p = 0.48), Jaccard distance (18 = 0.04, p  = 0.39), or 
unweighted (R = 0.05, p = 0.28) and weighted UniFrac (R = 0.05, p = 0.32). Average glucose 
level, standard deviation of average glucose level, and insulin per kilogram  body w eight 
were also not correlated w ith any of b e ta  diversity indices (data not shown).

3.3.1. Bacterial Profile

After annotation o . 480 ASVs w ith Greengenes taxonomy, git 99%  similarity, w e were 
able to classify 100% ASVs at the phylum  (L2) and at class (L3), 99.8% at order (L4), 90.2% at
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family (L5), 66.2% at genus (L6), and 27.7% at species (L7) level. A total of 135 species-level 
taxa w ere identified, representing 9 phyla, 14 classes, 18 orders, 41 families, and 86 genera.

There w ere the follow ing baseline bacterial profiles w ith  an abundance of >1%  at 
the phylum  level in patients w ith  H bA 1c below  53 m m ol/m ol (7%) and patients w ith  
HbA1c >  53 m m ol/m ol (7%): Firmicutes (85.8% versus (vs.) 83.3%), Actinobacteria (8.3% vs. 
8 .8%), Bacterioidetes (2.5% vs. 5.1%), Verrucomicrobia (2.3% vs. 1.0%), Proteobacteria (0.7% vs. 
1.4%), and 'o th er ' (0.4%  vs. 0.4% ; Figure 3a). A t the class level, baseline bacterial profiles 
included Clostridia (77.9% vs. 74.7%), Actinobacteria (5.4% vs. 5.9%), Bacilli (4.5% vs. 4.4%), 
Bacteroidia (2.5%  vs. 5.1% ), Erysipelotrichi (3.4%  vs. 4.2% (, Coriobacteriia (2.8%  vs. 2.8% ), 
Verrucomicrobiae (2.3% -vs. 1.0 %), Gammaprotiobacteria (0.6 % -vs. 1. 4 %), an4  'o ther' (0. 6% -vs. 
0.5%. Figure 3b), respectively.

Figure 3. Relative abundance of most common bacterial phyla (a) and classes (b) at each group. ./All taxa with abundance 
below 1 % are representedas 'other.'

Core microbiome nnalysis at species level showed that both subgroups shared 129 taxa, 
three w ere unique to patients w ith  H bA 1c < 53 m m ol/m ol (7%) and five w ere unique to 
subjects w ith H bA ta >  53 mmol/m ol .3%). Detailed taxonomic inform ation about overlaps 
botw een groups is available in supplem entary data (Supplem ent 1).

The groups did no) differ in Frrmicutes/Bacteroidia (F/B) ratio (4 = 0.59). We nbserved 
borderline signifścance in F/B  ratio betw een m en and w om en (p = 0.08), although there 
were no differences in the F/B ratio between HbA1c groups in females (p = 0.39), and in men 
(p = 0.98). The F/B  ratio w as not correlated w ith  H bA 1c (p = 0.33) or m ean glucose level 
(p = 0.28). There w as no association betw een F/B  ratio and dose of insul(n per kilogram  in 
pntients adjusted for HbA 1c (p = 0.77) or muan glucose level (p = 0.78).
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3.3.2. Differential Abundance of M icrobial Taxa

There were no differences in ANCOM  results for phylum, class, order, family, genus, or 
species betw een both groups. W hen adjusted for sex, age, BMI, diabetes duration in years, 
and total daily insulin in units, still no differences on tested taxonom ical level were found 
between both HbA1c groups. Then, w e decided to use M aAsLin2 to verify the multivariable 
association betw een clinical m etadata, such as sex, age, BM I, diabetes duration in years, 
total daily insulin, daily carbs, and H bA 1c in a linear m odel. We perform ed analysis on 
phylum , cla ss, order, family, genus, and dpecies level, but did not find any significant 
association (all FD R > 0.05) betw ean tested clinica l data and relative alb undance of gut 
m icrobiota in T1D M  patients. Since there w ere no differences in differential abundance, 
the changes in the m icrobial com m unity m ay be m ore discrete; therefore, w e perform ed 
additional analysis w ith  the LEfSe algorithm  to determ ine the bacteria that m ight be 
associated w ith didferences in FIbA1c (Figure 4 ). In patients w ith  H bA 1c < 53 m m ol/m ol 
(7% ), one fam ily  (Rum inococcaceae) w as enriched. O ne fam ily (Streptococcaceae) and four 
speciet (Ruminococcue torcjues, unslassified species od Lactococcus, EuSactaroim dolichum, and 
Coprobacillus cattniform is) were enriched in patients w ith HbA 1c >  53 m m ol/m ol (7%).

[Z=l HbAlc <53mmol/mol (7%) IZZI HbAlc >53 mmol/mol (7%)
Ruminococcaceae

' Unclassified
Ruminococcus torques
Unclassified from Lactococcus
Streptococcaceae
Eubacterium dolichum
Caprobacillus.cateniformis :

i i
4 - 2 0  2 4

LDA SCORE (loglO)
(a)

6

©

n a :  Ruminococcaceae czie: Streptococcaceae
cnb: Unclassified czif: Eubacterium dolichum
cue: Ruminococcus torques eng: Caprobacillus cateniformis
a d :  Unclassified from Lactococcus

(b)

Figure 4. The linear discriminant analysis effect size (LEfSe) method showed the significantly 
different taxa of patients with type 1 diabetes (T1DM) associated with glycosylated hemoglobin 
(HbA1c) < 53 mmol/mol (7%) (green) and > 53 mmol/mol (7%) (red). The taxa with significantly 
different abundances among the groups were presented as barplot (a) with linear discriminant 
analysis (LDA) score, and on the clarogram (b). From inside to outside, the dots denote the kingdom, 
phylum, class, order, family, genus, and species.
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Additionally, in M aA sLin2 H b A lc  (as a continuous variable), average glucose level 
or standard deviation of average; glucose level w ere not correlated w ith  any O TU  at 
phylum , class, order, family, genus, or species level. The; dose; o f insulin  per kilogram  
body w eight was positively correlated with Bacteroides uniform is (coef = 0.008, FDR = 0.037), 
and w e found that insulin  jeer kilogram  bod y w eight a iter ad justm ent for age, sex, and 
standard deviation of average gluoose level was negatively correlated with phyla Firmicutes 
(coef= -0 .0 1 7 , FDR = 0.043).

2S.31.21. Functional Profiles of G ut M i;robiota

U sing L EfSe, wee also explored K EG G  pathw ays that w ere d ifferentially  enriched 
beeween HbA lc  < 53 m m nlom ol (7%) and H bA l c >  5n m m ol/m ol (7%) . At phylu m level, 
wees observed only four pathw ays, a n i  interestingly, the group w ith higher H b A lc w as en
riched in the pathway associated w ith Energy M etabolism  and C arbohydrate M etabolism  
(Figure 5a ). A ; class levet, w e observed 10 m etaboiic pathw ays d eferentially  enriched 
betw een patients in our groups (Figure 5b). In  patients w ith  H bA  1c < 53 m m ol/m ol 
(7%) the follow ing pathw ays w ere enriched: bacterial m otility proteins, sscretion system , 
bacterial secsetion system , ribosom e biogenedis, and trannlaiion pnoteins lipid biosynthe
sis, w he reas in patients w ith  H bA 1c n  53 m m ol/m ol (7% ), the galactose m etabolism , 
oxidative phosphorylation, phosphotransfeease system, fructose, and mannose metabolism 
w ere enriched.

Figure 5. Functional divergence between the faecal microbiota of patients with typ= 1 diabetes and glycosylated hemoglobin 
(HbA1c) < 53 mmoltmol (7%) and > 53 mmol/mol ( 7%). The comparisons olfoathways at level 2 (p=ylum) (a) and level 3 
(class) (b) were performed based on Kyoto Encyclopedia of Genes and Genomes.

4. Discussion

To our knowledge, we report for rhe first time d ifferentin ^  enriched KEGG metabolic 
pathways according to HbA1c am ong a group of patienis w ith T tD M  in the Po lisle cohort.

Surprisingly, in our study, w e noticed slightly greater alpha diversity in T1DM  patients 
w ith  H bA 1c >  52! m m ol/m ol (7%) com pered to patienta w ith T1D M  and <53 m m ol/m ol 
(7%). We also found a positive correlation between alpha diversity and HbA1c in the T1DM 
cohort. Moreover, we observed aorne significantly different taxa using the LEfSe algorithm 
betw een groups. O ur study dem onotrates differences in colon m icrobiota Tegarding the 
level of m etabolic control of diabetes in T1D M  patienta.

dirst of ale, wee w ould  like to underline ahat our cohort of young adults w ith  T1D M  
w as w ell-characterized  and hom ogenous. All patients w ere treated w ith  pernonal in
sulin pum ps, w ith  ddw nloading of the devices allow ed to obtain  preciee inform ation 
ran cem ing  insulin dosing. Study participants w ere foee from  advanned com plications of 
diabetes. ejuite hom ogeaous w ith  regard to diet, and thg m ajority o i them  w ere free from 
comorbiditSes that could affect study results (e.g., celiac disease, n = 2). This m inim izes 
the ehech of confounding factoes on the relationship of single variable, H bA 1c, and the 
m icrnbiota profile.

In our study, w e did not observe differences in  A N C O M  results for phylum , class, 
ordern family, genus, er spenies between individuels w ith HbA1c level Is elow 53 mmol/mol 
(7%) and ind iviSuals w ith  H bA 1c equal tie or greater than 53 m m ol/m ol (7%). How ever,
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w e noticed differences betw een groups in  som e alpha diversity  indices. We observed 
higher alpha diversity in  patients w ith  h igher H bA 1c and a positive correlation betw een 
H bA 1c and alpha diversity. A  previous study show ed a decrease in  alpha diversity  in 
patients after the seroconversion and before T1DM  development, and the decrease in alpha 
diversity w as also observed betw een T1D M  patients in com parison to controls [36]. Also, 
patients with newly diagnosed T2DM  had decreased diversity compared to healthy control 
group [37] . There are inconclusive results w hether obesity  is associated w ith  changes in 
alpha diversity [38], as an increased diversity in obese patients com pared to controls w as 
also reported [39] .

We did not find differences in F/B  ratio betw een our two groups of patients. In som e 
previous cohort studies, it has been demonstrated that patients w ith T1DM  had a decreased 
F/B  ratio [40,41]. H ow ever, w e found that insulin  per kilogram  body w eight after ad just
m ent for age, sex, and standard deviation of average glucose level was negatively correlated 
w ith  phyla Firm icutes. That could indicate the potential role of h ipo/hyperinsulinem ia 
itself on m icrobiota com position.

We did not notice any correlation betw een H bA 1c level and single m icrobal OTU. 
We found that the fam ily  R um inococcaceae  w as enriched in a group of patients w ith  
HbA1c < 53 m m ol/m ol (7%) based on LEfSe algorithm , w hich could be partially in agree
m ent w ith  the a study of H ang et al., w ho observed negative correlation betw een H bA 1c 
and both Ruminococcaceae and its genus Faecalibacterium  [40]. Previously, Qi et al. observed 
a positive correlation betw een relative abundance of Blautia and H bA 1c am ong new ly 
diagnosed children w ith  T1D M  and healthy controls [11], and Fassatoui et al. noticed a 
negative correlation betw een HbA 1c and am ount of A kkerm ansia muciniphia [41].

As we did not perform  the shotgun sequencing, w e predicted KEGG pathways based 
on functional profiles using PIC R U St. We found that m icrobiota profile in patients w ith  
H bA 1c < 53 m m ol/m ol (7%) w ere characterized by  m ore abundant m etabolic pathw ays 
related to bacterial motility proteins, secretion system, bacterial secretion system, ribosome 
biogenesis, translation proteins, and lipid biosynthesis proteins, w hereas in patients w ith 
H bA 1c >  53 m m ol/m ol (7% ), they w ere related to the galactose m etabolism , oxidative 
phosphorylation, phosphotransferase system, fructose, and mannose metabolism. The lipid 
biosynthesis proteins include the acetyl-coenzym e A  (CoA) pathway, w hich  is the m ain 
carbohydrate-driven pathway [42] . The conversion of acetyl-CoA to butyrate is essential to 
bacteria grow th [42]. Butyrate is the m ain source of energy for colon cells [42- 44]. In our 
study, we only determ ined that the lipid biosynthesis pathway w as enriched in gut m icro
biota from patients w ith HbA1c < 53 mmol/m ol (7%) compared to individuals w ith HbA1c 
>  53 m m ol/m ol (7%). O ur finding that fam ily  R um inococcaceae  w as enriched in a group 
of patients w ith  H bA 1c < 53 m m ol/m ol (7%) could support the thesis that this pathw ay 
could be enriched in this group as som e butyrate-producers belong to R um inococcaceae.

It should be highlighted that associations should be considered as hypothesis-generating 
findings that should be investigated in further studies. O ur observations indicate the im 
portance of exploring the m etabolic pathways of gut m icrobiota according to the metabolic 
control, and the importance of further studies on associations between metabolic control and 
microbiota in patients w ith T 1DM.

One could speculate that increased glucose level favors bacteria with some metabolic 
pathways are responsible for carbohydrates m etabolism . Also, poor m etabolic control can 
play a role in shifting for som e m etabolic pathw ays. There m ay also be, independently, 
a tw o-w ay relationship-w orse m etabolic control that m ay change m icrobiota structure 
and that m ay hinder a return to better m etabolic control, or that m icrobiota dysbiosis can 
w orsen the metabolic control in patients w ith T1D M . Further studies are needed to explore 
it, because we were not able to answer this question fully as it was not the aim of our study.

Some study limitations should be acknowledged. The study population was relatively 
sm all. We did not obtain  the inform ation about the exact food eaten tw o w eeks before 
the sam ple collection; however, the patients com pleted a survey on com m only consum ed 
products (data not show n). W e collected only one stool sam ple from  every patient in a
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single point tim e; therefore, w e cannot exclude casual changes in tim e. We did not obtain 
inform ation about the patients' antibodies profile at the time of diagnosis and the time of the 
study. We did not assess H LA  alleles in patients. We perform ed 16S sequencing; however, 
shotgun sequencing could give inform ation about viruses and fungi, as w ell as d irect 
inform ation about w hich  m etabolic pathw ays are encoded. In  our study, w e could only 
predict KEGG pathways based on functional profiles using PICRUSt. We also had a lack of 
a healthy control group, w hich could have m ade a study m ore com prehensive. It w ould 
also be of value to investigate this issue in the population of T2D M  since g u t m icrobiota 
m ight m odulate glucose hom eostasis via different m echanism s in T1D M  and T2DM .

5. Conclusions

We observed differences in m etabolic pathw ays and alpha diversity  in colonic flora 
according to H bA 1c am ong patients w ith  T1D M . Further studies should be perform ed 
to assess the association betw een m etabolic control and m icrobiota and their m etabolic 
pathw ays, also regarding autoim m unity  profile and H LA  alleles, as w ell as the possible 
association betw een the m icrobiota profile and insulin resistance.
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