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Abstract: The genetic alteration underlying the great majority of primary angioedema with
normal C1 inhibitor (nl-C1-INH-HAE) cases remains unknown. To search for variants associated
with nl-C1-INH-HAE, we genotyped 133 unrelated nl-C1-INH-HAE patients using a custom
next-generation sequencing platform targeting 55 genes possibly involved in angioedema pathogenesis.
Patients already diagnosed with F12 alterations as well as those with histaminergic acquired
angioedema were excluded. A variant pathogenicity curation strategy was followed, including
a comparison of the results with those of genotyping 169 patients with hereditary angioedema
due to C1-inhibitor deficiency (C1-INH-HAE), and only filtered-in variants were studied further.
Among the examined nl-C1-INH-HAE patients, carriers of neither the ANGPT1 p.Ala119Ser nor
the KNG1 p.Met379Lys variant were found, whereas the PLG p.Lys330Glu was detected in four (3%)
unrelated probands (one homozygote). In total, 182 different variants were curated, 21 of which
represented novel mutations. Although the frequency of variants per gene was comparable between
nl-C1-INH-HAE and C1-INH-HAE, variants of the KNG1 and XPNPEP1 genes were detected only in
nl-C1-INH-HAE patients (six and three, respectively). Twenty-seven filtered variants in 23 different
genes were detected in nl-C1-INH-HAE more than once, whereas 69/133 nl-C1-INH-HAE patients
had compound heterozygotes of filtered variants located in the same or different genes. Pedigree
analysis was performed where feasible. Our results indicate the role that alterations in some genes,
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like KNG1, may play in disease pathogenesis, the complex trait that is possibly underlying in some
cases, and the existence of hitherto unrecognized disease endotypes.

Keywords: next-generation sequencing; pedigree analysis; primary angioedema; primary
angioedema with normal C1 inhibitor

1. Introduction

Primary angioedema is defined as localized and self-limiting edema of the subcutaneous and
submucosal tissue occurring in the absence of wheals and of a causative factor. According to the criteria
of the Hereditary Angioedema International Working Group [1], all hereditary forms as well as
the two idiopathic forms of acquired angioedema (histaminergic and non-histaminergic) can be
considered as primary angioedema. Hereditary angioedema due to C1-INH deficiency (C1-INH-HAE),
the prototype of primary angioedema, is an autosomal dominant disease caused by deleterious
mutations in the SERPING1 gene, leading to quantitative and/or functional C1 inhibitor (C1-INH)
deficiency [2]. Normal C1-INH levels and function characterize all other forms of primary angioedema,
which clinically present with individual attacks indistinguishable from C1-INH-HAE attacks, despite
differing from C1-INH-HAE in many aspects [3]. Until recently, the only genetic defects known to
be associated with the hereditary forms of primary angioedema with normal C1-INH levels were
mutations in the F12 gene [4,5]. All other familial cases of angioedema with normal C1-INH levels were
characterized as unknown angioedema. In 2019, next-generation sequencing technologies provided
new insights into the genetics of primary angioedema with normal C1 inhibitor (nl-C1-INH-HAE).
Two new missense mutations in ANGPT1 (c.807G>T, p.Ala119Ser) and PLG (c.988A>G, p.Lys330Glu)
genes were detected in association with the disease, whereas family segregation and meticulous
functional studies have proved their pathogenicity [6–8]. Recently, Bork et al. [9] reported a hitherto
unknown variant in exon 10 of the KNG1 gene (c.1136T>A, p.Met379Lys) co-segregated with clinical
symptoms of hereditary angioedema (HAE) with normal C1-INH levels in three generations of a large
German family.

Interestingly, the recently discovered pathogenic variants expanded our concept of nl-C1-INH-HAE
pathophysiology beyond the contact system indicating new disease endotypes [6,10,11]. Moreover,
a series of patients misdiagnosed as idiopathic non-histaminergic acquired angioedema (InH-AAE)
have been reported in the literature, who, after genotyping, were proved to be suffering nl-C1-INH-HAE
associated with F12, PLG, or ANGPT1 mutations [12]. Thus, further uncovering the genetic basis of
nl-C1-INH-HAE is expected not only to facilitate a better understanding of disease pathophysiology
that could drive the discovery of new therapeutic targets but also to provide useful indicators for
the clinical management of the disease. To this aim, here, we applied a custom next-generation
sequencing (NGS) platform targeting a series of genes entangled in the metabolism and function of
bradykinin to detect candidate genes involved in the pathogenesis of nl-C1-INH-HAE.

2. Experimental Section

2.1. Patients

Patients fulfilling the diagnostic criteria of primary angioedema according to the Hereditary
Angioedema International Working Group [1] and presenting with normal C1-INH plasma levels were
included in the study. Beyond those diagnosed with hereditary angioedema with normal C1-INH,
patients with idiopathic non-histaminergic acquired angioedema were included in this group, since they
represent a temporary exclusion diagnosis that does not rule out either the appearance of angioedema
in the next generation or the presence of a yet unidentified genetic background [12]. Patients already
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diagnosed with hereditary angioedema with normal C1-INH and factor XII mutation (FXII-HAE), as
well as those with histaminergic acquired angioedema, were excluded.

In total, 133 unrelated patients (53 Hungarian, 32 Italian, 27 Spanish, 12 Greek, and 9 Polish) (35
male; age 40.8 ± 17.4 years) were enrolled in the study. Their mean (±SD) age at disease onset was 27.0
± 16.4 years (median: 24 years). One in 133 patients had suffered only one angioedema attack during
their life; the other 132/133 had a mean frequency of angioedema attacks of 7.8 per year (median: 5 per
year). Of the 133 patients, 104 presented with a family history of angioedema, whereas 31/133 patients
were on long-term prophylaxis with tranexamic acid. A further 169 patients with C1-INH-HAE were
genotyped as controls to search for the presence of variants common in the two forms of angioedema
that possibly affect the clinical expression of the disease.

The study was carried out according to the principles of good clinical practice and adhered to
the ethical standards of the Declaration of Helsinki with written informed consent from all subjects.
The Ethics Committee of the University of Thessaly approved the protocol of the study.

2.2. Genotyping

A custom NGS panel was designed using the Ion AmpliSeq Thermo Fisher Scientific Designer
(Thermo Scientific, Waltham, Massachusetts, US) to analyze 55 genes (all coding regions and exon–intron
splice junctions) (Supporting Information, Table S1) possibly involved in angioedema pathogenesis
and/or the clinical phenotype. The gene list was compiled from literature data on angioedema and
genetic predisposition, protein–protein interaction networks, and pathway analysis. In total, 825
amplicons in two primer pools provide 99.61% coverage of all targeted regions.

To construct DNA libraries for each sample using the Ion AmpliSeq Library Kit 2.0 (Thermo
Scientific, Waltham, MA, USA), 10 ng of gDNA per primer pool was used. The produced libraries were
indexed with a unique adapter using the Ion Xpress barcode adapter kit (Thermo Scientific, Waltham,
MA, USA). Barcoded libraries were purified using the Agencourt AMPure XP Beads (Beckman
Coulter, Brea, CA, USA), quantified with a Qubit 2.0 fluorometer (Thermo Scientific, Waltham, MA,
USA), diluted to 100 pM and pooled in equimolar proportion. Template preparation, enrichment,
and chip loading were carried out on the Ion Chef system (Thermo Scientific, Waltham, MA, USA).
Sequencing was performed on S5XL on 520 and 530 chips, using the Ion 510, Ion 520, and Ion 530
Kit - Chef (Thermo Scientific, Waltham, MA, USA). All procedures were performed according to
the manufacturer’s instructions.

Base calling, demultiplexing, and alignment to the hg19 reference genome (GRCh37) of the raw
sequencing data were performed in Torrent Suite 5.10 software (Thermo Scientific, Waltham, MA, USA)
using the default parameters. Variant calling was performed by the VariantCaller v.5.8.0.19 plug-in
and coverage analysis by the CoverageAnalysis v.5.8.0.8 plug-in in Torrent Suite 5.10.

Confirmatory Sanger sequencing was appropriately performed where necessary. Since
the causative ANGPT1 variant (c.807G>T) had not been described at the time of the design of
our NGS panel, this gene was not included among those analyzed by this method. Thus, ANGPT1
genotyping was performed by Sanger sequencing as previously described [6].

2.3. Variant Pathogenicity Curation

All variants detected after alignment to the hg19 genome using the VariantCaller plug-in were
annotated in Ion Reporter software v.5.6 (Thermo Scientific, Waltham, MA, USA) with the gene name
and for their possible presence in the Single Nucleotide Polymorphism Database (v135) [13], the Exome
Aggregation Consortium (ExAC) [14], the 1000 Genomes project [15], and the ClinVar [16] according to
the recommendations of the Human Genome Variation Society (HGVS) [17]. SIFT [18] and PolyPhen
version 2 [19] bioinformatics tools were used for in silico pathogenicity prediction of the variants.
Alignments and all obtained sequences were visually inspected using the Integrative Genomics Viewer
(IGV) v.2.2 (Broad Institute, Cambridge, MA, USA).
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Variants with a worldwide frequency of >1% (1000 Genomes Global Minor Allele Frequency, ExAC)
and polymorphisms for which no disease associations are reported in the ClinVar database, as well as
synonymous and intronic single-nucleotide variants (SNVs), were excluded from further analysis.

3. Results and Discussion

Among the nl-C1-INH-HAE patients, no carriers of the ANGPT1 p.Ala119Ser variant were found,
indicating that at least this mutation of the ANGPT1 gene represents very rare causative genetic
damage. However, the PLG p.Lys330Glu variant was detected in four (3%) unrelated probands (one
homozygote), which have already been described in detail elsewhere [20]. Pedigree analysis of these
cases confirmed the incomplete penetrance of this alteration. Including our cases, more than 100
patients with nl-C1-INH-HAE due to this mutation have been reported in the literature since its first
description [21].

Among the variants identified in the 55 analyzed genes, 182 different variants were filtered in
and included in further analysis. Twelve alterations occurred in the 5′ untranslated region (UTR)
(6.6%) and 18 in the 3′-UTR (10%). Missense mutations corresponded to 76.6% of the total, followed by
small insertions/deletions leading to frameshift (1%), non-sense (3.3%), splice site (0.5%), stop-loss
(0.5%), and non-frameshift insertions/deletions (1.5%). A list containing all variants is found in Table S2
(Supporting Information). Of the 182 mutations (indicated in black in Table S2), 21 were not previously
reported in population databases (novel mutations). The frequency of variants per gene was not
significantly different between nl-C1-INH-HAE and C1-INH-HAE patients, with the exception of KNG1
and XPNPEP1 genes, where six and three variants were detected, respectively, in the nl-C1-INH-HAE
group but none in the C1-INH-HAE group.

A series of 27 filtered variants in 23 different genes was detected in our material more than once.
As shown in Table 1, in a proportion of these variants, their allele frequencies among nl-C1-INH-HAE
patients were significantly different from those in the European population or even in our C1-INH-HAE
cohort. According to the guidelines of the American College of Medical Genetics and Genomics [22],
this is a criterion in favor of the pathogenicity of the variants. The exact contribution of each one of
these variants in the pathogenesis or in the clinical phenotype of the disease is difficult to envisage.
However, a finding that merits particular attention is the frequency of filtered androgen receptor
gene (AR) variants, which, among nl-C1-INH-HAE patients, is significantly higher than that in both
the European population and in the cohort of C1-INH-HAE controls. Further studies are worth
undertaking to investigate the possible correlation of these variants with the estrogen-dependence of
the disease’s clinical phenotype.

Sixty-nine of the examined nl-C1-INH-HAE patients were heterozygous for more than one and
up to nine filtered variants located in the same or different genes (compound heterozygotes). No
correlation was found between the number of heterozygous variants carried by patients and their age
at disease onset or the frequency of attacks.

Family segregation studies were performed when feasible and provided useful information. Firstly,
the variants p.Leu140Val and p.Ala177Val of the F12 gene proved to be non-pathogenic. However,
the novel PLG p.Val728Glu (c.2183T>A) variant was found to co-segregate with angioedema symptoms
in a Greek patient (male, 15 years old) and their suffering father (52 years old) but not in his unaffected
mother. His 10-year-old sister also carries the variant but she has not demonstrated disease symptoms
as yet. The p.Val728Glu variant is located inside the plasmin serine protease domain (residues 562–791),
which is an active serine protease with a wide substrate specificity [23]. Thus, the p.Val728Glu
substitution could eventually affect functional interrelationships between the plasminogen/plasmin
system and the kinin pathway, leading to an alteration in vasopermeability.
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Table 1. Variants with a worldwide allelic frequency of <1% that were detected in our material more than once. EMAF: European minor allele frequency; ExAC
ENFAF: ExAC European non-Finnish allele frequency; nl-C1-INH-HAE AF: allele frequency among nl-C1-INH-HAE patients; C1-INH-HAE AF: allele frequency
among C1-INH-HAE patients, P1: EMAF vs. nl-C1-INH-HAE AF, P2: EMAF vs. C1-INH-HAE AF, P3: ni-C1-INH-HAE AF vs. C1-INH-HAE AF.

Genes Coding Amino Acid
Change dbSNP SIFT PolyPhen EMAF ExAC

ENFAF
nl-C1-INH-

HAE AF
C1-INH-
HAE AF P1 P2 P3

BDKRB1 c.721G>A p.Gly241Arg rs45528332 tolerated probably damaging 0.0037 0.0052 0.0113 0.0148 0.1500 0.0350 0.7000
MME c.674G>C p.Gly225Ala rs147564881 tolerated probably damaging 0.0023 0.0033 0.0113 0.0030 0.0310 0.7400 0.2100

PLAUR c.802A>G p.Met268Val rs138492321 tolerated possibly damaging 0.0062 0.0045 0.0188 0.0000 0.0440 0.1500 0.0110
C1S c.943G>A p.Asp315Asn rs117907409 deleterious probably damaging 0.0053 0.0052 0.0113 0.0059 0.2400 0.8300 0.4700
F13B c.1025T>C p.Ile342Thr rs17514281 deleterious possibly damaging 0.0097 0.0098 0.0263 0.0059 0.0380 0.4900 0.0390

F2 c.*97G>A rs1799963 0.0080 0.0263 0.0148 0.0130 0.2600 0.3100
TLR4 c.842G>A p.Cys281Tyr rs137853920 deleterious probably damaging 0.0044 0.0027 0.0150 0.0030 0.0420 0.7900 0.1000
KRT1 c.1669A>G p.Ser557Gly rs77846840 tolerated benign 0.0019 0.0263 0.0296 0.8000

SERPINE1 c.*180C>T rs41334349 0.0110 0.0226 0.0266 0.1400 0.0400 0.7500
AR c.-207C>A rs189146053 0.0000 0.0188 0.0030 <0.0001 0.0844 0.0500
AR c.1174C>T p.Pro392Ser rs201934623 tolerated benign 0.0000 0.0041 0.0113 0.0000 0.0007 0.0500

TPSAB1 c.407A>G p.His136Arg rs201820654 tolerated benign 0.0034 0.0113 0.0089 0.7600
TPSG1 c.508G>A p.Gly170Arg rs117769620 tolerated benign 0.0065 0.0073 0.0188 0.0118 0.0757 0.3893 0.4832
ELANE c.770C>T p.Pro257Leu rs17216663 tolerated benign 0.0108 0.0080 0.0188 0.0030 0.3062 0.1775 0.0530

F12 c.418C>G p.Leu140Val rs35515200 tolerated possibly damaging 0.0042 0.0033 0.0075 0.0030 0.4533 0.7904 0.4287
F12 c.530C>T p.Ala177Val rs144821595 tolerated benign 0.0002 0.0001 0.0075 0.0000 <0.0001 0.7948 0.1103
ACE c.1453C>G p.Pro485Ala rs202178737 deleterious benign 0.0000 0.0001 0.0075 0.0000 0.0059 0.1103

BDKRB1 c.844C>T p.Arg282Ter rs145322761 0.0035 0.0038 0.0075 0.0030 0.4533 0.7904 0.4287
PLG c.266G>A p.Arg89Lys rs143079629 tolerated benign 0.0100 0.0108 0.0075 0.0030 0.7164 0.2177 0.4287

KLK3 c.629C>G p.Ser210Trp rs61729813 deleterious probably damaging 0.0110 0.0109 0.0075 0.0178 0.6223 0.3319 0.2748
DPP4 c.796G>A p.Val266Ile rs56179129 tolerated benign 0.0060 0.0045 0.0075 0.0000 0.7755 0.1547 0.1103
PLAU c.1048T>C p.Tyr350His rs72816325 deleterious probably damaging 0.0058 0.0059 0.0075 0.0000 0.7755 0.1547 0.1103

PLAUR c.-87C>T rs147665588 0.0060 0.0075 0.0089 0.7755 0.5702 0.8550
F13A1 c.1730C>T p.Thr577Met rs143711562 tolerated benign 0.0029 0.0020 0.0075 0.0000 0.2930 0.3149 0.1103
TNF c.251C>T p.Pro84Leu rs4645843 tolerated benign 0.0030 0.0028 0.0075 0.0030 0.2930 0.9945 0.4287

GPER1 c.14C>T p.Ser5Phe rs117290655 tolerated benign 0.0048 0.0045 0.0075 0.0089 0.6173 0.4193 0.8550
MPO c.2031-2A>C rs35897051 0.0072 0.0071 0.0075 0.0059 0.9227 0.8391 0.8096
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The recently reported KNG1 p.Met379Lys variant [9] was not detected in any of our nl-C1-INH-HAE
patients. However, the KNG1 p.Pro574Ala (c.1720C>G) variant was detected in three affected members
(two brothers and their father) of an Italian family but not in three asymptomatic relatives. Two of
the patients suffered typical disease with repeated angioedema attacks, whereas the third had only
experienced one attack during his life following a viral infection. Interestingly, the two patients who
suffered repeated attacks were also carriers of the ACE p.Arg487Cys (c.1459C>T) variant. The same
variant, despite it being predicted as deleterious by bioinformatics tools, was also detected in one of
the three analyzed asymptomatic relatives (Figure 1). It seems that the KNG1 p.Pro574Ala variant
presents with incomplete penetrance or that its possible pathogenicity depends upon its compound
heterozygosity with the ACE p.Arg487Cys variant. In conjunction with the abovementioned high
frequency of filtered KNG1 variants observed among nl-C1-INH-HAE patients, these findings indicate
that variations in the KNG1 gene could contribute to the pathogenesis of the disease; thus, they deserve
further consideration.

Figure 1. Pedigree demonstrating co-segregation of the missense mutation of the KNG1 p.Pro574Ala
(c.1720C>G) and the ACE p.Arg487Cys (c.1459C>T) variants with nl-C1-INH-HAE.

The genes encoding for tryptases (TPSAB1, TPSD1, and TPSG1) were included in the panel of
analyzed genes because raised serum tryptase has been occasionally observed in cases of acquired
angioedema [24,25]. The variant p.Arg158Gln (c.473G>A) of the TPSG1 gene was detected in all three
affected women in three generations and in one of the three examined asymptomatic first-degree
relatives of an Italian family. Should this finding be confirmed by further studies, it would implicate
new pathways or cells (e.g., mastocytes) in the pathogenesis of nl-C1-INH-HAE.

A final remarkable finding was that the two suffering members (a mother and her daughter)
of a Hungarian family were carriers of the same series of novel or rare variants in different genes:
BDKRB1 p.Arg282Ter, CPN1 p.Glu407Lys, SERPING1 c.*57C>G (3′UTR), PLAUR p.Met268Val, MASP1
p.Val680Ala, TLR4 p.Cys281Tyr, and MPO p.Arg524His. This observation suggests that, at least in
certain cases, nl-C1-INH-HAE could be the result of the cumulative effect of multiple gene variations.

Taken together, the above observations clearly demonstrate that, genetically, nl-C1-INH-HAE
is an extremely complex disorder. The relatively small size of the examined cohort of patients and
the non-availability of families for pedigree analysis represent the main limitations of the study, which
is true for all rare disease studies. Thus, strong evidence of the causative effect of certain variants has
not been provided. Nevertheless, the results of the study helpfully highlight the role that alterations in
some genes, like KNG1, may play in the pathogenesis of the disease, the complex trait that is possibly
underlying some cases, and the existence of hitherto unrecognized disease endotypes. Finally, it must
be underlined that every day, contemporary genomic approaches discover new genes associated with
the disease, indicating the involvement of new pathways in its pathogenesis (e.g., the ANGPT1 [6]
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and the MYOF [26] genes). Therefore, beyond the genes examined in this study, there are many other
candidate disease genes remaining to be examined, like many endothelium-associated ones.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/11/3402/s1:
Table S1: The genes analyzed by our custom NGS panel and their coverages; Table S2: The filtered-in variants
detected among nl-C1-INH-HAE patients. Variants not previously reported in population databases (novel
mutations) are indicated in bold.
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