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The concept of the Wigner function is used to construct a semi-classical kinetic theory describing 
the evolution of the axial current phase-space density of spin-1/2 particles in the relaxation time 
approximation. The resulting approach can be used to study spin polarization effects in relativistic matter, 
in particular, in heavy-ion collisions. An expression for the axial current based on the classical treatment 
of spin is also introduced and we show that it is consistent with earlier calculations using Wigner 
functions. Finally, we derive non-equilibrium corrections to the spin tensor, which are used to define, 
for the first time, the structure of spin transport coefficients in relativistic matter.
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1. Introduction

The spin polarization of various particles (�, K ∗ , φ) produced 
in relativistic heavy-ion collisions has been recently observed by 
the STAR experiment at the Brookhaven National Laboratory (BNL) 
[1–3]. In the case of the � hyperons, a quite substantial global 
polarization (of about 10%, due to the spin-orbit coupling) was 
theoretically forseen in Refs. [4–6]. However, a smaller polarization 
(of about 1%, due to equilibration of spin degrees of freedom) was 
proposed later in Refs. [7–10] and such an effect was eventually 
observed by STAR [1,2]. Being the first experimental observation 
of a non-zero spin polarization in heavy-ion collisions, it has been 
commonly interpreted as one of the greatest discoveries in physics 
in 2017 [1].

While the global spin polarization of the � (and �̄) hyperons 
can be explained by the assumption that the spin polarization is 
directly expressed by the so-called thermal vorticity [7–12], other 
features of the data lack convincing theoretical explanations [13,
14]. The interpretation problems appear also in the case of the K ∗
and φ mesons [15]. This situation has triggered many theoretical 
studies, for example, see [16–23].
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The problems described above suggest that the spin effects in 
heavy-ion collisions can be independent of the thermal vorticity 
and governed by other type of dynamics. In Ref. [24], a hydrody-
namic framework for particles with spin 1/2 was proposed, where 
the spin polarization is described by the spin polarization tensor 
ωμν(x), whose dynamics follows from the conservation law for 
the angular momentum — similarly to the evolution of the local 
temperature T (x) and the hydrodynamic flow vector uμ(x) that 
follow from the conservation laws for the energy and linear mo-
mentum. Recently, this framework (with the updated forms of the 
energy-momentum and spin tensors, which have been related to 
the underlying Lagrangian of the Dirac field) has been derived from 
the kinetic theory [25] (for a recent review see [26]).

In this work, we go beyond the perfect-fluid setup constructed 
in [24]. We first introduce semi-classical kinetic equations describ-
ing the evolution of the Wigner function of massive spin-1/2 parti-
cles in the relaxation-time approximation (RTA) [27,28]. Then, we 
switch to the framework based on the classical description of spin. 
It has been shown in [26] that the classical approach is advanta-
geous as it is not restricted to the case of small spin polarization. 
At the same time, it reduces to the Wigner-function approach if 
polarization is small. Moreover, it can be used to determine the 
structure of dissipative spin corrections in a completely analogous 
way to that known from the standard RTA.

Although the kinetic description of matter based on the RTA 
method may seem to be oversimplified, in the last years this 
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method has turned out to be a very useful tool to address nu-
merous physics problems, often of fundamental importance like 
testing applicability of hydrodynamics [29,30] or early thermal-
ization and/or hydrodynamization puzzles [31–33]. Therefore, we 
propose here a version of the RTA, for particles with spin, which 
can play a very similar role in extended studies involving spin as 
an additional macroscopic degree of freedom.

In order to obtain a clear physics picture, our considerations are 
restricted to hydrodynamics and kinetic theory of spin-1/2, massive 
particles being on the mass shell. Their polarization is described 
by the axial current density that can be directly used to define 
the spin density matrix [34,35]. For the metric tensor, Levi-Civita 
symbol, and the scalar product, we use the following notation and 
conventions: gμν = diag(+1, −1, −1, −1), ε0123 = −ε0123 = 1, a ·
b = gμνaμbν = a0b0 − a · b. Throughout the text we use natural 
units with c = h̄ = kB = 1.

2. Kinetic equations for scalar and axial-vector components of 
the Wigner function

The studies of relativistic plasma for particles with spin 1/2

commonly use the Wigner function W(x, k) and its Clifford-algebra 
decomposition [36–41],

W(x,k) = 1

4

[
F(x,k) + iγ5P(x,k) + γ μVμ(x,k)

+γ5γ
μAμ(x,k) + �μνSμν(x,k)

]
. (1)

Here x is the space-time coordinate and kμ = (k0, k) denotes the 
particle momentum. The coefficient functions appearing on the 
right-hand side of Eq. (1) are sums of the particle and antiparti-
cle contributions, for example, F(x, k) = F+(x, k) + F−(x, k) and 
Aμ(x, k) = A+

μ(x, k) + A−
μ(x, k). We use the Dirac representation 

for gamma matrices with �μν = (i/4)[γ μ, γ ν ] being the Dirac spin 
operator.

From the leading and next-to-leading orders of the semi-
classical expansion of W(x, k) in powers of h̄, one obtains two 
independent kinetic equations, for the scalar and axial-vector com-
ponents [36–40],

kμ∂μF(x,k) = CF , (2)

kμ∂μ Aν(x,k) = Cν
A, kν Aν(x,k) = kνCν

A = 0. (3)

Here, we have neglected the effects of the mean fields (which 
are widely discussed in the literature) and schematically included 
complicated effects of collisions by adding collision terms on the 
right-hand sides of Eqs. (2) and (3).1

If the collision terms vanish, Eqs. (2) and (3) describe free 
streaming of particles. There are also two other cases that can 
be analyzed with the help of those equations, namely, the global 
and local thermodynamic equilibrium. This requires, however, the 
knowledge of the Wigner function in a local thermodynamic equi-
librium which can be generally expressed in terms of the scalar, 
Feq, and the axial-vector components, Aμ

eq [25,26,42]. Recently, 
several works have used this concept to express the equilibrium 
Wigner function as a phase space integral [9,25,26,43]

F±
eq = 2m

∫
dP f ±

eq(x, p) δ(4)(k ∓ p), (4)

A±
eq,μ = −

∫
dP ω̃μν(x) pν f ±

eq(x, p) δ(4)(k ∓ p) , (5)

1 We stress that the coefficient functions F , Aν , as well as the collision terms 
CF and Cν

A are all of the same (leading) order in h̄. The functions F , Aν are 
also the only two independent coefficients of the Wigner function (1) within this 
approximation, hence, Eqs. (2) and (3) fully determine the evolution of the Wigner 
function provided the form of the collision terms is defined.
2

where the local equilibrium distributions in the classical (Boltz-
mann) approximation are given by the expression

f ±
eq(x, p) = exp [−β(x) · p ± ξ(x)] . (6)

Here βμ = uμ/T , where uμ is the hydrodynamic flow vector and 
T is the local temperature, ξ = μ/T is the ratio of the chemical 
potential and temperature, pμ = (E p, p), and dP = d3 p/E p(2π)3, 
with E p = √

m2 + p2 denoting the on-mass-shell particle energy. 
The quantity ωμν (ω̃μν = 1

2 εμναβωαβ ) is the spin polarization ten-
sor (dual spin polarization tensor). The former can be interpreted 
as the ratio of the spin chemical potential �μν and the local tem-
perature T , namely ωμν = �μν/T [16]. We note that ωμν as well 
as ω̃μν are dimensionless quantities in our approach that play a 
similar role as ξ . The formalism presented here is valid for small 
values of ωμν (i.e., for ωμν < 1), for a discussion of this point see 
Sec. 6.6 of Ref. [26].

3. RTA for the scalar component

We start our considerations with the scalar component that has 
been analyzed in many papers and its treatment is very well estab-
lished now. The RTA collision term in the equation for the scalar 
coefficient takes the following form

CF = k · u
Feq(x,k) −F(x,k)

τeq
, (7)

where τeq is the relaxation time. With the definition

F±(x,k) = 2m

∫
dP f ±(x, p) δ(4)(k ∓ p) (8)

one finds

pμ∂μ f ±(x, p) = p · u
f ±
eq(x, p) − f ±(x, p)

τeq
, (9)

which is the Anderson-Witting model for the RTA [44].
In order to switch from the microscopic kinetic theory to 

the effective hydrodynamic description one takes the moments of 
Eq. (2). The zeroth and the first moments correspond then to the 
conservation laws for charge, energy, and linear momentum

∂μNμ = 0, ∂μT μν = 0. (10)

Here Nμ = ∫
dP pμ( f +− f −) and, similarly, T μν = ∫

dP pμpν( f ++
f −). The necessary condition for the conservation laws (10) to be 
valid is that the appropriate moments of the collision term vanish. 
This leads to so-called Landau matching conditions:

uμNμ
eq = uμNμ, uμT μν

eq = uμT μν. (11)

These relations are used to determine the parameters appearing in 
the equilibrium distributions, namely T , uμ , and μ.

4. RTA for the axial component

In this letter, we propose a natural generalization of the RTA 
approach that is applicable for the axial component,

Cν
A = k · u

Aν
eq(x,k) −Aν(x,k)

τeq
. (12)

With the definition

Aμ
±(x,k) = 2m

∫
dP aμ

±(x, p) δ(4)(k ∓ p) (13)

one finds



S. Bhadury, W. Florkowski, A. Jaiswal et al. Physics Letters B 814 (2021) 136096
pμ∂μaν±(x, p) = p · u
aν±eq(x, p) − aν±(x, p)

τeq
, (14)

where the local equilibrium distributions are defined as

aν±eq(x, p) = − 1

2m
ω̃νμ(x)pμ f ±

eq(x, p). (15)

The moments of the scalar equation (2) naturally lead to the 
conservation laws for charge, energy, and linear momentum. In the 
case of the axial equation (3), the situation is less obvious. Never-
theless, if the collisions are absent and no mean fields are present, 
then the axial equation describes free-streaming of spin degrees of 
freedom — the spin polarization tensor should be constant in this 
case.

This fact was known long time ago to be in contrast with the 
behavior of the canonical spin tensor [45–47]. The latter is ob-
tained by the Noether theorem and is known to be not conserved 
even for a free Dirac field. This difficulty was overcome by switch-
ing from the canonical forms of the energy-momentum and spin 
tensors to the GLW expressions (GLW stands here for de Groot, 
van Leeuwen, and van Weert of Ref. [47]).

In our case, i.e., for particles being on the mass shell (note the 
Dirac delta functions in Eqs. (4) and (5)), the connection between 
the axial current and the GLW spin tensor takes a particularly sim-
ple form

Sλ,μν(x) = 1

2
εαβμν

∫
d4k

kλkβ

m2
Aα(x,k). (16)

Multiplying Eq. (3) by ενβγ δkβ/m2 and integrating over k, we find

∂μSμ,γ δ = uμ
Sμ,γ δ

eq − Sμ,γ δ

τeq
. (17)

Hence, the requirement of vanishing divergence of the GLW spin 
tensor leads to a constraint

uμSμ,γ δ
eq = uμSμ,γ δ. (18)

This formula represents an additional, Landau-type, matching con-
dition for the equilibrium distribution function. It allows to deter-
mine six independent components of the spin polarization tensor 
ωμν appearing in Eq. (15).

In view of the above discussion it seems natural to consider the 
conservation of the GLW spin tensor as a parallel condition to the 
conservation of charge, energy, and linear momentum. The canon-
ical energy-momentum tensor is asymmetric, and differs from the 
GLW form by quantum corrections. The latter give rise to mixing 
between orbital and spin components of the canonical angular mo-
mentum. This phenomenon, known as the spin-orbit coupling, is 
absent in the GLW pseudo gauge provided the collision term is lo-
cal and the mean fields are neglected [48].

5. Approach with classical spin

Equations (9) and (14), together with the Landau matching con-
ditions (11) and (18), form a consistent system of kinetic equations 
that allows for determination of the space-time evolution of the 
phase-space distribution as well as spin densities. They are, how-
ever, valid only in the case of small polarization tensor. In order 
to overcome this restriction, one can switch to a classical descrip-
tion of spin degrees of freedom. We have shown in [26] that the 
results obtained with the Wigner function for small ω can be ex-
actly reproduced in the framework with the classical treatment of 
spin [49]. An advantage of the classical treatment is, however, that 
it can be applied to systems with arbitrary polarization.

In the classical approach, we introduce the internal angular mo-
mentum of a particle, sμν , and the spin vector, sμ , connected by 
3

the relation sα = (1/2m)εαβγ δ pβ sγ δ . Accordingly, one introduces 
a classical distribution function f ±

s (x, p, s) in an extended phase 
space that besides space-time coordinates and momenta includes 
the spin vector. The appropriate normalization is∫

dS f ±(x, p, s) = f ±(x, p), (19)
∫

dSsμ f ±(x, p, s) = a±
μ(x, p), (20)

where dS = (m/π s) d4s δ(s · s + s2) δ(p · s) with the length of the 
spin vector defined by the eigenvalue of the Casimir operator, s2 =
1
2

(
1 + 1

2

) = 3
4 . One can easily check that Eqs. (9) and (14) can be 

obtained as the zeroth and first moments in the spin space of the 
classical RTA equation

pμ∂μ f ±(x, p, s) = p · u
f ±
eq(x, p, s) − f ±(x, p, s)

τeq
, (21)

where the equilibrium, spin-dependent function reads

f ±
eq(x, p, s) = f ±

eq(x, p)exp

(
1

2
ωμν sμν

)
. (22)

Moreover, one can check for small values of ω that the formula 
(22), when used in Eq. (20), yields Eq. (15). Consequently, one can 
use Eq. (22) in Eq. (21), together with the Landau matching condi-
tions (11) and (18), where

Nμ =
∫

dPdS pμ
(

f +
s − f −

s

)
, (23)

T μν =
∫

dPdS pμpν
(

f +
s + f −

s

)
, (24)

Sλ,μν =
∫

dPdS pλsμν
(

f +
s + f −

s

)
. (25)

In the above equation f ±
s = f ±(x, p, s).

6. Dissipative corrections

It is straightforward to search for solutions of the trans-
port equation (21) in a series form f ±(x, p, s) = f ±

eq(x, p, s) +
δ f ±(x, p, s) + . . ., which yields

δ f ±(x, p, s) = − τeq

p · u
pμ∂μ f ±

eq(x, p, s). (26)

One can define dissipative corrections to the conserved current 
δNμ ≡ Nμ − Nμ

eq, energy-momentum tensor δT μν ≡ T μν − T μν
eq , 

and the spin tensor δSλ,μν ≡ Sλ,μν − Sλ,μν
eq , in terms of the mo-

ments of δ f ±
s (x, p, s) used in Eq. (25).

After straightforward but quite lengthy calculations, one obtains 
the following expressions valid in the case of small polarization:

δNμ = τeq βn(∇μξ), (27)

δT μν = τeq
(−β� �μν θ + 2βπ σμν

)
, (28)

δSλ,μν = τeq

[
Bλ,μν

� θ + Bκλ,μν
n (∇κξ) + Bακλ,μν

π σακ

+Bκβαλ,μν
� (∇κωβα)

]
. (29)

Here �μν = gμν − uμuν , ∇μ = �μν∂ν , θ is the expansion scalar, 
and σμν is the shear flow tensor. Different coefficients appearing 
on the right-hand side of Eq. (29) have tensor structures expressed 
in terms of equilibrium tensor quantities uμ, �μν and ωμν . In 
particular, the structure of the new spin coefficients Bμ1μ2....

X ap-
pearing in Eq. (29) is as follows:
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Bλ,μν
� = B(1)

� u[μων]λ+B(2)
� uλuαu[μων]

α+B(3)
� �λ[μuαων]α,

Bακλ,μν
π = B(1)

π �[μκ�λαuγ ων]γ + B(2)
π �λαu[μων]κ

+B(3)
π u[μ�ν]α�λ

γ ωγκ + B(4)
π �λ[μωρκ uρ�ν]α,

Bκλ,
n

μν = B(1)
n �λκωμν + B(2)

n �λκuαu[μων]
α

+B(3)
n �λα�[μκων]

α + B(4)
n u[μ�ν]κuρωλ

ρ

+B(5)
n �λ[μων]κ + B(6)

n �λ[μuν]uαωακ ,

Bκβαλ,μν
� = B(1)

� �λκ g[μβ gν]α + B(2)
� uα�λκu[μ�ν]β

+B(3)
�

(
�λκ�α[μgν]β + �λα�[μκ gν]β

+�ακ�λ[μgν]β) + B(4)
� �ακ�λ[μ�ν]β

+B(5)
� uα�λβu[μ�ν]κ . (30)

The explicit forms of the scalar coefficients B(i)
X (which are ex-

pressed by very lengthy expressions involving complicated inte-
grals) are provided in Ref. [50].

It is important to emphasize that the assumption of small po-
larization does not introduce any new dissipative corrections to 
δT μν and δNμ in Eqs. (27) and (28) and their forms remain un-
changed, compared to the results obtained in the usual analysis 
of spinless systems. Moreover, we see that the first three terms in 
the expression for δSλ,μν in Eq. (29) arise from the same “ther-
modynamic forces” as dissipation in conserved current and energy 
momentum tensor. Very interestingly, the last term in Eq. (29)
leads to a new type of dissipation which is proportional to the 
gradient of the spin polarization tensor ωμν .

We note that all the kinetic coefficients obtained from Eq. (21)
are proportional to the relaxation time that is common for all of 
them. This means that the equilibration times for momenta and 
spin degrees of freedom are the same. In phenomenological ap-
plications it is conceivable to vary the values of the relaxation 
times that appear in different kinetic coefficients, arguing that they 
describe independent physical phenomena. In any case, such mod-
ifications require further studies.

7. Summary and conclusions

In this work we have constructed kinetic theory describing evo-
lution of the axial-current phase-space density of spin-1/2 particles 
in the relaxation time approximation. Our approach is based on 
the conservation laws for energy, linear momentum, and angu-
lar momentum. Choosing a special pseudo-gauge (by adopting the 
GLW version), one can split the conservation of total angular mo-
mentum into separate conservation of the orbital and spin parts. 
This procedure leads to the conserved spin tensor. After perform-
ing the calculations in the GLW pseudo gauge, one can switch 
to the canonical gauge where only the total angular momentum 
is conserved. We note that the pseudo-gauge transformations do 
not change the form of the conservation laws for the energy-
momentum and angular momentum tensors. Moreover, the inte-
grated values of energy, linear momentum and angular momentum 
also remain unchanged, however, they differently allocate energy 
density and spin density. The obtained framework has been used 
to derive non-equilibrium corrections to the spin tensor, which are 
then used to define, for the first time, the structure of spin trans-
port coefficients in relativistic matter.

Approaches based on the relaxation-time approximation are at-
tractive, since they allow for a rather simple treatment of dissi-
pative processes and very often allow for finding exact solutions. 
From this point of view, we expect that our formalism will be use-
ful in studies of dissipative effects connected with spin. Clearly, 
more microscopic approaches are required to construct more real-
istic collision terms. Such problems are currently investigated by 
several groups, for example, in Refs. [22,51–54].
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