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Abstract 

Background: Epigenetics can contribute to lipid disorders in obesity. The DNA methylation pattern can be the cause 
or consequence of high blood lipids. The aim of the study was to investigate the DNA methylation profile in periph‑
eral leukocytes associated with elevated LDL‑cholesterol level in overweight and obese individuals.

Methods: To identify the differentially methylated genes, genome‑wide DNA methylation microarray analysis was 
performed in leukocytes of obese individuals with high LDL‑cholesterol (LDL‑CH, ≥ 3.4 mmol/L) versus control obese 
individuals with LDL‑CH, < 3.4 mmol/L. Biochemical tests such as serum glucose, total cholesterol, HDL cholesterol, tri‑
glycerides, insulin, leptin, adiponectin, FGF19, FGF21, GIP and total plasma fatty acids content have been determined. 
Oral glucose and lipid tolerance tests were also performed. Human DNA Methylation Microarray (from Agilent Tech‑
nologies) containing 27,627 probes for CpG islands was used for screening of DNA methylation status in 10 selected 
samples. Unpaired t‑test and Mann–Whitney U‑test were used for biochemical and anthropometric parameters 
statistics. For microarrays analysis, fold of change was calculated comparing hypercholesterolemic vs control group. 
The q‑value threshold was calculated using moderated Student’s t‑test followed by Benjamini–Hochberg multiple test 
correction FDR.

Results: In this preliminary study we identified 190 lipid related CpG loci differentially methylated in hypercholes‑
terolemic versus control individuals. Analysis of DNA methylation profiles revealed several loci engaged in plasma 
lipoprotein formation and metabolism, cholesterol efflux and reverse transport, triglycerides degradation and fatty 
acids transport and β‑oxidation. Hypermethylation of CpG loci located in promoters of genes regulating cholesterol 
metabolism: PCSK9, LRP1, ABCG1, ANGPTL4, SREBF1 and NR1H2 in hypercholesterolemic patients has been found. Novel 
epigenetically regulated CpG sites include ABCG4, ANGPTL4, AP2A2, AP2M1, AP2S1, CLTC, FGF19, FGF1R, HDLBP, LIPA, 
LMF1, LRP5, LSR, NR1H2 and ZDHHC8 genes.

Conclusions: Our results indicate that obese individuals with hypercholesterolemia present specific DNA methyla‑
tion profile in genes related to lipids transport and metabolism. Detailed knowledge of epigenetic regulation of 
genes, important for lipid disorders in obesity, underlies the possibility to influence target genes by changing diet and 
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Background
The worldwide prevalence of obesity nearly tripled 
between 1975 and 2016 and is still growing, contribut-
ing to an increased incidence of comorbidities such as 
type 2 diabetes, dyslipidemia, liver steatosis, hyperten-
sion, cardiovascular disease (CVD) and cancer (Blüher 
2019). Metabolic complications of obesity include insu-
lin resistance, impaired secretion and action of incre-
tin hormones, disturbed plasma lipoprotein clearance 
and metabolism and low grade inflammation (Pedersen 
2013; Chia and Egan 2020; Magkos et  al. 2008; Ellulu 
et al. 2016). A number of factors can play a role in weight 
gain. Among them, the most powerful factors seem to be 
an unhealthy lifestyle and genetics (Albuquerque et  al. 
2017). Research over the last decade indicates that vari-
ous environmental factors at different stages of life can 
changes to chromatin structure and function and thus 
change cellular phenotype and metabolism (Rosen et al. 
2018; Piening et  al. 2018; Jacobsen et  al. 2012; Stuart 
et  al. 2018; Roh et  al. 2018). Epigenetic modifications 
such as DNA methylation and multiple histone post-
translational modifications regulate gene transcription 
and thus adapt metabolism to environmental factors 
(Handel et al. 2010; Keating and El-Osta 2015). It is esti-
mated that 70% of promoters in human genomes are rich 
in CpG sites indicating that DNA methylation serves as 
a crucial epigenetic modification (Blattler and Farnham 
2013). DNA methylation of CpG sites in the genes’ pro-
moters as well as distal regulatory sites may modify gene 
expression by altering the interaction of histones, thereby 
affecting the binding of transcription factors or recruit-
ment of methyl-CpG binding proteins (MBPs) (Rottach 
et al. 2009; Handel et al. 2010). Methylation of CpG dinu-
cleotides may be reversible, modified in response to envi-
ronmental factors consequently repressing or activating 
transcription (Blattler and Farnham 2013; Handel et  al. 
2010; Abdul et al. 2017). Current scientific reports show 
that methylation of CpG islands influences the expres-
sion of genes related to obesity, metabolic syndrome and 
type 2 diabetes (Kim et al. 2015; Ali et al. 2016; Shen and 
Zhu 2018; Guo et al. 2020). We hypothesize that several 
processes regulating lipid levels are controlled by DNA 
methylation. Therefore, this study aimed to investigate 
the differences in DNA methylation status in leukocytes 
of obese subjects with hypercholesterolemia compared 
to controls. Here we present the results of an analysis of 
a genome-wide methylation profile, with focus on genes 

involved in lipids metabolism to find the pathways mostly 
affected by hypercholesterolemia and find new candi-
dates genes. The results of this work may contribute to 
a better understanding of the epigenetic mechanisms 
related to dyslipidemia.

Methods
Aim of the study
The study aims to elucidate the link between epigenetic 
changes and hypercholesterolemia in obese patients.

Patients
Our cohort involved 137 individuals with BMI (body 
mass index) above normal range (min.27–max.45 kg/m2), 
women (n = 99) and men (n = 38), aged 25 to 65  years. 
Exclusion criteria included cardiovascular diseases, dia-
betes mellitus, kidney or liver failure, endocrine disor-
ders, chronic inflammation, hormone therapy, use of 
lipid-lowering or anti-inflammatory drugs, use of diet 
supplements, smoking or excessive use of alcohol, preg-
nancy or lactation.

The hypercholesterolemia group, (n = 68) consisted of 
patients with obesity with borderline high, or high serum 
LDL cholesterol (LDL-CH) levels (≥ 3.4  mmol/L) and 
the control group (n = 69) consisted of obese subjects 
with serum LDL-CH levels < 3.4  mmol /L (Stone et  al. 
2013). At this cut-off point the control group included 
patients with optimal for low CV risk [≤ 3.0  mmol/L 
according to recent ESC/EAS 2019 guidelines (Mach 
et al. 2019)] as well as near-optimal LDL-CH concentra-
tion (3.0–3.4  mmol/L). The main criteria of enrolment 
into study groups were: overweight or obesity without 
comorbidities requiring treatment (except hypertension 
treated with AT1 receptor antagonists or calcium chan-
nel blockers) and fasting LDL-CH ≥ 3.4  mmol/L (group 
with newly diagnosed hypercholesterolemia) or LDL-
CH < 3.4 mmol/L (control group).

From the cohort 10 samples representative for both 
groups were selected for the study of DNA methylation 
on microarrays.

Anthropometric parameters and blood pressure
Anthropometric parameters: body weight, height, waist 
and hip circumferences were measured and BMI, waist 
to hip ratio (WHR) were calculated. Body fat percentage 
was estimated by bioelectrical impedance method using 
the Segmental Body Composition Analyzer TANITA BC 

lifestyle, as DNA methylation is reversible and depends on environmental factors. These findings give rise for further 
studies on factors that targets methylation of revealed genes.
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418 MA. Blood pressure was measured after 10  min of 
rest.

Sample collection
Fasting venous blood samples were collected and cen-
trifuged (1000×g for 10 min at 4 °C within 30 min from 
collection) for serum and plasma separation. Serum and 
plasma samples were immediately frozen and stored 
at −  80  °C for further analyses of glucose, insulin, adi-
pokines (leptin and adiponectin), glucose-dependent 
insulinotropic peptide (GIP), fibroblast growth factor 
19 (FGF19), fibroblast growth factor 21 (FGF21), total 
cholesterol, HDL (high density lipoprotein)-cholesterol, 
triglycerides (TGs), total plasma fatty acids content and 
composition. For analysis of DNA methylation fasting 
peripheral blood was collected into  K3-EDTA-containing 
tubes and stored at − 80 °C until analysed.

Oral glucose tolerance test (OGTT) and oral lipid tol-
erance test (OLTT) were performed on separate days. 
Venous blood samples: fasting, 30, 60, 90 and 120  min 
of OGTT as well as fasting (before meal), 2, 4, 6, and 8 h 
of OLTT were collected in order to measure postpran-
dial glucose, insulin, GIP and TG serum concentrations. 
OLTT- an 8-h high fat mixed meal tolerance test that 
contained 73% fat, 16% protein, and 11% carbohydrates, 
with a caloric value of 1018  kcal was performed. The 
detailed composition of meal was described previously 
(Razny et al. 2018).

Biochemical tests
Serum glucose, total cholesterol, HDL cholesterol, and 
TGs were measured using enzymatic colorimetric meth-
ods on the MaxMat analyzer (MaxMat S.A., Montpeliere, 
France). LDL cholesterol concentration was calculated 
using the Friedewald formula. Serum insulin was deter-
mined by immunoradiometric method (Diasource, 
ImmunoAssays, Belgium). Serum leptin, adiponectin, 
FGF19 and FGF21 were measured using ELISA (Human 
Leptin Quantikine ELISA kit; Human Total Adiponectin/
Acrp30 Quantikine ELISA kit; Human FGF-19 Quan-
tikine ELISA Kit; Human FGF-21 Quantikine ELISA 
Kit, respectively, R&D Systems Inc. Minneapolis, MN, 
USA). GIP was measured by ELISA [Human GIP (Total) 
ELISA kit (EMD Millipore, St Charles, MO, USA)]. Total 
plasma fatty acids content and composition was meas-
ured by gas–liquid chromatography and flame-ionization 
detector after direct in  situ transesterification, accord-
ing to Glaser et  al. (2010). Plasma fatty acids profile 
included quantitative determination of saturated (myris-
tic, palmitic, stearic, behenic, lignoceric, and arachidic), 
monounsaturated (palmitoleic, oleic and nervonic) and 
polyunsaturated (arachidonic, linoleic, α-linolenic, eicos-
apentaenoic, and docosahexaenoic) fatty acids.

DNA methylation screening analysis
To perform DNA methylation screening, taking into 
account that both groups of hypercholesterolemia and 
control were equal-sized, five samples for microarrays 
analyses were randomly selected from each of them. To 
reduce the difference between structure of participants 
in two original groups and their random subsamples, 
randomization was carried out in sex stratas in propor-
tions of women to men 3:2 to map numerical superi-
ority of men in our study (99 women versus 38 men). 
We didn’t consider any other sampling strata given the 
limited sample size of a participants on which we could 
measure genome wide methylation. Drawn individuals 
in hypercholesterolemic and control groups were bal-
anced by age and BMI.

Methylation screening analysis with immunoprecipitation 
of methylated DNA and hybridization to Human DNA 
Methylation Microarray
Genomic DNA from venous blood was extracted using 
the High Pure PCR Template Preparation Kit (ROCHE 
Diagnostics, Mannheim, Germany). The measure-
ment of DNA quantity and quality was performed by 
spectrophotometry using the NanoDrop ND1000. An 
amount of 5 μg of DNA was taken for sonication. Soni-
cation efficiency was assessed by electrophoresis on a 
2.0% agarose gel. The sonicated DNA sample was then 
divided into two aliquots: four parts of DNA were taken 
for immunoprecipitation, the fifth part was stored as a 
reference input fraction. Analysis of methylated DNA 
was done by immunoprecipitation of DNA containing 
5-methylcytosines (5-mC) using monoclonal antibod-
ies against 5-methylcytidine (Monoclonal Antibody to 
5-Methyl Cytosine/5-MeC Purified from Acris Anti-
bodies, Inc, USA). Immunoprecipitated and reference 
samples were labelled with fluorescent dyes Cyanine-3 
and Cyanine-5, respectively. The exact steps were per-
formed based on the methodology of Agilent Tech-
nologies. Competitive hybridization of input material 
and methylated enriched DNA was performed to oli-
gonucleotide microarrays—Human DNA Methylation 
Microarray (G4495A, Design ID, 023795) from Agilent 
Technologies. High-definition 244  K arrays contained 
27,627 probes for annotated human CpG islands and 
5081 for Undermethylated Regions (UMRs). Microar-
rays were hybridized for 40 h at 65  °C. Slides washing 
and scanning procedures and image extraction using 
Agilent Features Extraction software v 10.10.1.1 were 
performed according to the manufacturer instructions.
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Statistical analyses
For biochemical and anthropometric parameters, Sha-
piro–Wilk test was used to assess normality of distri-
bution of continuous variables, then unpaired t-test for 
normally distributed data and Mann–Whitney U-test 
for non-normally distributed data were used for com-
parison of the two groups. The Chi-squared test was 
used for nominal variables. Normally distributed data 
are shown as mean ± standard deviation (SD), other-
wise as median (Q2) and interquartile range in paren-
theses (Q1; Q3). All analyses were performed with the 
Statistica 13 software (StatSoft). The p-value < 0.05 was 
considered statistically significant.

Microarray data analysis was performed using the Fea-
ture extraction software v 10.10.1.1 (Agilent Technolo-
gies, Santa Clara, USA), the BRB-ArrayTools Version 4.6 
software (National Institutes of Health, Bethesda, MD, 
USA), R programming language (R Foundation for Sta-
tistical Computing, University of Auckland, New Zea-
land) and the Gene Spring version 13 software (Agilent 
Technologies, Santa Clara, USA). Feature extraction soft-
ware was used to assess background subtracted intensity 
values for the two fluorescence dyes on each individual 
array feature and calculated as the ratio (Cy3/Cy5). We 
used Lowess normalization method for dual channel 
raw hybridization signals and background correction to 
median of all samples. A quality analysis was performed 
for each sample array taken for analysis (QC reports 
evaluation). Regarding methylation sites we removed 
bad quality probes, probes not located in CpG islands, 
probes containing SNPs in the CpG site and removed 
probes located on X and Y chromosomes. To account for 
potential differences in the proportions of blood cells, 
we estimated the proportion of Lymphocytes, Mono-
cytes, Eosinophils, Basophils and Neutrophils to adjust 
raw data as previously described by Houseman et al. in R 
(Houseman et al. 2014). Fold of change was calculated for 
the hypercholesterolemic group in relation to the con-
trol group and shown as methylation level. The p-value 
threshold was calculated using statistical filtering (mod-
erated Student’s t-test followed by Benjamini–Hochberg 
multiple test correction FDR-q-value). Loci correspond-
ing to a q-value of < 0.05 and fold change of either > 1.3 
or < −  1.3 were classified as differentially methylated. 
Highly methylated regions had ratios significantly above 
zero while less methylated regions had log ratios signifi-
cantly below zero.

Pathways analysis was performed in Reactome Path-
way to obtained the list of differentially methylated genes 
related to lipids pathways (Sidiropoulos et  al. 2017). 
Subsequently we used the BiNGO plugin in Cytoscape 
software (version 3.7.2) to assessed the involvement of 
selected genes in biological processes and molecular 

function (Maere et  al. 2005). We used parameters as: 
overrepresentation after correction (using statistical test 
as hypergeometric test with multiple testing correction 
as Benjamini and Hochberg False Discovery Rate (FDR) 
correction). Results with corrected p-value < 0.05 are pre-
sented in manuscript.

Results
Biochemical and anthropometric characteristics of groups
The studied group of patients with high serum LDL-
CH was comparable to the control group in terms of 
weight, BMI, WHR, blood pressure and adipose tissue 
mass. The hypercholesterolemic group showed not only 
higher LDL-CH but also total cholesterol, triglycerides, 
non-HDL-CH compared to the control group (Table 1). 
Total plasma fatty acids content and saturated fatty 
acids content were higher in the high LDL-CH group 
as well. Particularly, higher content of palmitoleic acid 
(mean 1.33 (µg/mL) ± 0.18 vs mean 0.84 (µg/mL) ± 0.34, 
p = 0.0352) was observed in hypercholesterolemic group. 
Additionally, higher percentage of myristic acid (mean 
0.87 (%) ± 0.79 vs mean 0.35 (%) ± 0.15, p = 0.188) in this 
group was noted.

Fasting serum TG levels were higher in the hypercho-
lesterolemic patients. Obese subjects had fasting glucose 
below the upper reference limit, though slightly higher 
values of serum glucose were observed in the dyslipi-
demic patients compared to control. Subjects with high 
plasma LDL-CH were also characterized by higher 
FGF21 and lower adiponectin (presenting trend toward 
significance) serum levels (Table 1).

As the group studied in terms of methylation was a 
representative part of the larger cohort, below we present 
the characteristics of the entire cohort in Table  2. The 
trends and directions of differences between microarray 
subgroups have been preserved for those parameters that 
differed significantly in large groups, especially the pro-
portions of fatty acid groups and the concentrations of 
GIP, FGF19 and FGF21 proteins.

The results of differential methylation analysis
In this preliminary study, we identified 7480 differ-
entially methylated CpG sites, including 4905 CpG 
hypermethylated and 2575 hypomethylated sites. Data 
analysis in the Reactome Pathway Browser revealed 
engagement of 188 CpG probes, located in 143 genes in 
pathways related to lipid metabolism. The most inter-
esting finding is the different methylation pattern of 
genes involved in: (1) lipoprotein assembly, remodeling 
and clearance (Fig.  1); (2) regulation of lipid metabo-
lism by peroxisome proliferator-activated receptor alpha 
(PPARα); (3) regulation of cholesterol biosynthesis by 
sterol regulatory element binding protein (SREBP); (4) 
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fatty acid metabolism  and  (5) triglyceride metabolism. 
In leukocytes of patients with elevated serum LDL-CH, 
we found hypomethylated promoters of the following 
genes involved in lipoprotein metabolism: LPL, LIPA, 
ZDHHC8, PRKACA, AMN and FGF19; hypermethylated 
promoters of PCSK9, ABCG1, CLTC, AP2M1, AP2S1, 
LMF1, LSR, PRKACG, ANGPTL4, NR1H2, and PCSK5, 
and hypermethylated inside the following genes: LDLR, 
HDLBP, AP2A2 and PCSK6 (Fig. 1 and Additional file 1: 
Table S1).

Enrichment analysis using BiNGO application 
showed possible involvement of genes in biological 
processes and identified probable molecular func-
tion. Results are presented in Table 3. Interestingly, the 
affected pathways in the group of obese with hyper-
cholesterolemia included (1) lipoprotein remodeling 
in plasma (with hypomethylated promoter of LPL and 
hypermethylated ABCG1 and ABCA5); (2) regulation 
of cholesterol storage (with hypomethylated promoters 

of LPL and PPARG, and hypermethylated ABCG1 and 
NR1H2); and (3) cholesterol transport (with hypometh-
ylated promoter of LIPA and hypermethylated ABCA5, 
ABCG1 and ABCG4—responsible for cholesterol efflux) 
(Table  3a). Other genes differentially methylated were 
associated with (1) fatty acids biosynthesis (hypermeth-
ylated: ELOVL3, ELOVL5, and ELOVL6, and hypometh-
ylated: FASN, LPL, MLYCD and MCAT ); (2) fatty acid 
transport (hypermethylated: ACSL6 and hypomethyl-
ated: PPARD, PPARG, SLC25A20 and SLC27A1); and 
(3) fatty acid β-oxidation (hypermethylated: ACADM 
and CPT1A and hypomethylated: AMN, CRAT  and 
PPARD). Some genes related to glucose homeosta-
sis were also found to be hypermethylated: FOXO3, 
NCOR2, TCF4 and TCF7L2, contrary to PPARG  which 
was hypomethylated (Table  3a). The BiNGO plugin 
revealed probable molecular function of a set of genes 
as lipid binding, receptor binding, transporter activity 
and transcription factor binding (Table 3b).

Table 1 Characteristics of subjects selected for DNA methylation analysis

Comparison between the high LDL-CH group and controls (unpaired t-test for normally or Mann–Whitney U-test for non-normally distributed a variables). Data shown 
as mean ± SD; otherwise (a) as median and interquartile range in parentheses except nominal variable (b) shown as % of subjects. b The chi-squared test was used for 
nominal variable. The statistically significant results are marked in italics

Hypercholesterolemia group (n = 5) Control group (n = 5) p-value

Age (years) 43.0 ± 12.6 44.6 ± 10.6 0.83

Sex, female (%)b 60 60 ns

Weight (kg)a 88 (80–107.7) 89.2 (80.2–103.2) 1

Adipose tissue mass (%)a 38.3 (30.55–43.25) 37.4 (30.9–45.3) 0.47

BMI (kg/m2) 34.0 (29.47–36.9) 31.7 (28.4–38.9) 0.676

WHRa 0.9 (0.81–0.95) 0.81 (0.79–0.82) 0.11

Systolic blood pressure (mmHg)a 130 (127.5–140) 124 (119–130) 0.095

Diastolic blood pressure (mmHg)a 80 (80–90) 80 (77–86) 0.53

Total cholesterol (mmol/L)a 6.31 (5.58–6.64) 5.0 (4.5–5.25) 0.06

LDL cholesterol (mmol/L)a 4.27 (3.9–4.8) 2.74 (2.5–2.95) < 0.001

HDL cholesterol (mmol/l)a 1.2 ± 0.3 1.4 ± 0.3 0.25

Non-HDL (mmol/L)a 5.19 (4.53–5.37) 3.49 (2.99–4.11) 0.02

Fasting triglycerides (mmol/L) 1.7 ± 0.7 1.1 ± 0.8 0.26

Total fatty acids (µg/mL) 4118 ± 1226 3341 ± 925 0.31

Saturated fatty acids (%) 34.04 ± 1.96 32.09 ± 0.85 0.08

Monounsaturated fatty acids (%) 28.52 ± 4.35 26.42 ± 4.42 0.49

Polyunsaturated fatty acids (%) 37.43 ± 6.02 41.49 ± 4.37 0.28

Fasting glucose (mmol/L)a 5.8 (5.1–6.3) 4.9 (4.7–5.8) 0.4

Glucose AUC OLTT (mmol/L min)a 10.44 (10.0–10.72) 9.05 (8.78–9.77) 0.022

Glucose AUC OGTT (mmol/L min)a 4.4 (3.2–5.0) 3.26 (2.6–3.45) 0.06

Fasting insulin (µIU/mL) 22.8 ± 16.8 11.3 ± 4.2 0.173

HOMA‑IR 4.0 ± 1.6 2.6 ± 1.1 0.14

Adiponectin (µg/mL)a 4.2 (3.55–8.07) 7.4 (5.58–10.0) 0.21

Leptin (ng/mL)a 29.89 (15.18–46.04) 21.8 (14.16–101.85) 0.83

Fasting GIP (pg/mL)a 32.54 (12.3–48.8) 24.1 (18.1–37.43) 0.4

FGF19 (pg/mL) 160.8 ± 61.7 151.4 ± 108.7 0.62

FGF21 (pg/mL) 280.4 ± 144.3 138.8 ± 92.5 0.102
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In our study, hypermethylation of promoters of key 
genes regulating cholesterol metabolism such as PCSK9, 
LRP1, ABCG1, ANGPTL4, SREBF1 and NR1H2, were 
found in obese patients with hypercholesterolemia. 
Furthermore, enhanced methylation of promoters of 
genes coding for transcription factors, such as NFKB2, 
TCF4, GATA4, INSM1, CTCF, TCF7L2 and SREBF1 and 
reduced methylation of KLF14, PPARD and PPARG , were 
found (Table 3a, b).

Locations of CpG sites in genes are presented in Addi-
tional file 1: Table S1.

Discussion
This preliminary study showed different DNA meth-
ylation profiles in the leukocytes of obese, hypercho-
lesterolemic patients (LDL-CH ≥ 3.4  mmol/L, n = 5) 
compared to the leukocytes methylome of obese sub-
jects presenting serum LDL-CH levels < 3.4  mmol/L 

(n = 5). Main finding of this study is the identifica-
tion of differentially methylated genes associated with 
lipid metabolism pathways. Among the lipid-related 
genes mostly significant were the following pathways: 
regulation of lipid metabolism by PPAR alpha; plasma 
lipoprotein assembly, remodeling, and clearance; 
metabolism of lipids; regulation of gene expression by 
SREBP, PPARA and NR1H2; LDL clearance and VLDLR 
internalisation and degradation (all located in the top 
ten of mostly significant pathways).

We have presented new loci of differential DNA 
methylation in genes that were previously found to 
be associated with dyslipidemia (ABCG1, CPT1A, 
FASN, KLF14, LDLR, LPL, LRP1, PCSK9, PPARG  and 
SREBF1) (Mittelstraß and Waldenberger 2018; Pfeiffer 
et  al. 2015; Rohde et  al. 2019; Campanella et  al. 2018) 
but also in new candidate genes, potentially related to 

Table 2 Characteristics of  subjects with  obesity included into  the  study, comparison of  groups according to  fasting 
serum LDL cholesterol

Comparison between the high LDL-CH group and controls (unpaired t-test for normally or Mann–Whitney U-test for non-normally distributed a variables). Data shown 
as mean ± SD; otherwise (a) as median and interquartile range in parentheses except nominal variable (b) shown as % of subjects. b The chi-squared test was used for 
nominal variable. The statistically significant results are marked in italics

Hypercholesterolemic group (n = 68) Control group (n = 69) p-value

Age (years) 50.1 ± 9.8 44.6 ± 12.2 < 0.004

Sex, female (%)b 75 70 ns

Weight (kg)a 92.2 (79.87–104.5) 92.5 (84–104.2) 0.425

Adipose tissue mass (%)a 39.8 (34.4–42.8) 38.3 (33.2–42.2) 0.24

BMI (kg/m2)a 33.0 (30.6–35.6) 32.1 (30.1–35.7) 0.45

WHRa 0.9 (0.83–0.98) 0.85 (0.8–0.975) 0.23

Systolic blood pressure (mmHg)a 130 (120–140) 126 (120–135) 0.16

Diastolic blood pressure (mmHg)a 85 (80–90) 81 (80–89.5) 0.14

Total cholesterol (mmol/L)a 6.14 (5.57–6.75) 4.88 (4.42–5.1) < 0.001

LDL cholesterol (mmol/L)a 4.14 (3.82–4.57) 2.91 (2.5–3.2) < 0.001

HDL cholesterol (mmol/L) 1.3 ± 0.3 1.3 ± 0.3 0.69

Non-HDL cholesterol (mmol/L)a 4.86 (4.45–5.45) 3.51 (3.14–3.78) < 0.001

Fasting triglycerides (mmol/L) 1.7 ± 0.9 1.4 ± 0.7 0.007

Total fatty acids (µg/mL) 3868.8 ± 851.6 3122.6 ± 600.4 < 0.001

Saturated fatty acids (%) 33.51 ± 2.56 32.95 ± 1.88 0.16

Monounsaturated fatty acids (%) 26.56 ± 3.34 25.37 ± 2.46 0.025

Polyunsaturated fatty acids (%) 39.93 ± 4.61 41.65 ± 3.32 0.017

Fasting glucose (mmol/L)a 5.4 (4.8–5.8) 5.0 (4.8–5.5) 0.025

Glucose AUC OLTT (mmol/L min)a 9.72 (9.1–10.44) 9.43 (8.88–9.91) 0.046

Glucose AUC OGTT (mmol/L min)a 3.68 (3.31–4.38) 3.31 (2.8–3.99) 0.018

Fasting insulin (µIU/mL) 16.0 ± 8.6 15.8 ± 8.2 0.95

HOMA‑IR 3.7 ± 2.0 3.7 ± 2.2 0.78

Adiponectin (µg/mL)a 5.99 (4.38–8.72) 6.25 (3.84–9.55) 0.79

Leptin (ng/mL)a 34.74 (22.67–51.95) 29.16 (19.4–51.84) 0.29

Fasting GIP (pg/mL)a 29.7 (19.3–44.7) 24.1 (15.9–33.6) 0.036

FGF19 (pg/mL) 147.9 ± 88.2 123.9 ± 90.6 0.035

FGF21 (pg/mL) 261.7 ± 160.6 214.2 ± 149.3 0.039



Page 7 of 12Płatek et al. Mol Med           (2020) 26:93  

hypercholesterolemia. Novel epigenetically regulated 
genes include ABCG4, ANGPTL4, AP2A2, AP2M1, 
AP2S1, CLTC, FGF19, FGF1R, HDLBP, LIPA, LMF1, 
LRP5, LSR, NR1H2 and ZDHHC8. The unique set of 
differentially methylated genes were enriched in gene 
ontology to cholesterol and fatty acid metabolism, 
especially plasma lipoprotein formation and metabo-
lism, reverse cholesterol transport, triglycerides degra-
dation, fatty acids transport and β-oxidation.

Regarding lipoprotein assembly, remodeling and 
clearance, the reduced methylation in promoters of 
genes coding for LPL (Lipoprotein lipase), LIPA (Lipase 
A) and ZDHHC8 (Zinc Finger DHHC-Type Containing 
8) were found. Palmitoyl transferase ZDHHC8 medi-
ates palmitoylation of ABCA1 and thus localization of 
this cholesterol transporter at the plasma membrane 
(Singaraja et  al. 2009). Methylation of promoter of 
LPL gene in leukocytes and visceral adipose tissue was 
previously published in severe obese men (Guay et  al. 
2013). In this paper the association between LPL DNA 
methylation and LPL mRNA level in visceral adipose 
tissue and HDL cholesterol (HDL-CH) level was pre-
sented (Guay et al. 2013).

We detected hypomethylation in FGF19 and FGFR1 
genes in leukocytes DNA of obese patients with hyper-
cholesterolemia. The effect of FGF19 on TG and choles-
terol levels may vary depending on the type of FGFR1 
or FGFR4 receptor with which it interacts (Wu et  al. 
2013). Zhou et al. (2019) demonstrated that FGF19 pro-
motes HDL biogenesis and cholesterol efflux from the 
liver, with increasing serum HDL and LDL cholesterol 
as a consequence.

The next set of genes found to be hypermethylated 
in our hypercholesterolemic patients: PCSK9, CLTC, 
AP2A2, AP2M1 and AP2S1, are involved in the endo-
cytosis of the ligand-bound LDL and VLDL receptors 
(Peterson et  al. 2008; Mulkearns and Cooper 2012; Go 
and Mani 2012; Pearse et  al. 2000). Although PCSK9 
is principally expressed in the liver, PCSK9 gene pro-
moter methylation is conserved across tissues and posi-
tively correlated with its expression (Lohoff et al. 2018). 
Recently it was found that FGF21 serves as a potential 
negative regulator of PCSK9 (Guo et  al. 2016), which is 
in line with our observation that hypermethylation of 
PCSK9 corresponds with higher circulating FGF21 levels 
in patients with hypercholesterolemia compared to con-
trol subjects.

Our study found differential methylation of the fol-
lowing genes encoding receptors involved in lipopro-
tein trafficking: hypermethylated LDLR (Low Density 
Lipoprotein Receptor), LRP1 (LDL Receptor Related 
Protein 1), LRP5 (LDL Receptor Related Protein 5), LSR 
(Lipolysis Stimulated Lipoprotein Receptor) and NR1H2 
(Nuclear Receptor Subfamily 1 Group H Member 2) and 
hypomethylated LRP8 (LDL Receptor Related Protein 8). 
LRP1 together with LDLR play an essential role in bind-
ing and internalization of apoE- and apoB-containing 
lipoproteins regulating their cellular uptake (Dato and 
Chiabrando 2018). It has been found that DNA meth-
ylation of the LRP1 gene (locus in 5′UTR) was previ-
ously detected in placental DNA and was correlated 
with maternal total cholesterol changes during preg-
nancy (Guay et  al. 2020). In subsequent studies, a posi-
tive association between DNA methylation in LRP1 gene 
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Table 3 Results of  statistically overrepresented biological processes and  molecular function in  set of  differentially 
methylated genes

Description p-value Corr
p-value

N Hypermethylated Hypomethylated

a. Gene Ontology_Biological Processes

Lipid metabolic process 6.0610E−33 1.0849E−29 47 ABCG1 ACADM ACP6 ACSL6 AHRR 
CAV1 CPT1A ELOVL3 ELOVL5 
ELOVL6 FDFT1 FDPS GPX1 GPX4 
HDLBP NR1H2 LDLR LRP1 LRP5 
PCSK9 PMVK RXRA SREBF1 SQLE

ABCB4 ACOT1 ACOT7 ACSF2 AGPAT2 
AMN CRAT CYP1B1 CYP27B1 
CYP51A1 DHCR7 FASN IL6ST INSIG1 
LIPA LPL LRP8 MLYCD MCAT PPARD 
PPARG SLC27A1 STARD3

 Regulation of lipid biosynthetic 
process

1.8237E−6 3.4005E−5 6 ABCG1 ACSL6 NR1H2 DHCR7 FGF19 SLC27A1

 Negative regulation of lipid biosyn‑
thetic process

6.2381E−3 2.5581E−2 2 FGF19 SLC27A1

 Fatty acid metabolic process 9.26E−17 2.37E−14 19 ACADM ACSL6 CPT1A ELOVL3 
ELOVL5 ELOVL6 PPARA 

ACOT1 ACOT7 ACSF2 AMN CRAT 
FASN LIPA LPL MCAT MLYCD PPARD 
SLC27A1

 Cholesterol metabolic process 6.73E−19 6.02E−16 16 ABCG1 FDFT1 FDPS HDLBP LDLR 
PCSK9 PMVK RXRA SREBF1 SQLE

CYP51A1 DHCR7 LIPA PPARD SREBF2 
STARD3

 Triglyceride metabolic process 1.02E−08 4.81E−07 7 ACSL6 CAV1 CPT1A PCSK9 IL6ST LIPA LPL

 Cholesterol biosynthetic process 5.57E−07 1.49E−05 5 FDFT1 FDPS PMVK CYP51A1 DHCR7

 Regulation of cholesterol storage 8.89E−09 4.42E−07 5 ABCG1 NR1H2 PPARA LPL PPARG 

 Cholesterol transport 2.01E−07 6.09E−06 6 ABCA5 ABCG1 ABCG4 CAV1 LDLR LIPA

 Cholesterol efflux 1.00E−05 1.50E−04 4 ABCA5 ABCG1 ABCG4 CAV1

 Reverse cholesterol transport 5.57E−03 2.37E−02 2 ABCA5 ABCG1

 Regulation of cholesterol transport 4.57E−04 3.38E−03 3 NR1H2 LRP1 PPARG 

 Negative regulation of cholesterol 
storage

2.72E−08 1.08E−06 4 ABCG1 NR1H2 PPARA PPARG 

 Fatty acid biosynthetic process 1.60E−06 3.12E−05 7 ELOVL3 ELOVL5 ELOVL6 FASN LPL MLYCD MCAT 

Fatty acid transport 2.46E−08 1.05E−06 6 ACSL6 PPARA PPARD PPARG SLC25A20 SLC27A1

 Fatty acid beta‑oxidation 1.22E−06 2.63E−05 5 ACADM CPT1A AMN CRAT PPARD

 Regulation of fatty acid oxidation 2.39E−06 4.32E−05 5 CPT1A PPARA MLYCD PPARG SLC25A20

 Long‑chain fatty acid metabolic 
process

1.90E−03 1.04E−02 2 ACSL6 ACOT1

 Regulation of macrophage derived 
foam cell differentiation

1.52E−08 6.63E−07 6 ABCA5 ABCG1 NR1H2 PPARA LPL PPARG 

 Low‑density lipoprotein receptor 
metabolic process

4.37E−05 5.00E−04 2 PCSK9 PPARG 

 Plasma lipoprotein particle remod‑
eling

3.99E−04 3.11E−03 3 ABCA5 ABCG1 LPL

 High‑density lipoprotein particle 
remodeling

3.77E−03 1.75E−02 2 ABCA5 ABCG1

 Regulation of steroid metabolic 
process

3.09E−03 1.52E−02 3 ABCG1 FGF19 DHCR7

 Glucose homeostasis 1.17E−06 2.58E−05 5 FOXO3 NCOR2 TCF4 TCF7L2 PPARG 

 Response to glucose stimulus 6.04E−05 6.47E−04 4 EP300 TCF7L2 TCF4 PPARD

 Regulation of insulin secretion 4.82E−04 3.50E−03 3 CPT1A TCF4 TCF7L2

 Carbohydrate homeostasis 1.17E−06 2.58E−05 5 FOXO3 NCOR2 TCF4 TCF7L2 PPARG 

 Regulation of response to stress 5.02E−05 5.65E−04 10 AP2A2 AP2S1 AP2M1 CAV1 GPX4 FGF19 IL6ST IRAK1 PPARG PRKACA 

 Negative regulation of apoptosis 3.59E−03 1.70E−02 8 ANGPTL4 NKX2‑6 SIN3A PCSK6 TCF4 
TCF7L2

FGFR1 IRAK1

b. Gene Ontology_Molecular Function

 Lipid binding 2.19E−08 3.54E−06 15 ABCG1 AP2A2 AP2M1 CAV1 HDLBP 
PPARA RXRA S1PR4

ACOT7 ITPR1 LIPA LPL PPARD PPARG 
STARD3

 Receptor binding 1.99E−06 1.16E−04 19 ANGPTL4 CAV1 EP300 LRP1 IL6ST IL13 
NCOA2 NCOR2 NR1H2 PCSK9 RXRA 
TCF4 TCF7L2 TGFB1I1

CD8A FGF19 IRAK1 LPL PPARG 
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and HDL-CH level was demonstrated in patients with 
metabolic syndrome (Castellano-Castillo et  al. 2019). 
However, the exact location of the CpG sites has not been 
shown in these articles. We demonstrated hypermethyla-
tion of CpG sites located inside the fourth exon of the 
LDL receptor (LDLR) gene, however the consequences 
of methylation of that region have not yet been reported. 
Guay et al. (2020) presented correlation with DNA meth-
ylation in LDLR gene (CpG-A locus located between 
the fourth and fifth exon) with maternal total choles-
terol level changes during pregnancy. Higher methyla-
tion degree of LDLR gene promoter in peripheral blood 
in atherosclerotic patients compared to healthy subjects 
was found (Zhi et al. 2007).

In presented study patients with elevated LDL-CH 
were characterized by hypermethylated CpG sites also 
within the promoters of the ABCG1, ABCA5, ABCG4 and 
CAV1 genes that are responsible for reverse cholesterol 
transport (Mauldin et al. 2008; Vaughan and Oram 2006). 
Pfeiffer et al. showed the association of CpG methylation 
in ABCG1 (cg06500161, 21:43656587) with HDL choles-
terol and triglycerides level in 1776 subjects in the KORA 
F4 cohort (Pfeiffer et  al. 2015). Further studies demon-
strated an association of methylation of (cg06500161) 
locus in ABCG1 gene with its lower transcriptional activ-
ity, higher triglycerides level and higher triglycerides to 
HDL cholesterol ratio in 1941 obese individuals from 
four population-based European cohorts (Campanella 
et al. 2018). In our study we presented DNA hypermeth-
ylation in ABCG1 gene in new CpG locus (21:42219751–
42219800) in leukocytes of patients with high LDL-CH.

We also found altered DNA methylation in patients 
with hypercholesterolemia, in key genes associated with 
fatty acid transport and metabolism (hypomethylated: 
PPARD, PPARG, SLC27A1, SLC27A3 and SLC25A20, 
and hypermethylated: ANGPTL4, ACLS6, ACADM and 
CPT1A). These results indicate inhibited β-oxidation 
as the gene CPT1A, coding for the key enzyme in the 

carnitine-dependent transport and ACADM encoding 
acyl-CoA dehydrogenase medium chain catalysing the 
initial step of fatty acid β-oxidation, are hypermethyl-
ated (GeneCards—the human gene database www.genec 
ards.org) (Stelzer et al. 2016). Frazier-Wood et al. showed 
association of methylation at 2 CpGs (cg00574958, 
11:68607622; cg17058475, 11:68607737) in CPT1A gene 
with LDL and VLDL lipoprotein subfraction profile in 
 CD4+ T cells (Frazier-Wood et al. 2014). They presented 
hypermethylation of 2 CpGs (cg00574958, cg17058475) 
in 5′UTR to be associated with decreased number of 
VLDL particles whereas one (cg00574958) was associated 
with a decrease in small, dense subfraction of LDL (Fra-
zier-Wood et  al. 2014). We presented DNA hypermeth-
ylation in new locus (11:68843060–68843119) located in 
the promoter of CPT1A gene in leukocytes of patients 
with high LDL-CH.

Interestingly, we identified differential methylation of 
genes coding for transcription factors important for lipid 
and glucose metabolism. The hypermethylated SREBF1, 
that regulates fatty acid and cholesterol metabolism and 
hypermethylated TCF7L2, important for glucose home-
ostasis, characterized hypercholesterolemic patients. 
Additionally the reduced methylation in transcription 
factors: KLF14 gene, previously associated with metabo-
lism of HDL-CH, adipocyte function, and PPARD and 
PPARG - receptors for fatty acids was found (Florath et al. 
2016; Dekkers et  al. 2016; Vitali et  al. 2017; Argmann 
et al. 2017; Varga et al. 2011).

Despite the observed epigenetic changes in hypercho-
lesterolaemia, we cannot state in our studies if the dif-
ferential methylation is a consequence rather that a cause 
of high blood lipids. Based on the regulated pathways in 
our study as well as relevant literature (Pfeiffer et al. 2015; 
Dekkers et  al. 2016; Rangel-Salazar et  al. 2011) we sug-
gest that differential methylation observed in epigenome 
wide association studies is likely an mixed picture of sites 
that are the cause and consequence of abnormal lipids 

Table 3 (continued)

Description p-value Corr
p-value

N Hypermethylated Hypomethylated

 Transporter activity 1.44E−03 1.01E−02 16 ABCC1 ABCC9 ABCG1 AMN AP2A2 
AP2S1 AP2M1 APC2 KCNJ6 LRP1 
SLC27A1

ABCB4 FASN ITPR1 SLC25A20 STARD3

 Transcription factor binding 1.26E−08 3.54E−06 17 CTCF GATA4 EP300 LRP1 MED21 
NCOA2 NCOR2 NR1H2 RXRA SIN3A 
TCF4 TCF7L2 TGFB1I1

NFYC MED7 PPARD PPARG 

 Transcription cofactor activity 1.14E−05 4.22E−04 11 CTCF EP300 LRP1 MED21 NCOR2 
NCOA2 RXRA SIN3A TGFB1I1

NFYC MED7

 Lipoprotein binding 1.21E−03 9.26E−03 3 LDLR LRP1 LRP8

Analyses performed using BiNGO plugin in Cytoscape software. (a) Shows involvement of genes in biological processes and (b) in molecular function

http://www.genecards.org
http://www.genecards.org
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levels. This is in line with previous studies where it was 
showed that blood lipids level influence DNA methyla-
tion (Dekkers et al. 2016). Studies on VLR (very low den-
sity—VLDL and LDL—rich lipoproteins mix) in human 
THP-1 macrophages showed that they induces global 
de novo methylation (Rangel-Salazar et al. 2011). Exten-
sion of these studies revealed that human native VLDL 
and LDL-rich lipoprotein mix, induces decrease in pro-
inflammatory and cholesterol transport gene expres-
sion in consequence of DNA methylation. For instance 
ABCG1 gene participating in cholesterol transport was 
down-regulated by VLR (Rangel-Salazar et  al. 2011). 
Dekkers et  al. analyzed genome wide DNA methylation 
in whole blood cells of 3296 individuals after Mendelian 
randomisation and demonstrated that higher LDL-CH 
induced higher methylation of a CpG (cg27168858) in 
DHCR24 gene. Moreover higher TG levels induced lower 
methylation of 2 CpGs (cg00574958, cg17058475), which 
were associated with higher expression of CPT1A. High 
TG levels were also accompanied by hypermethylation 
of CpG (cg11024682), which was associated with lower 
expression of SREBF1 gene. Additionally either lower TG 
or higher HDL-CH induced lower methylation of 2 CpGs 
(cg27243685, cg06500161), which was associated with 
higher expression of ABCG1 gene (Dekkers et al. 2016). 
On the contrary, in article by Pfeiffer et al. (Pfeiffer et al. 
2015) DNA methylation in ABCG1, SREBF1 and CPT1A 
genes were presented rather as the cause not the conse-
quence, of development of complex lipid-related diseases.

Limitations
The main limitation of our study was the limited 
number of samples for genome-wide DNA methyla-
tion analysis. Thus results from the high-throughput 
method give rise for further studies on targeted genes 
methylation in all samples from the large cohort. We 
assessed DNA methylation in peripheral blood because 
it is easily accessible and its collection is acceptable by 
patients. Although epigenetic studies on different tis-
sue samples are more informative, blood samples are 
generally used in most studies with non-surgical sub-
jects. Nevertheless, previous studies demonstrated that 
hypermethylated CpG islands: LEP, ADIPOQ in adipose 
tissue or PCSK9 in the liver overlap methylation sta-
tus in the blood (Lohoff et al. 2018; Houde et al. 2015). 
Additionally Crujeiras et  al. (2016) demonstrated that 
DNA methylation map in circulating leukocytes reflects 
subcutaneous adipose tissue methylation pattern. This 
suggests that DNA methylation analysis in leukocytes 
may reflect a methylation profile in other tissues (liver, 
adipose tissue or intestine) relevant for the pathogene-
sis of lipid and lipoprotein disorders. Furthermore vari-
ous types of leukocytes (monocytes, neutrophils, mast 

cells and B and T lymphocytes) are associated with ath-
erosclerosis suggesting that may actively response to 
hypercholesterolemia (Oguro 2019).

Conclusions
In conclusion, our preliminary data implies epigenetic 
regulation of lipids profile, demonstrated as differen-
tial DNA methylation in leukocytes of obese individu-
als with elevated LDL cholesterol levels. Analysis of 
DNA methylation microarrays indicated that the most 
regulated processes are lipoprotein plasma clearance 
and metabolism, reverse cholesterol transport and cho-
lesterol efflux and fatty acid uptake and β-oxidation. 
Analysis of DNA methylation status in peripheral blood 
could be a tool for identifying the pathognomonic pro-
cesses related to the hypercholesterolemia and other 
obesity related complications. As DNA methylation is 
reversible and dependent on environmental factors, 
that gives the potential to influence the methylation 
status of lipids genes by the nutrition and healthy life-
style to prevent the obesity-related complications.
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