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Abstract

A general method is proposed to build exact artificial boundary conditions for the one-dimensional
nonlocal Schrödinger equation. To this end, we first consider the spatial semi-discretization of
the nonlocal equation, and then develop an accurate numerical method for computing the Green’s
function of the semi-discrete nonlocal Schrödinger equation. These Green’s functions are next used
to build the exact boundary conditions corresponding to the semi-discrete model. Numerical results
illustrate the accuracy of the boundary conditions. The methodology can also be applied to other
nonlocal models and could be extended to higher dimensions.

Keywords: nonlocal Schrödinger equation; semi-discrete scheme; transparent boundary condition;
artificial boundary condition
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1. Introduction

The time-dependent Schrödinger equation is widely used in the modeling of physical phenomena,
with many applications in quantum mechanics, optics, acoustics or electromagnetism for instance
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(see e.g. [1, 2, 3]). More precisely, in the one-dimensional case, the simplest equation writes: find
the wave function ψ solution to

iψt(x, t) = −∂2
xψ(x, t) + V (x)ψ(x, t), x ∈ R, t ∈ (0, T ],

ψ(x, 0) = ψ0(x), x ∈ R,
lim|x|→+∞ ψ(x, t) = 0, t ∈ (0, T ],

(1)

where i =
√
−1, V is a smooth real-valued potential and ψ0 is a given initial data that we assume to

be compactly supported. The maximal time of computation is denoted by T . Numerically solving
system (1) is now classical by using many possible schemes [4], both in space and time according
to the configuration. In particular, one of the well-known difficulties related to (1) concerns the
problem of the suitable truncation of the infinite spatial domain. Many contributions are available
in the literature to fix this problem, most specifically by using transparent/artificial/absorbing
boundary conditions (ABC) at a fictitious boundary, or alternatively absorbing layers or Perfectly
Matched Layer (PML). Extensions to more general situations can also be found, like for example for
higher dimensions, unbounded space and time dependent potentials, nonlinear terms among others.
We refer e.g. to [5, 6] for more details about this important topic for quantum mechanics equations.

Two decades ago, Laskin [7, 8, 9, 10] introduced a Fractional Schrödinger Equation (FSE) which
was used to describe for example the fractional oscillator of Bohr atom [7] or long-range dispersive
interactions [11]. Basically, the equation involves a fractional laplacian term (−∂2

x)s/2 in (1), usually
for 1 ≤ s ≤ 2 (s = 2 corresponding to the standard local situation). Since then, the FSE has been
studied intensively from both the applicative, theoretical and numerical points of view (see e.g.
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]), exhibiting specific behaviors compared with the local
Schrödinger equation. Even if the physical framework is totally different, let us also remark that
closely related mathematical forms of such problems arise for the fractional heat equation [23]
which is useful in many situations. More generally, fractional PDE models can be included into the
wider framework of nonlocal PDEs [24] which allows to consider e.g. more advanced interactions
at distance not available in the fractional situation. Considering this point of view, the fractional
PDE model corresponds to a specific kernel for the nonlocal model. In the present paper, we focus
on the one-dimensional initial boundary-value problem with nonlocal Schrödinger equation, which
generalizes then the FSE: find the function ψ solution to

iψt(x, t) = Lηψ(x, t) + V (x)ψ(x, t), x ∈ R, t ∈ (0, T ],
ψ(x, 0) = ψ0(x), x ∈ R,
lim|x|→+∞ ψ(x, t) = 0, t ∈ (0, T ].

(2)

The nonlocal operator Lδ appearing in (2) which replaces the local laplacian term in (1) can be
defined under the integral form

Lηψ(x) =

∫
R
γη(y − x,

y + x

2
)(ψ(x)− ψ(y))dy. (3)

The interaction kernel function γη has the following properties

• positiveness: γη(α, β) ≥ 0;

• symmetry according to the first argument α: γη(−α, β) = γη(α, β);

• finite horizon: ∃η > 0 such that γη(α, β) = 0 if |α| > η > 0.
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The nonlocal operator Lη is known to have some connections with differential operators. Indeed, If
one assumes that γη is such that the following moment condition holds

0 < σ(x) =
1

2

∫
R
u2γη(u, x+

u

2
)du <∞, (4)

the nonlocal operator Lη then converges to the second-order differential operator

lim
η→0
Lηψ(x) = −∂x(σ(x)∂x)ψ(x) = L0ψ(x). (5)

Approximation of the one-dimensional fractional laplacian can also be built thanks to a well-suited
kernel γη as η → 0. Again, a very similar problem as (2) could also arise for nonlocal diffusion
[23, 24].

Developing ABC or absorbing layers/PML truncation techniques for spatially nonlocal and
fractional models is much less studied in the literature than for local PDEs. Concerning ABCs for
the nonlocal heat equations, DtN-based operators were introduced recently in [25, 26]. In addition,
a thorough numerical analysis of ABCs has been developed in [27]. ABCs for the two-dimensional
nonlocal wave equation were built in [28, 29]. Concerning nonlocal Schrödinger equations, ABCs
have been proposed and numerically approximated in [30, 31]. For the absorbing layers/PML
approach, efficient and accurate methods have been developed in [32, 33, 34, 35] for the time-
dependent heat and Schrödinger equations involving fractional operators, in particular the fractional
laplacian. It is however not clear whether the approaches extend or not to more general nonlocal
models as the one considered in the present paper.

To deal with the nonlocal Schrödinger equation (2), we first propose to use the Asymptotic
Compatibility (AC) spatial discretization of the associated operator on a uniform grid. Inspired by
previous works in lattice dynamics [36], an efficient algorithm is then designed to accurately compute
the Green’s function of the semi-discretized nonlocal Schrödinger equation with a single-source. A
similar idea has been used to obtain exact ABCs [30, 31] by using the spatial Laplace, z-transforms
and an iterative technique for the continuous and discrete nonlocal Schrödinger equations, respec-
tively. One difficulty for nonlocal problems is to calculate its kernel function accurately since the
numerical Fourier transform and contour integrals would require too much calculations and lead in
deviations in large time [30, 31, 37]. Here, we follow the idea in [36, 38] where the kernel functions
of the semi-discrete heat and Schrödinger equations on a two-dimensional domain are computed
with high accuracy. We derive the recursive relation between the kernel functions such that they
can be obtained through an ordinary integro-differential system rather than based on the numerical
Fourier transform. As a consequence, the kernel functions can be evaluated with high precision.
Based on this computation, we are able to use the kernel functions with a single-source to design
exact boundary conditions for the semi-discretized nonlocal Schrödinger equation (2) for the AC
scheme. The method can be extended to more general nonlocal semi-discrete systems and should
be able to handle higher dimensional problems.

The plan of the paper is the following. Section 2 develops the methodology to obtain the accurate
representation of the proposed method, as well as some recursive formulas that will be used for the
numerical purpose for the semi-discrete Green’s functions. Section 3 considers the full discretization
of the equations, and some computational aspects. In Section 4, we apply the method to three cases
to illustrate numerically the properties of the scheme. Finally, Section 5 concludes.

2. Exact boundary conditions for the semi-discretized nonlocal Schrödinger equation

2.1. Semi-discretization of the 1D nonlocal Schrödinger equation
To design some exact boundary conditions for the nonlocal Schrödinger equation appearing

in system (2), we first semi-discretize the equation and next extract the corresponding boundary
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condition. In [39, 40], the authors proved that the Asymptotic Compatibility (AC) discretization
ensures that the numerical solution of the nonlocal model converges to the correct continuous
solution when η → 0. We use the AC discretization scheme derived in [28] to approximate the
nonlocal operator Lη. Let us introduce φj as the standard hat function of width ∆x centered at
point xj := j∆x, where ∆x is the uniform spatial discretization step. Then, we have the following
approximation

Lη,∆xψ(xj) =
∑
k∈Z

bj,k(ψ(xj)− ψ(xk)), (6)

where the real-valued coefficients bj,k are given by

bj,k =


1

(j − k)∆x

∫
R
yφj−k(y)γη(y,

xj + xk
2

)dy, j 6= k,

0, j = k,
(7)

and bk,j = bj,k. Since the kernel γη is compactly supported, then one gets: bj,k = 0 for |j − k| >
K := [η/∆x] + 1.

In the case of a one-dimensional laplacian operator ∂2
x, we can use e.g. one of the following

finite-difference schemes

ψxx(xk) =
ψ(xk−1)− 2ψ(xk) + ψ(xk+1)

(∆x)2
+O((∆x)2),

ψxx(xk) =
−ψ(xk−2) + 16ψ(xk−1)− 30ψ(xk) + 16ψ(xk+1)− ψ(xk+2)

(∆x)4
+O((∆x)4).

(8)

Let us remark that these formulas can also be written into the form of the discrete nonlocal operator
(6), providing then a general framework for our derivation. For V = 0, we obtain the semi-discrete
nonlocal Schrödinger equation approximating (2) as the time-dependent system

iψ̇j = a0ψj +

K∑
k=1

ak(ψj+k + ψj−k), (9)

with a0 = −2(
∑K

k=1 ak) (K ≥ 1), and, for 1 ≤ k ≤ K, ak ∈ R. The notation ψ̇j designates the time
derivative of the time-dependent function ψj . The extension to the case of a potential V which is
constant outside the computational domain is direct.

2.2. Exact boundary condition for the semi-discrete nonlocal Schrödinger equation

Let us now consider (9) with a semi-discrete compact initial data ψ0
j , for 1 ≤ j ≤ J . We need

to know the values of ψj(t) from j = −(K − 1) to j = 0 outside the computational domain to
close (9) on the left boundary. Similarly, the values of ψj(t) are required at the right region, for
J + 1 ≤ j ≤ J +K.

To this end, let us consider the semi-discrete problem with given Dirac source term δ(t) located
at x0 

iḟj = a0fj +

K∑
k=1

ak(fj+k + fj−k), for j 6= 0,

fj(0) = 0, j 6= 0,
f0(t) = δ(t), t > 0.

(10)
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The values of fj(t) (j 6= 0) are determined by δ(t). In addition, it is clear that fj(t) = f−j(t). For
K given functions Fj(t), with 1 ≤ j ≤ K, we assume that there exist K time-dependent functions
Gk(t), with 1 ≤ k ≤ K, such that

Fj(t) =
K∑
k=1

(fj−k ∗Gk)(t), (11)

where ∗ designates the time convolution product defined by

(f ∗ g)(t) :=

∫ t

0
g(t− τ)f(τ)dτ.

If we set

ψj(t) =

K∑
k=1

(fj−k ∗Gk)(t),

then we have : ψj(t) = Fj(t), for 1 ≤ j ≤ K. On the other hand, for j ≤ 0 or j ≥ K + 1, the
function ψj(t) satisfies

iψ̇j(t) = i
K∑
k=1

(ḟj−k ∗Gk)(t)

=
K∑
k=1

a0(fj−k ∗Gk)(t) +
K∑
j=1

K∑
`=1

ak((fj−k−` + fj−k+`) ∗Gk)(t)

= a0

K∑
k=1

(fj−k ∗Gk)(t) +
K∑
`=1

a`(
K∑
k=1

(fj−k−` ∗Gk)(t) +
K∑
k=1

(fj−k+` ∗Gk)(t))

= a0ψj(t) +

K∑
`=1

a`(ψj−`(t) + ψj+`(t)).

(12)

Therefore, we obtain
iψ̇j = a0ψj +

K∑
k=1

ak(ψj+k + ψj−k), for j ≤ 0 and j ≥ K + 1,

ψj(0) = 0, for j ≤ 0 and j ≥ K + 1,
ψj(t) = Fj(t), 1 ≤ j ≤ K.

(13)

This means that the functions ψj(t), for j ≤ 0, satisfy the governing equations of the semi-discrete
nonlocal Schrödinger equation with K source terms Fj(t), for 1 ≤ j ≤ K. Then, we have

ψj(t) =
K∑
k=1

(fj−k ∗Gk)(t), 1 ≤ j ≤ K, (14)

with

Fj(t) =

K∑
k=1

(fj−k ∗Gk)(t).

Let us introduce the K×K matrix A(t) such that its (j, k)-th element is equal to fj−k(t), and the two
vectors F(t) = [F1, F2, F3, ..., FK ]T and G(t) = [G1, G2, G3, ..., GK ]T . Then, we obtain: F = A ∗G,
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which leads to G̃ = Ã−1F̃, where ũ(s) designates the time Laplace transform of a function u(t).
Let us introduce now the vector ψ(t) = [ψ0, ψ−1, ...ψ−(K−1)]

T and the K × K matrix B(t), with

elements Bj,k = fj+k−1(t), j = 1, ...,K, k = 0, ...,−(K − 1). From (14), we have : ψ̃ = C̃F̃, where

C̃ = B̃Ã−1, yielding

ψ1−j(t) =

K∑
k=1

(Cj,k ∗ Fk)(t), 1 ≤ j ≤ K. (15)

The functions ψj(t) (j ≤ 0) outside the computational domain satisfy the governing semi-discrete
equations with K sources ψk(t), for 1 ≤ k ≤ K. Therefore, each ψj , for −(K − 1) ≤ j ≤ 0, can be
represented by ψk(t) (1 ≤ k ≤ K) in the computational domain by

ψ1−j(t) =
K∑
k=1

(Cj,k ∗ ψk)(t), 1 ≤ j ≤ K. (16)

Relation (16) gives the exact boundary condition on the left boundary. Similarly, the exact boundary
condition on the right writes

ψJ+j(t) =
K∑
k=1

(Cj,k ∗ ψJ−k+1)(t), 1 ≤ j ≤ K. (17)

Our goal is now to determine the kernel functions Cj,k(t). From B(t) = (C ∗ A)(t), Aj,k(t) =
fj−k(t) and Bj,k(t) = fj+k−1(t), we remark that we only need to compute fj(t). Let us introduce
the discrete Fourier series U(s, x)

U(s, x) =
∞∑

j=−∞
eijxf̃j(s), (18)

where f̃j(s) denotes the Laplace transform of fj(t). From (10), we obtain

is(U − 1) = a0(U − 1) +

K∑
k=1

ak(

∞∑
`=−∞

ei`xf̃`+k +

∞∑
`=−∞

ei`xf̃`−k) (19)

= a0(U − 1) +

K∑
k=1

ak(e
−ikx

∞∑
`=−∞

ei`xf̃` + eikx
∞∑

`=−∞
ei`xf̃`) (20)

= (a0 + 2
K∑
k=1

ak cos(kx))U − a0 −
K∑
k=1

ak(f̃k + f̃−k), (21)

which leads to

U(s, x) =
is− a0 −

∑K
k=1 ak(f̃k(s) + f̃−k(s))

is− a0 − 2
∑K

k=1 ak cos(kx)
. (22)

We also have the following relation

1 =
1

2π

∫ 2π

0
U(s, x)dx (23)

=
(

is− a0 −
K∑
k=1

ak(f̃k(s) + f̃−k(s))
) 1

2π

∫ 2π

0

1

is− a0 − 2
∑K

k=1 ak cos(kx)
dx, (24)
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which gives

1

is− a0 −
∑K

k=1 ak(f̃k(s) + f̃−k(s))
=

1

2π

∫ 2π

0

1

is− a0 − 2
∑K

k=1 ak cos(kx)
dx. (25)

Now, we obtain

f̃j(s) =
1

2π

∫ 2π

0
U(s, x)e−ijxdx

= (
1

2π

∫ 2π

0

e−ijx

is− a0 − 2
∑K

k=1 ak cos(kx)
dx)
/

(
1

2π

∫ 2π

0

1

is− a0 − 2
∑K

k=1 ak cos(kx)
dx).

(26)

By introducing

g̃j(s) =
1

2π

∫ π

−π

e−ijx

is− a0 − 2
∑K

k=1 ak cos(kx)
dx,

we have

f̃j(s) =
g̃j(s)

g̃0(s)
. (27)

Since gj(t) = g−j(t), we only need to determine the functions gj(t), with 0 ≤ j ≤ 2K − 1, to

get Cj,k(t). We remark that B̃ = C̃Ã, with Ãj,k(s) = f̃j−k(s) = g̃j−k(s)/g̃0(s) and B̃j,k(s) =
g̃j+k−1(s)/g̃0(s). Therefore, we can modify the coefficients Aj,k(t) = gj−k(t) and Bj,k(t) = gj+k−1(t)
such that B(t) = (C ∗ A)(t). It is obvious to see that, for any integer j, we have

isg̃j − δ0
j = a0g̃j +

K∑
k=1

ak(g̃j+k + g̃j−k), (28)

which leads to

iġj(t) = a0gj +

K∑
k=1

ak(gj+k + gj−k), (29)

gj(0) = −iδ0
j , (30)

where δ0
j is the Krönecker delta symbol which is equal to 1 if j = 0, and zero otherwise. On the

other hand, we have the following equalities

d

ds

K∑
k=1

kak(g̃j−k − g̃j+k) =
d

ds

(
1

2π

∫ π

−π

2i
∑K

k=1 kak sin(kx)e−ijx

is− a0 − 2
∑K

k=1 ak cos(kx)
dx

)
(31)

=
1

2π

∫ π

−π

2
∑K

k=1 kak sin(kx)e−ijx

(is− a0 − 2
∑K

k=1 kak cos(kx))2
dx (32)

= − 1

2π

∫ π

−π

e−ijx

(is− a0 − 2
∑K

k=1 ak cos(kx))2
d(is− a0 − 2

K∑
k=1

ak cos(kx)) (33)

=
ij

2π

∫ π

−π

e−ijx

is− a0 − 2
∑K

k=1 ak cos(kx)
dx = ijg̃j , (34)
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which means that

K∑
k=1

kak(gj+k(t)− gj−k(t)) =
ij

t
gj(t). (35)

We can rewrite the above expression as

gj(t) = gj−2K(t)−
K−1∑
k=1

kak
KaK

(gj−K+k(t)− gj−K−k(t)) +
i(j −K)

KaKt
gj−K(t), (36)

providing a recursive relation between the functions gj(t), that can also be computed through (29),
with 0 ≤ j ≤ 2K−1. The left boundary gj(t), with −K ≤ j ≤ 0, can be calculated by gj(t) = g−j(t).
The right boundary gj(t), with 2K ≤ j ≤ 3K − 1, can be evaluated through (36). Therefore, we
determine the ordinary system for gj(t), with 0 ≤ j ≤ 2K − 1, and we obtain Cj,k from B = C ∗A.

Let us remark that one of the strengths of our approach is that it can a priori be extended to
higher dimensional problems. We refer e.g. to [38] for a similar approach where artificial boundary
conditions are built for the local 2D Schrödinger equation. This approach can be adapted to the
nonlocal context. In addition, all the developments also apply to nonlocal heat equations through
some slight modifications.

3. Full discretization scheme and implementation aspects

In this Section, we develop the corresponding discretization of the reduced ordinary differential
problem with the accurate artificial boundary condition. We adopt the Crank-Nicolson (CN) scheme
with uniform time step ∆t > 0 for the time integration in (29)

(1− a0∆t

2i
)gn+1
j −

K∑
k=1

ak∆t

2i
(gn+1
j−k + gn+1

j+k ) = (1 +
a0∆t

2i
)gnj +

K∑
k=1

aj∆t

2i
(gnj−k + gnj+k), (37)

with g0
j = −iδ0

j and gnj = gn−j . The notation gnj corresponds to the approximation of gj at time
tn = n∆t, for 0 ≤ n ≤ N , setting ∆t = T/N . For the computation of gj , with 0 ≤ j ≤ 2K − 1,
we need to evaluate gj for 2K ≤ j ≤ 3K − 1 and −K ≤ j ≤ 1 to close (37). We rewrite (36) with
j = 2K as

g2K(t) = g0(t)−
K−1∑
k=1

kak
KaK

(gK+k(t)− gK−k(t)) +
i

aKt
gK(t) =

2K∑
k=1

d1
k(t)g2K−k(t). (38)

Similarly, we have

g2K+1(t) =

2K∑
k=1

d1
k(t)g2K+1−k(t) = d1

1(t)g2K(t) +

2K∑
k=2

d1
k(t)g2K+1−k(t) (39)

= d1
1(t)
( 2K∑
k=1

d1
k(t)g2K−k(t)

)
+

2K∑
k=2

d1
k(t)g2K+1−k(t) =

2K∑
k=1

d2
k(t)g2K−k(t). (40)

Repeating the same procedure, for 1 ≤ ` ≤ K, we have

g2K+`−1(t) =
2K∑
k=1

d`k(t)g2K−k(t), (41)
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where d`k(t) is built by a recursive process that can be implemented numerically. Indeed, we have
the following sequence of equalities

g2K+`−1(t) =

2K∑
k=1

d1
k(t)g2K+`−1−k(t) =

`−1∑
k=1

d1
k(t)g2K+`−1−k(t) +

2K∑
k=`

d1
k(t)g2K+`−1−k(t)

=

`−1∑
k=1

d1
k(t)

2K∑
p=1

d`−kp g2K−p(t) +

2K∑
k=`

d1
k(t)g2K+`−1−k(t)

=
2K∑
k=1

( `−1∑
p=1

d`−pk (t)d1
p(t)
)
g2K−k(t) +

2K+1−`∑
k=1

d1
k+1−`(t)g2K−k(t)

=

2K+1−`∑
k=1

(
d1
k+1−`(t) +

`−1∑
p=1

d`−pk (t)d1
p(t)
)
g2K−k(t)

+

2K∑
k=2K+2−`

( `−1∑
p=1

d`−pk (t)d1
p(t)
)
g2K−k(t),

(42)

which means by identification with (41) that we have

d`k(t) = d1
k+1−`(t) +

`−1∑
p=1

d`−pk (t)d1
p(t),

for 1 ≤ k ≤ 2K + 1− ` and

d`k(t) =
`−1∑
p=1

d`−pk (t)d1
p(t)

for 2K + 2− ` ≤ k ≤ 2K, with

d1
k =

kak
KaK

, for 1 ≤ k ≤ K − 1,

and

d1
K =

i

aKt
, and d1

k = − kak
KaK

, for K + 1 ≤ k ≤ 2K.

Thus, for 1 ≤ ` ≤ K, the adapted CN scheme related to (41) is

(gn2K+`−1 + gn−1
2K+`−1)

2
=

1

2
(

2K∑
k=1

(d`k)
ngn2K−k +

2K∑
k=1

(d`k)
n−1gn−1

2K−k), (43)

which is equivalent to

gn2K+`−1 = −gn−1
2K+`−1 +

2K∑
k=1

(d`k)
ngn2K−k +

2K∑
k=1

(d`k)
n−1gn−1

2K−k. (44)

The expression (44) allows to compute the functions gj , for 2K ≤ j ≤ 3K − 1. In addition, from
gj(t) = g−j(t), we deduce that

gnj = gn−j , (45)

which determines the numerical values of gj , for −K ≤ j ≤ −1. Equations (44)-(45) together with
(37) close the computation of gnj (t), for 0 ≤ j ≤ 2K − 1.
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After the approximation of gj at tn by gnj , for 0 ≤ j ≤ 2K − 1, we can determine C from
B = C ∗ A, with Aj,k = gj−k and Bj,k = gj+k−1. To this end, the convolutions are computed at
times tn = n∆t through the trapezoidal rule to be consistent with the CN scheme as follows

Bn =
∆t

2
CnA0 + ∆t

n−1∑
m=1

CmAn−m +
∆t

2
C0An, (46)

where Am approximates A at tm = m∆t, which leads to

Cn =
(
Bn −∆t

n−1∑
m=1

CmAn−m − ∆t

2
C0An

)
(A0∆t/2)−1, (47)

with Bnj,k = gnj+k−1 and Anj,k = gnj−k, where the values of gnj are provided by (37).
To illustrate the scheme, let us consider for example the constant kernel function given by

γη(α, β) =
2

η3
, (48)

for α ∈ [−η, η]. We use the expression (7) with η = 0.3 and ∆x = 1/20 to construct the coefficients
ak in (9). Let us define the L∞-error on C(t) at t = T as

eC
∆t

∞ := max
1≤j,k≤K

| Cref
j,k(t = T )− C∆t

j,k(t = T ) |, (49)

where Cref(t = T ) is computed as a reference for a small value of ∆t = 10−3 and the coefficients

C∆t
j,k(t = T ) denote the numerical values Cj,k(t = T ) with a time step ∆t. We report the error eC

∆t

∞
at time T = 2 on Table 1, showing that the second-order convergence is reached.

∆t 10−2 5× 10−3 4× 10−3 2.5× 10−3 2× 10−3 cvg. rate

eC
∆t

∞ 2.6× 10−1 6.7× 10−2 4.2× 10−2 1.7× 10−2 1.1× 10−2 1.97

Table 1: L∞-norm error eC
∆t

∞ and convergence rate for computing C at time T = 2.

Now, let us come back to the solution of (9) with a compact initial data confined for the indices
1 ≤ j ≤ J , based on the CN scheme. The left boundary condition of ψnj , with −(K − 1) ≤ j ≤ 0,
and the right boundary condition of ψnj , with J + 1 ≤ j ≤ J +K, are needed to close the scheme.
Now, we can determine the discrete boundary condition at the left point from (16) as

ψn1−j =
∆t

2

K∑
k=1

C0
j,kψ

n
k + ∆t

K∑
k=1

n−1∑
m=1

Cmj,kψ
n−m
k +

∆t

2

K∑
k=1

Cnj,kψ0
k, 1 ≤ j ≤ K, (50)

and the right boundary scheme from (17) can be written as

ψnJ+j =
∆t

2

K∑
k=1

C0
j,kψ

n
J−k+1 + ∆t

K∑
j=1

n−1∑
m=1

Cmj,kψ
n−m
J−k+1 +

∆t

2

K∑
k=1

Cnj,kψ0
L−k+1, 1 ≤ j ≤ K. (51)

The boundary conditions (50) and (51) are combined with the interior Crank-Nicolson scheme (37)
to solve the semi-discrete nonlocal Schrödinger equation.
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4. Numerical examples

4.1. Example 1

We consider the following first example for (2) setting V (x) = 0 and for the constant kernel
function given by

γ(α, β) =
2

η3
, (52)

with α ∈ [−η, η]. The computational domain is chosen as [−3, 3] and the final time is T = 2. The
initial data is the gaussian

ψ(x, 0) = 5e2ix−25x
2

4 . (53)

First, we fix the spatial discretization step to ∆x = 5 × 10−2 and analyze the L∞-norm error
e∆x,∆t
∞,T defined by

e∆x,∆t
∞,T := max

1≤j≤J
|ψNj − ψ

N,ref
j | (54)

thanks to ∆t, with N∆t = T . The reference solution ψn,ref is computed for ∆x = 5 × 10−2 and
∆t = 1× 10−3. For different values of η, we report the error e∆x,∆t

∞,T at time T = 2 in Table 2. This
example shows that the scheme is second-order in time as expected.

e∆x,∆t
∞,T ∆t = 10−2 ∆t = 5× 10−3 ∆t = 4× 10−3 ∆t = 2.5× 10−3 ∆t = 2× 10−3 cvg. rate

η = 0.3 5.05× 10−3 1.27× 10−3 8.16× 10−4 3.25× 10−4 2.12× 10−4 1.97

η = 0.5 3.11× 10−2 7.76× 10−3 4.95× 10−3 1.91× 10−3 1.24× 10−3 2.01

η = 0.8 5.72× 10−3 1.43× 10−3 9.17× 10−4 3.58× 10−4 2.34× 10−4 1.99

η = 1 2.20× 10−3 5.51× 10−4 3.53× 10−4 1.38× 10−4 8.91× 10−5 1.99

Table 2: Example 1 : L∞-norm error e∆x,∆t
∞,T (∆x = 5 × 10−2) and convergence rate vs. ∆t for various values η.

Let us now fix the time step to ∆t = 1 × 10−3. The reference solution ψn,ref is obtained for
∆x = 2.5×10−3 and ∆t = 1×10−3. We report in Table 3 the error e∆x,∆t

∞,T at T = 2 with respect to
the mesh refinement ∆x. For the various values of η, we observe that the convergence rate is equal
to 2 according to ∆x.

e∆x,∆t
∞,T ∆x = 1/20 ∆x = 1/40 ∆x = 1/50 ∆x = 1/80 cvg. rate

η = 0.3 7.36× 10−3 1.81× 10−3 1.13× 10−3 4.67× 10−4 1.99

η = 0.5 4.74× 10−2 1.17× 10−2 7.42× 10−3 2.80× 10−3 2.03

η = 0.8 2.41× 10−2 5.98× 10−3 3.80× 10−3 1.45× 10−3 2.03

η = 1 1.39× 10−2 3.45× 10−3 2.19× 10−3 8.36× 10−4 2.03

Table 3: Example 1 : L∞-norm error e∆x,∆t
∞,T (∆t = 1 × 10−3) and convergence rate vs. ∆x for various values η.

Figure 1 (left) shows the evolution of the numerical solution in the bounded domain with artificial
boundary conditions by setting ∆t = 1×10−3 and ∆x = 1.25×10−2, for the different values η = 0.3,
0.5, 0.8 and 1 (top to bottom). We also report on Figure 1 (right) the pointwise error |ψnj − ψ

n,ref
j |

(in log10 scale) between the computed solution ψn (in [−3; 3]× [0; 4]) and a reference solution ψn,ref

computed on a very large spatial domain for ∆x = 2.5×10−3 and ∆t = 1×10−3 and then restricted
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to the smaller computational domain [−3; 3]× [0; 4]. We observe that the behavior of the wave field
is different according to the value of η. In addition, the spurious reflection at the boundary remains
small and of the level as the numerical error of the interior scheme.

4.2. Example 2

The goal in this second example is to check that the method also provides a nonlocal discrete
model which is consistent with local models by taking η = 0. To this end, we consider the potential
V = 0 and solve the local Schrödinger equation iψ + ∂2

xψ = 0 for the exact beam-like solution

ψref(x, t) =
1√
ζ + it

e
ik(x−kt)− (x−2kt)2

4(ζ+it) , (55)

with ζ = 0.04 and wave number k = 2. The spatial computational domain is [−3, 3] and the final
time is T = 0.2. We fix a very small time step ∆t = 10−5 and vary the spatial discretization step
∆x. We consider the three- and five-point stencil finite-difference schemes in space (see the two
equations (8)). The L∞-norm error e∆x,∆t

∞,T vs. ∆x is reported in Table 4 for both schemes. We
clearly observe that the corresponding schemes are second- and fourth-order in space as expected.
For completeness, we plot in Figure 2 the numerical solution (left) and the pointwise error (right, in
log10 scale) in the domain according to the reference solution (55) for the fourth-order scheme. Here,
we fix the computational domain as [−3; 3], the final time is T = 2 and the discretization scheme
uses the values ∆x = 3.125 × 10−2 and ∆t = 1 × 10−4 for the fourth-order spatial discretization
scheme. We observe that the error is of the order of O((∆x)4 + (∆t)2) as expected.

∆x 2−3 2−4 2−5 2−6 cvg. rate

e∆x,∆t
∞,T 5.66× 10−1 1.37× 10−1 3.36× 10−2 8.44× 10−3 2.02

e∆x,∆t
∞,T 6.31× 10−2 3.95× 10−3 2.49× 10−4 1.68× 10−5 3.96

Table 4: Example 2 : L∞-norm error e∆x,∆t
∞,T (∆t = 10−5) and convergence rate vs. ∆x, for the spatial second-

(second line) and fourth-order (third line) schemes at T = 0.2.

4.3. Example 3

We consider in this last example the case of an inhomogeneous kernel function [27, 28]

γη(α, β) =
40
√

10σ√
πξ3

e
− 10α2

ξ2 , for α ∈ [−η, η], (56)

with ξ = η(1+3erfc(β)/4) and σ = 1+e−3β2
. The computational domain is chosen as [−4, 4] and the

final time of computation is T = 1. The initial data is set as (55) and V = 0. The reference solution
is computed on the larger domain [−15, 15] to avoid any boundary effect, and for the discretization
parameters ∆x = 2.5×10−3 and ∆t = 2.5×10−4. For η = 0.1 and η = 0.5, we report in Table 5 the
L∞-norm error e∆x,∆t

∞,T for various values of ∆x, setting ∆t = 2.5× 10−4. We observe again that the
scheme is second-order in space. In addition, Fig. (3) shows the behaviour of the numerical solution
(left) and the error (log10 scale) in the domain (right). The reference solution is again computed in
the larger domain [−15, 15] for the same values of ∆x and ∆t.
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Figure 1: Example 1 (from top to bottom: η = 0.3, 0.5, 0.8, 1) : left: numerical solution; right: error between
the reference and numerical solutions (in log10 scale).
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Figure 2: Example 2: left: numerical solution; right: error between the reference and numerical solutions (in log10

scale).

e∆x,∆t
∞,T ∆x = 5× 10−2 ∆x = 2× 10−3 ∆x = 1.25× 10−3 ∆x = 1× 10−3 cvg. rate

η = 0.1 1.51× 10−2 9.09× 10−3 3.09× 10−3 1.97× 10−3 2.24

η = 0.5 2.49× 10−2 1.62× 10−2 7.23× 10−3 5.15× 10−3 1.72

Table 5: Example 3 (η = 0.1, 0.5) : L∞-norm error e∆x,∆t
∞,T (∆t = 2.5×10−4) and convergence rate vs. ∆x at T = 1.

5. Conclusion

We proposed the construction of artificial boundary conditions for a one-dimensional nonlocal
Schrödinger equation. To this end, we compute the kernel functions from an integral system by
introducing some auxiliary functions gj(t). Fortunately, these functions can be obtained by solving
an ordinary differential system by using the Crank-Nicolson scheme through recursive relations. The
kernel functions are combined to build the exact transparent boundary conditions. These boundary
conditions combined with the Crank-Nicolson scheme are used to solve the one-dimensional nonlocal
Schrödinger equation. The second-order accuracy both in space and time of the resulting schemes
is illustrated through three numerical examples.

The numerical algorithm presented here may be extended to any higher dimension and will
be the topic of a future work. We further remark that the current approach may be applied to
more general nonlocal PDEs. Regarding the artificial boundary conditions, some questions remain
to prospect, in particular concerning the rigorous numerical analysis of the scheme (e.g. error
estimates). In addition, the CN scheme that we developed requires the evaluation of convolutions
which can be a limit to the approach. Both the acceleration of the calculations and improvement
of the memory storage must then be reduced by suitable fast algorithms.
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Figure 3: Example 3 (from top to bottom: η = 0.1, 0.5): left: numerical solution; right: error between the
reference and numerical solutions (in log10 scale).
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