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Abstract

Predicting protein function and structure from sequence remains an unsolved prob-

lem in bioinformatics. The best performing methods rely heavily on evolutionary

information from multiple sequence alignments, which means their accuracy deterio-

rates for sequences with a few homologs, and given the increasing sequence data-

base sizes requires long computation times. Here, a single-sequence-based

prediction method is presented, called ProteinUnet, leveraging an U-Net con-

volutional network architecture. It is compared to SPIDER3-Single model, based on

long short-term memory-bidirectional recurrent neural networks architecture. Both

methods achieve similar results for prediction of secondary structures (both three-

and eight-state), half-sphere exposure, and contact number, but ProteinUnet has two

times fewer parameters, 17 times shorter inference time, and can be trained 11 times

faster. Moreover, ProteinUnet tends to be better for short sequences and residues

with a low number of local contacts. Additionally, the method of loss weighting is

presented as an effective way of increasing accuracy for rare secondary structures.
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1 | INTRODUCTION

A three-dimensional protein structure is determined by the amino acid

sequences[1,2] and is a key to their functional mechanisms. Experimen-

tal determination of the structure is costly and time-consuming com-

pared to sequence determination[3] and the number of known

sequences is even 1,000 times bigger than those of examined struc-

tures.[4] This creates a need for techniques and models that will com-

putationally predict a protein structure from its primary sequence.

The challenge started in 1951 when Pauling and Corey predicted heli-

cal and sheet conformations for protein polypeptide backbone[3,5,6]

and has not been solved yet.

Accurate protein structure and function prediction rely, in part,

on the accuracy of secondary structure prediction that has been

extensively studied and resulting in many computational methods

(e.g., see an overview[4]). A number of researchers also concentrate on

predicting structural properties of proteins like backbone dihedral

angles leveraging this information for secondary structure prediction

or calculation ([7] based on the early/late-stage protein folding

approach[8]).

Recently, developed state-of-the-art methods of secondary struc-

ture prediction leverage deep neural network architectures and multi-

ple sequence alignments (MSAs) of homologous sequences allowing

them to achieve up to 88% Q3 accuracy,[4] especially for proteins with
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a large number of known homologous sequences. However, the

majority of proteins do not have any known homologous sequences

or very few of them.[9] For such cases, prediction accuracy can deteri-

orate because of the limited or nonexistent evolutionary informa-

tion.[10] Moreover, due to the increase in the number of known

sequences, the computational time required for finding MSA profiles

is also increasing, leading up to multiple hours for longer sequences.

Heffernan et al.[10] took advantage of the recent advancements in

deep neural networks and proposed a single-sequence-based model

using long short-term memory (LSTM)-bidirectional recurrent neural

networks (BRNNs)—SPIDER3-Single. The model can predict multiple

one-dimensional (1D) structural properties with relatively high accu-

racy, especially for nonhomologous sequences.

In this article, we leverage alternative deep neural network

architecture—U-Net[11]—for protein structure prediction and compare our

results—ProteinUnet—to SPIDER3-Single. The advantage of the U-Net

architecture allowed us to reduce the number of parameters in the net-

work and significantly decrease the training and prediction time compared

to SPIDER3-Single while maintaining a similar performance of the model.

The rest of the article is structured as follows: the second

section describes the datasets used in the analysis with a brief description

of inputs and outputs used by the models. The next section outlines both

algorithms with the description of stratification, weights accounting for

rare classes, and training procedures with ensembling. The following

section describes the evaluation metrics for classification and regression.

Finally, the last two sections present the results and conclusions.

2 | METHODS

2.1 | Datasets

In order to compare our implementation of the SPIDER3-Single model

to the original one, we have used the same datasets that were used

by the authors of SPIDER3-Single.[10] The original dataset was down-

loaded from CullPDB[12,13] in February 2017 and split into several

smaller datasets. Two of them: TR9993 and TS1199 are listed on the

authors' website (https://sparks-lab.org/publication/). Train set

TR9993 consists of 9,993 different chains from 9,622 proteins, and

test set TS1199 consists of 1,199 chains from 1,187 different pro-

teins. However, 16 of these proteins are no longer available in Protein

Data Bank[14] (checked on March 15, 2020). Additionally, 16 chains

longer than 1,024 residues were removed from the training set since

it is the maximum supported sequence length for ProteinUnet. Thus,

we created subsets TR9961 (9,961 chains from 9,592 proteins) and

TS1197 (1,197 chains from 1,186 proteins). Also, the performance

was tested on 152 proteins from the CASP13 dataset.[15]

2.1.1 | Inputs

The input to the model for a given sequence is a one-hot vector of

size 20 × L, where L is the length of the protein chain, like in the

original article. No other features, like physiochemical properties,[16]

BLOSUM matrix,[17] PSSM,[18] nor HHBlits[19] were used. The idea

behind the SPIDER3-Single model was to let the neural network learn

all the relationships directly from the sequence. The distribution of

the amino acids is uneven and ranges from 9.6% for the most com-

mon leucine to 1.2% for the rarest cysteine (CYS).

2.1.2 | Outputs

The model outputs could be divided into two main categories: classifica-

tion and regression outputs. During the classification, the model predicts

the secondary structure for eight and three states. The eight states are

specified by the secondary structure assignment program Define Second-

ary Structure of Proteins[20] as follows: there are three helix states:

310-helix (G), alpha-helix (H), and pi-helix (I); three strand states: beta-

bridge (B) and beta-strand (E); and three coil types: high curvature loop

(S), beta-turn (T), and coil (C). These eight classes are also converted into

simpler, three-class problem by grouping the states: G, H, and I into H; B

and E into E; and S, T, and C into C. Each problem has separate output

nodes in the neural network, resulting in 11 classification output nodes.

The distribution of output classes is not even in our datasets. For the

eight-class problem, the share of classes ranges from 1% for the rarest I

and B classes to 34% for the most common H class. The distributions are

very similar between TR9961 and TS1197 datasets.

The regression outputs were calculated using Biopython pack-

age[21] and represent accessible surface area (ASA),[22] angles ϕ, ψ , θ, τ

(all angles have sine and cosine outputs to remove the effect of the

angle's periodicity), half sphere exposure (HSE; there are separate out-

puts for HSE-up and HSE-down),[23] and contact number (CN). For

details, please refer to the original study.[10] In overall, there are

12 regression outputs.

2.2 | Models

All the methods were implemented in the environment containing

Python 3.7, TensorFlow 2.2[24] with Keras[25] accelerated by CUDA

10.1, and cuDNN 7.6. (The prediction server based on our

ProteinUnet is published on CodeOcean platform (https://codeocean.

com/capsule/2521196/tree/v1).)

2.2.1 | SPIDER3-Single

SPIDER3-Single[10] is a network containing two BRNN layers of LSTM

units with 256 nodes per direction, followed by the fully connected

classifier with two hidden layers with 1,024 and 512 units. LSTM

units[26] are used to learn both short and distant dependencies within

sequences, and the classifier is used to infer the output from these

dependencies.

The input of SPIDER3-Single model is a one-hot encoded single

sequence of amino acids. This is the key difference from the original
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SPIDER3 model[27] where additional evolutionary features are used

like PSSM[18] and HHBlits[19] that are computationally expensive to

obtain. Moreover, SPIDER3-Single follows the famous postulate of

Anfinsen[1] that the secondary structure of a protein is completely

determined by its amino acid sequence alone.

The sizes and activations of the output layers differ between the

tasks. For classification, there are two 1-hot encoded output layers of

size 3 × L (Q3 output) and 8 × L (Q8 output) followed by softmax acti-

vations. For regression, there are four output layers of size 2 × L (sine

and cosine for each ϕ, ψ , θ, τ angle) and four output layers of size

1 × L (ASA, CN, HSE α-up, and HSE α-down features) followed by sig-

moid activations. The values of the latter output features were nor-

malized to the range <0, 1> by dividing them by their maximum values

over the whole training dataset (ASA: 330, CN: 131, HSE α-up:

76, HSE α-down: 79). Additionally, the loss weights for these outputs

were set to 2 in order to equalize the contributions of each feature in

the loss.

SPIDER3-Single network has nearly 3.2 million trainable parame-

ters from which two-third belong to BRNN part and one-third to the

classifier part. This kind of network was proven to be very effective in

secondary structure prediction,[27] natural language processing,[28]

brain signals analysis,[29] and series forecasting.[30]

In the original study of SPIDER3-Single, the authors presented

results of the model repeatedly stacked in the process called iterative

learning. Iterative learning significantly increases the training time and

complexity giving only small improvements to the accuracy. For pur-

poses of our comparisons with ProteinUnet, we decided not to use

iterative learning.

2.2.2 | ProteinUnet

Our 1D fully convolutional ProteinUnet deep neural network consists

of a series of blocks placed symmetrically as contractive and expan-

ding paths (that can be broadly thought of as an encoder and

decoder), yielding a U-shape.[11] It is a state-of-the-art architecture in

the domain of image segmentation.[31,32] The secondary structure pre-

diction for 1D sequences is analogous to the multi-label segmentation

of 2D images, but to the best of our knowledge, U-Net architecture

has not been used previously for protein structure prediction.[4,33,34]

In our proposed architecture, each block in the contractive path con-

tains three convolutional layers with zero padding and kernels of size

7 with stride 1, followed by a rectified linear unit (ReLU) activation.

The first two blocks contain 64 filters per layer, and the second two

contain 128 filters per layer. Each block ends with an average pooling

layer with a kernel of size 2 to perform downsampling.

In the expanding path, there are only two convolution layers per

block. Each block is concatenated with the depth-matched block from

the contractive path, and then upsampled and passed to the next

block. In this manner, high-level features, extracted in the contractive

path, propagate through higher-resolution layers of the expanding

path. It provides the local context to the global information while

upsampling, increasing the precision of the output sequences. Finally,

fully connected layers with 128 and 64 ReLU-activated nodes are

added as a classifier, followed by an output layer with softmax (for

classification network) or sigmoid (for regression network) activations.

The architecture diagram of the classification network is presented in

Figure 1.

To decrease the number of the parameters and increase the cor-

relation between Q8 and Q3 predictions, the output layer for states

Q3 is calculated based on the output for Q8 (unlike in SPIDER3-Single

where the outputs for Q8 and Q3 are parallel). All the losses and met-

rics of the ProteinUnet are the same as in SPIDER3-Single. The total

number of trainable parameters of our ProteinUnet classification net-

work is close to 10597 k which is two times less than for

SPIDER3-Single. These two networks have very different hyper-

parameters (e.g., numbers of filters instead of hidden state dimen-

sions), so they cannot be easily compared. Nevertheless, the training

of ProteinUnet is more than 11 times faster, and the inference is over

17 times faster using Tesla K80 GPU, Intel Xeon 2.3 GHz, and 14 GB

RAM, as presented in Table 1. Besides having two times fewer param-

eters, ProteinUnet, being a CNN, benefits more from cuDNN acceler-

ation.[35] Also, a constant size of inputs and outputs in ProteinUnet

(in contrast to varying lengths in SPIDER3-Single) makes it easier to

implement and manage the memory on GPU.

On the other hand, the constant input size is problematic in terms

of variable-length amino acid sequences. Thus, we decided to limit the

length of supported sequences in our solution to 1,024 and fill shorter

sequences with zeros, masking the loss and metrics accordingly

(so the zeros do not affect the results of training or validation).

ProteinUnet, like any other convolutional neural network, pro-

cesses input sequences as separate patches using a window of the

width of the convolutional kernel. Unlike BRNN, it is not sensitive to

the order of the timesteps beyond a local scale. However, to recog-

nize more distant patterns, many convolutional layers are stacked with

pooling layers, extracting the information from long chunks of the

sequence. The receptive field of our ProteinUnet was calculated

(using ref. [36]) to be of 710 residues long, so any more distant con-

tacts are impossible to be analyzed. However, such long-range inter-

actions are extremely rare and are present in less than 0.02% residues

in our TS1197 dataset.

2.2.3 | Handling imbalanced structure states

Some secondary structure states are relatively rare (like B, G, or I, each

present for less than 5% of residues in the Q8 training set) what

makes the dataset heavily imbalanced. Interestingly, this issue was not

addressed in any previous work.[10,27,33,34] Our solution uses two

methods to address this problem: stratification of folds, and adjusting

Q8 loss weights to the frequency of the secondary structure states.

There were nine factors of stratification of the training set: the

sequence length—shorter/longer than mean sequence length, and one

factor for each of eight states occurrence—fewer/more occurrences
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than a mean number of occurrences per chain (C—44.7, H—77.2, E—

50.9, T—25.3, G—8.9, S—18.7, I—1.2, B—2.5). This technique ensures

that in each of 10 folds there will be a similar ratio of each state. The

same stratification was used for both ProteinUnet and

SPIDER3-Single.

In a separate section of the article, the method of loss weighting

was assessed for ProteinUnet Q8 classification. The weights for four

least frequent structures (G, S, I, B) were adjusted to be inversely pro-

portional to the percentage of their occurrence r in the TR9961

dataset using the formula log(0.25/r). This should make ProteinUnet

to pay more attention to the rare states.

2.2.4 | Training procedures and ensembling

The training dataset was divided into 10 stratified folds for cross-vali-

dation. For a fair comparison, both architectures were trained using

the same division into folds. Each of 10 models was trained using

Adam optimizer[37] with batch size 8 and initial learning rate 0.001.

Early stopping condition was used when the validation loss was not

improving for 5 epochs. The training lasted from 12 to 16 epochs for

classification (ProteinUnet—M = 13.4, SD = 0.9; SPIDER3-Single—

M = 13.9, SD = 1.1) and from 13 to 20 epochs for regression

(ProteinUnet—M = 15.7, SD = 2.2; SPIDER3-Single—M = 15.5,

SD = 1.1). After the training, the ensemble was created from all the

10 models by taking the average of their outputs, forming the final

prediction on the test set.

There is no information about a batch size or a learning rate in

articles about SPIDER3[27] nor SPIDER3-Single.[10] Due to the variable

length of the input of SPIDER3-Single, the training with a batch size

of 8 was implemented in a way where all the sequences in the batch

are filled with zeros up to the length of the longest sequence in the

batch. The loss and metrics are masked accordingly, so these addi-

tional zeros do not affect the results of training or validation. All the

predictions on the test set were performed with a batch size 1 (one-

by-one, without zero padding).

2.3 | Evaluation metrics

2.3.1 | Classification

The simplest and most popular measures of protein secondary struc-

ture prediction quality are average three-state per-residue accuracy

Q3 and eight-state per-residue accuracy Q8. They give the percent-

age of residues for which the predicted secondary structures are cor-

rect[38,39] according to Equation (1)

Qm =100%×

Pm
i=1

Mii

Nres
ð1Þ

where m is the number of classes, Nres is the total number of residues,

and Mii is the number of correctly predicted residues in state i. Q3 and
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F IGURE 1 The architecture
of ProteinUnet secondary
structure classification network.
The regression network differs
only in the number and
activations of output layers [Color
figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Comparison of mean training and prediction times for SPIDER3-Single and ProteinUnet 10-model ensembles

Classification Regression

SPIDER3-Single ProteinUnet SPIDER3-Single ProteinUnet

Mean training time per epoch (s) 524.9 ± 1.7 42.0 ± 0.1 527.8 ± 1.7 45.9 ± 0.3

Mean prediction time per chain in TS1197 (s) 1.12 ± 0.54 0.062 ± 0.0025 1.13 ± 0.54 0.066 ± 0.0031
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Q8 accuracies are defined for m = 3 and m = 8, respectively.[40] Since

Q3 and Q8 are reported in almost every article, including the original

SPIDER3-Single study, we will use them in our comparisons as well.

2.3.2 | Regression

The continuous variables are split into two groups, following the

methodology described by SPIDER3-Single authors,[10] and each of

them measures performance differently. ASA, CN, HSEα-up, and

HSEα-down predicted values are compared to the true values using

the Pearson correlation coefficient (CC), defined as Equation (2)

CC=

Pn
i=1

xi−�xð Þ yi−�yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1

xi−�xð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i=1
yi−�yð Þ2

s ð2Þ

where n is the sample size, xi and yi are the individual sample points

indexed with i, x is the sample mean for the x variable, and y is the

sample mean for the y variable.

The performance of the ϕ, ψ, θ, and τ angles are calculated as the

circular mean absolute error, which is the smaller of αi and (360 � − αi)

to account for the periodicity of the angles, where αi = αpredi −αtruei

��� ��� ,
αpredi is the predicted angle value, and αtruei is the true angle value.

3 | RESULTS

The comparison of overall results on the test sets between the original

SPIDER3-Single Iteration 2 (authors do not report results for Iteration

1), our reimplementation of SPIDER3-Single, and the new proposed

ProteinUnet is presented in Table 2. Because of all mentioned differ-

ences, it is impossible to directly compare the original and

reimplemented SPIDER3-Single. However, the results are on the similar

level. In the direct comparison to the reimplemented SPIDER3-Single,

our ProteinUnet achieved better classification accuracies, but worse

results for angles. However, all the differences are smaller than 2%.

Table 3 shows the mean accuracies of Q3 and Q8 predictions at

the sequence level in TS1197 and CASP13, along with SDs, and p-

values of the two-sided Wilcoxon signed-rank test between models.

For TS1197, ProteinUnet gives better mean accuracies and lower SDs

than SPIDER3-Single. The difference for Q3 is significant at p < .05,

and for Q8 at p < .0001. For CASP13 dataset, ProteinUnet gives

worse results for Q3 (p < .05), and very similar results for Q8 (p = .90).

3.1 | Classification

3.1.1 | Analysis per amino acid

The analysis of the classification accuracy per amino acid type is pres-

ented in Figure 2. The rare amino acids tend to have worse accuracy,

like CYS, histidine (HIS), or tryptophan (TRP). From the rare amino

acids, only methionine has accuracy above the average. The best Q3

accuracy for both models was achieved for proline (PRO): 76.26% for

ProteinUnet and 76.69% for SPIDER3-Single. The biggest difference

for Q3 in favor of ProteinUnet is for TRP—0.48 pp. and in favor of

SPIDER3-Single for tyrosine—0.46 pp.

Surprisingly, the Q8 accuracy for PRO is below average, and the

best performing Q8 amino acid is isoleucine (ILE). Similarly, the worst

Q8 accuracy was achieved for glycine (GLY) which shows above aver-

age results for Q3. The biggest difference for Q3 in favor of

ProteinUnet is for CYS—0.90 pp. and in favor of SPIDER3-Single for

PRO—0.69 pp.

3.1.2 | Analysis per sequence length

Figure 3 presents the Q3 accuracy as a function of sequence length.

The linear regression models show that ProteinUnet has a higher

accuracy for shorter chains but its accuracy decreases faster than for

SPIDER3-Single with increasing sequence length. The Q3 accuracy of

the ProteinUnet was below 40% only for one chain, while for

SPIDER3-Single—six chains. Moreover, ProteinUnet achieved 100%

Q3 accuracy for one protein sequence (2O6N Chain A) while

SPIDER3-Single was never 100% correct.

The biggest difference at the sequence level in favor of

ProteinUnet was for protein 1T1V Chain A with 93 residues for which

ProteinUnet achieved 79.57% while SPIDER3-Single only 54.84%.

SPIDER3-Single had the biggest advantage over ProteinUnet for pro-

tein 1KAF Chain A with 108 residues for which ProteinUnet achieved

65.74% while SPIDER3-Single 83.33%. In overall, ProteinUnet

achieved better results for 578 sequences while SPIDER3-Single for

TABLE 2 The comparison of performance for test sets between
(a) original SPIDER3-Single Iteration 2,[10] (b) our reimplementation of
SPIDER3-Single, and (c) ProteinUnet according to fraction of residues
in correctly predicted three and eight states (Q3 and Q8), Pearson CC,
and MAE

(a) (b) (c)

TS1199 TS1197 TS1197

Q3 72.56% 72.56% 72.66%

Q8 60.11% 59.88% 60.06%

ASA (CC) 0.671 0.669 0.667

HSEα-up (CC) 0.612 0.608 0.602

HSEα-down (CC) 0.568 0.566 0.567

CN (CC) 0.643 0.618 0.621

ϕ (MAE) 24.5 23.5 23.7

ψ (MAE) 43.5 41.8 42.3

θ (MAE) 11.3 10.1 10.2

τ (MAE) 45.8 43.2 43.8

Abbreviations: ASA, accessible surface area; CC, correlation coefficients;

HSE, half sphere exposure; MAE, mean absolute error.
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520, respectively. For 99 sequences, both models achieved the same

results, which do not necessarily mean they had the same predictions

since the mistakes might have been on different positions.

3.1.3 | Influence of Q8 loss weighting

The results for ProteinUnet with weighted Q8 loss are presented in

Figure 4 in comparison to nonweighted versions of ProteinUnet and

SPIDER3-Single. As expected, weighting helped to achieve much bet-

ter accuracies for all rare states (G, S, I, B). The highest increase

(by 9 pp.) was noticed for structure G (310-helix). For Structures B

(beta-bridge) and I (pi-helix), weighting allowed to pull the accuracy

out of 0% level. As a side effect of weighting, for states C (coil), H

(alpha-helix), and T (beta-turn) accuracies decreased up to 2 pp. and

were lower than for nonweighted ProteinUnet and SPIDER3-Single.

This caused the overall Q8 accuracy for weighted ProteinUnet to be

slightly worse than before weighting, at both sequence (61.59%) and

residues level (59.83%). Interestingly, after weighting, the accuracy for

a frequent E state (beta-strand) was better than for nonweighted

ProteinUnet and SPIDER3-Single. All the effects mentioned in this

section were statistically significant at p < .005 according to the two-

sided Wilcoxon signed-rank tests.

3.2 | Regression

Figure 5 presents the distribution of the regression outputs for

TS1197 dataset. The majority of ϕ angles are close to the −63� and

the predictions of both models are most common for −65�. However,

TABLE 3 Performance in secondary
structure prediction by ProteinUnet and
SPIDER3-Single on TS1197 and
CASP13[15] according to mean accuracy
and SD at the sequence level

TS1197 CASP13

Mean (%) SD (%) p-Value Mean (%) SD (%) p-Value

Q3 ProteinUnet 73.53 8.70 .0152 74.39 8.13 .0128

SPIDER3-Single 73.18 9.04 75.12 7.65

Q8 ProteinUnet 61.82 10.86 <.0001 60.81 12.17 .8961

SPIDER3-Single 61.34 11.15 60.81 12.79

F IGURE 2 Accuracy of the secondary structure prediction (Q3 and Q8) for individual amino acids for SPIDER3-Single (red triangles) and
ProteinUnet (green circles) on TS1197 dataset. Three-letter codes were used for amino acid residues. The size of the bubble represents the
frequency of the amino acids. The gray horizontal line marks the fraction of residues in correctly predicted three and eight states (Q3 and Q8)
[Color figure can be viewed at wileyonlinelibrary.com]
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both models rarely predict values below −125�, but more than 40,000

residues have true values below −125�. The ψ angles are grouped

around two local maxima: −42 and 135�. Surprisingly, the predictions

for ψ below −45� or above 150� are rare, while in true values, they

account for more than 73,000 cases.

The majority of θ and τ angles are close to the 91� maximum and

around 117� local maximum and the values span from 64 to 177�.

Both models' predictions fall between 84 and 145�, so the long tails

are not predicted at all. Moreover, values between 95 and 120� were

predicted much more often than they occurred. The τ angle predic-

tions are grouped around two local maxima: 50 and −165�, but the

true values are more distributed. Especially, the predictions around

−165� are more than two times often than they actually occur. For

angle τ prediction, SPIDER3-Single tends to predict more often the

values around maxima than ProteinUnet. Both models fail to predict the

cases when ASA is equal to 0 with SPIDER3-Single predictions slightly

shifted to lower values. The sigmoid output function might be the rea-

son for the poor performance of the predictions around 0 value. The

ASA predictions for both models do not exceed 190, while the maxi-

mum true value was 297. The CN values span from 0 to 84, while the

model predictions range between 10 and 65. SPIDER3-Single prediction

distribution is shifted to higher values. The distribution of HSE α-up pre-

dictions does not resemble the true value distribution. The maximum

predicted value was 31, while the maximum true value was 45. The true

values of HSE α-down range between 2 and 51, while the predictions

fall between 6 and 35. For both HSE, predictions from SPIDER3-Single

are shifted more toward higher values compared to ProteinUnet.

3.3 | Local contacts analysis

Figures 6 and 7 show the dependence of the accuracy of secondary

structure prediction on the number of local and nonlocal contacts in a

residue, respectively. Exactly like in ref. [10], nonlocal contacts are

defined as contacts between two different residues that are more

than or equal to 20 residues away in their sequence positions, but less

than 8 A� away in terms of their atomic distances between Cα atoms.

Each point presented on the plots has a representation of at least

1,000 residues. For both ProteinUnet and SPIDER3-Single, accuracy

for Q3 decreases sharply with the number of local and nonlocal con-

tacts greater than 2. ProteinUnet shows noticeably better results for

residues with a small number of local contacts (<3), but noticeably

worse results for those with more than nine nonlocal contacts. It con-

firms that ProteinUnet is better at capturing close local dependencies

(up to 12 pp. more for two local contacts), but worse at analyzing

long-range interactions (up to 2 pp. less for 11 nonlocal contacts). The

number of nonlocal contacts is correlated with the length of the

sequence, so it may partly explain the trend visible in Figure 3.

F IGURE 3 The accuracy of secondary structure prediction (Q3) for individual sequences against the sequence length for ProteinUnet (green
circles) and SPIDER3-Single (red triangles) on TS1197 dataset [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 The comparison of mean accuracy at the sequence
level for each Q8 state on TS1197 dataset between weighted and
nonweighted ProteinUnet and nonweighted networks [Color figure
can be viewed at wileyonlinelibrary.com]
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4 | CONCLUSIONS

ProteinUnet is the first model that successfully leverages U-Net

deep learning architecture for sequence-based protein 1D

structural properties prediction. The model does not use the evo-

lutionary profiles generated from MSA like PSSM or HHblits,

which are computationally expensive to calculate. It achieves com-

parable results to state-of-the-art sequence-based model—

F IGURE 5 The distribution of regression outputs for TS1197 dataset. True values are presented with a solid gray line, prediction values for
ProteinUnet with a solid green line and SPIDER3-Single with a dashed red line [Color figure can be viewed at wileyonlinelibrary.com]
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SPIDER3-Single based on LSTM-BRNN architecture while having

two times fewer parameters and running several times faster

(11 times faster training and 17 times faster inference). It makes it

especially useful in large-scale predictions and applications on low-

cost and embedded devices. Moreover, ProteinUnet shows better

results for short sequences and residues with a low number of local

contacts, so should be used preferably to SPIDER3-Single when

these factors matter. Additionally, our experiments showed that the

proposed weighting procedure can be effectively used in

ProteinUnet to substantially increase the accuracy on the rare

states. The results on CASP13 dataset confirm that ProteinUnet per-

forms as good as SPIDER3-Single for completely untrained folds.

The disadvantages of the proposed architecture are mainly con-

nected with the limited receptive field of convolutional networks.

They include decreased accuracy for long chains and residues with

many nonlocal contacts. However, they may be addressed in the

future by increasing the context or receptive field of U-Net, or adding

iterative training as described in ref. [10]. Moreover, the next future

step is to improve the weighting procedure to avoid the decrease on

the more frequent states.
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