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Abstract: Background: Gastric cancer is the fourth most common cause of cancer-related death. 
Currently, it is broadly accepted that the molecular complexity and heterogeneity of gastric cancer, both 
inter- and intra-tumor, display important barriers for finding specific biomarkers for the early detection 
and diagnosis of this malignancy. Early-onset gastric cancer is not as prevalent as conventional 
gastric carcinoma, but it is a preferable model for studying the genetic background, as young patients 
are less exposed to environmental factors, which influence cancer development. Aim: The main 
objective of this study was to reveal age-dependent genotypic characteristics of gastric cancer subtypes, 
as well as conduct mutation profiling for the most frequent alterations in gastric cancer development, 
using targeted next-generation sequencing technology. Patients and methods: The study group 
included 53 patients, consisting of 18 patients with conventional gastric cancer and 35 with an 
early-onset subtype. The DNA of all index cases was used for next-generation sequencing, employing 
a panel of 94 genes and 284 single nucleotide polymorphisms (SNPs) (TruSight Cancer Panel, Illumina), 
which is characteristic for common and rare types of cancer. Results: From among the 53 samples 
processed for sequencing, we were able to identify seven candidate genes (STK11, RET, FANCM, SLX4, 
WRN, MEN1, and KIT) and nine variants among them: one splice_acceptor, four synonymous, and four 
missense variants. These were selected for the age-dependent differentiation of gastric cancer subtypes. 
We found four variants with C-Score > 10, as 10% of the most deleterious substitutions: rs1800862 
(RET), rs10138997 (FANCM), rs2230009 (WRN), and rs2959656 (MEN1). We identified 36 different 
variants, among 24 different genes, which were the most frequent genetic alterations among study 
subjects. We found 16 different variants among the genes that were present in 100% of the total cohort: 
SDHB (rs2746462), ALK  (rs1670283), XPC (rs2958057), RECQL4 (rs4925828; rs11342077, rs398010167; 
rs2721190), DDB2 (rs326212), MEN1 (rs540012), AIP (rs4930199), ATM (rs659243), HNF1A (rs1169305), 
BRCA2 (rs206075; rs169547), ERCC5 (rs9514066; rs9514067), and FANCI (rs7183618). Conclusions: 
The technology of next-generation sequencing is a useful tool for studying the development and 
progression of gastric carcinoma in a high-throughput way. Our study revealed that early-onset gastric 
cancer has a different mutation frequency profile in certain genes compared to conventional subtype.
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1. Introduction

Gastric cancer (GC) is a heterogeneous disease with a wide range of molecular and 
genetic alterations that contribute to the development and progression of this malignancy [1,2]. 
Statistical investigations have revealed that GC is the fourth most common cause of cancer-related 
death worldwide, with a median overall survival of <12 months for an advanced stage [3]. Early-onset 
gastric cancer (EOGC) (onset in individuals <45 years old) is not as common as conventional gastric 
carcinoma (CGC); besides, fewer than 10% of patients are affected by GC before 45 years of age [4]. 
Recent investigations on EOGC have attempted to clarify the genetic background of GC, as young 
patients are less susceptible to environmental agents that predispose individuals to cancer [5].

GC expands through a round of well-established and distinguishable steps: inflammation, 
atrophy, intestinal metaplasia, dysplasia, and carcinogenesis. GC pathogenesis is closely related to 
the diet, environment, H. pylori infection, and genetic alterations [6- 9]. The recognizable patterns of 
GC incorporate genetic alterations among various factors: cell cycle regulators, agents that regulate 
apoptosis, microsatellite instability, multidrug resistance proteins, factors that influence cell membrane 
properties, the module of HER2 expression, and agents with an impact on the progression of GC and 
peritoneal metastasis [10- 13].

The most popular classification of GC is Lauren classification, which distinguishes between 
GC-diffuse and intestinal GC. These two types of GC are distinguished by their distinct characteristics, 
including their clinical features, morphology, genetics, and progression [14]. The intestinal type of 
GC primarily occurs in older patients and consists of tubular or glandular components with multiple 
stages of differentiation. The diffuse type of GC is comprised of weakly cohesive single cells without 
gland formation and mostly affects young patients; hereditary agents play the primary role in this type 
of GC [15].

The development of next-generation sequencing (NGS) has provided a high-throughput and 
systematic approach for discovering genetic alterations, mostly mutations in the cancer genome. 
Although some driver genes have been found, the molecular background of GC is still not completely 
understood. NGS studies have discovered several novel driver mutations with well-known driver 
genes in GC development [16- 18]. Gene mutations that either predispose individuals to or induce 
GC can be organized based on different biological pathways, such as cell adhesion, genome integrity, 
chromatin remodeling, the Wnt pathway, the RAS  family, the M APK  pathway, RTKs, or the PIK  
pathway [19].

The molecular classification of GC based on NGS data was recently established in a publication 
by Cristescu et al. (2015) [17], where gene expression data of 300 primary gastric tumors was explored. 
Four molecular subtypes of GC were selected: MSS/TP53+, MSS/TP53- , MSI, and MSS/EMT subtypes. 
They were assigned to different patterns of molecular alterations, the prognosis of GC patients, 
progression, and cancer prognosis. Currently, it is crucial to expand knowledge about the molecular 
classification of GC, which is mostly based on NGS data, as this might be a valuable approach for 
developing targeted therapy suitable for particular patients. The molecular profiling of GC is not only 
of value for uncovering the molecular basis of the disease, but also for identifying genes of clinical 
utility for therapeutic targets for GC.

In this study, an attempt was made to compare age-dependent genotypic and phenotypic 
characteristics of GC subtypes, with mutation profiling for the most frequent alterations in GC 
development, using high-throughput sequencing of both EOGC and CGC subtypes.

2. Materials and Methods

2.1. Study Group

Our study materials included samples from patients with CGCs diagnosed in years 1993-2003 and 
samples of patients with EOGCs, which were collected from the Academic Medical Centre in Amsterdam, 
as well as other Institutions located in The Netherlands, Finland, and Poland. Tumor samples were
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classified according to Lauren classification [14] as either intestinal or diffuse gastric adenocarcinomas. 
The study material was used in a previous study [5], in which immunohistochemical labeling was 
conducted to look for different expression patterns of several GC markers in EOGCs compared to CGCs. 
We selected 53 GC patients for the sequencing analysis—35 with EOGC and 18 with CGC. EOGC cases 
were classified as diffuse, with the age range of patients being between 21 and 45 years. CGC samples 
included intestinal histology and the age range of cases was 47-86 years. The clinical data for each 
GC patient is available in Table S1. The CDH1 mutation status is described in Table S2, where the 
prediction for variant pathogenicity is presented. The group exhibited no pathogenic mutations in 
the CDH1 gene, which, according to current knowledge, is consistent with HDGC. The study was 
approved by the Medical University of Lublin Bioethical Committee (Opinion no. KE-0254/322/2019.) 
and was conducted in accordance with the Declaration of Helsinki.

DNA Extraction

The tissues were collected as previously described by Sitarz et al. (2008) [20]. They were 
stored in liquid nitrogen. The genomic DNA extraction from formalin-fixed paraffin-embedded 
(FFPE) tissues was performed using the QIAamp DNA Mini kit (Qiagen, Venlo, the Netherlands) 
or the Puregene DNA Isolation kit (Gentra, MN, USA), in accordance with the manufacturer's 
instructions. Isolated DNA was kept at -8 0  °C. DNA quantity assessment was conducted with the 
Quantus™ Fluorometer with the QuantiFluor® dsDNA System, according to the protocol (Promega, 
Madison, WI, USA). The DNA quality was checked using the Agilent 2200 TapeStation and Genomic 
DNA ScreenTape (Agilent Technologies, Santa Clara, CA, USA). DNA samples were tested for high, 
middle, and low integrity. The DNA Integrity Number (DIN) algorithm was used to assess nucleic 
acid fragmentation. We selected samples with a DIN of at least 5 (where the scale is 1-10) for qPCR 
assessment. Further evaluation of the usefulness of the samples for sequencing was done with the 
Infinium HD FFPE QC Assay Protocol (Illumina, San Diego, CA, USA). Real-Time PCR by the CFX96 
TouchTM Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) was performed to check 
the amplification status in each sample. The average quantification cycle (Cq) values for the quality 
control template_standard (QCT_ST) were subtracted from the average Cq value for each sample to 
compute the Delta Cq value for each sample. All samples with a Delta Cq value below 5 were selected 
for library preparation.

2.2. Library Preparation fo r  Next-Generation Sequencing

Libraries for sequencing experiments were prepared using the Trusight Rapid Capture Preparation 
Kit (Illumina, San Diego, CA, USA), according to the manufacturer's protocol. DNA samples were 
standardized to 50 ng and underwent a tagmentation step. The libraries generated from input 
genomic DNA were amplified and adapter-tagged multiple short library fragments of 220-350 base 
pairs long. The libraries for each sample were combined to obtain proper complexity for a single 
run. Biotin-labeled probes were used to target regions of interest. Further steps of hybridization were 
conducted with custom-synthesized oligos that captured genes with the assigned predisposition towards 
multiple cancer types. The sequencing panel, the TruSight Cancer Panel (Illumina, San Diego, CA, USA), 
targeted 94 genes and 284 single nucleotide polymorphisms (SNPs) linked to common and rare cancers. 
The complete list of target genes and SNPs is available on the website of Illumina. Standard pools 
were enriched with regions of interest through streptavidin-coated beads that bound to biotinylated 
probes. Then, DNA fragments were eluted from the beads and another round of hybridization and 
enrichment was performed. Final amplified post-capture library concentrations were assessed with 
the Quantus™ Fluorometer, according to the manufacturer's protocol. Libraries were quantified by 
qPCR using the KAPA Library Quantification kit (KAPA Biosystems, Boston, MA, USA). The size of the 
obtained library fragments was evaluated with the Agilent 2200 TapeStation and High Sensitivity D1000 
ScreenTape System (Agilent Technologies, Santa Clara, CA, USA). Post-capture enriched libraries were 
sequenced on the MiSeq Sequencing Platform (Illumina, San Diego, CA, USA) with the manufacturer's



Cancers 2020, 12, 1981 4 of 14

workflow. The concentration of loaded libraries amounted to 10 pM. The sequencing experiment was 
performed with the MiSeq Reagent Kit v2 (300 cycles).

2.3. Data Processing

Results from each sample were mapped to the human reference genome GRCh37, also known as 
Human Genome version 19 (hg19), using the Burrows-W heeler Aligner (BWA-mem, version 0.7.5). 
Readings with a low mapping quality score, unmapped readings, and duplicates were filtered out with 
Samtools (version 0.1.19) [21]. The local realignment of readings around indels (insertion or deletion) 
and detection of systematic errors in base quality scores were performed with the Genome Analysis 
Toolkit (GATK) [22]. Readings mapped outside the target region were removed. Variant calling for 
germline SNPs and indels was performed with the GATK HaplotypeCaller tool [23]. The callsets of SNPs 
and small insertions and deletions were separated for further filtering. The hard filters applied to variant 
callsets were, for SNPs, QD < 2.0, MQ < 40.0, FS > 60.0, HaplotypeScore > 13.0, QRankSum < -12.5 , 
and ReadPosRankSum < -8 .0 , and for INDELs, QD < 2.0, ReadPosRankSum < -20 .0 , and FS > 200.0. 
Filtered variants were concatenated into one record (VCF file) and the discovered variants were then 
annotated with SnpEff (version 4.2) using GEMINI (GEnome MINIng 0.18.3) and loaded into the 
SQLite database [24].

2.4. In Silico Estimation o f  the Detected Variants

We attempted to provide an appropriate explanation for variants, which were prioritized as 
statistically significant for the age-dependent diversification of GC. There are several online annotations 
that provide variant interpretation, such as CADD and DANN scoring, FATHMM-XF, PROVEAN, 
and SIFT predictions, which are useful tools for estimating variants with a potentially high risk of GC 
development. Nevertheless, they also have several limitations. Firstly, factors of annotations differ in 
various aspects, from constitutions to functions. Secondly, each tool has a unique metric, which is hard 
to compare with the others. Thirdly, combined annotations might only deliver overlapping importance. 
In our study, we used the CADD scoring system, which is a framework employed for estimating the 
relative pathogenicity of human genetic variants, by incorporating multiple, different annotations into 
a single quantitative score.

3. Age-Dependent Genotypic and Phenotypic Characteristics of Gastric Cancer Subtypes

In the study cohort of 53 patients with GC, which included 18 cases with CGC and 35 with 
EOGC, we identified seven candidate genes for discriminating these two age-associated subtypes of 
GC (Table 1). Among them, we detected nine variants, which passed our selection criteria, including 
one splice_acceptor, four synonymous, and four missense variants. The frequency of each variant is 
presented in Table 1, separating EOGC and CGC groups, including the genotype, gene and chromosome 
location, type of alteration, and p-value (indicating the variant diversification among groups).

Three of the described variants were assigned to patients with the EOGC subtype. The missense 
variant (rs1799939) was found in the RET gene. The alteration frequency distribution among groups was, 
respectively, 46.2% of cases heterozygous for this variant in EOGC, 3.8% of EOGC cases homozygous 
for this variant, and 5.9% of CGC heterozygous for this variant. Interestingly, the homozygous missense 
variant (rs2959656) in the Menin 1 gene (MEN1) was observed in 100% of the EOGCs and 82.4% of CGC 
cases. The heterozygous variant was very rare, presenting in 5.9% of CGC subtypes. The synonymous 
variant rs55986963 was only detected in KIT Proto-Oncogene Receptor Kinase (KIT) in the heterozygous 
form in 20.6% of EOGC cases. In CGC cases, the frequency of the homozygous variant was 5.6%.
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Table 1. Candidate genes employed for age-dependent classification of gastric carcinoma.

Phenotype Genotype Reference Frequency p Value Chr Gene Variant Type dbSNP

CGC
EOGC

a *
a *

b *
b *

0.471
0.067 0.004 19 STK11 Splice_acceptor NA

CGC C/T C 0.313
CGC

EOGC
T/T
C/T

C
C

0.063
0.031

0.006 10 RET Synonymous rs1800862

EOGC T/T C 0.000
CGC

EOGC
C/T
C/T

C
C

0.389
0.059 0.009 14 FANCM M issense rs10138997

CGC G/A G 0.059
CGC

EOGC
A/A
G/A

G
G

0.000
0.462

0.010 10 RET M issense rs1799939

EOGC A/A G 0.038
CGC A/G A 0.353
CGC

EOGC
G/G
A/G

A
A

0.588
0.324

0.018 16 SLX4 Synonymous rs3810812

EOGC G/G A 0.265
CGC

EOGC
G/A
G/A

G
G

0.278
0.029 0.024 8 W RN M issense rs2230009

CGC T/C T 0.059
CGC

EOGC
C/C
T/C

T
T

0.824
0.000 0.041 11 MEN1 Missense rs2959656

EOGC C/C T 1.000
CGC A/G A 0.000
CGC

EOGC
G/G
A/G

A
A

0.056
0.206 0.052 4 KIT Synonymous rs55986963

EOGC G/G A 0.000
CGC G/A G 0.222
CGC

EOGC
A/A
G/A

G
G

0.000
0.029 0.054 16 SLX4 Synonymous rs28516461

EOGC A/A G 0.059

NA: not applicable. a * Sequence with deletion: GAGGTAGGCACGTGCTAGGGGGGGCCCTGGGGCGCCCCCTCCC 
GGGCACTCCCTGAGGGCTGCACGGCACCGCCAC/G. b * Reference sequence: GAGGTAGGCACGTGCTAG 
GGGGGGCCCTGGGGCGCCCCCTCCCGGGCACTCCCTGAGGGCTGCACGGCACCGCCAC/GAGGTAGGCA 
CGTGCTAGGGGGGGCCCTGGGGCGCCCCCTCCCGGGCACTCCCTGAGGGCTGCACGGCACCGCCAC.

In Silico Estimation

In our study, we used different scoring and prediction systems for the relative assessment of the 
variant pathogenicity of a particular variant. The results are shown in Table 2.

Table 2. Relative assessment of the variant pathogenicity.

dbSNP
CADD
Score

DANN
Score

FATHMM-XF
Prediction

SIFT
Prediction

PROVEAN
Prediction

gnomAD MAF 
(European Non-Finnish)

rs1800862 10.26 0.6808 Benign (high conf.) Tolerated Neutral 0.04899
rs10138997 14.99 0.9662 Benign Tolerated Neutral 0.05851
rs1799939 8.26 0.8595 Benign Tolerated Neutral 0.1847
rs3810812 1.21 0.3514 Benign (high conf.) Tolerated Neutral 0.5139
rs2230009 13.29 0.3339 Benign (high conf.) Tolerated Neutral 0.05857
rs2959656 11.00 0.5414 Benign (high conf.) Tolerated Neutral 0.9960

rs55986963 7.36 0.4165 Benign (high conf.) Tolerated Neutral 0.03027
rs28516461 0.14 0.8924 Benign (high conf.) Tolerated Neutral 0.01392

We defined variants with C-Score >10 (top 10% in the ranking for pathogenicity) as 10% of the 
most deleterious substitutions. This criterion was fulfilled by the following four variants: rs1800862, 
rs10138997, rs2230009, and rs2959656. In practice, we cannot define pathogenicity as "deleterious" 
by only employing the C-score, as functional and/or clinical evidence is mandatory to confirm 
pathogenicity. The gnomAD database displayed variants with different frequencies among populations. 
The variants with CADD score higher than 10 were distributed respectively: rs1800862 (MAF = 0.04899), 
rs10138997 (MAF = 0.05851), rs2230009 (MAF = 0.05857), and rs2959656 (MAF = 0.9960).
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4. High-Throughput Mutation Profiling Identifies the Most Frequent Mutations in EOGC and 
CGC Samples

In our cohort of 53 patients with GC, we identified 36 different variants, among 24 various 
genes, which are presented in Figure 1. Our selection criterion was the frequency of chos en variants 
among the analyzed group (both EOGC and CGC). The variants were selected based on the number 
of homozygous reference -variants in analyzed cases. We determined the range of 0 -5  numbers 
of homozygous reference variants in analyzed case s. We found 16 dffferent variants among genes 
which were present in 100% of the total cohort, as heterozygous or alternative homozygous variants: 
SDHB (rs2746462), ALK  (rs1670283), XPC  (rt2958057), RECQL4 (rs4925828; rsl0342077, rs398010167; 
rs2721f90), DDB2 (rs326212), MEN1 (rs540012), AIP  (rs4930199f, ATM  (rs659243), HNF1A ( r s l l (59305), 
BRCA2 (rs206075; r5169547), ERCC5 (rs9514066; rs9514067), and FANCI (rs7183618). Six variants 
with one or two hornozygous r-ference variants were detected in several genes: ALK  (rs4358080; 
rs2293564), APC frs459552), N4D1 (rs28580074), EGFR Vrs1140475), A1P (rs641081) and XPC (rs2228001), 
WRN  (rs1800389), RET  (rs1800861), MEN1 (rs2959656), RHBDF2 (rs37'44045), and ALK  (rs2246745). 
Two varianOs in genes— RET  (rs1800858) and PMS2 (rs2228006) were present among tlse lamples, 
with three homozygous reference variants. Two variants were detected with four references-in genes 
BRIP1 (rs4F86765) and TP53 (rs1042522). Genes PMS2 (fsl805319), FANCE (rs4713867), RET  (rs1800860), 
and CDH1 (rs1801552)—each with a variant showing five references among the analyzed samples.

SDHB 

rs2746462 

2% HET, 98% ALT
->

ALK 

rsl670283 

100% ALT
->

XPC  

rs2958057 

100% ALT
->

RECQL4 

rs4925828 

2% HET, 98% ALT
->

RECQL4 

r s l1342077, 
rs398010167 

100% DEL

->
RECQL4 

rs2721190 

2% HET, 98% ALT

. 1

DDB2 MEN1 AIP ATM HNF1A BRCA2

rs326212 rs540Q12 -> rs4930199 rs659243 ■> rsll69305 ■> rs206075

100% ALT 4% HET, 96% ALT 100% ALT 100% ALT 100% ALT 2% HET, 98% ALT

1V
BRCA2 £KCC5 ERCC5 FANCI ALK APC

rsl69547 -> rs9514066 rs9514067 rs7183618 -> rs4358080 ■> rs459552

2% HET, 98% ALT 100% ALT 100% ALT 4% HET, 96% ALT 24% HET, 76% ALT 29% HET, 71% ALT

1V
NSD1 EGFR AIP ALK XPC WRN

rs28580074 -> r s l l40475 rs641081 rs2293564 -> rs2228Q01 -> rsl8Q0389

30% HET, 70% ALT 30% HET, 70% ALT 10% HET, 90% ALT 20% HET, 80% ALT 47% HET, 53% ALT 48% HET, 52% ALT

v , 1V
RET MEN1 RHBDF2 ALK RET PMS2

rsl800861 rs2959656 rs3744045 rs2246745 rsl800858 rs2228006

46% HET, 54% ALT 2% HET, 98% ALT 16% HET, 84% ALT 30% HET, 70% ALT 57% HET, 43% ALT 26% HET, 74% ALT

v , 1V
BRIP1 TP53 PMS2 FANCE RET CDH1

154986765 rel042522 - > rsl805319 rs4713867 ■ > rsl800860 - > rsl801552

50% HET, 50% ALT 50% HET, 50% ALT 29% HET, 71% ALT 65% HET, 35% ALT 53% HET, 47% ALT 43% HET, 57% ALT

Figure 1. Variants in gene: detected ini gastric cancer samples (both early-onset gastric cancer (EOGC) 
and conventionnt gistric carcinoma (CGC)). HET: heterozygoue variont; ALT: alternative homozygous 
variant. Five colored boxes are displayed: blue: 100% percent of cases w ith the mentioned variant; 
orange: one reference homozygote in the analyzed cases; green: two reference homozygotes; yellow: 
three reference homozygotes; red: four reference homozygotes; gray: five reference homozygotes.

Among the thirty-six variants identified in our patient cohort, it is expected that sixteen of them 
(fifteen missense and one frameshift) will result in amino acid substitution (Table 3). Nine variants 
according to the CADD scoring system, with C-Score > 10, were described as 10% of the most deleterious 
substitutions and thus most likely affect gene or protein function. Twenty of the detected variants were 
synonymous substitutions in which the produced amino acid sequence was not modified.
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Table 3. In silico estimation of the variant's pathogenicity. NA: not applicable.

dbSNP Variant Type Chr Gene CADD Score 
(Scaled) DANN Score FATHMM-XF

Prediction
SIFT

Prediction
PROVEAN
Prediction

gnomAD MAF (European 
Non-Finnish)

rs2746462 Synonymous 1 SDHB 6.608 0.6939 Benign (high conf.) Tolerated Neutral 0.9724

rs1670283 Missense 2 ALK 0.648 0.5289 Benign (high conf.) Tolerated Neutral 0.9998

rs2958057 Synonymous 3 XPC 6.712 0.7056 Benign (high conf.) Tolerated Neutral 1.000

rs4925828 Synonymous 8 RECQL4 5.112 0.6599 Benign (high conf.) Tolerated NA 0.9994

rs11342077,
rs398010167 Frameshift 8 RECQL4 NA NA NA NA NA NA

rs2721190 Missense 8 RECQL4 5.653 0.4532 Benign Tolerated NA 0.9993

rs326212 Synonymous 11 DDB2 9.276 0.5475 Benign (high conf.) Tolerated Neutral 1.000

rs540012 Synonymous 11 MEN1 8.171 0.5409 Benign (high conf.) Tolerated Neutral 0.9999

rs4930199 Missense 11 AIP 15.65 0.7273 Benign Tolerated Neutral 1.000

rs659243 Missense 11 ATM 7.875 0.7855 Benign (high conf.) Tolerated Neutral 1.000

rs1169305 Missense 12 HNF1A 9.746 0.7163 Benign Tolerated Neutral 0.9998

rs206075 Synonymous 13 BRCA2 2.651 0.4723 Benign (high conf.) Tolerated Neutral 0.9996

rs169547 Missense 13 BRCA2 11.56 0.1694 Benign (high conf.) Tolerated Neutral 0.9997

rs9514066 Missense 13 ERCC5 21.0 0.9962 Benign
Tolerated,
Damaging

Neutral 1.000

rs9514067 Missense 13 ERCC5 1.290 0.6273 Benign Tolerated Neutral 0.9999

rs7183618 Synonymous 15 FANCI 3.241 0.4015 Benign (high conf.) Tolerated Neutral 0.9469

rs4358080 Synonymous 2 ALK 8.136 0.5627 Benign (high conf.) Tolerated Neutral 0.9086

rs459552 Missense 5 APC 18.00 0.8086 Benign (high conf.) Tolerated Neutral 0.7677

rs28580074 Synonymous 5 NSD1 5.986 0.7262 Benign (high conf.) Tolerated Neutral 0.8768

rs1140475 Synonymous 7 EGFR 6.939 0.4885 Benign (high conf.) Tolerated Neutral 0.8741

rs641081 Missense 11 AIP 4.743 0.6594 Benign Tolerated Neutral 0.9979

rs2293564 Synonymous 2 ALK 1.005 0.3863 Benign (high conf.) Tolerated Neutral 0.9187

rs2228001 Missense 3 XPC 17.09 0.9017 Benign Tolerated Neutral 0.5939

rs1800389 Synonymous 8 WRN 4.911 0.4329 Benign (high conf.) Tolerated Neutral 0.7031
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Table 3. Cont.

dbSNP Variant Type Chr Gene CADD Score 
(Scaled) DANN Score FATHMM-XF

Prediction
SIFT

Prediction
PROVEAN
Prediction

gnomAD MAF (European 
Non-Finnish)

rs1800861 Synonymous 10 RET 10.76 0.7308 Benign (high conf.) Tolerated Neutral 0.7668

rs2959656 Missense 11 MEN1 11.00 0.5414 Benign (high conf.) Tolerated Neutral 0.9960

rs3744045 Missense 17 RHBDF2 21.1 0.9951 Pathogenic
Tolerated,
Damaging

Neutral 0.9366

rs2246745 Synonymous 2 ALK 4.814 0.5041 Benign (high conf.) Tolerated Neutral 0.8143

rs1800858 Synonymous 10 RET 1.167 0.3128 Benign (high conf.) Tolerated Neutral 0.7384

rs2228006 Missense 7 PMS2 10.11 0.2203 Benign (high conf.) Tolerated Neutral 0.8501

rs4986765 Synonymous 17 BRIP1 9.957 0.6153 Benign (high conf.) Tolerated Neutral 0.6603

rs1042522 Missense 17 TP53 9.176 0.5704 Benign Tolerated Neutral 0.7366

rs1805319 Synonymous 7 PMS2 0.168 0.7105 Benign (high conf.) Tolerated Neutral 0.8160

rs4713867 Synonymous 6 FANCE 1.716 0.3909 Benign (high conf.) Tolerated Neutral 0.6747

rs1800860 Synonymous 10 RET 6.248 0.3745 Benign (high conf.) Tolerated Neutral 0.6900

rs1801552 Synonymous 16 CDH1 5.661 0.4494 Benign (high conf.) Tolerated Neutral 0.6252
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Nine of the mentioned variants with C-Score > 10 were sequences of nine different genes: 
AIP, BRCA2, ERCC5, APC, XPC, RET, MEN1, RHBDF2, and PMS2. These genes are known to have 
roles in different processes and syndromes, such as DNA damage responses, DNA repair, multiple 
endocrine neoplasia type 1 syndrome, the aryl hydrocarbon receptor pathway, the Wnt signaling 
pathway, and ERK signaling. All of the variants are listed in Table 3.

5. Discussion

GC is one of the most common cancers and one of the most frequent causes of cancer-related 
deaths [25]. The prognosis and 5-year survival rate of patients with GC are still very poor. NGS is a useful 
tool for revealing the mutation profiling, importance of early and late development, and genotypic and 
phenotypic classific ation o f GC. This technology helps to identify specific biomarkers, tumor suppressor 
genes, and carcinogens, as well as facilitate the understanding of mechanisms and affectod pathways 
of GC tumorigenesis [26]. Therefore, this might ee applied in the euture for early diagnosis or personal 
treatment by either determining the particular GC biomarker or a specific drug-resistant gene [2h]. 
Figure 2 summarizes the conclusions that can be drawn from the obtained results in the context of 
applying NGS studies as a useful tool for studying GC development in a high-throughput way.

t \
Cancer related 

processes

f \
Mutation
profilling f -------------\

Genotypic
and

phenotvpic
classification

Cancer 
predisposition 

syndromes

NGS Studies 
in Gastric 

Cancer

Early
detection

importance

Pathogenic
variants

M olecular
pathways

affected

Reveal the 
early  

diagnosis 
biomarkers

Figure 2. Next-generation sequencing (NGS) as a useful tool for studying the development of gastric 
carcinoma in a high-throughput ‘way?.

We used the high-throughput sequencing of GC patients to compare and characterize 
age-dependent genotypic and phenotypic characteristics of GC subtypes. Based en the results obtained 
in this study, we identified potentiol caadidate genes for distinguishing between EOGC and CGC. 
We were able to identify seven candidate genes, as well as nine variants, among them, which were 
statistically significantly different in these two eubgroups. Variants, including; rsl799939 (CADD = 8.2i,
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MAF = 0.1847, p = 0.010), rs2959656 (CADD = 11.00, MAF = 0.9960, p = 0.041), and rs55986963 
(CADD = 7.36, MAF = 0.03027, p = 0.052), were predominantly detected in EOGC patients. Interestingly, 
variant rs2959656 was found in 100% of cases of EOGC as homozygous. According to the NCBI ClinVar 
database, variant rs1799939 in the RET gene is associated with multiple endocrine neoplasia, hereditary 
cancer-predisposing syndrome, renal dysplasia, and pheochromocytoma. Activation of the RET 
proto-oncogene might constitute one of the molecular drivers of gastric inflammatory and neoplastic 
diseases [3] . Variant rs2959656 was detected in the MEN1 gene. Multiple Endocrine Neoplasia type 1 
(MEN1) is a rare hereditary endocrine cancer syndrome, mainly leading to tumors of the parathyroid 
glands, endocrine gastroenteropancreatic tract, and the anterior pituitary [28] . Other endocrine and 
non-endocrine neoplasms are also observed, including GC [29]. Variant rs55986963 in the KIT  gene, 
according to the NCBI ClinVar database, is associated with gastrointestinal stromal tumors (GISTs), 
mastocytosis, and partial albinism. Capelli et al. (2016) [30] also investigated exons 9 ,11,13 ,  and 17 of 
the KIT gene by direct sequencing and showed that KIT mutations were observed in 53.8% of patients 
with gastric GISTs. Besides, KIT deletions in exon 11, mostly those involving codons 557,558, and 559, 
were primarily associated with the more aggressive gastric GIST phenotype and a higher probability 
of death or relapse.

Variants that were most frequently detected among CGC included long deletion in the STK11 
gene (p = 0.004), rs1800862 (CADD = 10.26, MAF = 0.04899, p = 0.006), rs10138997 (CADD = 14.99, 
MAF = 0.05851, p = 0.009), rs3810812 (CADD = 1.21, MAF = 0.5139, p = 0.018), rs2230009 (CADD = 13.29, 
MAF = 0.05857, p = 0.024), and rs28516461 (CADD = 0.14, MAF = 0.01392, p = 0.054). Variant rs1800862 
(RET), according to NCBI ClinVar, is associated with multiple endocrine neoplasia, pheochromocytoma, 
and Hirschsprung disease, and is dominant. Variant rs10138997 (FANCM) and variants rs3810812 and 
rs28516461 (SLX4) are Fanconi anemia (FA) disease associated (NCBI ClinVar). The study performed 
by Swift et al. showed 102 deaths in relatives of eight FA families and a higher rate of leukemia and 
gastric, colorectal, and tongue cancer [31]. The variant rs2230009 (WRN) is associated with Werner 
syndrome (NCBI ClinVar). Patients with Werner syndrome present with an increased incidence of 
cancer, indicating that the lack of a proper WRN function affects tumorigenesis [32].

Our study of a cohort of 53 patients with GC allowed us to identify 36 different variants, 
among 24 various genes, which turned out to be the most probable genetic alterations, causing the 
development of GC. Importantly, we displayed 16 different variants that were detected in 100% of 
the total cohort. DNA damage appears to be the underlying cause of cancer [33] and deficiencies 
in DNA repair genes induce the development of different types of cancer [34]. If DNA repair is 
defective, DNA damage accumulates, increasing the number of mutations that occur due to error-prone 
translational synthesis, which consequently leads to the initiation of cancer development. Alterations in 
DNA double-strand break repair and DNA damage-response genes were detected in our study, such 
as variants rs2958057 (XPC); rs4925828, rs11342077, rs398010167 and rs2721190 (RECQL4); rs206075 
and rs169547 (BRCA2); rs659243 (ATM); rs326212 (DDB2); rs9514066 and rs9514067 (ERCC5). It has 
been shown in different studies that the response to DNA damage plays an important role in the 
pathobiology of GCs [35- 37]. The FA pathway constitutes a part of the DNA-damage network, 
including breast cancer-susceptibility proteins BRCA1 and BRCA2. The pathway is activated by ataxia 
telangiectasia and Rad3-related (ATR) kinase; however, the underlying mechanism remains unclear. 
A new study has demonstrated that the major switch activating the pathway is the ATR-dependent 
phosphorylation of FANCI [38]. Variant rs2746462 (SDHB) is related to paraganglioma and gastric 
stromal cell sarcoma, as well as the hereditary cancer-predisposing syndrome. Miettinen and Lasota 
(2014) described that approximately half of the patients with GISTs present SDH  subunit gene mutations, 
mostly germline, with both alleles being inactivated in the tumor cells [39]. Variant rs1670283 (ALK) is 
associated with the hereditary cancer-predisposing syndrome and neuroblastoma 3 (NCBI ClinVar). 
Variant rs1169305 (HNF1A) is assigned to maturity-onset diabetes of young type 3 (MODY3) and 
might also result in hepatic adenomas (NCBI ClinVar). Variant rs4930199 (AIP) is associated with the 
hereditary cancer-predisposing syndrome and familial isolated pituitary adenomas.
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Six of the variants with one and two homozygous reference variants were displayed in genes: 
ALK, APC, NSD1, EGFR, AIP  and XPC, WRN, RET, MEN1, RHBDF2, and ALK. Two variants in 
genes—RET  and PMS2—were detected with three homozygous reference variants. For BRIP1 and TP53 
genes, two variants were detected with four references. Genes PMS2, FANCE, RET, and CDH1— each 
with variants showing five references among the analyzed group. Variant rs459552 (APC) is associated 
with familial adenomatous polyposis 1 and hereditary cancer-predisposing syndrome. The APC 
mutation is involved in the carcinogenesis of the intestinal type of GC and related to the LOH pathway 
in GC [40]. Variant rs28580074 (NSD1) is prevalent in Weaver syndrome and Sotos syndrome according 
to NCBI ClinVar. Variant rs1140475 is present in EGFR. EGFR, HER2, and MET  signaling is important, 
especially in proximal non-diffuse tumors, and constitutes the logical targets for molecular therapy [41]. 
Variant rs3744045 in the RHBDF2 gene is associated with Howel-Evans syndrome. RHBDF2 seems 
to regulate oncogenic and non-canonical TGFB1 signaling. GC-associated fibroblasts increase their 
motility, via the expression of rhomboid 5 homolog 2, and the ability to induce the invasiveness of GC 
cells [42]. Variant rs2228006 (PMS2) is common for hereditary nonpolyposis colorectal cancer type 4 
and mismatch repair cancer syndrome. BRIP1 and variant rs4986765 are related to familial cancer of 
the breast, neoplasms of the ovary, hereditary cancer-predisposing syndrome, and Fanconi anemia, 
which is also associated with the variant rs4713867 (FANCE) gene. The TP53 alteration (rs1042522) 
is related to Li-Fraum eni syndrome and hereditary cancer-predisposing syndrome. Besides, p53 
alterations are displayed quite early in the development of GC, even being present in the non-neoplastic 
mucosa, and their incidence increases with the progression of GC [43]. Even though our study was 
limited due to a low number of samples, it provides a significant insight into genetic alterations that 
occur in GC, primarily EOGC and CGC. Further studies with larger groups of patients are needed, 
since the differences between EOGC and CGC cases may possibly be more significant.

6. Conclusions

We were able to compare the age-dependent genotypic and phenotypic profile of GC 
patients, focusing on the most frequent alterations in GC development, both EOGC and CGC, 
using high-throughput sequencing technology. We found variants among several genes, which might 
be considered for future studies on the early detection and diagnosis of GC. We displayed the processes 
and syndromes involved in EOGC and CGC development. Mutation prediction tools enable us to 
estimate potential candidate biomarkers with a pathogenic impact on disease development. This study 
primarily placed emphasis on EOGC development, which is less exposed to environmental factors and 
constitutes a good model for further studies on the genetic background of GC development.
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Abbreviations

CGC conventional gastric carcinoma
EOGC early-onset gastric cancer
FA Fanconi anemia
FFPE formalin-fixed paraffin-embedded
GC gastric cancer
GIST gastrointestinal stromal tumor
MEN1 multiple endocrine neoplasia type 1
NGS next-generation sequencing
SNPs single nucleotide polymorphisms
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