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Abstract

The misfolding avoidance hypothesis postulates that sequence mutations render proteins cytotoxic and therefore the higher the

gene expression, the stronger the operation of selection against substitutions. This translates into prediction that relative toxicity of

extantproteins is higher for thoseevolving faster. In thepresent experiment, we selectedpairs of yeastgeneswhich wereparalogous

but evolving at different rates. We expressed them artificially to high levels. We expected that toxicity would be higher for ones

bearing more mutations, especially that overcrowding should rather exacerbate than reverse the already existing differences in

misfoldingrates.Wedidfindthat theappliedmodeofoverexpressioncausedaconsiderabledecrease infitnessandthat thedecrease

was proportional to the amount of excessive protein. However, it was not higher for proteins which are normally expressed at lower

levels (and have less conserved sequence). This result was obtained consistently, regardless whether the rate of growth or ability to

compete in common cultures was used as a proxy for fitness. In additional experiments, we applied factors that reduce accuracy of

translation or enhance structural instability of proteins. It did not change a consistent pattern of independence between the fitness

cost caused by overexpression of a protein and the rate of its sequence evolution.
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Introduction

The rate of molecular evolution—defined as the number of

fixed mutations per unit of time per site, over a stretch of

DNA—differs between genes by orders of magnitude

(Zuckerkandl and Pauling 1965; Koonin and Wolf 2010). It

seemed natural to expect that genes which continue to main-

tain the same and indispensable functions should be among

those most conserved as their roles appear fixed. On the con-

trary, selection would rather guard them against even minor

drops in functional efficiency following amino acid substitu-

tions (Kimura and Ohta 1974; Hurst and Smith 1999).

However, as subsequent and increasingly abundant data

have revealed, the DNA sequence is most conserved not

when a gene is important (essential for viability) but abun-

dantly expressed (even if functionally compensable by another

gene) (P�al et al. 2001, 2003; Rocha and Danchin 2004;

Subramanian and Kumar 2004). The pattern is so clear and

universal that it is likely grounded in some elementary con-

straints at the level of molecules. Specific hypotheses building

on this premise have been fully reviewed elsewhere (P�al et al.

2006; Rocha 2006; Drummond and Wilke 2009; Zhang and

Yang 2015; Echave et al. 2016; Echave and Wilke 2017). Of

two chief explanations, one says that proteins which are

needed at highest levels drain highest amounts of resources

and therefore are under strongest selection to be functional

and thus avoid the cost of resource misuse (Cherry 2010;

Gout et al. 2010). The other posits that most abundant pro-

teins are most efficiently conserved by selection because they

would turn into highest amounts of toxic polypeptides if

destabilized (Drummond et al. 2005; Yang et al. 2010).

Both mechanisms appear plausible and may coexist. The pre-

sent work focuses on the latter because experimental material

was chosen in such a way that the compared groups of pro-

teins were equally costly in terms of resource expenditure but

potentially different in terms of toxicity.

Former tests of the outlined hypotheses have been typically

indirect and comparative. The action of natural selection has

not been demonstrated but only inferred from observed
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correlations between genes’ evolutionary rates and properties

of their products. Direct tests would require to measure how

differences in DNA sequences translate into differences in

fitness under different levels of expression. However,

genomes consist of thousands of genes each being responsi-

ble for only a small fraction of macromolecules present in a

cell. Individual contributions of single genes to the cost of

metabolism are therefore small, and any variation in these

contributions caused by mutations must be also small. Even

small differences in fitness do not escape operation of natural

selection in large populations over long time periods (Lanfear

et al. 2014) but are far from being detectable experimentally

with currently available fitness assays (Blomberg 2011).

One potential remedy would be to overproduce gene var-

iants so abundantly that any difference in fitness cost be-

tween them would increase sufficiently to make it

detectable. Admittedly, superfluous protein is not just passive

burden; it can deregulate the cell in an often unpredictable

way. This problem would be circumvented if proteins under

comparison were similar to each other in terms of function

and structure. Then, not only the “material” but also

“functional” costs of overexpression should be similar. On

this background, an important difference could be the ten-

dency to get destabilized, and then likely misfolded and ag-

gregated, because this would change overproduced

molecules from waste to toxin (Geiler-Samerotte et al.

2011; Farkas et al. 2018). This “toxicity” cost is, at least partly,

uniform in its nature for many different proteins because

aggregates of any polypeptides tend to interact with hydro-

phobic regions of other proteins and membranes in a gener-

ally similar way (Dobson 2003). Importantly, the cost of

toxicity can increase or decrease substantially in response to

even small alterations of amino acid sequence (Tomala et al.

2014). It is also unlikely that relative (in)stability of proteins will

be reversed under overexpression, that is, those of them

which tend to be more unstable when expressed at native

levels will most likely remain such when overexpressed. We

therefore assume that overexpression could be effective in

revealing differences in toxicity due to increased instability

of mistranslated chains (Drummond et al. 2005; Drummond

and Wilke 2008) as well as due to normal instability of cor-

rectly synthesized ones (Yang et al. 2010). In fact, misfolding

may be not necessary here. Overexpression could also amplify

the negative effects of within-cell misinteractions of natively

and stably folded proteins. It has been proposed that more

abundant proteins evolve at lower rates because they are se-

lected more intensely against inflicting such interactions

(Yang et al. 2012). Therefore, we will use the term “toxicity”

in a broad sense, meaning all possible negative consequences

of the very presence of a protein in the cell.

Genes that are similar to each other in terms of sequence

and function can be found among paralogs. In yeast, there

are hundreds of paralogous gene pairs descending from a

single whole-genome duplication. Pairs of paralogs often

evolve at different rates and the more conserved ones are

typically expressed at higher levels. This in itself has been

regarded as evidence that more abundant proteins are

more strictly policed by natural selection to maintain them

more stable and therefore less toxic (Drummond et al.

2005). However, the critical link, lower toxicity of slow-

evolving proteins, has been only postulated. In the present

experiment, we overexpressed both slow- and fast-evolving

paralogs to levels much higher than those seen under normal

conditions. To boost potential differences in toxicity, we

added compounds known to lower the accuracy of transla-

tion or stability of mature proteins. We then compared the

fitness effect of overexpression of the slow- and fast-evolving

paralogs by measuring their rate of growth and by directly

competing them in pairs. We were able to demonstrate that

the applied here overexpression was abundant and clearly

damaging to fitness. However, the slow-evolving proteins

were not less toxic than the fast-evolving ones.

Materials and Methods

Media, Strains, and Plasmids

Standard media, lysogeny broth for bacteria and synthetic

complete (SC) for yeast, were used. Thorough the experi-

ment, SC with glucose was used as repressing medium, SC

with raffinose served to derepress the GAL1 promoter, and

SC with rafinose and galactose was used to induce high ex-

pression of the cloned genes (Gelperin et al. 2005). The last

medium served for fitness assays and, when needed, could be

supplemented with 500mg/ml azetidine-2-carboxylic acid

(AZC), 200mM paromomycin, or 5% ethanol. Cultures were

grown in standard flat-bottom 96-well titration plates con-

taining 150-ml aliquots of media and incubated without agi-

tation at 30 �C (or 37 �C when specified).

We started our work with the MORF collection of single

yeast open reading frames, each fused to an inducible pro-

moter PGAL1 and C-terminus fused affinity tag His6-HA-ZZ.

The constructs were cloned into a 2-lm plasmid containing

the URA3 marker and hosted by a haploid yeast strain Y258,

MATa pep4-3 his4-580 ura3-52 leu2-3 (Gelperin et al. 2005)

derived from the S288c background (http://dharmacon.geli-

fesciences.com/resources/faqs/y258-used-yeast-orf-collection-

derived-s288c). Of this collection, we selected 788 single

strains, or 394 pairs, with cloned paralogous genes.

Plasmids were extracted from them and used to transform

Escherichia coli DH5a. Plasmids isolated from the resulting

bacterial cultures were used to transform the

Saccharomyces cerevisiae BY4741 strain, MATa his3 leu2

ura3. Due to discovered errors and omission in the plasmid

collection and repeated failures in transformations of individ-

ual genes, the final BY4741 collection contained 311 com-

plete pairs of paralogous genes. These strains were stored at

�70 �C as 200-ml aliquots with 15% glycerol added and
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arrayed in titration plates. They were thawed and transferred

with 96-pin replicator into fresh media to initiate every indi-

vidual replicate of every experiment.

Measurements of Maximum Growth Rate

Samples of thawed strains were pinned into 150-ml aliquots of

SC with 2% glucose and without uracil. After 24 h of incu-

bation, 3ml of the resulting cultures were transferred to 147ml

of SC with 2% raffinose and no uracil. After 48 h, 4.5-ml

aliquots were transferred to 145.5ml of SC lacking uracil

but with both 2% raffinose and 2% galactose. Cultures ini-

tiated in this way were subject to periodic measurements of

optical density every 1.5 h (absorbance of k¼ 620 nm). Prior

to each measurements, titration plates containing microcul-

tures were agitated at 1,000 rpm for 2 min. Inspection of

growth curves obtained in this way showed that growth

was exponential within the range of OD 0.12–0.40 and there-

fore only such measurements were used to calculate the max-

imum growth rate (MGR) as regression of ln(OD) over time.

Each strain was assayed twice in every environment. A few

single estimates of regression were discarded as potentially

erroneous but only when the associated with them squared

Pearson’s correlation coefficients exceeded 0.98. Only a few

individual estimates of MGR were higher than MGRmax ¼
0.32 (1/h), the rate of growth unaffected by overexpression

(consult fig. 2). They were regarded random effects and not

removed from analyses.

Competition Experiments

Strains were thawed and brought to overnight stationary

state cultures in SC without. From these, 311 cultures con-

sisting of two paralogs in about equal numbers were com-

posed. These paired cultures were transferred to fresh SC with

raffinose and without uracil (5–145ml) for 48 h. Samples of

the resulting cultures were saved as initial mixes od compet-

itors, other samples, whereas other samples, 5ml, were trans-

ferred to 145ml of test media (containing raffinose and

galactose and supplemented as required). Samples of the

resulting cultures were saved as final mixes of competitors.

The stored samples of paired competitors (50ml of each) were

then gathered into ten pools and each pool subject to whole

DNA extraction and then amplification of ORFs with common

primers. Each of the ten groups contained cloned genes of

similar length in order to minimize distortion of genes’ relative

numbers at the time of polymerase chain reaction. Amplified

DNA was fragmented and subject to NGS. Counts of identi-

fied gene fragments were used to estimate frequencies of

competitors.

Protein Assays

Strains were transferred through media based on glucose,

raffinose, and raffinose with galactose in the way described

above. In the last medium, cells were harvested after 24 h of

incubation, washed with ice cold water, and frozen. To start

protein extraction, the cells were beaten with glass beads in

100ll of lysis buffer (50 mM Tris–HCl, pH 7.5, 0.5% SDS,

0.1 mM ethylenediaminetetraacetic acid, and protease inhib-

itors) for about 1 h at 4 �C. Afterward, cell remnants were

spun down and supernatant was collected. Total protein con-

tent was determined using a protocol developed in our earlier

work (Tomala and Korona 2013). In short, proteins overex-

pressed from the MORF plasmids were tagged with the ZZ

domain of the protein A. ELISA plates were coated with nor-

mal rabbit serum. Each strain lysate was mixed with equal

amounts of protein A conjugated with HRP. During the assay,

tags of the overproduced proteins and those of HRP-A con-

jugate competed for the Fc fragments of nonspecific antibod-

ies from rabbit serum. Therefore, obtained for different

proteins signal intensities were stronger for those less abun-

dant. To convert those signals into the number of tags, we

prepared a calibration curve for a purified tagged protein

from the same MORF collection. Resulting values were multi-

plied by respective molar masses to obtain the mass of over-

produced protein. The latter was then divided by the mass of

total protein obtained for every tested strain in a BCA assay.

This produced the final overexpression level (OL) estimates

reported in the Results.

Results

Induced Overexpression of Paralogs

We started with the MORF collection of plasmids each con-

taining a single yeast gene cloned after a promoter inducible

by galactose. All plasmids were hosted by the same Y258

yeast strain. This strain has been previously used to estimate

the fitness effect of gene overexpression applying methods

that were either qualitative (Gelperin et al. 2005; Vavouri et al.

2009) or quantitative in intention but not sufficiently precise

in execution and interpretation (Tomala and Korona 2013). In

the present research, we planned to get as exact as possible

estimates of two clearly defined traits: the MGR of individual

strains and their competitive ability in direct confrontations.

The Y258 strain proved unsuitable for this purpose. A major

problem was poor and nonreproducible growth in media re-

quired to prepare and then induce overexpression. We there-

fore moved the plasmids into a BY strain which grew more

robustly and steadily for a large majority of cloned genes. The

new collection totaled 311 complete pairs of paralogous yeast

genes (supplementary table 1, Supplementary Material

online).

We then asked how suitable is this particular set of strains

for the planned tests. First, we obtained a measure of relative

evolution rate, ER, calculated here as a proportion of substi-

tutions in every Saccharomyces cerevisiae gene aligned with

its closest homolog in Kluyveromyces waltii (supplementary
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table 2, Supplementary Material online). We then asked

whether these estimates correlate with estimates of native

cellular protein content as listed in a data set integrating

results of multiple previous gene expression studies (Wang

et al. 2015). The expected negative correlation was manifestly

present: Pearson’s r ¼ �0.684; t ¼ �23.272; df ¼ 616,

P� 0.0001 (supplementary fig. 1, Supplementary Material

online).

Another assumption of this work was that overexpression

could be made abundant to a point where the load of super-

fluous polypeptides had a negative impact on fitness. We

measured the level of overexpression and the MGR of over-

expressing strains in our basic overexpression medium (galac-

tose only). Figure 1A shows that overproduced proteins were

abundant, up to several percent of the total cellular protein

content. There was also a significant negative correlation be-

tween the OL and MGR indicating that the very amount of

overproduced protein had substantial effects on fitness.

Figure 1B demonstrates that the induced expression of the

slow- and fast-evolving genes within pairs tended to resemble

each other as correlation between them was evident.

However, the variation within pairs was nontrivial (fig. 1B).

Therefore, the following analyses of the fitness effects of over-

expression will take into account both the potential toxicity

(predicted from the rate of evolutionary change) and the

amount of superfluous protein.

Rate of Evolution and Growth Effect of Overexpression

Supplementary figure 2, Supplementary Material online,

shows that correlation between replicate MGR estimates

was high but only when overexpression was activated, verify-

ing the expectation that fitness was determined by the over-

expressing plasmid and not its host. Replicate estimates of the

OL were also well correlated (supplementary fig. 3,

Supplementary Material online). Strain’s means of both meas-

ures are used in the following statistical tests. (Individual

MGRs and OLs are listed in supplementary tables 3 and 4,

Supplementary Material online.) With these data, we could

calculate the unit effect (UE) of protein overexpression for

every fast (F) and slow (S) paralog within each pair. This was

done by subtracting the measured MGR from MGRmax (unaf-

fected by overexpression) and dividing it by the overproduc-

tion level: UE ¼ (MGRmax �MGR)/OL. It was then possible to

test the toxicity hypothesis: the larger the difference in the ER

(ERF � ERS), the larger the difference in the damaging effect

of the compared paralogs (UEF� UES). Figure 2 demonstrates

that this prediction was not met: there was no significant

association between UEF � UES and ERF � ERS. The result

was the same in the plain overexpression medium (galactose

only) and in four additional, independently tested, environ-

ments: galactose together with two factors depressing accu-

racy of translation (AZC or paromomycin) and two other ones

promoting misfolding of polypeptides (heat stress at 37 �C or

addition of ethanol). Thus, environmental conditions which

were meant to increase the fitness cost of harboring excessive

protein did not change the pattern of independence between

toxicity and evolutionary rate.

In an alternative analysis, we did not calculate the UE of

overexpression from estimates of the MGR and OL but kept

the two latter separate. That is, we asked in a multiple regres-

sion analysis whether the between paralog divergence in

growth rate (MGRS � MGRF) was explained by (OLS � OLF)

or (ERF � ERS). Results for all tested environments are sum-

marized in supplementary table 5, Supplementary Material

online. They clearly point to the overproduction level and

not the rate of evolution, confirming conclusions derived

from former tests.

The fact that the additional media did not change the

overall result does not mean that they had no effect. In the

basic test environment, an average MGR of all overexpressing

strains was 0.22106 0.0063 (1/h) (mean and 99% confi-

dence interval). Growth was always slowed down under

stress, that is, after addition of AZC (0.20986 0.0076), etha-

nol (0.17576 0.0052), and paromomycin (0.17816 0.0060)

or shift from 30 to 37 �C (0.19006 0.0069). Importantly, the

observed downward shift was largely parallel for individual

strains. We saw this when we compared the fitness distance

between paralogs, MGRS � MGRF, across environments. Of

all possible ten pairwise correlations between five environ-

ments, the lowest Pearson’s r was 0.625 and the highest

0.808; of the associated P values, the highest was 10�31.

Thus, the impact of additional factors was to decrease the

rate of growth in a mostly uniform way and not to introduce

significantly new patterns of variation.

Competitive Ability of the Slow- and Fast-Evolving Paralogs
under Overexpression

We then tested every pair of paralogs in competition, that is,

direct confrontation in a shared batch culture. It tested not

only the maximum rate but also other traits, such as time

FIG. 1.—Cellular level of protein overexpression. (A) Pearson’s corre-

lation coefficient between the single-gene OL (% of total cellular protein)

and MGR of an overexpressing strain. (B) Pearson’s correlation coefficient

between protein level of S(low)- and F(ast)-evolving genes within pairs of

paralogs.
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needed to leave the lag phase. The effect of competition was

measured by estimating the change in relative abundance of

competitors, slow- and fast-evolving paralogs (S and F), in

both the basic test environment (galactose) as well as modi-

fied ones (galactose plus AZC, ethanol or 37 �C). Counts of NS

and NF were obtained by polymerase chain reaction amplifi-

cation followed by identification of the resulting fragments by

NGS and are listed in supplementary table 6, Supplementary

Material online.

We estimated log-ratios of paralogous pairs, ln(NS/NF), at

the beginning of growth in the galactose-based medium and

its end, that is, after about 6.6 generations (cell division) of

competition. Figure 3 shows that strains with slow-evolving

paralogs had no visible competitive advantage over those

with fast-evolving ones, that is, Dln(NS/NF) did not increase

positively with ERF � ERS in any of the four applied test

environments. We then asked whether the result would

change if not only differences in the evolutionary distance

but also expression level between paralogs were accounted

for (multiple regression). Note that, unlike MGR, Dln(NS/NF) is

a measure of fitness tied to both compared strains and there-

fore any adjustments for the unequal OL of superfluous pro-

tein cannot be done for individual strains. We applied either

the ratio OLS/OLF or difference OLS � OLF as an explaining

variable but none of them yielded statistically significant

results (supplementary table 7, Supplementary Material

online).

We then compared the effect of competition, Dln(NS/NF),

across four test environments and found that individual pairs

of paralogs behaved similarly in all of them. Of all possible six

pairwise correlations between four environments, the lowest

Pearson’s r was 0.685 and the highest 0.888; of the

FIG. 2.—The relation between the difference in the rate of molecular evolution within a pair of paralog genes and the difference in the toxicity of

proteins overproduced from them. The within-pair difference in the ER is shown as transformed to ln[1þ100(ERF� ERS)]. The UE of protein overexpression is

calculated as the decrease in the MGR divided by the OL defined as percent of the total cellular protein. r stands for Pearson’s correlation coefficient.
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associated P values, the highest was on the order of 10�44.

This high uniformity of results highlights three points. First,

our estimates of competitive ability came out repeatable, and

thus reliable, even though estimation of frequencies of com-

petitors was done through massive amplification and se-

quencing which are both prone to errors. Second, the

impact of overexpression on competitive ability did not corre-

late with the rate of molecular evolution of the overexpressed

protein. The third conclusion is that the impact of chemicals

added to destabilize proteins was not higher for those fast

evolving.

Finally, we asked whether the two applied here proxies for

fitness, growth rate and competitive ability, yielded consistent

results. MGRS � MGRF averaged over five test environments

correlated positively with Dln(NS/NF) averaged over four test

environments: Pearson’s r¼ 0.248, t¼ 4.478, P¼ 1.06E-05.

A likely explanation for the relatively modest correlation is that

the outcome of competition is only partly determined by the

rate of growth while the length of lag is also important. The

latter was apparently not tied to the former and, more impor-

tantly, did not introduce any systematic difference between

the slow- and fast-evolving paralogs.

Discussion

Our first finding was that gene overexpression affected fitness

negatively and that this negative effect increased with the

amount of overexpressed protein. This general trend was

accompanied by substantial variation in individual cases but

it has been already reported that the response of fitness to

protein overproduction can be remarkably heterogeneous

(Keren et al. 2016). Our main question was more specific: Is

the burden of overexpression lower for proteins which are

under more intense purifying selection? We compared fitness

of slow- and fast-evolving genes within pairs of paralogs. We

applied abundant overexpression and conditions promoting

misfolding. Nevertheless, we saw no indications that the fast-

evolving proteins tended to be more harmful than slow-

evolving ones.

The hypotheses invoking misfolding toxicity are founded

on the observation that a relatively large fraction of mutations

destabilize protein structures (Pakula and Sauer 1989;

Chakshusmathi et al. 2004). But, how much is this true for

the substitutions which actually reside in the coding sequen-

ces of existing genes (Wang and Moult 2001)? More specif-

ically, do the destabilizing mutations constitute a sizable

portion of the “excess” substitutions present in the fast-

evolving genes? Our experiment failed to provide a positive

answer. Interestingly, a similar conclusion emerges from an-

other recent study in which entirely different experimental

approach was applied. Proteomes of four species were

assayed for melting temperatures of individual proteins

in vivo (Leuenberger et al. 2017). As it has turned out, highly

expressed proteins do not tend to have higher melting tem-

peratures and thus are not less likely to get destabilized. If so,

misfolding toxicity is unlikely to constrain protein ER (Plata and

FIG. 3.—The relation between the difference in the rate of molecular evolution within a pair of paralog genes and the result of competition under

overexpression. The within-pair difference in the ER is shown as transformed to ln[1þ100(ERF� ERS)]. The effect of competition is shown as a change in the

log-ratio of relative abundance over a period of common growth. r stands for Pearson’s correlation coefficient.
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Vitkup 2018). In response to this claim, it has been pointed

out that melting temperature does not relate very well to

energy of (un)folding which is a standard measure of stability

in vitro and that the measurements of melting temperature

may be not sufficiently accurate when applied simultaneously

to all proteins of a living cell (Razban 2019). Nevertheless, we

think that the lack of correlation between melting tempera-

ture and protein abundance is much telling. First, in vitro

measurements of the folding energy of a purified protein

can well be superior to in vivo measurements of the melting

temperature in terms of precision and conceptual clarity.

However, this does not necessarily make them more relevant

to assess cytotoxicity, that is, an improper behavior toward

other macromolecules in the crowded cell interior. Second,

the use of an imperfect measure should decrease any corre-

lation, but not destroy it. The absence of any detectable cor-

relation with a sample size in the thousands and a wide range

of protein abundance is a point against the misfolding toxicity

hypothesis. We suggest that there is potentially more ques-

tionable aspect of the discussed study: It measures protein

stability (melting temperature) but not toxicity (negative fit-

ness effect). One might argue that this compromises its rele-

vance because even if fast-evolving proteins do not misfold

more frequently they can be more damaging to fitness after

misfolding. Our experiments address this variant of the pro-

tein toxicity hypothesis as well, and find that it, too, is not

empirically supported. In this way, the two experiments com-

plement each other in providing negative evidence for the

hypotheses linking the rate of sequence evolution with the

toxicity constraint.

The fact that some proteins evolve fast whereas others

evolve slow is not an evolutionary enigma of ancient origin

which can be studied only by comparison and speculation.

The pattern of negative rate-expression correlation is seen not

only when evolutionary distant organisms are involved but

also when analyses are restricted to individuals of a single

species (Marek and Tomala 2018). Thus, it must be constantly

recreated by regularly operating mechanism(s) which will be

eventually identified. The search promises to be engaging as

the arguably most prominent of current hypotheses, those

invoking protein toxicity constraint, do no find support in ini-

tial experimental tests.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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