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Abstract. We observed the pulsating hydrogen atmosphere white dwarf G 185–32 with the Whole Earth Telescope in 1992.
We report on a weighted Fourier transform of the data detecting 18 periodicities in its light curve. Using the Hubble Space
Telescope Faint Object Spectrograph time resolved spectroscopy, and the wavelength dependence of the relative amplitudes, we
identify the spherical harmonic degree (�) for 14 pulsation signals. We also compare the determinations of effective temperature
and surface gravity using the excited modes and atmospheric methods, obtaining Teff = 11 960 ± 80 K, log g = 8.02 ± 0.04
and M = 0.617 ± 0.024 M�.
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1. Introduction

G 185–32, also called PY Vul and WD1935+279, is a pul-
sating white dwarf with a hydrogen atmosphere, i.e., a DAV.
It was discovered to pulsate by McGraw et al. (1981), who
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found a complex period structure of small amplitude, with the
main periodicity at P = 215 s ( f0), and others at 141 s (3 f0/2)
and 71 s (3 f0).

Kepler et al. (2000) studied G 185–32 Hubble Space
Telescope (HST) Faint Object Camera time series spectra, and
detected periodicities at 70.9 s, 72.5 s, 141.8 s, 215.7 s, 300.0 s,
301.3 s, 370.1 s and 560.0 s. They show that the amplitude of
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the periodicity at 141.8 s does not increase toward the ultravi-
olet as predicted by g–mode pulsation models (Robinson et al.
1982; Kepler 1984; Robinson et al. 1995).

Among all pulsating white dwarfs, this star has the shortest
periodicity so far observed. However, the peak–to–peak ampli-
tude is small in comparison with other ZZ Ceti of similar peri-
ods. The star shows short timescale periodicities, e.g. 215 s, as
well as long ones, e.g. 560 s (Kepler et al. 2000). The stars at
the blue edge (hot DAVs) of the ZZ Ceti instability strip present
few, short period and low amplitude periodicities. On the other
hand, the stars at the red edge (cool DAVs) have many peri-
odicities, with their high amplitude periodicities being longer
than 600 s (see e.g. Fig. 1 in Kanaan et al. 2002).

Previous work on atmospheric parameter determinations
was undertaken by Bergeron et al. (1995); they obtained
log g = 8.05± 0.05 and Teff = 12 130± 200 K for ML2/α = 0.6
model atmosphere fit to the optical spectra. Koester & Allard
(2000) used the observed V magnitude, parallax and UV spec-
trum to obtain log g = 7.92 ± 0.10 and Teff = 11 820 ± 110 K.

Thompson & Clemens (2003) reported time resolved spec-
troscopy obtained using a Keck telescope and proposed that
the pulsation axis has an inclination of 90 deg to the line-
of-sight, as they did not observe any velocity variations. The
Keck data was taken on two nights, for 3.5 hr each night, so
the time resolution is low. Central to their interpretation was a
small peak at 285.1 s (their f3). They suggested this as a nor-
mal mode at 285.1 s with peaks at 141.9 s (2 f3), 95.1 s (3 f3),
and 70.9 s (4 f3) as harmonics.

2. Observations

We observed1 G 185–32 with the Whole Earth Telescope
(WET) in 1992, during the eighth WET run (Xcov8), as shown
in Table 12.

During Xcov8, the WET operated telescopes at eight sites
located around the globe (see Table 1); all eight telescopes op-
erated with various designs of two star photometers (Nather
et al. 1990), and collected a total of 76.4 hr worth of data, for
a duty cycle of 34%. As the data spans 226 hr, the resolution
was 1.2 µHz. The second channel of the photometer was mon-
itoring a nearby star to assure that variations on the light curve
were not due to variable sky transparency.

The runs were reduced and analysed as described by Kepler
(1993): the total light curve is a simple combination of the
light curves obtained at each telescope, after reducing all data
to normalized modulation (fractional) intensities, and times
in relation to the barycenter of the solar system, the uniform
Barycentric Coordinate Time (BCT) scale (Standish 1998).
The Fourier transform of the reduced and time corrected light
curve obtained with the WET is displayed in Fig. 1.

1 Partially based on observations at Observatório do Pico dos Dias,
operated by Laboratório Nacional de Astrofı́sica, MCT, Brazil,
and Cerro Tololo Interamerican Observatory, operated by NOAO for
the NSF.

2 The WET is a collaboration of astronomers to observe variable
stars with periods of a few minutes, typical of pulsating white dwarf
stars (Nather et al. 1990).

Table 1. Journal of observations.

Telescope Run Date UT Length

(s)

Suhora 0.6 m x8004 1992 Sep. 21 21:55:45 1540

Suhora 0.6 m x8005 1992 Sep. 21 22:21:50 6650

LNA 1.6 m ro017 1992 Sep. 22 0:04:20 8810

McDonald 2.1 m pab–0142 1992 Sep. 22 3:33:30 10 770

Suhora 0.6 m x8007 1992 Sep. 22 19:12:20 13 185

LNA 1.6 m ro019 1992 Sep. 22 22:20:10 14 430

Suhora 0.6 m x8009 1992 Sep. 23 19:05:00 15 185

McDonald 2.1 m pab–0146 1992 Sep. 24 1:47:00 18 210

Suhora 0.6 m x8010 1992 Sep. 24 18:58:00 13 760

McDonald 2.1 m pab–0152 1992 Sep. 25 1:46:30 14 590

Mauna Kea 0.6 m maw–0103 1992 Sep. 25 5:47:15 8130

Suhora 0.6 m x8012 1992 Sep. 25 18:08:45 18 335

Suhora 0.6 m x8014 1992 Sep. 26 17:31:25 14 060

Suhora 0.6 m x8015 1992 Sep. 26 21:32:15 9570

La Palma INT 2.5 m int–0018 1992 Sep. 26 22:33:00 11 765

McDonald 2.1 m pab–0159 1992 Sep. 27 1:46:00 21 870

Mauna Kea 0.6 m maw–0106 1992 Sep. 27 7:17:30 7875

Suhora 0.6 m x8017 1992 Sep. 27 18:04:25 10 205

La Palma INT 2.5 m int–0021 1992 Sep. 27 20:02:00 18 800

CTIO 1.5 m jlp–0125 1992 Sep. 27 23:57:30 7175

McDonald 2.1 m pab–0162 1992 Sep. 28 1:48:00 17 220

Mauna Kea 0.6 m maw–0108 1992 Sep. 28 5:17:00 14 845

Siding Spring 1.0 m sjk–0204 1992 Sep. 28 9:54:00 12 260

Maidanak 1.0 m jesem–14 1992 Sep. 28 15:58:20 11 035

McDonald 2.1 m pab–0165 1992 Sep. 29 1:45:30 20 285

Mauna Kea 0.6 m maw–0109 1992 Sep. 29 5:13:20 19 445

Siding Spring 1.0 m sjk–0205 1992 Sep. 30 9:33:00 5300

Mauna Kea 0.6 m maw–0113 1992 Oct. 01 5:20:00 10 865

Mauna Kea 0.6 m maw–0116 1992 Oct. 03 5:21:00 1070

In order to have some objective criterion for determining
which peaks are real in the discrete Fourier transform, we adopt
here an amplitude limit such that a peak exceeding this limit
has only 1/1000 probability of being due to noise (false alarm
probability). Kepler (1993) and Schwarzenberg-Czerny (1991,
1999), following Scargle (1982), demonstrated that nonequally
spaced data sets, like WET data sets, do not have a normal
noise distribution, because the residuals are correlated. In this
case, peaks above 4 〈A〉 (4 times the square root of the aver-
age power), have probability 1 in 1000 of being noise. In ad-
dition to the periods found by Kepler et al. (2000), we also
found the following periodicities in the WET data set: 651.6 s,
266.1 s, 264.2 s, 212.8 s, 148.5 s, 141.2 s, and 72.9 s. We did not
find the periodicity at 560 s in the WET data, which appears in
the HST Fourier spectrum reported by Kepler et al. (2000).

To know if a peak in the Fourier transform is a periodic-
ity intrinsic or only due to the spectral window, we subtracted,
from the light curve, the sine curve with the same amplitude
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Fig. 1. Fourier transform of the total WET (Xcov8) data set. The periodicities are listed in Table 2.

and period as the peak we selected in the Fourier transform,
including its phase information. After subtracting it from the
light curve, we re-calculated the Fourier transform to verify if
the sine curve was correct. Then, we repeat the procedure for
the remaining periodicities.

In the Fourier transform presented in Fig. 1, we did not
consider any weighting due to telescope aperture, observation
site or data length. We discuss our weighting scheme for the
WET data and the results of our analysis in the next section.

3. Fourier transform with weights

To improve the signal–to–noise ratio, we calculated a weighted
Fourier transform; the weights depend not only on the telescope
size and the number of data points acquired, but also on the
weather conditions and peculiarities of the site and instrument.

Handler (2003) explores different weighting schemes and con-
cludes the best choice is the inverse of the scatter.

Kepler (1993) demonstrated that the noise in a Fourier
transform can be estimated from the average amplitude in the
frequency range of interest, the square root of the average
power. Our procedure to estimate the weights was first to sub-
tract from each individual light curve all the periodicities de-
tected in the Fourier transform above four times the average
amplitude, i.e., with a probability of being due to noise (false
alarm probability) smaller than 1/1000. This guarantees that the
average amplitude calculated is not affected by the presence of
the large amplitude pulsation modes.

After the subtraction, we calculated the average amplitude
of each individual run, thus estimating its noise. We define the
weight as the inverse of the average amplitude squared, because
the noise level in the Fourier transform is smaller than if we had
considered the weight as the inverse of the average amplitude
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Fig. 2. The weights are the inverse of the average amplitude squared,
calculated from the Fourier transform of each chunk, after subtracting
all periodicities above 4 〈A〉 in the WET Fourier transform, from each
light curve. The different telescopes are represent by: La Palma 2.5 m
(open circle), Maidanak 1.0 m (diamond), Tololo 1.5 m (filled trian-
gle up), Mauna Kea 0.6 m (star), McDonald 2.1 m (plus), LNA 1.6 m
(open triangle down), Siding Spring 1 m (x) and Suhora 0.6 m (open
square). Each run was separated into chunks, if there were interrup-
tions longer than 35 s. The data with small weights contribute rela-
tively little to the weighted Fourier transform.

as suggested by Handler (2003). In Fig. 2, we show the weights
calculated for each chunk of data, using different telescopes.
Even for the same telescope and night (run), the weather condi-
tions are critical in determining the noise. The weighted Fourier
transform of the WET data is displayed in Fig. 3. With this
approach, we identified two further periodicities in the light
curve: 537.6 s and 454.6 s.

Figure 4 is a comparison between the spectral window for a
given mode, with and without weights. The spectral window is
the Fourier transform of a single coherent frequency in a light
curve with the same gaps, sampling and total exposure time as
the original data. As we are applying various weights to dif-
ferent sections of the overall light curve, some segments will
have small weighting, which is equivalent to using less data.
The spectral window of the data with weights has therefore
lower resolution, but the signal–to–noise ratio in the weighted
Fourier transform is higher. The change in the measured noise,
represented by the average amplitude 〈A〉, is an estimate of the
improvement: it changes from 0.154 to 0.140 when we move
from no–weights to weights, i.e., a 10% improvement.

4. The HST data set

As described by Kepler et al. (2000), the HST data set consists
of series of 10 s exposures in the range 1180–2508 Å, and a
zeroth–order simultaneous observation with an effective wave-
length at 3400 Å, which has a counting rate around 100 times
larger than the UV data. As the HST data cover a to-
tal of 15.2 hr, its time resolution, around 18 µHz, is low

compared to that of the WET data, around 1.2 µHz. We
therefore used the frequencies of periodicities detected with
the WET, and the periodicities only detected in the Fourier
transform of the HST data, to carry out simultaneous multisinu-
soidal nonlinear least squares fit to the zeroth–order HST data,
assuming that the excited pulsations, when present, have the
same frequency, as is the case for the DAV G 29–38 (Kleinman
et al. 1998) and for the DBV GD 358 (Kepler et al. 2003). We
do not use any amplitude from WET data on the HST data anal-
ysis, just the frequencies.

Using a randomization (Monte Carlo simulation) of
the HST data, as described by Kepler (1993), we deter-
mined that the 1/1000 probability of a peak being due to
noise in the HST Fourier transform occurs around 3.3 〈A〉.
Figure 5 shows the Fourier transform of the zeroth–order data
and the 1/1000 false alarm probability line. We detected in
the HST data periodicities at 264 s, 266 s and 182 s, which
also appear in WET Fourier transform above 2.3 〈A〉, 3.0 〈A〉
and 1.5 〈A〉, respectively. We also detected the periodicity
at 148 s which was also detected in WET data set. These four
periodicities were not reported by Kepler et al. (2000).

We list, in Table 2, all periodicities detected in the
WET data set and in our analysis of the HST data set.
The listed amplitudes, the phases and their uncertainties,
were obtained by a simultaneous multisinusoidal least squares
fit to the WET and HST data sets. We forced the WET
and HST data to fit all these periodicities. The times of max-
ima (Tmax) for the HST data are given in relation to T0 =

2 449 929.9333442 BCT, while the WET data are given in rela-
tion to T0 = 2 448 887.416559 BCT. Our frequency uncertain-
ties do not allow bridging the 3 yr data gap.

The exposures with the Faint Object Spectrograph (FOS) of
the HST used the blue Digicon detector and the G160L grating,
and consist of 764 useful pixels over the spectral region 1150
to 2510 Å, each with a width of 1.74 Å per pixel. The UV pho-
tometry, reported as HST 1180–2508 Å, in Table 2, was ob-
tained just adding the spectra over all wavelengths.

We can measure reliable amplitudes only for bins red-
der than approximately 1200 Å because of contamination of
the observed spectra by geocoronal emission. To increase the
signal–to–noise ratio, we convolved the theoretical amplitude
spectra into 50 Å bins, obtaining amplitudes directly compara-
ble to normalized binned measurements.

We then proceeded with a simultaneous multisinusoidal
least squares fit to the different binned wavelength light curves,
calculating amplitudes and phases for the detected periodici-
ties in all wavelength. Robinson et al. (1982) demonstrate that
the phases for g-modes in white dwarf models are the same at
all wavelengths, when there are no significant nonadiabatic ef-
fects. Figure 6 shows that, for the main periodicity at 215 s, the
phase does not change with wavelength.

We also detected in the HST data a periodicity
around 45 min, which is caused by the movement of the star
in the aperture caused by the wobbling of the HST solar pan-
els when they come in and out of the shadow of the Earth. We
included this periodicity in our multisinusoidal fit, to reduce
the uncertainties.
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Fig. 3. Fourier transform of the total WET data with weights. Periodicities detected are listed in Table 2. The periodicity around 1730 µHz is
not present in the HST data set and is bellow our detection limit.

We looked for possible linear combination modes as in
most of the pulsating white dwarf stars with a large number of
periodicities detected, a substantial fraction of these frequen-
cies can be attributed to linear combinations and harmonics of
a smaller number of parent modes (e.g. Kepler et al. 2003). This
does not appear to be the case for G 185–32. Table 3 lists the
possible linear combinations detected, considering the obtained
amplitudes from the WET data. On the other hand, considering
the amplitudes from HST, and therefore in the UV, where most
of the emission is, we must write the linear combination fre-
quencies as f651 s = f301 s − f560 s and f141.9 s = 0.5 × f70.9 s,
because the amplitude ratios for these periodicities are the op-
posite in the UV. The amplitudes of both the harmonics and the
linear combination frequencies (e.g., Wu 2001) generated by
the nonlinear processes should be smaller than the amplitudes

of the parent modes; in G 185–32, the periodicities have similar
amplitudes in the optical.

5. Comparison with theoretical amplitudes

We used the detected periodicities, and their change in am-
plitude with wavelength, to calculate the effective tempera-
ture (Teff), the surface gravity (log g), and the spherical har-
monic degree (�) of each pulsation.

We compared the observational changes in amplitude with
wavelength to those predicted by the g–mode pulsation models
described by Robinson et al. (1995) and Kepler et al. (2000),
calculated from Koester’s model atmospheres, described in
Finley et al. (1997). These amplitude calculations take into ac-
count the wavelength dependence of the limb darkening and
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Table 2. Periodicities detected in the HST and the WET data sets. The question mark (?) is due to the fact that these periodicities are marginally
detected in the WET and HST data sets. The uncertainties for the frequencies detected in the WET data were calculated using nonlinear least
squares and are around 1.2 µHz. The frequencies detected only in the WET data are 651.7 s, 537.6 s, 454.6 s, 212.8 s, 141.2 s and 72.9 s, and
only in the HST data are 181.9 s and 560.8 s. All the frequencies were included in the linear fit, even if they were not resolved.

Frequency Periods WET HST 3400 Å HST 1180–2508 Å
(µHz) (s) Amplitude Tmax Amplitude Tmax Amplitude Tmax

(mma) (s) (mma) (s) (mma) (s)
1534.5 651.70 0.67 ± 0.07 74.1 ± 10.8 0.91 ± 0.12 94.4 ± 13.6 2.9 ± 0.3 122.2 ± 9.7
1783.3 560.77 0.09 ± 0.07 69.0 ± 71.0 1.49 ± 0.12 547.1 ± 7.2 2.9 ± 0.3 552.2 ± 8.3

1860.2(?) 537.59 0.57 ± 0.07 132.9 ± 10.4 0.67 ± 0.12 67.6 ± 15.4 1.6 ± 0.3 67.2 ± 14.6
2199.9(?) 454.56 0.38 ± 0.07 35.5 ± 13.1 0.60 ± 0.12 164.3 ± 14.5 1.1 ± 0.3 192.3 ± 19.2

2701.2 370.21 1.62 ± 0.07 92.0 ± 2.5 2.21 ± 0.12 90.0 ± 3.2 4.8 ± 0.3 96.1 ± 3.3
3317.8 301.41 1.13 ± 0.07 26.2 ± 3.0 2.03 ± 0.12 297.8 ± 2.8 4.5 ± 0.3 301.2 ± 2.9
3335.6 299.79 0.95 ± 0.07 203.6 ± 3.5 1.77 ± 0.12 212.6 ± 3.2 3.9 ± 0.3 211.3 ± 3.3
3757.3 266.15 0.40 ± 0.07 13.7 ± 7.5 0.58 ± 0.12 34.6 ± 8.9 1.3 ± 0.3 31.0 ± 8.8
3785.2 264.19 0.51 ± 0.07 140.3 ± 5.8 0.69 ± 0.12 108.3 ± 7.4 1.8 ± 0.3 104.9 ± 6.5
4635.3 215.74 1.93 ± 0.07 111.3 ± 1.2 2.59 ± 0.12 60.0 ± 1.6 7.1 ± 0.3 58.7 ± 1.3
4698.8 212.82 0.53 ± 0.07 44.7 ± 4.4 0.66 ± 0.12 141.7 ± 6.1 0.3 ± 0.3 141.1 ± 30.5
5497.7 181.90 0.03 ± 0.07 180.3 ± 72.2 0.43 ± 0.12 39.4 ± 8.0 1.1 ± 0.3 45.4 ± 6.9
6736.1 148.45 0.57 ± 0.07 23.8 ± 2.9 0.53 ± 0.12 94.9 ± 5.4 0.7 ± 0.3 92.9 ± 9.2
7048.8 141.87 1.43 ± 0.07 39.2 ± 1.1 1.67 ± 0.12 97.1 ± 1.6 2.1 ± 0.3 97.6 ± 3.0
7080.4 141.24 0.39 ± 0.07 66.7 ± 4.0 0.24 ± 0.12 96.5 ± 11.4 0.1 ± 0.3 34.6 ± 80.0

13 714.4 72.92 0.36 ± 0.07 15.1 ± 2.3 0.36 ± 0.12 38.3 ± 3.9 0.5 ± 0.3 33.2 ± 6.0
13 784.9 72.54 0.93 ± 0.07 28.5 ± 0.9 1.23 ± 0.12 23.2 ± 1.1 3.0 ± 0.3 25.2 ± 1.0
14 097.7 70.93 0.69 ± 0.07 26.9 ± 1.1 1.82 ± 0.12 24.0 ± 0.7 4.3 ± 0.3 24.4 ± 0.7

980 990 1000 1010 1020

0

0.2

0.4

0.6

0.8

1
no weights

weight

Fig. 4. Spectral Window of the WET data with weighting according
to the inverse of the noise squared (solid line) and no weights (dashed
line).

different cancellation of the flux variation for different spherical
harmonic degrees. Even though Ising & Koester (2001) show
that the effect of the convective zone introduces nonlinearities,
amplitude and inclination angle dependence in A(λ) are neg-
ligible for small amplitudes. It was not possible to include all
periodicities listed in Table 2 in the fit because some peaks are

not detected in HST data. In addition, as the HST data have low
time resolution (18 µHz), nearby periodicities interfere with
each other if their frequency difference is smaller than ∆ f <
1/T , where T is the total time base of the observation.

By fitting A(λ)/A(3400 Å) to those predicted by the mod-
els, which are � dependent, we determined Teff, log g and � for
each periodicity, keeping initially these three parameters free.
The obvious constraint is that the star must have the same value
for Teff and log g, for all pulsation modes; the � value can be
different for each pulsational mode. Kepler et al. (2000) deter-
mined � for the main periodicities, using a fixed Teff and log g,
calculated by other methods.

As each periodicity gives a different value for Teff and log g,
we calculated the local minima, which are the possible solu-
tions in the difference between the observed amplitude versus
wavelength curve and the models (predicted amplitudes), i.e.,
the χ2 of the fit for each periodicity. Using a normal distribu-
tion, we estimated probability densities of that local minimum
fit. Because we do not know the � values for each periodicity,
their probability must be added, i.e., the probability for each
(Teff, log g) model is the sum of the probabilities for � = 1,
2 and 3. Each one has its effective temperature and surface
gravity. Higher values of � were discarded because of the ex-
tremely high geometrical cancellation in the optical (Robinson
et al. 1982) and the absence of phase shift to the UV (Kepler
et al. 2000). For each periodicity, we summed all probability
densities resulting from local minima. By multiplying all the
sums for the different periodicities, we obtain the most prob-
able value of Teff = 12 030+80

−200 K and log g = 8.02+0.07
−0.19. The

probability distribution derived by amplitude vs. wavelength,
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Fig. 5. HST Fourier transform (solid line) and detection limit line above 3.3 〈A〉 (dashed line).

or A(λ) variation, is shown in Fig. 7, where we can iden-
tify lower probability combined solutions for Teff and log g
at (12 470, 8.23), (12 773, 8.49) and (13 268, 8.72). Even
though the two lower probability solutions are out of the the-
oretical and observational instability strip, we did not exclude
them a priori. For the most probable fit, the best � values for
each mode are given in Table 4. The only possibilities are �= 1
or 2.

6. The 141.9 s periodicity

In Fig. 8 we show how normalized amplitudes change with
wavelength for periodicities at 215.7 s, 141.9 s and 70.9 s. It
is important to notice that the periodicity at 141.9 s does not
change its amplitude significantly with wavelength, as the oth-
ers do (same result as Kepler et al. 2000). When we consider
that this periodicity does not fit any model and the fact that in

Table 3. Possible linear combination of periodicities detected in
G 185–32. |∆ f | = | fobs− fcomb| is 0.08, 0.16 and 0.04 for (a), (b) and (c),
respectively.

Period fobs Combination fcomb

560.77 1783.25 f301.4 s − f651.7 s 1783.33 (a)
148.45 6736.12 f72.5 s − f141.9 s 6736.28 (b)
70.93 14097.70 2 × f141.9 s 14097.66 (c)

the UV, where the maximum of the flux distribution occurs, the
amplitude of the 141.9 s periodicity is much smaller than the
others, especially when compared to the 71 s periodicity, we
conclude that it is not a g–mode pulsation and that it is prob-
ably a peak caused by large amplitude effects, i.e., a nonlinear
effect. Its period is twice that of the 71 s periodicity. In Fig. 9,
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Fig. 6. Phase difference for P = 215 s, where T (λ) is the time of max-
imum at that λ. The y–axis corresponds to ±20% of one cycle. The
dotted line corresponds to the weighted mean of the differences. The
dashed line corresponds to the theoretical prediction with no signifi-
cant nonadiabatic effects, i.e., phases do not change with wavelength.
The plotted error bars are 2 sigma total and the uncertainties on the
difference are propagated.

Table 4. � determination for the most probable model, with Teff =

12 030 K and log g = 8.02. The only possibilities are � = 1 or 2;
the � = 1 could be 2 with smaller probability and vice-versa.

Period (s) �

651 2
560 1
454 1
370 1
301 1
300 1
266 2
264 2
215 2
212 1
181 1
148 1
72 2
70 2

we show that its phase does not change significantly with wave-
length, although the uncertainties are significant.

Assuming that we have detected nonlinear effects in the
light curve, the intrinsic pulsation amplitudes should be higher
than the ones we are detecting in the Fourier transform, be-
cause peaks with this amplitude do not normally show signif-
icant nonlinear combination peaks. Therefore, the inclination
of the pulsation axis to the line of sight must be unfavorable
(Pesnell 1985), 90 deg if m = 0 or m = ±2 and 0 deg if m = ±1.
The m = 0 mode propagates from pole to pole and m = ±1

propagate along the equatorial line. As we also detected period-
icities longer than 500 s, typical of cool pulsators, we conclude
that the star is not at the blue edge, but actually it is closer to
the middle of the instability strip.

7. The 71 s periodicity

Another noteworthy periodicity is the one at 70.9 s, the short-
est one detected in any pulsating white dwarf. As the � value
for this periodicity is 2 or 1, we must analyse all possibili-
ties. Periodicities below 100 s are predicted by pulsation mod-
els for � = 1 and k = 1, but only if the stellar mass is around
∼1.0 M� or more (Bradley 1996, 2001). Our pulsation anal-
ysis and all previous works suggest that the mass of G 185–
32 is around 0.6 to 0.7 M�. Another possibility would be that
the 71 s periodicity were � = 1 and k = 0; in this case, the center
of mass moves during pulsation, which implies that G 185–32
must have a companion. Saffer et al. (1998) searched for an
evidence of spectroscopic binarity around several white dwarfs
and found none for G 185–32. The star is also not a known
proper motion pair. Calculating the semi-major axis that a
planet with negligible mass should have for an orbital period
of 70.9 s, we found a value of about 20 000 km, or about twice
the white dwarf radius. This is well inside the Roche limit,
and such a planet would not survive, and we can discard this
hypothesis.

A much simpler model is obtained if � = 2, which
is in agreement with model predictions for a normal mass
white dwarf, and consistent with our determination. We ex-
amined evolution/pulsation models similar to those described
by Bradley (1996, 2001) from 0.60 to 0.70 M�, first to see if
models that agree with the log g values can match the periods
predicted by seismological models. We then used the observed
periods to attempt to constrain the structure of the pulsation
models, especially the hydrogen layer mass.

Models with masses between 0.60 to 0.70 M� constrain
the 70.9 s mode to be the k = 1 mode if it is � = 2; if this
mode were � = 1, the mass would have to be much higher.
Identifying the 70.9 s mode as the � = 2, k = 1 mode offers
a strong constraint on the hydrogen layer mass as a function
of stellar mass. At 0.70 M�, the hydrogen layer mass can be
as thin as 1.0 × 10−4 M�, while at 0.60 M�, even a hydrogen
layer mass of 2.5 × 10−4 M� has an � = 2, k = 1 mode pe-
riod of 75 s. A hydrogen layer this thick on a 0.60 M� white
dwarf is probably not realistic, as pp burning at the base of the
hydrogen layer would make the hydrogen layer thinner than
this. A 0.65 M� white dwarf can match the 70.9 s period with
hydrogen layer masses of 1.0 to 1.5 × 10−4 M�.

8. Discussion

The model proposed by Thompson & Clemens (2003) attempts
to explain why the 141 s peak does not rise in amplitude to-
wards the ultraviolet while the 71 s peak does, and also explain
non-detection of any velocity variations. If their 285 s ( f3) peak
is the fundamental mode and the pulsation inclination angle
were close to 90 deg to the line–of–sight, then the geometrical
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Fig. 7. Product of probability densities of bivariate normal distributions determined from each periodicities. The best solution is Teff = 12 030
and log g = 8.02 K (P = 1). Teff is the effective temperature, g is the surface gravity, and P is the probability density. The lower probability
peaks are at (12 470, 8.23) (P = 0.5), (12 773, 8.49) (P = 0.34) and (13 268, 8.72) (P = 0.09).
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Fig. 8. Amplitude versus wavelength for periodicities at 215 s (green
doted line), 141.9 s (red short–dashed line) and 70.9 s (blue long–
dashed line). The black solid lines are the models with Teff = 12 000 K
and log g = 8.0 with � = 2 (top line) and � = 1 (bottom line). The plot-
ted error bars are 2 sigma total and the uncertainties on the ratios had
their uncertainties propagated.

cancellation from the inclination of the pulsation axis could be
the answer.

Their proposed value for f3 is based on the hypothesis
that the 141.9 s (their value) periodicity is actually the har-
monic, 2 f3. Considering we resolved a peak at 141.87 s and
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Fig. 9. Phase difference in relation to the phase at 3400 Å, for P =
141.9 s, where T (λ) is the time of maximum at that λ. The y–axis
corresponds to ±20% of one cycle. The dotted line corresponds to
the weighted mean of the differences. The dashed line corresponds
to the theoretical prediction with no significant nonadiabatic effects,
i.e., phases do not change with wavelength. The plotted error bars are
2 sigma total and the uncertainties on the difference are propagated.

another smaller one at 141.24 s in the WET data set (see
Table 2), we estimated the maximum amplitude for f3 in three
cases. First, we calculated it by nonlinear least squares fit with
simultaneous sinusoids one for each detected peaks described
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in Table 2, assuming our largest periodicity at 141.87 s were the
harmonic of f3. Second, we considered the possibility the har-
monic was the m = 0 mode and that we observe the harmonics
of the m = −1 (at 141.87 s) and m = 1 (at 141.24 s) modes.
Third, we used Thompson & Clemens (2002) published pe-
riods. In all cases, there is no detectable pulsation at their f3
(∼285 s) or its second harmonic 3 f3 (∼95 s) in the WET data.

Our upper limits are around 0.14 mma, almost the same as
our estimate of the noise level, 〈A〉. The detection limit in the
data by Thompson & Clemens (2003) was 0.17 mma.

The measured amplitudes during the WET observation
in 1992, with an effective wavelength of 4100 Å, are
30% smaller than the corresponding periodicities at 3400 Å
HST data obtained in 1995, while the theoretical models pre-
dict only a 3% decrease due to change in wavelength (Robinson
et al. 1982). We note that the published Fourier transform
on the discovery runs have larger amplitudes (e.g. 2.8 mma
and 2.6 mma for the 215 s peak). It is therefore clear that
the amplitudes change with time, and it is conceivable that
the 285.1 s small amplitude peak detected by Thompson &
Clemens (2003) disappeared in both in the WET and HST ob-
servations. However, the Keck data they obtained is low time
resolution, and we note that the 285.1 s periodicity is close to
the sidelobes of the periodicities at 301 s and 300 s in their data.
Note that the beating of unresolved pulsation could also be the
cause of the apparent amplitude variation.

Considering the amplitude of the 141.9 s mode does not in-
crease towards the ultraviolet, but the amplitude of the 70.9 s
period does, we propose that the 70.9 s periodicity is, in fact,
a real eigenfrequency of the star, i.e., a real mode. Buchler
et al. (1997) show that if there is a resonance between pul-
sation modes, even if the mode is stable, its amplitude will
be necessarily nonzero. Wu & Goldreich (2002) discuss para-
metric instability mechanisms for the amplitude of the pulsa-
tion modes, but they only discuss the case where the parent
mode is unstable and the daughter modes are stable. Even if
the observably-large amplitude of the 141.9 s periodicity were
the result of a resonance with a harmonic frequency of another
mode, it would still be a mode and its amplitude would depend
on wavelength like any other mode. The resonance condition
would allow energy to be pumped into the mode, and hence
drive it to an observable amplitude, but this resonance mech-
anism does not change the geometry of the pulsation mode, it
only affects the amplitude.

In Table 2, we see other periodicities like 212.8 s, 141.2 s
and 72.9 s that apparently do not change amplitude signifi-
cantly with wavelength. These periodicities are not resolved
in HST data, and as we detected other periodicities close to
them, their amplitudes are unreliable.

G 185–32 is a hot DAV, both in terms of its main period-
icity being around 215 s and in terms of its measured effec-
tive temperature. Bergeron et al. (1995) defined the instability
strip from 12 460 to 11 160 K in effective temperature, using
ML2/α = 0.6. Their Teff = 12 130 ± 200 K fit to the optical
spectra of G 185–32 places the star 300 degrees cooler than the
blue edge. Koester & Allard’s (2000) determination from the
UV shows that the star is also 300 degrees lower than their
blue edge, and their instability strip is around 1000 degrees

wide. For these reasons, we conclude that the star is not at the
blue edge. The calculations of convective driving given in Wu
(1998) and Goldreich & Wu (1999) were done in the linear
limits and estimated the nonlinearities in the light curves as
the lowest–order nonlinear corrections (Wu 2001). Given the
highly nonlinear sensitivity of the depth of the convection zone
to the instantaneous effective temperature, these first–order
nonlinear corrections may not accurately reflect the actual non-
linearities observed in a large amplitude pulsator. In fact, some
pulsators have large enough amplitudes and are close enough to
the blue edge of the instability strip that their convection zones
should essentially disappear during the temperature maximum
in a pulsation cycle. This does not mean, however, that the
convection zone cannot produce driving or nonlinearities, as
during temperature minimum the depth and therefore the heat
capacity of the convection zone will be increased and will be
large enough to modulate the flux. Thus, while the depth of the
convection zone may be too small to produce driving or non-
linearities, over the entire pulsation cycle, a significant amount
of driving and flux modulation (nonlinearities) can still result.
It is important to notice that even if the 141.9 s periodicity were
represented by Y2

�,m effects, it can be decomposed into a sum of

spherical harmonics. In fact, Y2
1,m =

1√
4π

Y0,m +
1√
5π

Y2,m, so we
would expect that the wavelength dependence of its amplitude
to be between that of an � = 0 and an � = 2 mode. The result is
the same if we choose any m value. Y2

1,m is the first approxima-
tion on a Taylor series expansion, consistent with a treatment
of nonlinear effects as a perturbation. On the other hand, if the
modes we detect at 141.9 s and 141.2 s were the result of the
m–degeneracy removal (eg. due to rotation), than the cancella-
tion caused by stronger limb darkening in the ultraviolet should
not be as effective as that seen in the observations. In Fig. 10
we show the amplitude versus wavelength for the periodicity
at 141.9 s, in comparison with models with Y2

1,m, � = 0, � = 1
and � = 2, for a model with Teff = 12 000 K and log g = 8.00.
We note that observations are closer to Y2

1,m, but the data do not
fit it. We emphasize that this periodicity is not � = 0 (radial
mode), as its period should be less than 3 s (Robinson 1979).
The 3400 Å data is simultaneous with the UV data, in spite of
the data not resolving the 141.2 s, this effect is cancelled out
when we divide the amplitudes A(λ) by A(3400 Å).

The fact that the amplitude of 141.9 s does not change with
wavelength indicates that this periodicity does not correspond
to an actual pulsation mode, but is most likely the result of non-
linear effects. The major difference between the 141.9 s mode
of G185–32 and nonlinear combination peaks of other ZZ Ceti
stars is that the 141.9 s mode is a “difference” mode and is large
amplitude. We have not seen this before, and the theory to ex-
plain this is not in place yet.

As the observed amplitudes are low compared to other
ZZ Cetis of same periods (e.g. Kanaan et al. 2002), we agree
that the pulsation axis is probably close to perpendicular to the
line–of–sight (i ≈ 0◦), as suggested by Thompson & Clemens
(2003, TC), even though the m = ±1 modes, if present, will
not cancel out as the m = 0 modes (or vice–versa). The fact
that TC did not detect any velocity variation requires that only
the m = 0 modes be excited throughout all the pulsation



B. G. Castanheira et al.: G 185–32 633

Fig. 10. Amplitude versus wavelength for P = 141.9 s (points). Y2
1,m

(red continuous line), � = 0 (blue short-dashed line), � = 1 (green
long-dashed line) and � = 2 (yellow dotted-dashed line) are the mod-
els for Teff = 12 000 K and log g = 8.00. The plotted error bars are
2 sigma total and the uncertainties on the ratios had their uncertainties
propagated.

spectra. However, we do detect splittings around 141 s and 71 s.
If we assume the observed frequencies are due to the rotational
splitting of an � = 2 mode, then Prot 	 0.7 h, which is fast com-
pared to the Prot 	 1 day observed for other white dwarf stars,
including the DAVs G 226–29, GD 385 (Kepler et al. 1995),
and HS 0507+434B, which has a period of 1.7 day (Handler
et al. 2002). In spite of the no detection by TC of any velocity
variation at any frequency, indicating that the angle between the
pulsations axis and the line–of–sight is 90 deg if the pulsations
are m = 0, we detected the largest number of simultaneous pul-
sation of any ZZ Ceti star. The largest number of pulsations
should occur for a star at the red edge, where the pulsation am-
plitude is the highest. As the star cools, the convection zone
gets deeper, and the layer above it gets larger, allowing more
frequencies to tune in. G 29–38 is an example: many frequen-
cies present, as the other red edge pulsators. Kleinman et al.
(1998) studied G 29–38, a cool DAV, and determined 19 pulsa-
tion modes for this star.

Koester et al. (1998) found line core broadening of up
to 45 km s−1 for some pulsating white dwarf (ZZ Ceti) stars,
compared to 4.5 km s−1 for non ZZ Cetis. We note that, even
though Clemens et al. (2000) and Thompson et al. (2003) only
detected velocities amplitudes up to 4.5 km s−1 in ZZ Cetis,
and found similar widths at the average blue and red shifted
phases, these values represent Fourier velocity amplitudes, not
peak–to–peak amplitudes.

9. Comparison of Teff and logg with other methods

The measured parallax of the star is 0.056±0.003′′ (van Altena
et al. 2001), and its apparent magnitude is V = 12.97 ± 0.01
(Dahn et al. 1976). Using these values, we calculated the
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Fig. 11. Determinations of Teff and log g from different methods. The
long–short dashed box labeled Pulsations is the result of the determi-
nation from the comparison of the amplitude in the ultraviolet with
the optical. The boxes labeled Stromgren (long dashed) and Johnson
(short dashed) are the determinations from color indices in compari-
son with Bergeron’s et al. (2001) model colors. The dot–dashed box
labeled Bergeron 1995 is his result from optical spectra. The dotted
box labeled Koester & Allard (2000) is their determination from ul-
traviolet spectrum, V magnitude and parallax.

absolute magnitude MV = 11.36, and compared them with
Bergeron et al.’s (2001) atmospheric models. The result defines
possible combined solutions for Teff and log g.

There are published Johnson (Dahn et al. 1988), Strömgren
(Lacombe & Fontaine 1981; Wegner 1983) and Greenstein col-
ors (Greenstein 1984) for G 185–32, which we also compared
to Bergeron’s et al. (2001) model colors. For Strömgren colors,
we considered the external error bars, taking into account the
two measurements. For Johnson colors, there are no error bars
published, so we considered that the minimum internal error is
at least 0.03. We did not use Greenstein colors, because no blue
colors are available, i.e., it is not possible to determine gravity
from the published colors. The effect of gravity on colors and
spectra is dominant in the blue region because the hydrogen
levels with n 	 7 and higher, corresponding to lines H ε or
bluer in the optical, are the ones significantly displaced by high
pressure.

We also compared the time–averaged HST spectrum with
Koester’s theoretical spectra derived from model atmosphere,
not fixing any value of Teff or log g as assumed by Kepler
et al. (2000). In this kind of analysis we found possible (Teff,
log g) solutions.

In Fig. 11 we show the solutions derived by these meth-
ods, and the determination from optical spectra (Bergeron
1995). The boxes represent an error bar of ±1σ. The meth-
ods of determination are based on independent data sets. If
we consider probability densities with normal distributions for
each method, the best solution given by the product of all
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probabilities is Teff = 11 960 ± 80 K and log g = 8.02 ±
0.04, corresponding to a mass of 0.617 ± 0.024 M� from Wood
(1995) evolutionary models.

10. Concluding remarks

We conclude that the star has at least 12 pulsation modes, the
ones we could attribute an � value to. The 141.9 s periodic-
ity is probably due to nonlinear effects, not a true pulsation.
The 70.9 s pulsation mode has � = 2, probably k = 1. The best
Teff and log g consistent with all independent data are 11 960 ±
80 K and 8.02 ± 0.04, corresponding to a mass of 0.617 ±
0.024 M� from Wood (1995) evolutionary models. The incli-
nation angle of the pulsation axis in relation to the line-of-sight
must be unfavorable, i.e., close to to perpendicular if the pulsa-
tions are m = 0 or ±2, and close to parallel otherwise.

Acknowledgements. We acknowledge the financial support from
CNPq and NSF. Jan-Erik Solheim acknowledges professor Udo
Renner, from Technishe Universität Berlin, who gave us acesss to the
TUBSAT communication satellite. We acknowledge the help of the
referee, Dr. Gerald Handler, for his very usefull and detailed com-
ments, which made this paper a better one.

References

Bergeron, P., Wesemael, F., Lamontagne, R., et al. 1995, ApJ, 449,
258

Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJS, 133, 413
Bradley, P. A. 1996, ApJ, 468, 350
Bradley, P. A. 2001, ApJ, 552, 326
Buchler, J. R., Goupil, M.-J., & Hansen, C. J. 1997, A&A, 321, 159
Clemens, J. C., van Kerkwijk, M. H., & Wu, Y. 2000, MNRAS, 314,

220
Dahn, C. C., Harrington, R. S., Riepe, B., Y., et al. 1976, Publications

of the US Naval Observatory Second Series, 24, 1
Dahn, C. C., Harrington, R. S., Kallarakal, V. V., et al. 1988, AJ, 95,

237
Finley, D. S., Koester, D., & Basri, G. 1997, ApJ, 488, 375
Goldreich, P., & Wu, Y. 1999, ApJ, 511, 904
Greenstein, J. L. 1984, ApJ, 276, 602
Handler, G., Romero-Colmenero, E., & Montgomery, M. H. 2002,

MNRAS, 335, 399

Handler, G. 2003, Baltic Astron., 12, 253
Ising, J., & Koester, D. 2001, A&A, 374, 116
Kanaan, A., Kepler, S. O., & Winget, D. E. 2002, A&A, 389, 896
Kepler, S. O. 1984, ApJ, 278, 754
Kepler, S. O. 1993, Baltic Astron., 2, 515
Kepler, S. O., Robinson, E. L., & Nather, R. E. 1995, in Calibrating

Hubble Space Telescope: Post Servicing Mission, ed. A. Koratkar,
& C. Leitherer (Baltimore: Space Telescope Science Institute),
104

Kepler, S. O., Robinson, E. L., Koester, D., et al. 2000, ApJ, 539, 379
Kepler, S. O., Nather, R. E., Winget, D. E., et al. 2003, A&A, 401, 639
Kleinman, S. J., Nather, R. E., Winget, D. E., et al. 1998, ApJ, 495,

424
Koester, D., Dreizler, S., Weidemann, V., & Allard, N. F. 1998, A&A,

338, 612
Koester, D., & Allard, N. F. 2000, Baltic Astron., 9, 119
Lacombe, P., & Fontaine, G. 1981, A&AS, 43, 367
McGraw, J. T., Fontaine, G., Lacombe, P., et al. 1981, ApJ, 250, 349
Nather, R. E., Winget, D. E., Clemens, J. C., Hansen, C. J., & Hine,

B. P. 1990, ApJ, 361, 309
Pesnell, W. D. 1985, ApJ, 292, 238
Robinson, E. L. 1979, in White Dwarf and Variable Degenerate Stars,

ed. H. M. Van Horn, & V. Weideman (Rochester, NY: University
of Rochester), IAU Colloq., 53, 343

Robinson, E. L., Kepler, S. O., & Nather, R. E. 1982, ApJ, 259, 219
Robinson, E. L., Mailloux, T. M., Zhang, E., et al. 1995, ApJ, 438,

908
Saffer, R. A., Livio, M., & Yungelson, L. R. 1998, ApJ, 502, 394
Scargle, J. D. 1982, ApJ, 263, 835
Schwarzenberg-Czerny, A. 1999, ApJ, 516, 315
Schwarzenberg-Czerny, A. 1991, MNRAS, 253, 198
Standish, E. M. 1998, A&A, 336, 381
Thompson, S. E., & Clemens, J. C. 2003, in Proc. of the

Asteroseismology Across the HR Diagram, ed. M. J. Thompson,
M. S. Cunha, & M. J. P. F. G. Monteiro (Dordrecht: Kluwer),
257 (TC)

Thompson, S. E., Clemens, J. C., van Kerkwijk, M. H., & Koester, D.
2003, ApJ, 589, 921

van Altena, W. F., Lee, J. T., & Hoffleit, E. D. 2001, VizieR Online
Data Catalog, 1238

Wegner, G. 1983, AJ, 88, 109
Wu, Y. 1998, Excitation and Saturation of White Dwarf Pulsations,

Ph.D. Thesis, Caltech
Wu, Y., & Goldreich, P. 1999, ApJ, 519, 783
Wu, Y. 2001, MNRAS, 323, 248
Wu, Y., & Goldreich, P. 2002, ApJ, 564, 1024


