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Abstract
We developed a procedure for estimating competitive fitness by using 
Caenorhabditis elegans as a model organism and a Convolutional 
Neural Network (CNN) as a tool. Competitive fitness is usually the 
most informative fitness measure, and competitive fitness assays 
often rely on green fluorescent protein (GFP) marker strains. CNNs 
are a class of deep learning neural networks, which are well suited for 
image analysis and object classification. Our model analyses involved 
image classification of nematodes as wild-type vs. GFP-expressing, 
and counted both categories. The performance was analyzed with (i) 
precision and recall parameters, and (ii) comparison of the wild-type 
frequency calculated from the model against that obtained by visual 
scoring of the same images. The average precision and recall varied 
from 0.79 to 0.87 and from 0.84 to 0.92, respectively, depending on 
worm density in the images. Compared with manual counting, the 
model decreased counting time at least 20-fold while preventing 
human errors. Given the rapid development in the field of CNN, the 
model, which is fully available on GitHub, can be further optimized 
and adapted for other image-based uses.
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Fitness, the currency of natural selection, is a funda
mental concept in evolutionary biology. Estimating 
the relative fitness of different individuals and/
or populations is a key part of many evolutionary 
studies. Relative fitness strongly affects the extent 
to which evolutionary dynamics can be understood 
and predicted. Relative fitness can be calculated as 
competitive fitness when two or more genotypes are 
allowed to compete. However, direct competition 
between individuals or populations of interest (e.g., 
evolved vs. ancestral populations in experimental 
evolution studies) is often impractical because of the 
difficulty, or even impossibility, in distinguishing their 
progeny in the population. Thus, relative fitness is 
often assessed by competition between a population 
of interest and a common ‘tester’ strain with distinct 
morphology (reviewed in Teotónio et al., 2017).

Caenorhabditis nematodes are increasingly com
monly used models in evolutionary and ecological 
studies, which enable a wide array of questions 
to be answered (Gray and Cutter, 2014; Teotónio 
et al., 2017; Cutter et al., 2019). Manual methods 
of assessing the fitness of individuals or groups of 
animals (Estes and Lynch, 2003; Estes et al., 2004; 
Baer et al., 2005; Chelo, 2014; Fritzsche et al., 2014) 
are extremely time- and energy-consuming. Methods 
that allow for high-throughput fitness analysis and 
limit the potential for human bias are therefore 
strongly desirable. To date, automation of the 
counting process can be achieved in two ways, both 
of which are applicable to competitive fitness assays 
featuring fluorescently marked competitor strains. 
First, flow-based systems, called ‘worm sorters,’ are 
used to measure the length, fluorescence emission, 
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and optical density of worms suspended in a fluid 
(Crombie et al., 2018). The main drawback of such 
systems is the large initial investment. Another more 
financially accessible option is image analysis. Image 
analysis software tools can be used to avoid the need 
for manual worm counting, thus greatly increasing 
sample handling speed. Their advantage over worm 
sorters is the lower investment: to obtain pictures 
of animals, only a microscope with fluorescence 
emission and a camera are needed. Image-based 
analysis also allows for detection of more complex 
phenotypes than ‘worm sorters’ and for visual 
verification of the counting software’s performance.

Much progress has been made in this area 
since the publication of ‘toolbox for high-throughput 
C. elegans assays’ in a software program called 
CellProfiler (Wählby et al., 2013). Among other uses, 
this program can be applied to measure the relative 
fitness of Caenorhabditis worms in competition with 
a GFP (green fluorescent protein)-marked reference 
strain. In a recent study, Crombie et al. (2018) 
developed a protocol for assessing the competitive 
fitness of individual C. elegans hermaphrodites by 
using CellProfiler. In this procedure, one focal and one 
GFP hermaphrodite are kept together for 7 days to 
produce offspring. The resulting population is washed 
from the competition plate and, after several additional 
steps (see Crombie et al., 2018), is transferred into a 
96-well plate, of which two separate pictures (bright-
field and GFP fluorescence image) are taken. To 
count the number of animals, bright-field and GFP 
fluorescence images are compared by combining the 
images into one picture and scoring the fluorescing 
and non-fluorescing animals with CellProfiler (analysis 
of one image requires approximately 10-30 sec). 
However, in the time needed for the second picture 
to be taken, animals change their positions, and 
misalignment of the two pictures can cause incorrect 
scoring of animals. To avoid this problem, the 
movement of animals is hampered with levamisole, 
a nicotinic acetylcholine receptor antagonist causing 
paralysis followed by relaxation and death (Crombie 
et al., 2018). Even with levamisole, animals can still 
sometimes move. Additionally, the usage of drugs 
might influence several visible GFP nematodes if 
some animals die before the pictures are taken, 
because the expression of GFP is visible in only 
live animals. Another difficulty in using CellProfiler 
software is that it scores fragments of animals present 
at the picture edges. This becomes a problem when 
animals used in competitive fitness estimations 
express GFP in only one particular part of the body 
(e.g., the pharynx). Animals present on the image 
edges might be assigned to an incorrect category 

if only the non-glowing part of the animal is visible, 
thus causing a bias toward non-GFP animals. Finally, 
the competitive fitness assay protocol described by 
Crombie et al. (2018) would be problematic to use 
for the analysis of population-level fitness, in which a 
larger number of parents together with offspring would 
bias fitness analysis. To avoid this bias, the offspring 
generation must be separated from the parents; this 
can be achieved when the offspring are in the larval 
stage by sieving them through a filter that lets the 
larvae, but not the adults, though.

To further improve Caenorhabditis fitness analysis, 
here we present (i) a fitness assay protocol involving 
separation of parental and offspring generations and 
(ii) an open-source model for image analysis based 
on a convolutional neural network (CNN). Machine 
learning models are very convenient for image 
analysis because they can be trained on a sample 
of pictures to analyze images of interest with a high 
output rate. The concept of analyzing images with 
CNNs originated in 1968, when Hubel and Wiesel 
(1968) found that some neurons in the visual cortex in 
monkeys respond not to the whole visual field but only 
to its parts. In contrast to a fully connected artificial 
neural network, CNNs benefit from this observation 
and connect neurons of one layer to only part of 
the neurons available in the next layer. If a CNN is 
provided with an image input, the locally connected 
layers extract partial information about the analyzed 
image, which is further used to create an image-level 
generalization in the final fully connected layers. Over 
the past several years, the number of image analysis 
tasks in the field of biology that have been addressed 
with CNNs has increased. With an open-source CNN 
architecture, the application of a CNN to a given 
domain entails the following steps:

1.	 Preparation of data, in this case, images with 
marked positive examples; i.e., only objects of 
interest are highlighted. This process is often 
referred to as annotation of the data set and is 
often performed manually by specialists in the 
field. At this stage, exclusive parts of the data 
set, e.g., training and validation sets, can be 
defined.

2.	 Learning of the CNN model on the training part 
of the prepared data. The annotated images 
are fed as input into the CNN. The model at-
tempts to find values for millions of parameters 
of connections between layers of the neural 
network that will provide the desired previously  
annotated output. The trained parameters are 
often called weights. This learning process 
is time consuming and is often referred to as 
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training a CNN model. After this step, the mod-
el parameters are frozen and are no longer 
subject to change. The model is then ready to 
be deployed for classification.

3.	 Validation of the trained CNN. The trained mod-
el is asked to perform classification of images 
that were not presented to it during training. 
Predictions of the model regarding images are 
then compared with the annotations created in  
step 1. The differences between detected and 
annotated objects allow for computation of met-
rics that enable assessment of model quality.

Limited access to annotated, high-quality data are 
often described as a limitation for new applications of 
this machine learning technique. In the study of Yang et 
al. (2016), 393,703 annotated examples of human faces 
are available, thus demonstrating that vast amounts 
of data are required for a model to achieve high 
performance under various weather, light, color, object 
size and other image related conditions. However, 
when the domain of microscopic images is addressed, 
various studies (Gummeson et al., 2017; Wang et al., 
2019; Manda-Handzlik et al., 2020) have demonstrated 
that even small datasets can be sufficient for a CNN 
model to obtain high-quality results. Our work aligns 
with the aforementioned research and demonstrates 
that, in the replicable conditions of microscopic 
imaging, good performance with dramatically fewer 
annotated objects can be achieved.

Our model was trained to score worms at early 
(L1-L2) larval stages, categorizing them as fluorescent 
(GFP-expressing) vs. non-fluorescent (henceforth 
called GFP vs. non-GFP). As input, the model used 
pictures from a fluorescence microscope, with both 
fluorescent (GFP) and non-fluorescent (non-GFP) 
animals visible in the same picture (thus avoiding 
the need to take two separate pictures and hence 
all problems associated with animal misalignment 
and levamisole usage). Animals at the picture edges 
were omitted because they were not fully visible. 
The analyses (i.e., classification and counting by the 
model) required approximately 6 sec per picture, 
although this time would strongly depend on the 
computing machine.

The performance of the model was evaluated 
by (i) calculating recall and precision metrics and (ii) 
comparing the scores obtained by the model with 
those obtained by analyzing the same images by eye 
(henceforth called the ‘by eye’ method). Several errors 
and their types are additionally discussed. The model 
and training data set are fully available via GitHub and 
can be freely used as well as further improved upon 
and trained for other purposes.

Materials and methods

Developing and training the CNN model

A deep learning architecture based on CNN called 
Mask R-CNN (He et al., 2017) was chosen to address 
the problem of counting two classes of objects, 
namely GFP and non-GFP (focal) animals. The chosen 
architecture was previously implemented in Python 
and is published under an MIT license (Abdulla, 
2017). We adopted the version of the model using 
the ResNet-101 architecture, because it provides 
higher performance than the other possible choice, 
ResNet-50 (He et al., 2016).

To train the model, we created a dedicated data 
set of 1,024 × 819 px images with by-hand annotations 
of GFP and non-GFP animals. The data set consists 
of three parts:

1.	 Training set of images with worms annotat-
ed by rectangles, so called ‘bounding-boxes,’ 
with the use of labelImg (Tzutalin, 2015) soft-
ware. The annotations are provided in common 
Pascal VOC (Everingham et al., 2010) and MS 
COCO (Lin et al., 2014) formats.

2.	 Training set of images with worms annotated 
for the instance segmentation task (the bound-
aries of each worm were precisely marked) 
in VGG Image Annotator v. 2.0.2 (Dutta and 
Zisserman, 2019). These annotations are also 
provided as separate masks in.jpg files.

3.	 Validation set of images with worms annotated 
by bounding-boxes for the purpose of assess-
ing model quality.

The first bounding-box part of the training set 
consisted of 29 original images with 837 non-GFP 
and 401 GFP annotated animals. The second part of 
the training set contained 19 images with 501 non-
GFP and 334 GFP animals with precisely marked 
borders. The validation set of images prepared for 
assessment of model performance after training 
consisted of 30 images with 850 non-GFP and 507 
GFP animals. For all images, we decided not to label 
animals partially ‘cut’ by image borders, because 
GFP animals could potentially be misinterpreted as 
non-GFP because their fluorescent throats might not 
be present in the picture.

The CNN model was trained on a single GPU 
Tesla K80 12 GB RAM. We used transfer learning; 
i.e., our training procedure began not from randomly 
initialized model parameters but from ResNet-101 
weights trained previously on the MS-COCO dataset 
(Abdulla, 2017). This approach overcame the problem 
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of small training data sets and also greatly decreased 
training time. Our CNN model had more than 100 
neural layers (Abdulla, 2017), distinguished logical 
sub-entities of the whole model as ‘heads,’ ‘4 +,’ 
‘all,’ and consequently trained greater parts of the 
model before the final step of training all neural layers. 
Precise definitions of groups of model layers are 
provided in Abdulla (2017). In our experiments with 
that approach, the final training procedure required 
less than 24 hr and was performed in the following 
manner:

1.	 first training the model with use of the bound-
ing-box part of our data set for 50 epochs on 
‘heads’ model layers, for another 50 epochs on 
‘4 +’ layers and for the last 50 epochs on all lay-
ers; and

2.	 further training the model on our training data 
set with precisely annotated borders of animals 
for another 25 epochs on ‘heads’ layers, 25 
epochs on ‘4 +’ layers and 75 epochs on ‘all’ 
layers.

During both stages of training, we decided to 
artificially increase the number of training examples 
with so-called image augmentation, i.e., artificial 
modifications applied to original images. The rationale 
for this approach is that some conditions in which real 
objects might be visible in images are not represented 
in the original training data; therefore, artificially 
creating images with such conditions is beneficial. 
We decided to use affine transformations, because 
worms can be seen in various angular orientation, 
and to use some light-modifying effects to counter 
the problem of possible differences in light conditions 
of images taken at various times. For this purpose, 
we used image augmenters provided in Jung et al. 
(2020). The description of all model parameters 
adopted during training and later classification is 

provided along with the code at https://github.com/
krzysztoffiok/c_elegans_fitness.

When the trained CNN model is used for detection 
of objects in images, it first determines regions of 
interest, i.e., looks for regions in the entire image 
where potential objects appear. Second, in each 
region of interest, the model attends to classify the 
object by computing the probability that the given 
object belongs to the object class it was trained to 
detect. If, for a given object, the predefined threshold 
probability value is exceeded, the model returns 
information regarding the object, i.e., its class and 
location in the image. The model outputs a .csv 
file containing the name of the image with a size of 
classes (GFP and non-GFP animals) and pictures with 
precisely segmented animals, and an additional .csv  
file with their locations described by bounding boxes. 
Examples of obtained images with animals assigned 
to categories are shown in Figure 1.

After training, the CNN model was tested on the 
validation part of the data set to compute values of 
metrics from the image-analysis domain, i.e., the 
average precision and average recall, as proposed 
in The PASCAL Visual Object Classes Challenge 
(Everingham et al., 2010). Precision was defined as 
the sum of true positive predictions divided by the 
sum of all true positive and false positive predictions 
made by the model. The recall was considered the 
sum of true positive model predictions divided by the 
sum of animals that a human observer (JP) labeled as 
true positive. Because the aim of this image analysis 
was counting actual worms, a moderate level of 
correctness of localization of the worms found by the 
model was adopted; i.e., the threshold Intersection 
over Union (IoU) value was set to 0.5. For each worm, 
the IoU was defined as the intersection of the area 
marked by the human annotator and by the model, 
divided by the area of the union of these areas. To test 
whether the density of animals affected the function 

Figure 1: Images with GFP (yellow) and non-GFP (green) animals marked by the CNN model.
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of the model, we calculated the metrics separately for 
densities below and above 70 animals.

To gain further insight into the model’s per
formance, we used the concept of computing metrics 
for three groups of object sizes proposed in the MS-
COCO competition (Lin et al., 2014). The objects were 
divided into three size groups: smaller than 32 square 
pixels, between 32 and 96 square pixels, and larger 
than 96 square pixels.

Competitive fitness assays and their 
analysis with the model

C. elegans strain N2 with the fog-2 q71 mutation 
was used as a focal strain (henceforth called focal). 
A marker strain with bright GFP expression in the 
pharynx (created in our lab by introgressing the GFP 
allele from C. elegans strain PD4792 onto the genetic 
background of N2 strain) was used as a ‘tester’; 
henceforth called GFP. We set up competition 
experiments in which pre-defined (estimated, des
cribed below) numbers of focal and GFP worms 
were seeded on plates and allowed to reproduce. 
Subsequently, samples of their offspring, separated 
from the parental generation, were mounted on 
slides, and multiple non-overlapping pictures under 
fluorescence were taken from each slide and fed into 
the model, which scored focal and GFP worms visible 
in each picture. To assess the model performance 
over a wide range of ratios of focal: GFP individuals 
present in images, we used fitness assays with three 
treatments, each with a different proportion of focal 
individuals in the parental generations: 0.45, 0.60, 
and 0.75. This process resulted in estimated focal 
proportions in the offspring generation ranging from 
0.13 to 0.79 at the mixed population level, and from 0 
to 1 at the level of individual images.

Competitive fitness assay protocol

The 14 cm ø (diameter) agar plates with strains of 
interest (focal/GFP) were washed with 4 ml of S-Basal 
solution (Stiernagle, 2006). Animals suspended in liquid 
were placed on a nylon filter with 15 µm diameter mesh 
placed on top of a plastic vial. The filter let through L1 
and L2 larvae and was used to separate adult worms 
from their offspring. Larvae present in 2 to 3 drops of 
1 µl were counted. According to this count, the volume 
of liquid required to obtain a desirable population size 
was calculated. Three types of mixed populations were 
created, with estimated initial numbers of focal vs. GFP 
individuals of 900 vs. 1,100 (initial focal proportion 
0.45; 15 replicate mixed populations set up in this 
treatment), 1,200 vs. 800 (initial focal proportion 0.6; 15 

mixed populations), or 1,500 vs. 500 (focal proportion 
0.75; 25 mixed populations), respectively. Animals 
were placed on 6 cm ø Petri dishes and left for 3 days 
to mature and produce offspring.

After 3 days, the offspring at the L1/L2 stage 
were collected from the dish by washing worms off 
the agar with 1 ml S-Basal buffer and placing the 
resulting suspension on the 15 µm filter to sieve off 
the adults (parental generation). The filtered liquid 
was left for ~15 min to allow the larvae to settle at 
the bottom and was then transferred onto a glass 
slide (our laboratory setup required an additional 
transfer of 300 µl of the suspension into a smaller 
microcentrifuge tube; however, in other settings, this 
step may not be necessary). After transferring, a 5 µl 
droplet onto a glass slide, to reduce the animals’ 
mobility and maintain even focus, we gently placed a 
cover slide on the drop surface. From one glass slide, 
10 non-overlapping pictures were taken under 40× 
magnification with a Nikon Eclipse 80i microscope 
with a BV-1A filter combination (435/10 nm excitation 
filter, 470 nm barrier filter and dichromatic mirror value 
455 nm). Other settings of the microscope included 
shutter (opened) and contrast (maximum). The 
microscope was connected to a computer with a 
Nikon Digital Sight DS-U3 camera. The pictures were 
taken with NIS-Elements software with the following 
settings: filter turret: off (black and white pictures), 
exposure time: 30 ms, grain: 27.

Analyses of model performance

A total of 550 pictures (150, 150, and 250 from 0.45, 
0.6, and 0.75 initial focal proportion treatments, 
respectively), representing 55 mixed populations, 
were scored by both the model and a human 
observer. Visual counting by human observers was 
done in ImageJ, by marking animals with a multipoint 
tool. For each picture, the proportion of focal 
individuals relative to the total number of individuals 
present in the picture was calculated separately 
from data collected by the model and by eye. For 
each mixed population, the proportion of focal 
individuals was also calculated separately from data 
collected by the model and by eye; in each case, this 
process was performed by summing the numbers 
of focal and GFP individuals from all 10 pictures 
taken for the population and calculating the fraction 
of focals among all worms present. Proportion of 
focal individuals (out of the total sum of focal + GFP 
individuals) was used as a measure of fitness of the 
focal population, which is an approach commonly 
used in competitive fitness experiments (see e.g. 
Teotónio et al., 2012, 2017; Crombie et al., 2018).
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For each mixed population as well as each 
individual picture, we calculated the difference 
between the proportions of focal offspring on the 
basis of scoring by the model vs. by eye (henceforth 
called proportion difference). To evaluate what pro
perties of the pictures led to discrepancies between 
model vs. visual scores, we inspected 16 pictures that 
rendered the most extreme proportion differences 
(between −0.238 and −0.150, or between 0.200 and 
0.289, indicating the proportion of focals being lower 
or higher, respectively, when calculated from model-
scored in comparison to human-scored data), as well 
as eight pictures with no difference (cf. Supplement 
1). The inspection revealed that (i) large discrepancies 
between model vs. human scores were in fact due to 
model rather than human errors, and (ii) model errors 
were largely due to poor image illumination and/or 
strong clustering of animals.

To determine which types of errors the model is 
most vulnerable to and how the number of errors 
changes with the number of animals present in a 
picture (in which we expected a positive relationship, 
because clustering of animals should be more likely 
with their increasing density), we randomly selected 
60 pictures from one of the proportion treatments 
(proportion of focals in the parental generation=0.75) 
and performed a careful analysis. Different categories 
of outcomes were distinguished depending on 
whether the animal classifications were (i) classified 
correctly (i.e., GFP as GFP, focal as focal), (ii) classified 
incorrectly (GFP as focal or vice versa), (iii) counted 
twice, (iv) missed, or (v) falsely classified as animals. 
Scores from each outcome were regressed against 
the number of animals present in a picture with a 
linear regression model (lm function), performed 
in RStudio (R version 3.6.2; R Core Team, 2018); 
y = a + bx, where y is the count of the outcomes in 
question, x is the total number of animals present 
on picture (scored ‘by eye’), whereas a and b are 
regression coefficients estimated in the analysis.

Crucially, we asked to what extent the model 
errors might affect the results of fitness assays. 
Thus, we regressed the proportion difference agai
nst the proportion of focals calculated from data 
scored ‘by eye’, considering the latter to be our most 
reliable estimate of the true proportions of focals. 
Regressions were performed as described above but 
with proportion difference as the dependent (y) and 
proportion calculated based on scoring images ‘by eye’ 
as the predictor (x) variables. We ran these regressions, 
taking as data points the proportions and proportion 
differences scored from either (i) individual pictures or 
(ii) mixed populations (proportions estimated for each 
population according to the sample of pictures taken 
for these populations; see ‘Competitive fitness assay 
protocol’ section above).

Finally, variability of the two methods (model vs. 
manual) – the eye and model count was checked. 
To do this, the proportion of focal animals (p) in 
each mixed population was estimated as the sum 
of focal animals scored from 10 pictures taken for 
this population over the total sum of all (focal + GFP) 
animals scored from the same 10 pictures, and the 
variability of this estimate was calculated as the 
standard deviation of the 10 proportions scored for 
each of the 10 pictures. Subsequently, we compared 
both the proportions and the SDs between methods 
using the Wilcoxon paired difference test (since 
each population was scored using both methods). 
Additionally, we also checked for the relationship 
between the proportion estimate and its variability by 
regressing SDs against proportions, separately for 
each method.

Results

Evaluation of worm detection

Tables 1 and 2 show the values of model per
formance metrics on the validation set. Both precision 

Table 1. Performance metrics of the CNN model computed on the 
evaluation set for low and moderate animal densities (below 70).

Area

Metric Small Medium Large All

Average precision @ IoU = 0.50 No animals 0.870 0.883 0.872

Average recall @ IoU = 0.50 No animals 0.930 0.918 0.917
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Figure 2: (A) Correct detection of worms and the number of errors at increasing concentrations 
of animals, (B) Close-up of error types at increasing animal density.

Table 2. Performance metrics of the CNN model computed on the 
evaluation set for high animal densities (above 70).

Area

Metric Small Medium Large All

Average precision @ IoU = 0.50 No animals 0.784 0.810 0.787

Average recall @ IoU = 0.50 No animals 0.851 0.856 0.842

and recall parameters had higher values for smaller 
numbers of animals present in a picture.

The performance of the model was highly dependent 
on the lighting conditions. Therefore, in the protocol, 
we include the exact values of program parameters 
and microscope settings under which the model was 
‘taught’ to recognize individuals. We also include 
examples of pictures with proper and improper lightning 
and visibility of GFP nematodes (Supplement 1).

Types of error

As shown in Figure 2B, together with the increasing 
density of animals, the number of errors also slightly 
increased. This small increase was most likely due 
to the aggregation of animals at higher densities. 

Analyzed errors were divided into categories: counted 
twice, false, incorrect count, and lost animals 
(Fig. 2B; regression slopes: 0.0179, 0.0034, 0.0190, 
and 0.0469, with P values: 0.0063, 0.2378, 0.0005, 
and << 0.0001, respectively). The regression slope for 
the number of correctly identified animals was very 
close to, albeit significantly lower than 1 (Fig. 2A, 
b = 0.9341, SE = 0.0075), indicating that despite some 
errors, the model correctly recognized most animals 
across the range of densities, albeit the accuracy did 
deteriorate with increasing densities.

Accuracy of fitness estimates

At the level of individual pictures, regression 
analysis showed a significantly negative relationship 
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Figure 3: (A) Boxplot of the frequency of focal animals for the two methods, (B) Boxplot of the 
standard deviation of the proportion of focals for the two methods.

(b = −0.057, df = 548, P = 0.0002) between the pro
portion of focals calculated on the basis of scoring 
pictures by eye and the proportion difference, which 
was calculated by subtracting the proportion of focals 
calculated from ‘by eye’ scores from the analogous 
proportion calculated from model scores, and ranged 
from −0.238 to 0.289. The negative regression slope 
indicates that for smaller true proportions of focals 
(assessed by carefully scoring the pictures by eye), 
the model tends to produce an upward bias, whereas 
for higher true proportions it tends to produce a 
downward bias. When analyzed at the population 
level, the trend remained negative but became flatter 
and non-significant (b = −0.031, df = 53, P = 0.429).

Variability of two methods

Neither the average proportion of focals, nor its 
variability at the level of mixed populations (estimated 
by the SD of proportions scored from all images taken 
for each population) differed significantly between 
the two methods (Wilcoxon paired differences test; 
proportions: P = 0.7243, proportion SDs: P = 0.6582, 
cf. Fig. 3). Regression analyses performed separately 
for the two methods showed moderate relationship 
between proportion mean and SD (R2 of 0.141 and 
0.233 for the ‘by eye’ and model scoring, respectively) 
(Supplement 2).

Discussion

In evolutionary studies, competitive fitness assays are 
generally preferable to lifetime reproduction assays 
(Crombie et al., 2018). In competitive fitness assays 

of Caenorhabditis nematodes, animals of interest 
are placed with a competitor on an agar plate, and 
the proportion of offspring produced is calculated. 
To distinguish competitors from focal offspring, GFP 
marked nematodes are often used as the former (e.g., 
Teotónio et al., 2012; Palopoli et al., 2015, reviewed by 
Teotónio et al., 2017).

Here, we present a machine learning-based 
approach (along with the experimental protocol) for 
high-throughput analysis of competitive fitness in 
C. elegans. Beyond strictly practical applications, 
the additional aim of this study was to demonstrate 
the possibility and advantages of applying machine 
learning image analysis techniques in the analysis of 
the fitness of C. elegans.

The comparisons presented in the Results section 
show that for smaller true proportions of focal animals 
present in the pictures (which can have values from 0 
to 1), the model tends to bias this proportion upward, 
whereas for higher true proportions, it tends to produce 
a downward bias. This trend was highly significant 
(P = 0.0002), partly because of a large sample size (550 
pictures), yet not very steep (b = −0.057). Importantly, 
the trend became even less steep (b = −0.031) when 
entire population samples (10 pictures taken per 
population; see Methods) rather than individual pictures 
were used, emphasizing the importance of taking 
multiple images per experimental mixed population 
for obtaining reliable estimates. Furthermore, in 
actual fitness assays wherein the fitness of different 
treatment groups or strains is compared, such bias 
would actually increase conservatism, by making 
the detection of fitness differences between groups 
(slightly) more difficult.
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Advantages of the method

Compared with manual counting from images, using 
the model decreased the counting time at least 20-
fold (personal observations). The contrast would be 
even larger for manual counting with an aspirator, 
in which researchers may, in our experience, spend 
vast amounts of time searching for animals hidden in 
the agar, although in this comparison, the time spent 
preparing samples and taking pictures should also be 
considered. In our experience, this procedure requires 
approximately 50 min per 100 pictures, including all 
steps (along with washing animals through filters, 
which would be necessary regardless of the method 
of counting, as long as the experiment requires 
separating offspring from parental generation; see 
below).

Compared with previous automatization protocols 
using CellProfiler software (Crombie et al., 2018), 
our method offers several advantages. First, it 
does not require taking both bright-field and GFP 
fluorescence images from the same frame; instead, 
one picture is taken in which GFP animals are 
distinguished from non-GFP animals by the CNN 
algorithm. This procedure resolves the problem of 
misalignment of animals while also not requiring 
the usage of levamisole, which can affect animals’ 
mortality and hence GFP expression. Second, our 
experimental protocol separates offspring from the 
parental generation; this process is advantageous 
for population-level fitness assays, wherein large 
numbers of parents counted along with offspring 
could substantially bias fitness estimates. Third, the 
model can be trained for other purposes specific 
to other studies’ aims (it is fully available via GitHub 
[https://github.com/krzysztoffiok/c_elegans_fitness]).

Limitations of the method

For the purpose of C. elegans fitness analysis, we 
consider the model’s performance to be highly 
satisfactory; nevertheless, it did produce some errors. 
The main source of error was tangling of animals, which 
inhibits proper distinction among individuals. Tangling 
of worms has also been a major problem in previous 
approaches to image analysis for counting C. elegans 
(Wählby et al., 2013). This problem can be reduced 
if the densities of animals in the pictures are kept at 
moderate level. To maintain optimal density of animals 
in the pictures, during slide preparation, we recommend 
using an additional dilution (by adding S-Basal onto 
the surface) for slides with very high worm densities. 
Other problems include omitting some animals, and 
incorrect category assignment or double counting of 

one animal. In addition, sometimes GFP animals with 
weak fluorescence could be misinterpreted as non-
GFP. Therefore, during the procedure, keeping animals 
alive is extremely important, because dead individuals 
do not emit fluorescence. It is also important to 
emphasize that the model presented here was trained 
with images of C. elegans captured in precisely defined 
conditions; therefore, applying this model to analysis 
of images captured under different conditions, e.g., 
lighting conditions, would cause the model to work 
in an unpredictable manner. Consequently, proper 
illumination and visible contrast between GFP and non-
GFP individuals is crucial. If the lightning conditions are 
as described in this paper, there should be no need 
for further model training before analysis. However, any 
changes in illumination settings or magnification would 
require further development and implementation of the 
new training set.

In summary, given the rapid development of the 
field of CNN, the model’s performance could be 
further optimized to achieve even better performance. 
With further development, application of deep 
learning algorithms could allow this model to be 
extended to other fields of the biology of C. elegans 
(or other animals). CNN analysis has found a broad 
range of applications, and it is a powerful tool in image 
analysis. Despite the described errors, the obtained 
method provides a good estimate of competitive 
fitness. It can be effectively used to increase the 
efficacy of fitness estimations, as compared with that 
of manual counting.
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Figure S1: Pictures that rendered: the most extreme proportion differences (+) on the first panel, 
the most extreme proportion differences (−) second panel, no difference on the last panel.
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Figure S2: Variability of measures of competitive fitness. Plots of measures of variability (y-axis) 
vs. measures of competitive fitness (x-axis). Panel A show the plots for the model, while panel B, 
for the plots for count ‘by eye’. Panels show the frequency of the focal animals as the measure 
of competitive fitness.


