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Abstract

The 2014-2016 Ebola outbreak in West Africa has triggered accelerated devel-
opment of several preventive vaccines against Ebola virus. Under the EBO-
VAC1 consortium, three phase I studies were carried out to assess safety and
immunogenicity of a two-dose heterologous vaccination regimen developed
by Janssen Vaccines and Prevention in collaboration with Bavarian Nordic.
To describe the immune responses induced by the two-dose heterologous vac-
cine regimen, we propose a mechanistic ODE based model, which takes into
account the role of immunological memory. We perform identifiability and
sensitivity analysis of the proposed model to establish which kind of biolog-
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ical data are ideally needed in order to accurately estimate parameters, and
additionally, which of those are non-identifiable based on the available data.
Antibody concentrations data from phase I studies have been used to cali-
brate the model and show its ability in reproducing the observed antibody
dynamics. Together with other factors, the establishment of an effective and
reactive immunological memory is of pivotal importance for several prophy-
lactic vaccines. We show that introducing a memory compartment in our
calibrated model allows to evaluate the magnitude of the immune response
induced by a booster dose and its long-term persistence afterwards.

Keywords: Mechanistic modeling, Immunological memory, Vaccination,
Ebola Virus, Identifiability analysis, Sensitivity analysis, Calibration,
Heterologous vaccination

1. Introduction1

Since the discovery of Ebola virus in 1976, recurring Ebola outbreaks2

have been recorded in equatorial Africa [1, 2]. The largest outbreak ever3

recorded has affected West Africa between March 2014 and June 2016 [3],4

during which a Public Health Emergency of International Concern was de-5

clared, and resulted in more than 28,000 cases and 11,000 deaths, since no6

licensed vaccines nor cure were available. On August 1st 2018 a new Ebola7

outbreak was declared in the Democratic Republic of Congo (DRC) in North8

Kivu and Ituri provinces [4]. At present, it has been confined to a relatively9

small area but has already caused more than 3400 confirmed cases and 225010

confirmed deaths updated to March 1st 2020 [5]: the World Health Organi-11

zation (WHO) declared a Public Health Emergency of International Concern12

on July 17th 2019 [6].13

14

Ebola virus (EBOV) belongs to the Filoviridae family, which includes15

five well-known species (Zaire (ZEBOV), Bundibugyo, Sudan, Reston and16

Tai Forest), and the recently discovered Bombali species [7]. Ebola virus17

causes Ebola Viral Disease (EVD), a severe and acute illness, with a mor-18

tality rate ranging from 25% to 90% according to the WHO [2]. Therefore,19

there is an urgent need for licensed Ebola vaccines.20

21

In response to the 2014-2016 Ebola outbreak, the development of several22

vaccine candidates against Ebola virus has been accelerated, with various23
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vaccine platforms and antigen inserts [8, 9]. In this context, in December24

2014 the EBOVAC1 consortium was built under the Innovative Medicines25

Initiative Ebola+ Program. Its purpose was to support the development by26

Janssen Vaccines & Prevention B.V. of a new two-dose heterologous vaccine27

regimen against Ebola based on Adenovirus serotype 26 (Ad26.ZEBOV) and28

Modified Vaccinia Ankara (MVA-BN-Filo) vectors [10]. Ad26.ZEBOV vector29

encodes the glycoprotein (GP) of the Ebola Zaire virus, while MVA-BN-Filo30

encodes GPs from Ebola Zaire virus, Ebola Sudan virus, Marburg virus, and31

Tai Forest virus nucleoprotein.32

33

The proposed two-dose regimens utilize both vaccines, administered at34

28 or 56 days intervals. Three phase I studies have been carried out in four35

countries under EBOVAC1: United Kingdom [11, 12], Kenya [13], Uganda36

and Tanzania [14]. The immune response following vaccination has been37

evaluated up to one year after the first dose through GP-specific binding an-38

tibody concentrations. Neutralizing antibody and T cell responses have also39

been evaluated up to one year of follow-up. Although human efficacy data40

are not available, results on non-human primate models have shown that the41

antibody concentration after the challenge correlates best with survival upon42

intramuscular challenge with Ebola virus [15, 16, 17, 18].43

44

Therefore, it becomes relevant to estimate the persistence of the anti-45

body response induced by the two-dose heterologous vaccine. The in silico46

approach we propose here will provide a good starting point to predict the47

humoral immune response elicited by the proposed vaccination regimen be-48

yond the available persistence immunogenicity data.49

50

The goal of prophylactic vaccination is to induce immunity against an in-51

fectious disease. Henceforth, it aims at stimulating the immune system and52

its ability to store and recall information about a specific pathogen, leading to53

a long-term protective immunity. This is possible by means of immunological54

memory, one of the core features of adaptive immune responses [19, 20, 21].55

56

By generating specific antibodies, B cells play a key role in the mam-57

malian adaptive immune system, and help protecting the organism against58

antigenic challenges. Several populations of specific B cells are generated59

upon antigen stimulation, with distinct functional roles. Näıve B cells be-60

come activated through the encounter with the antigen in secondary lym-61
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phoid organs. Upon activation, they can either become short-lived Antibody62

Secreting Cells (ASCs), or seed highly dynamic environnements called Ger-63

minal Centers (GCs). In the second circumstance, B cells undergo B cell64

receptor (BCR) affinity maturation to improve their affinity against the pre-65

sented antigen. The interaction of B cells with follicular dendritic cells and66

follicular helper T cells within GCs allows selection of B cells with improved67

antigen-binding ability [22]. During the course of a GC reaction, B cells68

can become either memory B cells or long-lived ASCs depending on the69

strength of their affinity. In particular, long-lived ASCs are generated after70

extensive B cells affinity maturation and produce high affinity antibodies. In71

contrast, memory B cells undergo less extensive affinity maturation, making72

them promptly available. Ultimately, ASCs are differentiated B cells able to73

produce high-affinity antibodies [22, 23, 24].74

75

The primary infection induces a transient antibody response, because it76

is mostly characterized by short-lived ASCs. Indeed, findings on the kinetics77

of circulating ASCs following vaccination show an early peak located around78

7 days after vaccination, followed by a rapid relaxation phase: their level be-79

comes undetectable after 10 to 14 days [25, 26, 27]. Nevertheless, the primary80

infection is able to elicit memory B cells, which play a key role in protection81

against subsequent infections with the same pathogen. Indeed, secondary82

exposure to a priming antigen is characterized by a more rapid and intense83

humoral response, which is of better quality as well (i.e. higher affinity an-84

tibodies) [28, 29]: this is the so called anamnestic response. Memory B cells85

can directly differentiate into short-lived ASCs, as well as seed new GCs for86

further affinity maturation [22, 30]. This is done in a more effective way87

than näıve B cells: it has been experimentally observed that memory B cells88

possess an intrinsic advantage over näıve B cells in both the time to initiate89

a response and in the division-based rate of effector cell development [29].90

Once the infection has been controlled, the generated population of specific91

B cells contracts, leaving memory B cells and long-lived ASCs. The latter92

population partially migrates to the bone-marrow and assures long-term pro-93

duction of high-affinity antibodies [31, 32].94

95

Mathematical models of the immune response are increasingly recognized96

as powerful tools to gain understanding of complex systems. Several math-97

ematical models have already been developed to describe antibody decay98

dynamics following vaccination or natural infection aiming at predicting long-99
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term immunity. The more popular models are simple exponential decay mod-100

els (e.g. [33, 34]), bi-exponential decay models (e.g. [35, 36]) or power-law101

decay models (e.g. [37]). They are based on the assumption that antibody102

concentrations will decay over time. Changing slopes can be introduced to103

better fit immunological data, which typically show a higher antibody decay104

during the first period after immunization followed by a slower antibody de-105

cay.106

107

ODE-systems are an extremely useful tool to model complex systems,108

because they are relatively easy to communicate, new biological assumptions109

can be included and several softwares exist to compute numerical solutions.110

To gain better insights on the dynamics of the humoral response, Le et al.111

[38] proposed a model taking into account a population of specific ASCs and112

applied it to fit data from both ASCs and antibodies upon vaccinia virus113

immunization of human volunteers. This is the extension of a model devel-114

oped by De Boer et al. [39] and Antia et al. [40] for modeling the CD8115

T cell response. As stressed by the authors, this model may underestimate116

long-term immunity since it does not take into consideration antibody con-117

tribution supplied by long-lived ASCs [31, 32].118

119

The assumption of having several ASCs populations has been considered120

in several models thereafter. Fraser et al. [41] considered an extension of121

the conventional power-law decay model to include two distinct populations122

of ASCs, differing in they respective decay rate, showing an improvement123

of data fitting. Andraud et al. and White et al. [42, 43] developed models124

based on ordinary differential equations (ODEs) describing the contribution125

of short and long-lived ASCs in antibody production.126

127

All previously cited models focus on the humoral response following im-128

munization, without questioning the ability of the immune system to mount129

anamnestic responses. To the best of our knowledge, very few models have130

been proposed to address this question. An example is given by Wilson and131

Nokes [44, 45]. The authors explored different mechanisms for the genera-132

tion of immune memory and its role in enhancing a secondary response upon133

further immunization against hepatitis B virus. The memory compartment134

included memory B and T cells and followed a logistic behavior. In this work,135

antibody and memory cell generation depended on the circulating antigen.136

The authors did not consider the contribution of any population of ASCs in137
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generating and sustaining the antibody response. A memory B cell compart-138

ment, where memory B cells are supposed to follow a logistic behavior and139

could differentiate into ASCs, has been considered by Davis et al. [46]. The140

authors parametrized a model based on 12 ODEs of the humoral immune141

response against Shigella, a diarrheal bacteria, to describe the complex in-142

teractions of the bacteria with the host immune system. Nevertheless, the143

complexity of the proposed model entails several identifiability issues, mak-144

ing it difficult to be used in practice.145

146

Pasin et al. [47] have already analyzed the antibody response elicited147

by the two-dose heterologous vaccine regimens against Ebola virus based on148

Ad26.ZEBOV and MVA-BN-Filo, and evaluated during three phase I stud-149

ies under the EBOVAC1 project. To this extent, they have used the model150

developed by Andraud et al. [42]. Model parameters have been estimated151

using a population approach and some key factors inducing variability in the152

humoral response have been identified and quantified. The model used by153

Pasin et al. focuses on the antibody response observed after the second dose,154

and can help predicting the durability of the antibody response following the155

two-dose heterologous regimens. However, the anamnestic response of any156

new exposure could not be studied, because no plasma cells nor memory B157

cells generation mechanism has been considered.158

159

Here we want to extend the model developed by Andraud et al. [42] to160

characterize the establishment of the humoral response after the first vac-161

cine dose and its reactivation following the second dose. The generation of162

different subgroups of B cells -memory, short- and long-lived ASCs- is taken163

into account and a vaccine antigen compartment is considered as responsible164

for inducing the immune response. We aim at understanding the ability of165

vaccinated people to react to a potential future encounter with Ebola virus166

antigens. To this extent, we develop a model able to describe the generation167

of an anamnestic response by means of the establishment of the immunolog-168

ical memory.169

170

Description of studies performed under the EBOVAC1 project and a de-171

scriptive analysis of antibody concentrations are given in Section 2. In Sec-172

tion 3 we formulate our mathematical model describing the humoral response173

to a single immunization and explain how it can be used to simulate further174

immunizations. In Section 4 we perform structural identifiability analysis to175
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determine which data should be generated or alternatively which parame-176

ters should be fixed to allow proper parameter estimation. In Section 5 we177

perform a model calibration against available antibody concentration mea-178

surements. In Section 6, local sensitivity analysis completes previous results179

on parameter identifiability. With the parameter set obtained through cal-180

ibration, in Section 7 we simulate a booster immunization which shows an181

improved immune response, due to the establishment of immunological mem-182

ory elicited by the two-dose vaccination regimens. Finally in Section 8 we183

discuss the significance of obtained results and limitations of the model.184

185

2. Study design and serological analyses186

We consider data collected during three randomized, blinded, placebo-187

controlled phase I studies on healthy adult volunteers aged 18 to 50 years.188

Studies were performed in four different countries: UK, Kenya, Uganda and189

Tanzania. We present briefly these data here, because we will use them in190

next sections (e.g. Section 5). We refer to [11, 12, 13, 14] for a detailed191

presentation of safety and immunogenicity results, for studies in UK, Kenya192

and Uganda/Tanzania respectively.193

194

In each country, participants were randomized into four vaccination groups195

differing by the order of vaccine immunizations (Ad26.ZEBOV as first dose196

and MVA-BN-Filo as second dose or conversely) and by the interval of time197

between immunizations (either 28 or 56 days). Throughout the paper we198

will label vaccination groups specifying the order of vaccine immunizations199

and delay between the first and second doses, e.g. participants within group200

Ad26/MVA D57 have received the first Ad26.ZEBOV dose at day 1 and the201

second MVA-BN-Filo dose 56 days later. Vaccination group Ad26/MVA D57202

will be considered as the reference group. In each study 18 volunteers were203

enrolled per vaccination group, 3 receiving placebo and 15 receiving active204

vaccine.205

206

We have analyzed data from a total of 177 participants subdivided as de-207

scribed in Table 1. For all groups immunogenicity measurements have been208

recorded at the first immunization day (day 1), 7 days later (day 8), at the209

second immunization day (day 29 or 57), at both 7 days (day 36 or 64) and210

21 days (day 50 or 78) after the second immunization, and at days 180, 240211
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Table 1: Summary of data analyzed per vaccination group.

Group No. Measurements
MVA/Ad26 D29 44 D1, D8, D29, D36, D50, D180, D240, D360
MVA/Ad26 D57 44 D1, D8, D29, D57, D64, D78, D180, D240, D360
Ad26/MVA D29 45 D1, D8, D29, D36, D50, D180, D240, D360
Ad26/MVA D57 44 D1, D8, D29, D57, D64, D78, D180, D240, D360
Total 177

Figure 1: Antibody concentrations dynamics per vaccination group in log10 scale.

and 360 after the first immunization for the follow-up. Groups receiving the212

second dose at day 57 have an extra immunogenicity measurement at day 29.213

214

The humoral immune response to the vaccine has been assessed through215

analysis of IgG binding antibody concentrations against the Ebola virus Kik-216

wit variant glycoprotein (EBOV GP). This was determined by enzyme-linked217

immunosorbent assay (ELISA) performed by Battelle Biomedical Research218

Center (BBRC, US) for the UK and Uganda/Tanzania studies and by Q2 So-219

lutions (US) for the Kenya study with assay-specific limit of detection (LOD)220

varying among analyzing laboratory (36.6 ELISA units/mL for (BBRC),221

26.22 ELISA units/mL for Q2 Solutions). Both laboratories used the same222

protocol and material for the assay.223

224

In Figure 1 the dynamics of antibody concentrations (median and in-225

terquartile ranges) per vaccination group is given, considering data from the226

three studies pooled together (for further details, see supplementary Figure227

S1 and supplementary Table S1).228

229
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3. Mathematical model for primary and anamnestic response230

3.1. Model formulation231

To capture the establishment of the humoral immune response to a two-232

dose vaccination regimen and predict the reaction to a booster immunization233

we propose a mathematical model based on a system of five ODEs (Equations234

(1)-(5)). We consider three B cell populations: memory B cells (M), short-235

lived antibody secreting cells (S) and long-lived antibody secreting cells (L).236

In addition, we consider the concentration of antigen (A), which is introduced237

through immunizations, and causes primary as well as secondary responses.238

Finally, antibody concentration (Ab) is also described. For the sake of sim-239

plicity, we will denote this model as (MSL): a schematic representation is240

given in Figure 2. Equations of our model are:241

(MSL) =



Ȧ = −δAA
Ṁ = ρ̃A− (µ̃S + µ̃L)AM − δMM
Ṡ = µ̃SAM − δSS
L̇ = µ̃LAM − δLL
Ȧb = θSS + θLL− δAbAb

(1)

(2)

(3)

(4)

(5)

Figure 2: Schematic representation of (MSL) model. A stands for vaccine antigen, M for
memory B cells, S for short-lived ASCs, L for long-lived ASCs, and Ab for specific soluble
antibodies. See text and Equations (1)-(5) for details.

The reaction is initiated when a certain amount of antigen A is detected242

by the host immune defenses at time t = 0 (corresponding to the time of an243

immunization). The free antigen is progressively processed and eliminated244
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from the system with the per capita rate δA (Equation (1)). The antigen dy-245

namic is described by a simple exponential decay, because in this particular246

context neither of the two vaccine vectors are replicating [11]. The presence247

of antigen causes the instantaneous generation of M cells at rate ρ̃A, con-248

densing the complex biological process of activation of specific näıve B cells,249

and their subsequent massive proliferation and maturation within GCs. The250

M compartment is then an “hybrid” one. While the reaction is ongoing, M251

cells differentiate into both short- and long-lived ASCs, at rates µ̃S and µ̃L252

respectively. After total antigen consumption, M denotes memory B cells253

(BMEMs), ready to differentiate into ASCs upon subsequent antigen stim-254

ulation. ASCs are ultimately differentiated cells which do not proliferate.255

They die with rate δS and δL, respectively. Antibodies are produced by both256

populations of ASCs in different proportions (θSS + θLL). Their half-life is257

described by parameter δAb. Description of all parameters can be found in258

Table 2.259

260

After some time, the reaction reaches a peak, then the production of new261

ASCs and BMEMs decreases and finally ends. Long-lived ASCs continue262

to produce antibodies assuring long-term immunity, while BMEMs persist in263

the organism to promote anamnestic responses in case of subsequent encoun-264

ters with the same antigen. Indeed, in this case, BMEMs can differentiate265

into antigen-specific ASCs and produce high-affinity antibodies.266

267

3.2. Rescaled system268

Compartment A is not observed in practice. In order to circumvent this269

difficulty, and to avoid identifiability issues (see Section 4), we can use the270

analytical solution of Equation (1) in Equations (2) to (5). We get:271 
Ṁ = ρe−δAt − (µS + µL)e−δAtM − δMM
Ṡ = µSe

−δAtM − δSS
L̇ = µLe

−δAtM − δLL
Ȧb = θSS + θLL− δAbAb

(6)

Note that through this transformation the unknown parameters are ρ :=272

ρ̃A0, µS := µ̃SA0, µL := µ̃LA0 instead of ρ̃, µ̃S and µ̃L, where A0 := A(t = 0).273
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Table 2: Description of model parameters with units. We represent by [A] the unit of
antigen concentration: this quantity has not been measured in any study considered here.

Parameter Description Unit
δA Antigen declining rate days−1

ρ̃ Rate at which M cells are
generated over time per
antigen concentration

IgG-ASC.(106PBMC)−1.days−1.[A]−1

µ̃S Differentiation rate of M
cells into S cells per anti-
gen concentration

days−1.[A]−1

µ̃L Differentiation rate of M
cells into L cells per anti-
gen concentration

days−1.[A]−1

δM Declining rate of M cells days−1

δS Death rate of S cells days−1

δL Death rate of L cells days−1

θS Antibody production
rate per S cells

ELISA Units.mL−1.(IgG-ASC)−1106PBMC.days−1

θL Antibody production
rate per L cells

ELISA Units.mL−1.(IgG-ASC)−1106PBMC.days−1

δAb Antibody death rate days−1

3.3. Special case: no memory cells death274

It has been reported in the literature that BMEMs are an exceptionally275

stable population [48, 49]. It is hence reasonable to assume that δM � 1.276

Let us consider the rescaled system (6). Under the assumption δM = 0, there277

exists a stationary state reached by BMEMs, given by:278

M
δM=0

=
ρ

µS + µL
(7)

The state (7) is globally asymptotically stable [50]. The assumption279

δM � 1 will be useful to interpret results in Sections 5 and 7. However,280

there is no constraint on this parameter in the sequel.281

282

It is worth noting that in the case δM > 0, the M population will con-283

verge exponentially towards 0. Nevertheless, provided that δM � 1 and in284
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particular δM � δAb, the decreasing slope of M will be very small, hence the285

effect of δM will barely affect the Ab dynamics during the observation period.286

3.4. Special case: absence of antigen stimulation287

The model developed here extends a model proposed in [42] and applied288

in [47] in the context of the EBOVAC1 project to analyze the antibody289

response after the second dose. In these works the authors hypothesized290

that their observations began when the B cell response was already in the291

declining phase, i.e. there was no further generation of ASCs. In the absence292

of antigenic stimulus (e.g. A0 = 0), (6) reduces to:293 
Ṁ = −δMM
Ṡ = −δSS
L̇ = −δLL
Ȧb = θSS + θLL− δAbAb

(8)

(9)

(10)

(11)

This corresponds to the model used in [42, 47], with the addition of Equa-294

tion (8) which does not affect Equations (9)-(11).295

296

3.5. Simulating the response to subsequent stimulations297

The (MSL) model allows to describe the establishment of the humoral298

response by the first dose of antigen. To simulate the response to the second299

dose and subsequent stimulations, vaccine antigen is added to compartment300

A according to the vaccination schedule. Hence, the (MSL) model is applied301

again with predicted values of M , S, L and Ab the day of the planned sec-302

ond dose as new initial conditions. This can be mathematically formalized303

as follows.304

305

Let n be the number of vaccine doses; ti, i = 1, . . . , n the time of ad-306

ministration of the ith-dose and tn+1 the last observation time. Let ψi :=307

(δA,i, ρi, δM,i, µS,i, µL,i, δS,i, δL,i, θS,i, θL,i, δAb,i) be the vector of unknown pa-308

rameters associated with the immune response to the ith-dose. We denote309

the initial conditions by M0, S0, L0, Ab0.310

311

For ti < t ≤ ti+1, i = 1, . . . , n, the dynamics of M,S, L,Ab following the312

ith-immunization is obtained as the solution to the following ODE system:313

12




Ṁ = ρie

−δA,i(t−ti) − (µS,i + µL,i)e
−δA,i(t−ti)M − δM,iM

Ṡ = µS,ie
−δA,i(t−ti)M − δS,iS

L̇ = µL,ie
−δA,i(t−ti)M − δL,iL

Ȧb = θS,iS + θL,iL− δAb,iAb

, (12)

with initial conditions: M0 = M(t = ti), . . . , Ab0 = Ab(t = ti).314

4. Identifiability analysis315

We have performed a theoretical study of the rescaled model described316

by (6) to determine which biological data are needed to accurately estimate317

parameters and infer predictions about two-dose vaccination regimens.318

319

A priori structural identifiability is a structural property of a model. It320

ensures a sufficient condition for recovering uniquely unknown model param-321

eters from knowledge of the input-output behavior of the system under ideal322

conditions (i.e. noise-free observations and error-free model structure). We323

refer to Miao et al. [51] for a formal definition of a priori structural identi-324

fiability.325

326

Ideally one would assess global structural identifiability, but sometimes327

local identifiability can be sufficient if a priori knowledge on the unknown328

parameters allows to reject alternative parameter sets. For instance, global329

identifiability for (6) would not be reached without imposing any condition330

on the half-life of compartment S compared to L. Indeed, from a structural331

point of view, the roles of S and L are perfectly symmetric.332

333

We assess local structural identifiability of (6) using the Identifiabili-334

tyAnalysis package implemented in Mathematica (Appendix A). We sup-335

pose that Ab0 = Ab(t = 0) is known and Ab(t) is observed during follow-up,336

which is consistent with available data (Section 2). If all other initial con-337

ditions are unknown, (6) results in being non-identifiable (Supplementary338

Table S2). The non-identifiable parameters are L0, M0, S0, µL, µS, ρ, θL,339

θS, with degree of freedom 2. This means that, in order to solve the non-340

identifiability issue, one should fix at least two parameters within the set of341

non-identifiable parameters, {µL, µS, ρ, θL, θS}. However, there is no avail-342

able information on the values of these parameters, hence they cannot be343
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fixed a priori. Therefore, additional biological data corresponding to other344

compartments need to be integrated to ensure structural identifiability.345

346

Analyses of specific B cell response induced by vaccination could be per-347

formed through the Enzyme-Linked Immunosorbent Spot Assay (ELISpot).348

This is a sensitive method to identify the concentration of antigen-specific349

ASCs [52]. Antigen-specific BMEMs can also be analyzed through the ELISpot350

techniques, but this requires ex vivo polyclonal activation over 3 to 8 days351

before detectable amounts of antibodies can be found.352

353

Specific ASCs correspond in (6) to (S + L)(t). Let us assume they354

are measured during follow-up; baseline values of both S and L are still355

supposed unknown. We obtain that Model (6) with unknown parameter356

vector ψ := (δA, ρ, µS, µL, δM , δS, δL, θS, θL, δAb), and outputs vector y(t) =357

(Ab0, Ab(t), (S + L)(t)) is a priori structurally identifiable (Supplementary358

Table S2).359

360

Let us assume that the M compartment is observed during follow-up361

instead of S + L. In this case, the structural identifiability of Model (6) is362

not ensured, according to the IdentifiabilityAnalysis algorithm (Supple-363

mentary Table S2). Other parameters should be fixed or information about364

ASCs should be integrated.365

366

We can conclude that {Ab0, Ab(t), (S + L)(t)} is a suitable minimal out-367

put set to be considered to ensure model identifiability. Of course any other368

additional information about parameters and/or model compartments will369

increase the identifiability of (6) and the reliability of parameter estimation.370

371

Of note, this analysis of theoretical identifiability still does not guarantee372

practical identifiability, which depends on availability and quality of data [51],373

such as time point distribution of measurements and measurements errors.374

However, practical identifiability could be improved by using a population375

approach for parameter estimation based on mixed-effects models [53, 54, 55].376

This approach allows to perform parameter estimation across a whole pop-377

ulation of individuals simultaneously, and quantify the variations that some378

covariates (either categorical and continuous) of interest produce over the379

dynamics of specific subgroups (e.g. heterogeneous vaccination schedules).380

This is done by assuming some underlying structure to the distribution of381
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individual-level parameters across a population. Firstly, each individual pa-382

rameter is described by an intercept representing the mean parameter value383

across the whole population. Then, part of variability can be described by384

way of covariates allowing the distinction between different sub-populations,385

and finally a normally distributed random effect characterizes the remain-386

ing between-subjects unexplained variability. Within this framework, either387

maximum likelihood and Bayesian approaches has been proposed to perform388

parameter estimation.389

390

5. Model calibration391

Model (6) is not structurally identifiable with the observation of com-392

partment Ab only: a reliable parameter estimation cannot be performed.393

Therefore, we propose a model calibration against antibody concentration394

data to assess the ability of (6) to reproduce antibody kinetics consistent395

with available experimental data.396

5.1. Methods397

To perform the calibration, we considered the antibody concentration398

data as described in Section 2.399

400

We calibrated (6) considering the median and interquartile ranges among401

all studies pooled together stratified by vaccination group, considering vac-402

cination group Ad26/MVA D57 as the reference group.403

404

M(0), S(0), L(0) and Ab(0) were set equal to 0 before the first dose,405

i.e. we supposed there were no previously existing specific antibodies nor406

B cells. Initial conditions of the reaction to the second dose are set as the407

predicted values of each compartment at the second dose immunization day,408

as described in Section 3.5. Simulations of (6) have been performed using409

Matlab, ode45 function. According to biological assumptions or previous410

modeling results, we suppose that the following parameters could be modified411

depending on the vaccine vector and/or the timing of dose administration412

(see Table 3 for notation details):413

• ρ, µS, µL are vector dependent (Ad26.ZEBOV or MVA-BN-Filo). These414

parameters determine the strength of the humoral response and the415
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amount of ASCs and BMEMs generated (Section 3). Biological evi-416

dences suggest that the strength and quality of the immune response417

is dependent on the type of antigen inducing the reaction and the way418

it is presented (e.g. [56]).419

• δS(PVD1) ≥ δS(PVD29) ≥ δS(PVD57): Pasin et al. [47] have identi-420

fied a significant effect of the delay between immunizations on δS by421

analyzing the same phase I data we are considering here, with a sim-422

plified mechanistic model.423

• δS(Ad26) 6= δS(MVA): the effect of the order of administration of vac-424

cine vector over the decay rate of short-lived ASCs has been evidenced425

in a previous analysis by Pasin et al. [47]. The higher complexity of426

the model described here allows to define a direct dependence between427

parameters and vaccine vectors: we allow parameter δS to change ac-428

cording to the vaccine vector used.429

• ρ(PVD1) < ρ(PVD29) ≤ ρ(PVD57): the secondary response is im-430

proved in magnitude with respect to the primary one, due to the pres-431

ence of specific BMEMs contributing to the initiation of GCs reaction432

in a more effective way [29]. Parameter ρ determines the strength of433

the humoral response because it defines the generation of M cells upon434

antigen stimulation, i.e. the GC reaction breadth. Therefore M cells435

do not play exactly the same role when a primary (GCs generated436

from activated näıve B cells) or a secondary (GCs seeded by BMEMs437

or newly activated näıve B cells; BMEMs differentiating into ASCs) re-438

sponse is simulated [22, 28], hence it is reasonable to allow parameter ρ439

to increase from the first immunization (ρ(PVD1)) to the following one440

(ρ(PVD29) or ρ(PVD57)). In addition, previous studies on different441

viruses and vaccines have shown that an increased interval between im-442

munizations is associated with an improved magnitude of the response443

(e.g. [57, 58]). Consequently, an additional variation of parameter ρ444

depending on the interval between the two doses is permitted.445

• δA(Ad26) ≤ δA(MVA): according to biodistribution and persistence re-446

sults, Ad26 is cleared in approximatively 3 months [59], while MVA is447

cleared in approximately 1 month [60]. Note that here antigen concen-448

tration defines the duration of the GC response, so it does not exactly449

reflect biodistribution.450
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Table 3: Let ψ be a generic (unknown) parameter in {δA, ρ, µS , µL, δM , δS , δL, θS , θL, δAb}.
If it is dependent on the interval between immunizations or vaccine vector we write ψ(cat),
“cat” being a possible category of each variability factor.

ψ(cat)
Factor Category Meaning

Timing
PVD1 Post vaccination at day 1
PVD29 Post second vaccination at day 29
PVD57 Post second vaccination at day 57

Vaccine vector
MVA The vaccine vector is MVA-BN-Filo
Ad26 The vaccine vector is Ad26.ZEBOV

Model calibration has been achieved by repeated simulations of (6) and451

parameter tuning, until we obtained a consistent parameter set able to repro-452

duce reasonable antibody dynamics in accordance with interquartile ranges453

of experimental data for all vaccination groups.454

5.2. Results455

Table 4 shows parameter values obtained at the end of the calibration456

process described in Section 5.1.457

458

In Figure 3, antibodies (Figure 3 (a)) and ASCs and BMEMs (Figure 3459

(b)) dynamics are plotted for the reference vaccination group, Ad26/MVA460

D57, as an example. Results for all other vaccination groups are given in461

supplementary Figures S2-S3. The time axis is rescaled at the day of the462

primary injection (i.e. study day 1) and simulations performed up to 1 year463

after the first dose.464

465

In Figure 3 (a), orange dots correspond to median values of antibody466

concentrations data from the corresponding vaccination group. We were able467

to satisfactorily reproduce antibody concentrations dynamics in accordance468

with experimental observations for all vaccination groups. In supplementary469

Table S3 further details are given, with comparison of simulations to real470

data at some point of interest, e.g. at the time of the observed antibody471

peak and one year after the first dose.472

473
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Table 4: Parameters set obtained through (MSL) model calibration and used for simulations plotted in Figure 3 and supple-
mentary Figures S2-S3. The half-life corresponding to rate loss parameters is given by: t1/2(δi) := ln(2)/δi. Structurally iden-
tifiability of parameters with antibody concentrations observations is recalled, according to results of Section 4 (Y=structurally
identifiable; N=structurally non-identifiable)

Parameter Prior Ref. Value Unit Structurally
identifiable

with measured
Ab only?

Ad26 MVA
t1/2(δA) - - 10.7 3.3 days (half-life is derived from the approximate time

to clear Ad26.ZEBOV and MVA-BN-Filo respectively :
t1/2(δA)(Ad26) > t1/2(δA)(MVA) [59, 60])

Y

ρ -
PVD1 3.5 0.7

IgG-ASC/106PBMC.days−1 NPVD29 15 17
PVD57 15 20

µS - 2.5 0.4 days−1 N
µL - 0.011 0.0035 days−1 N
t1/2(δM) ≥50 [49] 63.3 years Y

t1/2(δS)
- PVD1 0.7 0.7

days Y
[0.8;7.7] [47]

PVD29 2.8 4.6
PVD57 4.6 11.6

t1/2(δL) [2.7;13] [47] 9.5 years Y
θS - 20 ELISA Units/mL.(IgG-ASC/106PBMC)−1.days−1 N
θL - 30 ELISA Units/mL.(IgG-ASC/106PBMC)−1.days−1 N
t1/2(δAb) [22;26] [47] 23.9 days Y
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The model predicts that antibody levels at one year after the first dose474

are comparable among all vaccine regimens, in accordance with data. The475

antibody response peak has been measured 21 days after the second dose.476

Antibody dynamics obtained with our calibration show a slightly delayed477

peak between 3 and 4 weeks after the second dose. Of note, no immuno-478

genicity measurements have been performed e.g. at 2 weeks nor at 4 weeks.479

480

In Figure 3 (b) the dynamics of B cells are plotted: for ASCs, we consider481

the sum of short- and long-lived ASCs. Note that, because the half-life of482

short-lived B cells is supposed to be significantly shorter than long-lived B483

cells one, at 1 year of follow-up we do not have any contribution from the S484

compartment.485

486

Results about B cell subsets dynamics correspond only to model predic-487

tions since they were not calibrated on real data, therefore model parameters488

could not be accurately determined. However, with the data available so far489

from phase I studies, this model provides a good starting point and it will490

be further implemented and validated when additional biological data on B-491

cells populations from ongoing phase II and phase III clinical studies will be492

available. ASCs dynamic shows an early peak located a few days (between 7493

to 10) after the second dose. This is in accordance with other studies assess-494

ing B cell kinetics upon vaccination (e.g. [26, 27]). It is followed by a rapid495

relaxation phase, then stabilization.496

497

The rapid decreasing slope after the peak of the ASCs response (i.e.498

from approximatively 1 to 10 weeks after the second dose) depends on the499

value of parameter δS, which corresponds to a very small half-life of short-500

lived ASCs (varying from almost 3 to 12 days, depending on the regimen).501

The concentration of long-lived ASCs is low for the obtained parameter set,502

but able to sustain the antibody response due to the long half-life of this503

population. BMEM level depends on parameters ρ, µS and µL, as stressed504

in Section 3.3 (note that according to Table 4 the half-life of M cells is set505

here at about 63 years, which implies a really weak value for parameter δM ,506

of the order of 10−5).507
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(a) Ab(t), Ad26/MVA D57 (b) B cells, Ad26/MVA D57

Figure 3: Predictions from the calibrated (MSL) model for the reference group,
Ad26/MVA D57. (a) Antibody concentrations (log10-transformed). Green horizontal
lines denote detection levels used by the BBRC laboratory (solid line) and by the Q2
Solutions laboratory (dashed line) respectively. (b) B cells. S and L stand for short-lived
and long-lived ASCs respectively; M represents BMEMs.

6. Sensitivity analysis of the antibody compartment508

We have obtained a parameter set able to reproduce antibody responses509

dynamics to two-dose vaccine regimens against Ebola virus that closely re-510

semble experimental observations. We perform a local sensitivity analysis511

of the antibody compartment to clarify the effect of each parameter on it512

over time. This can help detecting two different sources of practical non-513

identifiability of parameters:514

1. a very weak effect of a given parameter on the observed compartment515

or an effect which is concentrated in a specific time window where516

observations are very scarce;517

2. the interplay among parameters: the effect of the variation of one pa-518

rameter on the observed compartment can be compensated by a suit-519

able variation of another parameter.520

An intuitive representation of local sensitivity of the Ab compartment521

with respect to each parameter is given by the evaluation of curves φψi
(t) :=522

ψi

Ab(t,ψ)
∂Ab(t,ψ)
∂ψi

∣∣∣
ψ=ψ∗

, for each parameter ψi inψ = {δA, ρ, δM , µS, µL, δS, δL, θS, θL, δAb}523
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[61]. The quotient ψi/Ab is introduced to normalize the coefficient and avoid524

influence of units.525

526

6.1. Results527

Partial derivatives of (6) Ab output with respect to each parameter are528

numerically evaluated (Appendix B). ψ∗ is set at parameter values corre-529

sponding to the reference regimen, Ad26/MVA D57 (Table 4). In Figure 4,530

φψi
(t) for all ψi in ψ are plotted. The time axis is rescaled at the day of the531

second dose administration.532

Figure 4: Relative sensitivity of the Ab compartment with respect to (MSL) parame-
ters over time. For each parameter ψi in ψ = {ρ, θS , δS , δA, δAb, θL, µS , µL, δM , δL} the

normalized sensitivity coefficients are plotted: φψi(t) := ψi

Ab(t,ψ)
∂Ab(t,ψ)
∂ψi

∣∣∣
ψ=ψ∗

. For the

sake of clarity we shade differently time windows corresponding to distinct phases of the
antibody kinetics: in green the first exponential phase, in yellow the antibody peak, in
pink the declining phase, in blue the stabilization phase.

533

The influence of almost all parameters over Ab dynamics significantly534

changes over time. In particular, in the very early exponential phase after535
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vaccine immunization, parameters that mostly influence the antibody re-536

sponse in (6) are ρ, which determines the intensity of the immune response537

upon antigen stimulation, and θS and δS, characterizing the antibody pro-538

duction rate of short-lived ASCs and their half-life respectively. Right after539

the antibody peak, the most relevant parameters are the decay rate of antigen540

δA and the half-life of antibodies δAb. Asymptotically, we will mostly retain541

the influence of δAb and the antibody production rate of long-lived ASCs θL542

(even if δA, ρ, and the differentiation rates of M cells into both compartments543

of ASCs, µS and µL, also have a great influence).544

545

From curves plotted in Figure 4 it is also possible to deduce in which546

direction each parameter affects the Ab dynamics: increasing the values of547

ρ, µL, θS and θL implies an increase in Ab concentration. The loss rates548

δA, δS, δAb, δL and parameter µS (starting from a few weeks post vaccination)549

acts in the opposite way: an increase of their values is associated to a de-550

crease of the Ab concentration. Note that the sensitivity of Ab with respect551

to µS is positive during the first weeks after vaccination, because this param-552

eter determines the generation of short-lived ASCs, which govern the early553

antibody response.554

555

The half-lives of both M and L populations are supposed to be signifi-556

cantly greater than antibody half-life. This explains why parameters δM and557

δL have an extremely low influence over Ab dynamics on the one-year period558

considered and locally around parameter set given in Table 4. The reliability559

of their estimations could be refined either by considering longer follow-up560

or by integrating data related to these compartments (cf. specific BMEMs561

and ASCs through the ELISpot technique).562

563

Finally, Figure 4 shows that in absolute value, the sensitivity of Ab with564

respect to some parameters seems to asymptotically stabilize at the same565

value (starting from approximately 250 days after the second dose). We are566

referring to e.g. (ρ, µL) in the same way, and (δAb, θL) in opposite ways. This567

has consequences on the identifiability of these parameters: the effect of the568

variation of one among them can be compensated by a suitable variation of569

its pair, at least over some specific time windows. This implies that if an-570

tibody observations are collected exclusively within these time windows, it571

would not be possible to accurately estimate these parameters individually,572

due to their interplay.573
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(a) Ab (b) M

Figure 5: Effects of a variation of both µS and µL of 50% on (a) Ab and (b) M (all
other parameters are fixed as in Table 4).

574

A particular focus should be made on parameters µS and µL: the sensi-575

tivity of Ab with respect to these parameters is symmetric (in opposite way)576

over time starting early (few weeks) after immunization. Henceforth the Ab577

dynamics will be unchanged by preserving the quotient between µS and µL578

(note that (6) is not identifiable if the only observed compartment is Ab).579

In Figure 5 (a) we plot the Ab dynamics obtained when both µS and µL580

are increased by 50% simultaneously: we can see that the obtained curves581

are superposed. Nevertheless, the corresponding M dynamics is significantly582

affected by changes in the individual values of µS and µL, as shown in Figure583

5 (b). This further stress the importance of integrating further biological584

data to proceed to parameter estimation in a reliable manner.585

586

6.2. Conclusions587

Sensitivity analysis is used to gain a better understanding of the practical588

identifiability of model parameters from antibody concentrations data.589

590

The sensitivity of antibody dynamics with respect to parameters δM and591

δL is extremely weak: changing their values does not affect significantly the592

Ab output, at least in the considered time window. We conclude that these593
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parameters are practically non-identifiable considering only antibody data594

and one year of follow-up.595

596

Parameters µS and µL are closely related, affecting antibody dynamics in597

a symmetric way. Antibody concentration data would not allow their esti-598

mation individually, due to their collinearity.599

600

Other parameters will be practically non-identifiable due to data quality601

(e.g. time point distribution and/or measurements errors and limitations).602

In particular, one should pay particular attention to parameters which ex-603

clusively describe the reaction to the first vaccine dose. Indeed, very few604

antibody measurements are above the detection level before the second dose,605

in particular for patients primed with MVA-BN-Filo (Section 2).606

7. Simulations of a booster dose607

One of the main interests in modeling the establishment and reactivation608

of the immune response after multiple antigen exposures is the prediction of609

the effects of a booster dose. With (6) we can expect to be able to predict610

the strength of an anamnestic response by the mean of the establishment of611

an effective immunological memory.612

613

We use the calibrated model (6) to simulate the response to an Ad26.ZEBOV614

booster dose, realized at day 360 after the first dose for vaccination group615

Ad26/MVA D57.616

617

In order to simulate the first two immunizations (i.e. the regular two-618

dose schedule), we use the parameter set obtained in Section 5 (Table 4).619

The Ad26.ZEBOV booster dose is simulated using the parameter set corre-620

sponding to an Ad26.ZEBOV immunization 56 days after the first dose.621

622

In Figure 6 we plot the dynamics of both antibodies (log10-transformed)623

and B cells (ASCs and BMEMs) as predicted by (6) for the second dose and624

booster immunizations. The time axis is rescaled to have time 0 correspond-625

ing to the second immunization day (i.e. day 57). Further information is626

given in supplementary Table S4.627

628
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(a) Ab(t) (b) B cells

Figure 6: Simulation of (MSL) for vaccination group Ad26/MVA D57 with a booster
dose of Ad26.ZEBOV one year after the first dose (day 360). In (a) the obtained log10-
transformed antibody concentration is given. In (b) S and L stand for short-lived and
long-lived ASCs respectively; M represents memory cells. The time axis is rescaled at the
second dose day (i.e. day 57).

Simulations show a strong humoral anamnestic response to the booster629

immunization, with approximately a 11-fold increase of antibody concentra-630

tion within 7 days post booster dose, and a 25-fold increase within 21 days631

(in linear scale). This is due to the presence of a high affinity pool of BMEMs632

which differentiate into ASCs directly upon antigen stimulation. In addition,633

the model predicts a 2.5-fold increase in antibody concentration 360 days af-634

ter the booster dose (i.e. day 720) compared to day 360.635

636

In Figure 6 (b) we have plotted the corresponding B cell dynamics.637

Again, we observe that ASCs increase drastically after the booster immuniza-638

tion, hence stabilizes at a higher level than before, correlating with antibody639

concentrations. After the booster dose, BMEMs stabilize at a lower level:640

this depends on the calibrated values for parameters ρ, µS and µL under the641

assumption that the effect of Ad26.ZEBOV as booster dose would be similar642

to Ad26.ZEBOV at Day 57 as second dose. We anticipate that, from an im-643

munological perspective, depletion of BMEM (Figure 6 (b)) is not reflecting644

the immunological situation post booster dose, because replenishment of the645

BMEM compartment is to be expected after booster vaccination. Otherwise,646
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Figure 7: Simulation of (MSL) for vaccination group Ad26/MVA D57 with a booster
dose of Ad26.ZEBOV one year after the first dose (day 360), when both µS(Ad26) and
µL(Ad26) for the booster dose of Ad26.ZEBOV are varied by (from top to bottom, see
legend in (a)) 90%, 86%, 85%, 80%, 70%, 50%, 30% from the reference value as in Table
4 (purple curve). In (a) the corresponding M dynamics are given, in (b) the log10-
transformed antibody concentration and in (c) the ASCs dynamics. The time axis is
rescaled at the second dose day (i.e. day 57).

this would mean that after a few encounters with the same antigen, instead of647

building up stronger immunity and memory like what is observed in real life648

for many pathogens [62, 63, 64], the memory would have a lower level. With649

these regards, we ran additional sensitivity analyses in which we decreased650

the values of the parameters µS and µL for the booster dose of Ad26.ZEBOV651
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down to 10-fold lower values (Figure 7). We show that, by modifying these652

values the BMEMs (Figure 7 (a)) reach higher levels, while both the an-653

tibody levels (Figure 7 (b)) and the plasma cells levels (Figure 7 (c)) are654

similar for the different sets of parameters (µS, µL). Immunologically, the655

variation of parameters µS and µL for the booster dose can be justified by656

assuming a complete maturation (hence effectiveness upon antigen stimula-657

tion) of the BMEMs only at the time of the booster (and not at dose 1/dose658

2) [57, 58].659

660

If experimentally confirmed, these results would suggest the establishment661

of an effective immunological memory against Ebola virus, as a response662

to the two-dose vaccine regimen. Model predictions about the effects of a663

booster dose could be further evaluated when supplementary immunological664

data from a subgroup of ongoing phase II clinical studies which received665

booster dose of Ad26.ZEBOV will be available [65].666

8. Discussion667

Recurring Ebola outbreaks have been recorded in equatorial Africa since668

the discovery of Ebola virus in 1976, with the largest and more complex669

one occurred in West Africa between March 2014 and June 2016. We are670

now currently experiencing, in the DRC, the second largest outbreak ever671

recorded. A prophylactic vaccine against Ebola virus is urgently needed.672

673

A new two-dose heterologous vaccine regimen against Ebola Virus based674

on Ad26.ZEBOV and MVA-BN-Filo developed by Janssen Vaccines & Pre-675

vention B.V. in collaboration with Bavarian Nordic is being evaluated in676

multiple clinical studies. The immune response following vaccination has677

been mainly assessed through specific binding antibody concentrations (Sec-678

tion 2). The level of circulating antibodies needed to ensure protection is679

currently unclear: persistence of antibody responses after the two-dose vac-680

cination has been clinically observed up to one year after the first dose, yet681

at a lower level than shortly after vaccination. Since we don’t currently know682

for how long the two-dose vaccine can convey protection, a booster vaccina-683

tion can be considered in case of imminent risk of exposure to Ebola virus684

(pre-exposure booster vaccination).685

686
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We proposed an original mechanistic ODE-based model - (MSL) - which687

takes into account the immunological memory (BMEMs) and short- and long-688

lived ASCs dynamics (Section 3). This model, which is an extension of the689

model developed by Andraud et al. [42], aimed at explaining the primary690

response after receiving a first vaccine dose against Ebola virus, and the se-691

condary response following a second heterologous vaccine dose. The final692

goal of our model is to predict the speed and magnitude of the anamnes-693

tic response triggered by a booster vaccination among individuals who have694

been vaccinated with the two-dose regimen, and the long-term antibody per-695

sistence afterward. Succeeding in this task will be extremely helpful to better696

understand the immune response to a vaccine regimen.697

698

We have performed structural identifiability analysis of (MSL) model699

(Section 4), which pointed out that antibody concentrations data are not700

sufficient to ensure (MSL) structural identifiability. Indeed, different param-701

eter sets can reproduce the same antibody dynamic. In order to proceed702

with proper parameter estimation, at least ASCs data should be integrated.703

Alternatively, some parameters should be fixed to allow estimation of the704

remaining ones.705

706

In the absence of priors on structural non-identifiable parameters and of707

additional biological data, we decided to proceed to model calibration (Sec-708

tion 5). To perform (MSL) model calibration, we have repeatedly simulated709

(MSL) using Matlab and compared the Ab output to median and interquar-710

tile ranges of available ELISA data from all studies pooled together, stratified711

by vaccination group. We have shown that (MSL) model is able to reproduce712

qualitatively the observed antibody kinetics for a well-chosen set of param-713

eters. This provides the rationale to test the ability of (MSL) in predicting714

the speed and magnitude of the immune response to a booster vaccine dose.715

716

Based on parameter values obtained through (MSL) model calibration,717

we have performed local sensitivity analysis to assess to which extent each718

parameter affects antibody dynamics over time (Section 6). Hence, a better719

insight on practical identifiability of model parameters has been achieved in720

a sensitivity-based manner.721

722

Finally, the calibrated model has been used to evaluate in silico a booster723

dose of Ad26.ZEBOV one year after the first dose (Section 7), showing a724
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strong humoral anamnestic response. If experimentally confirmed, this would725

increase confidence on the capacity of the proposed prophylactic regimen to726

induce a robust and durable immune response against Ebola virus.727

728

In order to simplify the model structure, in (MSL) the M compartment729

describes the GC reaction and the contribution of the BMEM population730

to the immune response. Therefore, due to the intrinsic difference between731

the primary and the secondary responses, M cells do not play exactly the732

same role when a primary (GCs generated from activated näıve B cells) or a733

secondary (GCs seeded by BMEMs or newly activated näıve B cells; BMEMs734

differentiating into ASCs) response is simulated [22, 28]. For this reason, it is735

reasonable to adjust some parameters (e.g. ρ, δS, µS, µL) from one immuniza-736

tion to the following one, eventually also based on the time between the two737

doses. In particular, an improved antibody response has been experimentally738

observed when the delay between the first and second doses is higher (e.g.739

56 days schedule compared to 28 days). Therefore, according to sensitivity740

analysis performed in Section 6, we suggest to investigate through modeling741

the possibility of an increase of parameters ρ and µL when increasing the742

time lapse between the two doses, the opposite for parameters µS and δS.743

Note that the effect of timing of the second dose on the half-life of short-lived744

ASCs has been already observed by Pasin and coauthors [47].745

746

Moreover, due to (MSL) definition, if we do not change any parameter747

among {ρ, µL, µS} from the first to following doses, BMEMs level remains748

almost unchanged (Section 3.3), while we expect an increase in the concen-749

tration of BMEMs after the booster dose.750

751

After vaccination, the existence of a plateau reached by functional persist-752

ing BMEMs has been reported in the literature [49]. In (MSL) this plateau753

is quickly reached, due to the fact that we do not consider here any inter-754

mediate maturation step from näıve to activated to functional differentiated755

cells: when the antigen is introduced in the system, the M compartment is756

almost instantaneously filled. The main consequence is that the contribution757

of this compartment to enhance the secondary response will be substantially758

unchanged regardless the time delay between two subsequent vaccine immu-759

nizations, in the situation in which no parameter modification is permitted.760

761

Despite the simplifications in model structure, several identifiability is-762
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sues have been raised in Sections 4 and 6. Consequently, another limitation763

of this study is that model parameters could not be accurately and univocally764

determined.765

766

The (MSL) model provides a good starting point to evaluate the humoral767

immune response elicited by the proposed vaccination regimens. Several fu-768

ture research directions can be suggested by this work. For instance, (MSL)769

model can be further refined using future data that will be available from770

ongoing phase II and III clinical studies, in particular regarding B cell pop-771

ulations and immune response after a booster vaccination. Other questions772

should be addressed in silico. In particular, (MSL) model could be gener-773

alized by relaxing the assumption of replication deficient vaccine vectors to774

allow the study of the immune response elicited by live attenuated vaccine775

virus. Indeed, it would be interesting to test (MSL) with other vaccination776

studies, to determine wether some parameters are independent from the type777

of vaccine vector used.778

9. Conclusion779

In this work we set a mechanistic model - (MSL)- of the humoral immune780

response to one or more vaccine immunizations, based on an ODE system781

of 5 equations. It describes the interaction between the antigen delivered by782

replication deficient vaccine vectors, BMEMs, ASCs (distinguishing two pop-783

ulations differing by their respective half-lives) and produced antigen-specific784

antibodies. We have analyzed model structure identifying which kind of bi-785

ological data should be collected or alternatively which parameters should786

be fixed to perform proper parameter estimations. By confronting (MSL)787

with ELISA data from two-dose heterologous vaccination regimens against788

Ebola virus, we show that the model is able to reproduce realistic antibody789

concentration dynamics after the two-dose heterologous vaccination. This790

provides the rationale to test the ability of (MSL) in predicting the speed791

and magnitude of the immune response to a booster vaccine dose, as we show792

in this paper, and investigate long-term antibody persistence. Our findings793

raise interesting further questions. Some of them require further biological794

data, in particular regarding B cell populations assessment. Also, one could795

be interested in understanding if some model parameters are intrinsic prop-796

erties of the immune response, hence could help describing the response to797

natural infection. Other questions should be addressed in silico to explore798
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the interaction of additional immune components and their contribution to799

the establishment, maintenance and reactivation of the immune response to800

a repeatedly presented antigen.801
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Appendix1080

Appendix A. The IdentifiabilityAnalysis package1081

In order to assess the a priori local structural identifiability of (MSL) we1082

use the Exact Arithmetic Rank (EAR) approach implemented in Mathemat-1083

ica through the IdentifiabilityAnalysis package [66]. It is the Mathe-1084

matica implementation of a probabilistic semi-numerical algorithm described1085

in [67] based on rank computation of a numerically instantiated Jacobian ma-1086

trix. This is called the rank test for structural identifiability [68].1087
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Appendix B. Matlab function sens ind for numerical evaluation of1088

partial derivatives1089

To evaluate the first-order partial derivatives of model outputs with re-1090

spect to its parameters around a local point in the parameter space, we use1091

Matlab function sens ind [69]. It is based on Matlab function ode15 and1092

is able to compute the derivatives of an ODE system with respect to its1093

parameters, by using the Internal Numerical Differentiation approach [70].1094
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Supplementary Material1095

(a)

(b) (c)

Figure S1: Antibody concentrations dynamics per site and vaccination groups in log10

scale [47]. Medians and interquartile ranges are given.
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Table S1: Summary of data in all studies.

UK Kenya Uganda/
Tanzania

Total

Number of participants,
No.

59 59 59 177

Group MVA/Ad26 D29 15 14 (1 un-
completed)

15 44

Group MVA/Ad26 D57 15 15 14 (1 un-
completed)

44

Group Ad26/MVA D29 15 15 15 45
Group Ad26/MVA D57 14 (1 lost of

follow-up)
15 15 44

Antibody concentrations
(log10 ELISA Units/mL),
Mean (sd)

Detection
level:
1.56

Detection
level:
1.42

Detection
level:
1.56

Second dose injec-
tion day (first dose:
Ad26.ZEBOV)

2.83 (0.5) 2.55 (0.44) 2.56 (0.43) 2.64 (0.47)

Second dose injection day
(first dose: MVA-BN-
Filo)

1.46 (0.36) 1.69 (0.48) 1.45 (0.46) 1.54 (0.44)

360 days post first dose
(Ad26/MVA regimen)

3.24 (0.41) 2.63 (0.44) 2.74 (0.45) 2.85 (0.5)

360 days post first dose
(MVA/Ad26 regimen)

3.51 (0.35) 2.77 (0.4) 2.84 (0.32) 3.03 (0.48)
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Table S2: Details of the identifiability analysis results performed with IdentifiabilityAnalysis package (Section 4) for the
(MSL) model. One can obtain the corresponding results for the reduced model (6) by supposing a0 known. DoF = Degree of
Freedom.

Input Available
outputs

Identifiability DoF Non-identifiable
parameters

sys = {a′[t] = −da ∗ a[t],
m′[t] = r ∗a[t]− (ms+ml)∗a[t]∗m[t]−dm∗m[t],

Ab0, Ab[t] False 3 a0,m0, s0, l0, r,
ms,ml, tl, ts

s′[t] = ms ∗ a[t] ∗m[t]− ds ∗ s[t],
l′[t] = ml ∗ a[t] ∗m[t]− dl ∗ l[t],

Ab0, Ab[t],
ml,ms, r

True

Ab′[t] = ts ∗ s[t] + tl ∗ l[t]− dAb ∗ Ab[t],
a[0] = a0,m[0] = m0, s[0] = s0,

Ab0, Ab[t],
ml,ms, tl

True

l[0] = l0, Ab[0] = Ab0};
states = {a,m, s, l, Ab}

Ab0, Ab[t],
ml,ms, ts

True

params = {da, r,ms,ml, dm, ds, dl, ts, tl, db, a0,m0,
s0, l0, Ab0};

Ab0, Ab[t],
ml, r, ts

True

Ab0, Ab[t],
ml, r, tl

True

Ab0, Ab[t],
ml, tl, ts

True

Ab0, Ab[t],
ms, r, ts

True

Ab0, Ab[t],
ms, r, tl

True

Ab0, Ab[t],
ms, tl, ts

True

Ab0, Ab[t],
s[t] + l[t]

False 1 a0,ml,ms, r

Ab0, Ab[t],
s[t] + l[t], a0

True

Ab0, Ab[t],
m[t]

False 2 a0, l0,ml,ms, r, s0,
tl, ts
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(a) Ab(t), Ad26/MVA D29 (b) Ab(t), Ad26/MVA D57

(c) B cells, Ad26/MVA D29 (d) B cells, Ad26/MVA D57

Figure S2: Results of the calibration of (6) (Section 5) for groups Ad26/MVA D29 (left
column) and Ad26/MVA D57 (right column). In (a-b) green horizontal lines denote de-
tection levels used by the BBRC laboratory (solid line) and by the Q2 Solutions laboratory
(dashed line) respectively. Antibodies are log10-transformed.
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(a) Ab(t), MVA/Ad26 D29 (b) Ab(t), MVA/Ad26 D57

(c) B cells, MVA/Ad26 D29 (d) B cells, MVA/Ad26 D57

Figure S3: Results of the calibration of (6) (Section 5) for groups MVA/Ad26 D29 (left
column) and MVA/Ad26 D57 (right column). In (a-b) green horizontal lines denote de-
tection levels used by the BBRC laboratory (solid line) and by the Q2 Solutions laboratory
(dashed line) respectively. Antibodies are log10-transformed.
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Table S3: Antibody concentrations (in linear scale) obtained by model calibration for all
vaccination groups, at some time points: the day of the second immunization (2D day), 21
days after the second dose (P2D) and 360 days after the first dose. We compare simulated
values obtained with (6) with the parameter set detailed in Table 4 to data described in
Section 2.

Group 2D day 21 days P2D Day 360

Ad26/MVA D29
simulated value 613 4324 565
data, median (iqr) 492 (625) 4349 (5768) 693 (1268)

Ad26/MVA D57
simulated value 489 8147 670
data, median (iqr) 550 (797) 12468 (15151) 671 (1360)

MVA/Ad26 D29
simulated value 28 8954 981
data, median (iqr) 18 (55) 8101 (6736) 1009 (2340)

MVA/Ad26 D57
simulated value 27 13354 994
data, median (iqr) 18 (53) 14276 (14077) 740 (1556)

Table S4: Antibody concentrations (in linear scale) obtained by simulation of (6) with
a booster Ad26.ZEBOV immunization realized 1 year after the first dose (day 360). We
compare vaccination groups Ad26/MVA D29 and Ad26/MVA D57.

Immunization
schedule

Day 360 Day 367 Day 381 Day 720

Ad26/MVA D29
+ Ad26 D360

576 7054 16943 1647

Ad26/MVA D57
+ Ad26 D360

683 7635 17584 1767
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