
HAL Id: hal-02934283
https://hal.archives-ouvertes.fr/hal-02934283

Preprint submitted on 9 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A relational framework for inconsistency-aware query
answering

Ousmane Issa, Angela Bonifati, Farouk Toumani

To cite this version:
Ousmane Issa, Angela Bonifati, Farouk Toumani. A relational framework for inconsistency-aware
query answering. 2020. �hal-02934283�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395677476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02934283
https://hal.archives-ouvertes.fr

A relational framework for inconsistency-aware
query answering

Ousmane Issa
University Clermont Auvergne

Clermont-Ferrand, France
ousmane.issa@uca.fr

Angela Bonifati
Lyon 1 University

Villeurbanne, France
angela.bonifati@univ-lyon1.fr

Farouk Toumani
University Clermont Auvergne

Clermont-Ferrand, France
farouk.toumani@uca.fr

ABSTRACT
We introduce a novel framework for encoding inconsistency into
relational tuples and tackling query answering for union of con-
junctive queries (UCQs) with respect to a set of denial constraints
(DCs). We define a notion of inconsistent tuple with respect to a
set of DCs and define four measures of inconsistency degree of an
answer tuple of a query. Two of these measures revolve around the
minimal number of inconsistent tuples necessary to compute the
answer tuples of a UCQ, whereas the other two rely on the maxi-
mum number of inconsistent tuples under set- and bag-semantics,
respectively. In order to compute these measures of inconsistency
degree, we leverage two models of provenance semiring, namely
why-provenance and provenance polynomials, which can be com-
puted in polynomial time in the size of the relational instances for
UCQs. Hence, these measures of inconsistency degree are also com-
putable in polynomial time in data complexity. We also investigate
top-k and bounded query answering by ranking the answer tuples
by their inconsistency degrees. We explore both a full materialized
approach and a semi-materialized approach for the computation of
top-k and bounded query results.

KEYWORDS
Inconsistency, Why-provenance, Query Answering, Conjunctive
Queries, Denial Constraints, Ranked Enumeration
ACM Reference Format:
Ousmane Issa, Angela Bonifati, and Farouk Toumani. 2019. A relational
framework for inconsistency-aware query answering. In Woodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock,
NY . ACM, New York, NY, USA, 12 pages.

1 INTRODUCTION
Assessing the quality of data is crucial in many applications, where
the quality of raw instances has a non negligible impact on the
quality of analytical processes on these instances as well as the
trustworthiness of query answering on them.Whereas current work
on data curation for relational tuples has addressed the problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BDA’19, October 15–18, 2019, Lyon, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00

of detecting and repairing the violations with respect to a set of
constraints [2, 27] along with consistent query answering when
multiple repairs are possible[7], very little attention has been paid
to leave the database instance as is and quantifiying its degree of
inconsistency at different levels of granularity (tuple, sets of tuples,
tables). Previous work has focused on quantifying the degree of
quality of knowledge bases [13, 19, 26], whereas the relational
setting and especially relational query answering have been fairly
disregarded.

In our work, we are interested in conceiving novel measures of
inconsistency of answer tuples for Unions of Conjunctive Queries
(UCQs) over an inconsistent database in the presence of a set of
Denial Constraints (DCs) [10]. The inconsistency degree of an an-
swer tuple of a query is determined during query answering by
relying on provenance-based information of the input tuples. We
first leverage the why-provenance in order to annotate the tuples of
a relational instance with their degree of inconsistency with respect
to a set of DCs, and then we rely on the provenance polynomials
[16] in order to propagate the degrees of inconsistencies from the
input tuples to the answer tuples of UCQs. This method is appli-
cable to all types of relational instances that cannot be repaired in
situ, such as for instance clinical data, sensitive data and financial
data, whose data values cannot be modified for instance due to pri-
vacy and ownership restrictions. We exemplify the aforementioned
process by means of the following running example.

Example 1. Consider a relational instance I in Figure 1 consisting
of three relations D,V and S with a corresponding number of denial
constraints IC and a queryQex . In each relation in I, the first column
is the patient identifier PID, the second column is the desease reference
RefID and the third column is the Date of a given event. Notice that the
schema of the three tables is the same solely for illustration purposes
and to maximize the number of joins across the tables. In fact, our
methods are applicable to relations with an arbitrary schema.

The denial constraint (C1) imposes to have any diagnosis for a
patient’s disease before surgery for the same disease concerning the
same patient. The constraint (C2) and (C3) establish that a patient
cannot be diagnosed a given disease for which he/she has been admin-
istered a vaccine on a previous date. 1 Finally, a conjunctive query
Qex extracts pairs of diseases for which the same patient underwent
surgey and was administered a vaccine. The tuples in the relations

1Notice that there are exceptions to the last two constraints when a second shot of a
vaccine is somministrated or when the immunization offered by a vaccine did not work
properly. These cases would be covered by associating probabilities to the constraints,
which we do not consider in our work for the time being.

BDA’19, October 15–18, 2019, Lyon, France Ousmane Issa, et al.

Diaдnosis(D)
PID RefD Date
P01 R1 2
P02 R7 4
P03 R7 10
P04 R1 3
P04 R4 8
P02 R4 7
P01 R2 5
P08 R7 4
P10 R1 5

t1
t2
t3
t4
t5
t6
t7
t8
t9

Vaccination(V)
PID RefD Date
P01 R2 3
P02 R4 5
P03 R4 6
P04 R4 7
P02 R5 10
P08 R5 7
P10 R3 8

t10
t11
t12
t13
t14
t15
t16

Surдery(S)
PID RefD Date
P01 R1 1
P02 R7 3
P03 R7 9
P04 R1 4
P08 R7 5

t17
t18
t19
t20
t21

The query (Qex) is the following
Q (y, u) ← D(x, y, z), S (x, y, z′), V (x, u, v)

The set of denial constraints (DCs) are :
C1 :← D(x, y, z) ∧ S (x, y, u) ∧ z > u
C2 :← D(x, ′ R2′, y) ∧V (x, ′ R2′, z) ∧ y > z
C3 :← D(x, ′ R4′, y) ∧V (x, ′ R4′, z) ∧ y > z

Figure 1: A hospital database hdb with a set of denial constraints (DCs) and a query Qex

y u Provenance
R1 R2 [t1, t10, t17]
R7 R4 [t2, t18, t11] or [t2, t12, t19]
R1 R4 [t4, t13, t20]
R7 R5 [t2, t18, t14] or [t8, t15, t21]

Table 1: Answer tuples of query Qex with their provenance
information

highlighted in red are those that violate one or more constraints (C1),
(C2) or (C3).

Before evaluating the query Qex , we annotate each tuple in the
databases instance I with a unique identifier. When applying the
why-provenance [16] to the tuples augmented with their identifiers,
and for each answer tuple of query Qex , the corresponding possible
derivations in terms of tuple identifiers are shown (see Table 1).

We can notice that each answer tuple contains red-flagged tuple
identifiers. By counting the number of red-flagged identifiers, we
can compute the inconsistency degree of the tuple. For instance, the
answer tuple {R1,R2} has inconstency degree equal to 3, whereas
the answer tuple {R7,R4} will have inconsistency degree equal to 3
or 2, depending on whether we favor a greater or smaller number of
derivating inconsistent tuples, and so on. We can also obtain duplicates
in the provenance column that might be taken into account in the
counting or not. These considerations led us to precisely define four
measures of inconsistency degrees unser set- and bag-semantics and
to provide practical methods to compute them starting from plain
database instances. We tackle these questions in the remainder of the
paper.

Main Contributions. In this paper, we make the following contri-
butions:

(1) We conceive four novel measures of inconsistency degrees
of answer tuples for Unions of Conjunctive Queries (UCQs)
over an inconsistent database in the presence of a set of
Denial Constraints (DCs). We consider the Max and Min
number of derivation tuples and the set- and bag-semantics
in order to define these four measures.

(2) We leverage why-provenance in order to identify the incon-
sistent tuples of a given database w.r.t. a set of DC , and then
we exploit provenance polynomials to propagate the incon-
sistency degree of tuples in the original database instance
to the answer tuples of UCQs in the presence of DCs, which

is to the best of our knowledge a novel and quite promising
usage of provenance.

(3) We define threshold query answering and top-k query an-
swering consisting of computing the answer tuples that sat-
isfy a given threshold of inconsistency degree and/or enu-
merating those that exhibit a given value (k) of inconsistency
degree.

(4) We propose a preliminary solution consisting in two practi-
cal algorithms to allow inconsistency-aware query answer-
ing: the Full-materialized Algorithm being our baseline
and allowing polynomial-time computation of inconsistent-
aware query answering. This approach is costly in terms of
space since all the possible solutions need to be computed
and stored beforehand; the Semi-materialized Algorithm,
that allows to check on the fly the two variants of the thresh-
old problems (less than k problem measuring the minimum
number of inconsistent tuples and greater than k problem
on the maximum number, respectively) whether the answer
tuples are in the result or not, thus incurring less space; when
applied to top-k query answering the latter algorithm allows
to leverage ranked enumeration and to retrieve directly the
top-k answers of a conjunctive query with polynomial delay.
This second approach applies for a restricted class of queries
having a bounded tree decompositions.

The remainder of this paper is organized as follows. Section
2 discusses related works. Section 3 introduces basic notions. In
this section definitions of database instance, conjunctive query
(CQ), union of CQ , denial constraint (DC), K-instance and why-
provenance are given. In section 4 we formally define inconsistency
degree of each tuple in answers of query. Section 5 defines some
underling filtering problems according to inconsistency degree.
And in section 6, we conclude this paper.

2 RELATEDWORK
Central to data quality is data consistency, a significant data quality
dimension extensively investigated over the past decades. In the
database field, data consistency is captured by means of integrity
constraints as violations of constraints reflect a lack of consistency
of the data stored in a database. In this setting, starting from the
pioneering work of [2], there has been a wealth of research on
the problem of consistent query answering in inconsistent databases

A relational framework for inconsistency-aware
query answering BDA’19, October 15–18, 2019, Lyon, France

[4, 24, 27]. Most of the existing works make a distinction between
consistent and inconsistent answers based on the notion of a data-
base repair (see [6, 7] for a survey). A repair is a database instance
obtained by applying some minimal changes on the initial database
instance in order to make it compliant with a given set of integrity
constraints. Usually, there exist several possible repairs of a given
database and for such a reason, following the certain answers se-
mantics, consistent answers to a given query are defined as being
the intersection of the query answers on all possible repairs of the
initial database instance. The problem of consistent query answer-
ing has been investigated in several settings depending on: (i) the
definition of repairs, where a repair is defined in terms of the sets
of inserted and/or deleted tuples [6, 7], or updates [3, 20, 27] and
(ii) the considered integrity constraints and the query language.
The latter correspond to varied combinations of queries and con-
straints such as first-order queries and binary universal constraints
or single functional dependencies [2], union of conjunctive queries
and key and inclusion dependencies [8], first-order queries and
denial constraints [9], to mention a few. More similarly to our work,
recent approaches studied a counting variant of consistent query
answering [24], i.e., counting how many repairs satisfy a given query
q in the attempt of defining a metric for consistent query answering.
The work in [24] establishes a dichotomy for the #-CERTAINTY(q)
problem, where q is a boolean conjunctive query possibly with
self-joins and with single-attribute primary-key (PK) constraints.
The dichotomy does not apply to relations with composite PKs or
to UCQs, thus it would be not usable in practice. In our work, we de-
part from the notion of repair, which might not be easy to compute
in some circumstances with data that cannot be directly modified
(due to data protection rules or other reasons). In view of this, we
annotate the query results at the tuple level with an inconsistency
degree, i.e. by associating to each tuple the number of violations of the
involved constraints. We show that instead of computing all possible
repairs and counting them, we can leverage provenance to actually
count the number of violations of a large spectrum of constraints (up
to Denial Constraints, and thus well beyond PKs).

Reasoning in Knowledge Bases (KBs) in the presence of inconsis-
tency is also widely studied in the Artificial Intelligence community,
where it has been shown that an arbitrary consequent can be en-
tailed from an inconsistent set of premises (see the survey by Lang
et al. [21]). Similarly, the role of inconsistency tolerance in KBs
has been introduced in [5]. They are more concerned about the co-
existence of consistency and inconsistency as separate axioms when
doing reasoning in KBs rather than using inconsistency measures to
yield inconsistency-aware query answering, as we do in our work.

Another line of research deals with the the definition of incon-
sistency measures in KBs [13, 19]. Numerous measures of inconsis-
tency in KBs have been proposed based on various paradigms such
as information theory [22], possibility theory [11] or quasi-classical
logic [19], to mention a few. The ultimate goal is, however, to pro-
vide measures to quantify the inconsistency of a KBs in order, for
example, to allow comparison of KBs based on their inconsistency
degrees. Extensions of such an approach to the database field has
been recently investigated in [6] where inconsistency measures
based on various classes of repair semantics are studied. However,
their notion of inconsistency measures (despite the name) relies on
how complex it is to restore the consistency of a database, thus on the

class of repairs admitted by the database. As such, it is quite different
from our notion of inconsistency degree in which repairs are not taken
into account.

Top-k query processing has been extensively studied in the data-
base literature (see [17] for a survey). The basic idea is to associate
to a tuple a score and to use this score in the algebraic plan and
consequent query processing in order to return the top-k results
of a given query [1, 18]. Our techniques are based on provenance
and are not considering specific choices of query plans and query
processing decisions. We believe that this line of research could
be interesting in future steps of our work. We use recent work
[14] that enumerates the top-k answers ordered by their score in
polynomial delay.

3 PRELIMINARIES
In this section, we introduce some basic notions used in this paper.

3.1 Basic notions
A database schema S is a finite set of relation symbols or predi-
cates {R1, . . . ,Rn }. We denote the arity of a relational symbol Ri
as arity(Ri). Let D be an infinite set of constants called domain.
A database instance I over a schema S is a finite set of relations
I(Ri) ⊆ D

ar ity(Ri) for every relational symbol Ri ∈ S. Let Γ be
an infinite set of identifiers distinct from the domainD. We denote
by id a function from a database instance I to Γ that associates to
each tuple t ∈ I(Ri) an unique idenfier id(t) from the set Γ.

Union of Conjunctive Queries (UCQ). A built-in atom is an atom
under the form (x op y) where op ∈ {=,,, ≥, ≤, <, >}, with x and y
being either variables or constants. A built-in conjunctive formula
is a conjunction of built-in atoms. A query is a mapping from a
database I over a schema S to relations over a new schema O,
called output schema. The class of conjunctive queries (CQ) is
defined as a set of queries of the following form:

Q(u) ← R1(u1), ...,Rn (un),ϕ(u1, . . . ,un) (1)

where each Ri is a relation symbol in the database schema S
and Q is a relation symbol in the output schema O. u is a tu-
ple of distinguished varaibales or constants and each ui is a tu-
ple of variables and constants having the same arity as Ri . The
formula ϕ(u1, . . . ,un) is a built-in conjunctive formula over the
variables appearing in the ui s and constants from the domain
D. The head of query Q is head(Q) def

= Q(u). The body of Q is
body(Q)

def
= R1(u1), ...,Rn (un). All variables in head(Q) appear in

body(Q). We denote byVars(Q) all variables inQ . Whenu is empty,
we say that Q is a boolean conjunctive query. An union of conjunc-
tive queries (UCQ) is a set of conjunctive queries with same arity
of heads. A query Q is a full CQ if all variables in Q appear also in
head(Q). A query Q is a self-join free CQ if in the body of Q there
is no two atoms with the same predicate name. A natural join CQ
is a full CQ where in each atom in body(Q) there is no constant
and there is no variable with more than one occurrence.

Denial contraints. A denial constraint is a formula of the form:

← R1(u1) ∧ ... ∧ Rn (un) ∧ ϕ(u1, . . . ,un) (2)
where the Ri (ui) and ϕ(u1, . . . ,un) are defined as previously.

BDA’19, October 15–18, 2019, Lyon, France Ousmane Issa, et al.

A database instance I is consistent w.r.t. a denial constraint C
iff I |= C . This occurs if the body of the denial constraint, which
can be viewed as a boolean conjunctive query, retruns f alse when
evaluated over the instance I .

Notation over Polynomials. A monomialMo over N and a finite set
of variables X is defined by Mo (X) = a × xm1

1 × ... × xmn
n with

a,m1, ...,mn ∈ N and x1, ...,xn ∈ X . Mo is a non null monomial
(M , 0) if a , 0 otherwise it is a null monomial. The weight of a
variable xi w.r.t a monomial Mo = a × xm1

1 × ... × xmn
n , denoted

byW (Mo ,x), is equal tomi , the exponent of the variable xi inMo .
The weight of a non nullMo , denoted byW (Mo), is defined as the
sum of the weights of its variables, i.e.:

W (Mo) =

n∑
i=0

W (Mo ,x)

The set of variables ofMo , denoted by Var (Mo), is the set of vari-
ables in Mo with non null weight. A polynomial P over N and a
finite set of variables X is a finite sum of monomials over X . The
set of variables of P , denoted by Var (P), is the union of sets of
variables of its monomials. Given a polynomial P , we use in the
sequel following notation:

(1) M(P) to denote the set of monomials of P .
(2) Vmi (P) is the number of variables that appear in the small-

est, w.r.t. the number of variables, monomial of P , i.e.,

Vmi (P) = Min
Mo ∈M(P)

|Var (Mo)|

(3) Vma (P) is the number of variables that appear in the largest,
w.r.t. the number of variables, monomial of P , i.e.,

Vma (P) = Max
Mo ∈M(P)

|Var (Mo)|

(4) Wmi (P) is the minimal weight among the weights of non
null monomials of P .

Wmi (P) = Min
Mo ∈M(P)

W (Mo)

(5) Wma (P) is the highest weight among the weights of non
null monomials of P . This is also the degree of P .

Wma (P) = Max
Mo ∈M(P)

W (Mo)

Example 2. Let P be the following polynomial over variables
{x ,y, z}

P(x ,y, z) = x2 × y3 + x × z × y + 2 × z2

The different notions over P are

• M(P) = {x2 × y3, x × z × y, 2 × z2}
• Vmi (P) = 1, since the monomial with minimal number of
variables is 2 × z2 thus containing only one variable.
• Vma (P) = 3, since the monomial with maximum number of
variables is x × z × y, hence containing 3 variables.
• Wmi (P) = 2, since the monomial with minimum degree is
2 × z2 and its degree is 2
• Wma (P) = 5, since the degree of P is 5

A Γ-r elation S’
PID RefD Date
P01 R1 1 t17
P02 R7 3 t18
P03 R7 9 t19
P04 R1 4 t20
P08 R7 5 t21

(a)

Q (S ′)
x y

P01 R1 t 217 × t18 + t 217 × t19 + t 217 × t21
P02 R7 t 218 × t17 + t 218 × t21

(b)

Figure 2: (a) Example of a Γ-relation and (b) Answers of query
Q over the Γ-relation.

3.2 Provenance Semirings
We recall below the provenance semirings framework [16] enabling
to capture a wide range of provenance models at different levels of
granularity [12, 15, 16]. This framework is based on a general data
model extending the relational model to the so-called K-relations
in which tuples are assigned annotations from a given semiring.

Notion of K-relations. An algebraic strucutre (K , ⊕, ⊗, 0, 1) with
binary operations sum ⊕ and product ⊗ and constants 0 and 1 is a
(commutative) semiring iff (K , ⊕, 0) and (K , ⊗, 1) are commutative
monoids with identities 0 and 1 respectively, ⊗ is distributive over
⊕ and 0 ⊗ a = a ⊗ 0 = 0 holds ∀a ∈ K . Recall that a monoid is a
set equipped with a single binary operation which is associative
and has an identity element. In addition, the set is closed under the
binary operation (i.e., the operation on any two elements in the set
leads to a result which belongs to the set).

Example 3. The following algebraic structures are commutative
semirings:
• (N,+,×, 0, 1), where N is the set of natural numbers and +,×
are respectively addition and product on natural numbers.
• (B,∨,∧, f alse, true), where B = { f alse, true} and ∨,∧ are
respectively, the logical disjunction and logical conjunction.
• (N[X],+,×, 0, 1) is the provenance polynomials semiring [15],
where X is a set of variables and N[X] denotes the set of poly-
nomials with variables from X and coefficients from N and
+,× are respectively addition and product on natural numbers.

An n-ary K-relation is a function R : Dn → K such that its
support, defined by supp(R)

def
= {t : t ∈ Dn ,R(t) , 0}, is finite.

Hence, aK-relation is an extension of the classical notion of relation
to allow tuples to be annotated by semiring annotations. Let R be an
n-ary K-relation and let t ∈ domainn , the value R(t) ∈ K assigned
to the tuple t by the K-relation R is called the annotation of t in R.

Example 4. Figure 2(a) shows an example of an Γ-relation S ′,i.e.,
a K-relation where K is the set Γ of tuple identifiers. This Γ-relation
annotates each tuple of the relation Surgery of Figure 1 with its iden-
tifier.

A K-instance is a mapping from relations symbols in a database
schema S to K-relations (i.e, a finite set of K-relations over S). If

A relational framework for inconsistency-aware
query answering BDA’19, October 15–18, 2019, Lyon, France

I is a K-instance over a database schema S and Ri ∈ S is a relation
symbol in S, we denote by I(Ri) the K-relation corresponding to
the value of Ri in I.

Union of conjunctive queries on K-instances [15]. Let Q be a CQ
and Vars(Q) the set of variables that occur in Q . A valuation of Q
over a domain D is a function v : Vars(Q) → D, extended to be
the identity on constants.

Valuations are extended to tuples as follows: if t = (t1, ..., tn)
then v(t) = (v(t1), ...,v(tn)). Let Q be a conjunctive query,

Q(u) ← R1(u1), ...,Rn (un),ϕ(u1, . . . ,un)

and let M be a K-instance over the same schema than Q , with
(K , ⊕, ⊗, 0, 1) a semiring. The result of evaluating Q over the K-
instance M , using the semiring (K , ⊕, ⊗, 0, 1), is the K-relation
Q(M) defined as follows:

Q(M)
def
= { (t ,

∑
v s .t condvt

prod
q
v (M)) }

where:

• condvt
def
= (v(u) = t ∧ ϕ(v(u1), . . . ,v(un)), i.e., v is a valua-

tion that maps u to t and ϕ to true , and
• prod

q
v (M)

def
= Πn

i=1Ri (v(ui)), computes an annotation , 0
for each tuple t which is in the answer of the query Q over
the K-instance M . The tuples Ri (v(ui) that are involved in
the computation of the answer t are joined using the ⊗
operator. Since there could exist different ways to compute
the same answer t , the complete annotation of t is obtained
by combining the alternative ways to derive a tuple t using
the ⊕ operator. Hence, the provenance of an answer t of the
query Q over a K-instance M is computed as follows:

Q(M)(t) =
∑

v s .t condvt

prod
q
v (M)

The computation of the answers of an UCQ query Q =

(Q1, ...,Qm) over a K-instance M is obtained by merging the an-
notations of the answers of each query QI over M using the ⊕
operator, i.e.:

Q(M)
def
= { (t ,

m∑
i=1

Qi (M)(t)) }

Example 5. Consider the provenance polynomials semiring
(N[Γ],+,×, 0, 1), with variables from the set of tuples identifiers Γ,
and the Γ-relation S ′ of of Figure 2(a) which annotates the tuple of
the relation Surgery with their corresponding identifiers.

Consider the following example query Qex2:

Qex2(x ,y) ← S(x ,y, z1), S(x ,y, z2), S(x1,y1, z3),y , y1

The answers of the queryQex2 over the Γ-relation S ′ is given in Figure
2(b). Note that, the answers of Qex2 are annotated with polynomials
from N[Γ]. For example, the tuple (P01,R1) is an answer of Qex2
which is annotated with the polynomial P = t217 × t18 + t217 ×

t19 + t217×t21. Each monomial in P gives a way to compute the answer
(P01,R1) by the query Qex2. Hence, P conveys the information that
the answer (P01,R1) is computed by the queryQex2 in three different
ways: (i) using the tuple t17 twice together with the tuple t18, or (ii)
using the tuple t17 twice together with t19, or (iii) using the tuple t17
twice together with t21.

4 QUANTIFYING INCONSISTENCY DEGREES
OF QUERY ANSWERS

In this section, we focus on the problem of quantifying the incon-
sistency degrees of query answers. Let I be an instance over a
database schema S and let DC be a set of denial contraints over S.
We proceed in three steps in order to achieve our goal:
• Identifying inconsistent tuples: We first start by identifying
the inconsistent tuples of an instance I over S w.r.t a set of
denials constraints DC . To achieve this task, we turn the set
DC of denial contraints into a boolean UCQ QDC and then
we use the why-provenance (also known as lineage of QDC)
to compute the set of inconsistent tuples of I w.r.t. to DC .
The set of inconsistent tuples of an instance I w.r.t. a set of
denial constraints DC is denoted by IncT (I,DC).
• Annotating the initial database instance: Using the set
IncT (I,DC) of inconsistent tuples, we convert the instance
I into aK-instance by annotating each consistent tuple in I
with the value 1 and each inconsistent tuple t ∈ IncT (I,DC)
with its identifier id(t).
• Defining inconsistency degrees of query answers: Then, given
an UCQ Q over the instance I, we use provenance polyno-
mials semiring to annotate the query answers. The latter
provenance is the most informative form of provenance an-
notation [15] and hence is exploited in our setting in order
to define different inconsistency degrees for query answers.

We shall detail in the sequel the proposed three-step approach.
The first two steps are described in the Algorithm 1.

4.1 Identifying inconsistent tuples
Let I be an instance over a database schema S and let DC be a
set of denial contraints over S. We first convert the set DC into a
boolean query QDC as follows. For each constraint C ∈ DC of the
form:

← R1(u1) ∧ ... ∧ Rn (un) ∧ ϕ(u1, . . . ,un)

we generate a boolean conjunctive query QDC :

QDC () ← R1(u1) ∧ ... ∧ Rn (un) ∧ ϕ(u1, . . . ,un)

Hence, the obtained query QDC from the set DC is a boolean
union of conjunctive queries UCQ.

Example 6. The set DC of denial constraints depicted in Figure 1
leads to the following UCQ query:

QDC () ← D(x, y, z) ∧ S (x, y, u) ∧ z > u
QDC () ← D(x, ′ R2′, y) ∧V (x, ′ R2′, z) ∧ y > z
QDC () ← D(x, ′ R4′, y) ∧V (x, ′ R4′, z) ∧ y > z

It is easy to verify that an instance I violates the set of denial
constraintsDC iff the queryQDC evaluates to true over the instance
I (i.e., QDC (I) = {<>}, where the empty tuple <> denotes the
true value of a boolean query). The lineage of the empty tuple <>
enables the identification of the set of all contributing source tuples,
and hence all the tuples that "contribute" to make the instance I
inconsistent w.r.t. DC . We shall use the provenance semirings [15]
to compute it.

LetP(Γ) be the powerset of the set of tuple identifiers Γ. Consider
the following provenance semiring: (P(Γ) ∪ {⊥},+, .,⊥, ∅), where
∀S,T ∈ P(Γ) ∪ {⊥}, we have ⊥ + S = S + ⊥ = S,⊥.S = S .⊥ = ⊥

BDA’19, October 15–18, 2019, Lyon, France Ousmane Issa, et al.

and S +T = S .T = S ∪T if S ,⊥ andT , ⊥. This semiring consists
of the powerset of Γ augmented with the distinguished element
⊥ and equipped with the set union operation which is used both
as addition and multiplication. The distinguished element ⊥ is the
neutral element of the addition and the annihilating element of the
multiplication.

We convert the instance I over the schema S into a K-instance ,
denoted by ILP , with K = P(Γ) ∪ {⊥}. The K-instance ILP is
defined below.

Definition 1 (Provenance instances). Let I be an instance
over a database schema S and let DC be a set of denial contraints
over S. Let K = P(Γ) ∪ {⊥}. The K-instance ILP is constructed as
follows:
• ∀Ri ∈ S a corresponding K-relation is created in ILP ,
• A K-relation ILP (Ri) ∈ ILP is populated as follows:{
ILP (Ri)(t) = {id(t)} i f t ∈ I(Ri)

ILP (Ri)(t) = ⊥ otherwise

Example 7. Figure 3 shows the provenance database hdbLP ob-
tained from the hospital database hdb by annotating each tuple
t ∈ hdb with a singleton set {id(t)} containing the tuple identifier.

Using the provenance semirings, we define below the inconsis-
tent tuples of a given instance w.r.t. a set of denial constraints.

Definition 2 (Inconsistent tuples). Given an instance I and
a set of denial constraints DC , the set of inconsistent tuple identifiers,
denoted by IncT (I,DC), is defined as follows

IncT (I,DC)
def
= QDC (ILP)(<>)

Consequently, a tuple t ∈ I is inconsistent w.r.t. DC if id(t) ∈
IncT (I,DC).

Example 8. Consider the query QDC of Example 6 which is
obtained from the set of denial constraints of the hdb database. The
execution of the query QDC over the provenance database hdbLP of
Figure 3 leads to the answer true (i.e., the tuple <>) annotated with
inconsistent tuples of the database hdb, i.e.,:

incT (hdb,DC) = QDC (hdbLP)(<>) =
{t1, t17, t2, t18, t3, t19, t7, t10, t6, t11, t5, t13}

4.2 Annotating the initial database instance
Using the set IncT (I,DC) of inconsistent tuples, we convert the
instance I into a K-instance , denoted by IΓ , with K = N[Γ] (see
Definition 3). This is achieved by Algorithm 1 (lines 13 et 26) which
permits to annotate each consistent tuple in I with the value 1 and
each inconsistent tuple id(t) ∈ IncT (I,DC) with its identifier id(t).

Definition 3 (Polynomial provenance instances). Let I be
an instance over a database schema S and let DC be a set of denial
contraints over S. Let K = N[Γ]. The K-instance IΓ is constructed
as follows:
• ∀Ri ∈ S a corresponding K-relation is created in IΓ ,
• A K-relation IΓ(Ri) ∈ IΓ is populated as follows:{
IΓ(Ri)(t) = id(t) i f id(t) ∈ IncT (I,DC)

IΓ(Ri)(t) = 1 t ∈ I(Ri) ∧ id(t) < IncT (I,DC)

Algorithm 1: N[Γ]-instance from I denoted IΓ

Input : I : database instance ,
DC : set o f denials constraints

Output :IΓ

1 ILP := ∅ ;
2 for t ∈ I do
3 ILP := ILP ∪ {(t , {id(t)})} ;
4 end
5 /* Convert DC into QDC */ ;
6 for C ∈ DC do
7 Let C=← R1(u1) ∧ ... ∧ Rn (un) ∧ ϕ(u1, . . . ,un) ;
8 Generate the rule:
9 QDC () ← R1(u1) ∧ ... ∧ Rn (un) ∧ ϕ(u1, . . . ,un)

10 end
11 /* Compute the lineage of the tuple <> (answer true) */
12 IncT := QDC (ILP)(<>);
13 /* Convert I into the K-relation IΓ */
14 IΓ := ∅ ;
15 for I(R) ∈ I do
16 IΓ(R) := ∅ ;
17 for t ∈ I(R) do
18 if id(t) ∈ IncT (I,DC) then
19 IΓ(R) := IΓ(R) ∪ {(t , id(t))} ;
20 else
21 IΓ(R) := IΓ(R) ∪ {(t , 1)} ;
22 end
23 end
24 IΓ := IΓ ∪ {IΓ(R)}
25 end
26 return IΓ ;

Example 9. Continuing with the example, Figure 4 shows the
N[Γ]-instance obtained from the initial database hdb by annotating
consistent tuples with 1 and inconsistent tuples in incT (hdb,DC) by
their tuple identifiers.

4.3 Defining inconsistency measures for query
answers

We define in this section several meseaures to determine the in-
consistency degrees of query answers. Given an UCQ query Q , we
evaluate Q over the instance IΓ in order to compute the answers
of Q as well as the provenance polynomials semiring annotations
associated with each answer. The annotations, which come in the
form of polynomial expressions, are then exploited to define several
inconsistency measures for query answers.

Let I,Q andDC be, respectively, an instance, an UCQ query and
a set of denial constraints over a database schema S. Let t ∈ Q(I)
be an answer of the query Q over the instance I. Let K = N[Γ].
Applying the queryQ to theK-instance IΓ , enables to compute the
provenance annotation Q(IΓ)(t) = P associated with each answer
t ∈ Q(I). This annotation consists in a polynomial expression P
over the set of variables Γ. Recall that the variables that appear in

A relational framework for inconsistency-aware
query answering BDA’19, October 15–18, 2019, Lyon, France

Diaдnosis(D)
PID RefD Date Prov
P01 R1 2 {t1 }
P02 R7 4 {t2 }
P03 R7 10 {t3 }
P04 R1 3 {t4 }
P04 R4 8 {t5 }
P02 R4 7 {t6 }
P01 R2 5 {t7 }
P08 R7 4 {t8 }
P10 D1 5 {t9 }

Vaccination(V)
PID RefD Date Prov
P01 R2 3 {t10 }
P02 R4 5 {t11 }
P03 R4 6 {t12 }
P04 R4 7 {t13 }
P02 R5 10 {t14 }
P08 R5 7 {t15 }
P10 R3 8 {t16 }

Surдery(S)
PID RefD Date Prov
P01 R1 1 {t17 }
P02 R7 3 {t18 }
P03 R7 9 {t19 }
P04 R1 4 {t20 }
P08 R7 5 {t21 }

Figure 3: The lineage provenance database hdbLP obtained from the hospital database hdb.

Diaдnosis(D)
PID RefD Date Prov
P01 R1 2 t1
P02 R7 4 t2
P03 R7 10 t3
P04 R1 3 1
P04 R4 8 t5
P02 R4 7 t6
P01 R2 5 t7
P08 R7 4 1
P10 R1 5 1

Vaccination(V)
PID RefD Date Prov
P01 R2 3 t10
P02 R4 5 t11
P03 R4 6 1
P04 R4 7 t13
P02 R5 10 1
P08 R5 7 1
P10 R3 8 1

Surдery(S)
PID RefD Date Prov
P01 R1 1 t17
P02 R7 3 t18
P03 R7 9 t19
P04 R1 4 1
P08 R7 5 1

Figure 4: K-instance obtained from I with K = N[Γ]. Each inconsistent tuple is annoted by a monome that is its identifier and
an inconsistent tuple is annoted by monome 1.

P correspond to identifiers of inconsistent tuples (i.e., elements of
IncT (I,DC)). Hence, the polynomial P fully documents how incon-
sistent source tuples contribute in the computation of the output t .
In particular, each monomialM ∈ M(P) gives an alternative way
to compute the output t . Based on the polynomial annotation P of
a tuple t , different measures can be defined in order to quantify the
inconsistency degree of t depending in particular on how one deals
with the following two issues:

• How to treat the alternative ways to compute the same query
answer t? in other words, the question is to determine which
monomial of P one has to consider in order to compute the
inconsistency degree of t . We define two classes of measures
focusing either on the lower bound, hereafter called MIN
alternative, or on the upper bound, hereafter called MAX
alternative, of the inconsistency degree of t .
• How to deal with a source tuple that contribute more than
one time in the computation of the same query answer t?
We define two classes of semantics: set semantics, in which
a contribution of a source tuple in the computation of an
answer is counted at most once, and bag semantics, where
the exact number of contributions of a source tuple is taken
into account when quantifying the inconsistency degree of
a given answer.

The combination of the previous dimensions leads to the follow-
ing four measures of inconsistency:

• Set semantics. In this semantics, the quantification of an in-
consistency degree from a monomialM ∈ M(P) is achieved
by counting the number of variables in M (since duplicate
contributions are not counted, the exponents of the vari-
ables are dropped). The set semantics leads to two measures
depending on how alternatives are dealt with:

– MIN alternative: we consider the alternative that mini-
mizes the number of inconsistent tuples involved in the
computation of each query answer. Given an answer t to
Q and its associated polynomial annotation P , this option
boils down to consider the monomialMmin of P with the
smallest number of variables. In such a case, the number
of variables inMmin gives the inconsistency degree of t ,
which can be interpreted as the minimal number of in-
consistent tuples that contribute in the computation of t .
Hereafter, this measure is denoted by ILsmin .

– MAX alternative: we consider the alternative that maxi-
mizes the number of inconsistent tuples involved in the
computation of each query answer (e.g., such a measure
gives an upper bound regarding the inconsistency degree
of a given answer). Given that we assume a set semantics,
this option turns out to consider the monomialMmax of
P with the largest number of variables. In such a case, the
number of variables inMmax gives an inconsistency de-
gree of t which can be interprested as the maximal number
of consistent tuples that contribute in the computation of
t . Hereafter, this measure is denoted by ILsmax .

• Bag semantics. In this semantics, the quantification of an in-
consistency degree from a monomialM ∈ M(P) is achieved
by computing the weight of M . Recall that the weight of
a monomial M is given by the sum of the exponents of its
variables. Hence, if an inconsistent source tuple is used n
times in the monomial M , it will then be counted n times
in the quantification of the inconsistency degree from M .
The bag semantics leads to two measures depending on how
alternatives are dealt with:

BDA’19, October 15–18, 2019, Lyon, France Ousmane Issa, et al.

y u
D1 D2 t1 ∗ t10 ∗ t17
D7 D4 t2 ∗ t18 ∗ t11 + t3 ∗ t19
D1 D4 t13
D7 D5 t18 + 1

Answers of query with their inconsisty degrees

y u ILsmin ILsmax ILbmin ILbmax
D1 D2 3 3 3 3
D7 D4 2 3 2 3
D1 D4 1 1 1 1
D7 D5 0 1 0 1

Figure 5: Answers of queryQex over hdbΓ and their inconsis-
tency degrees for each respective inconsistency measure.

– The MIN alternative enables us to consider the mono-
mialMmin of P with the smallest weight. Hereafter, this
measure is denoted by ILbmin .

– TheMAX alternative corresponds to consider the mono-
mial Mmax of P with the largest weight. Hereafter, this
measure is denoted by ILbmax .

In the following, we provide the formal definition of the four
proposed inconsistency measures.

Definition 4 (Inconsistency measures). Let I, Q and DC be
respectively, a database instance, an UCQ query and a set of denial
constraints over a database schema S. Let Q(IΓ)(t) be the polyno-
mial semiring provenance of a tuple t . We define the following four
measures to quantify the degree of inconsistency of a tuple t ∈ Q(I)
w.r.t DC :
• Set semantics, MIN alternative

ILsmin (t ,I,Q,DC)
def
= Vmi (Q(IΓ)(t))

• Set semantics, MAX alternative

ILsmax (t ,I,Q,DC)
def
= Vma (Q(IΓ)(t))

• Bag semantics, MIN alternative

ILbmin (t ,I,Q,DC)
def
= Wmi (Q(IΓ)(t))

• Bag semantics, MIN alternative

ILbmax (t ,I,Q,DC)
def
= Wma (Q(IΓ)(t))

Given a queryQ and an instance I and a set ofDC DC ,Q(IDC)
can be computed in polynomail time in data complexity [12, 16].
Hence, all these measures of inconsistency degree of answers tuples
of query Q over I (Q(IDC)) can be computed in polynomial in the
size of the database instance I.

Example 10. Continuing our running example, the valuation of
the query Qex of Figure 1 is processed as illustrated in Table 5.

Given a conjunctive query Q , each measure of inconsistency
degree as defined above is bounded by the size ofQ (i.e, |Body(Q)|).
Also, in the case where Q is a self-join free query the set semantics
and the bag semantics coincide. The lemma 4.1 shows these two
properties.

Lemma 4.1. Let I, Q and DC be respectivelly an instance, a CQ
query and a set of denial constraints, for each tuples t ∈ Q(I)

(1) α(t , I ,Q, IC) ≤ |Body(Q)| with α ∈

{ILsmin , IL
b
min , IL

s
max , ILbmax }

(2) If Q is also self-join free then ILsmin (t , I ,Q, IC) =

ILbmin (t , I ,Q, IC) and ILsmax (t , I ,Q, IC) = ILbmax (t , I ,Q, IC)

Proof. (1) Easy. Q : Q(X) ← P1(X1), ..., Pn (Xn),ϕ. Each
monome M in Q(IIC)(t), ∀t ∈ Q(I), is in a form a ∗
Πn
i=1Pi (v(Xi)) with v a valuation for Q and a ∈ N. So,
|Var (M)| ≤ |W (M)| ≤ n = |Body(Q)|.

(2) Q : Q(X) ← P1(X1), ..., Pn (Xn),ϕ a CQ free self-join ⇒
there is no valuation v of Q where id(v(Xi)) = id(id(X j))

with Pi , Pj , so each monome inQ(IIC)(t) is in form a×x1×
... × xm with a ∈ N and {x1, ..., xn } is the set of variables
(identifiers of inconsistent tuples). There is no repetition,
thus the bag semantics and set semantics match one with
another.

□

In the next section, we show how to use inconsistency degrees
in order to filter and rank query answers.

5 INCONSISTENCY-AWARE QUERY
ANSWERING

Querying inconsistent databases might lead to cope with the incon-
sistencies in the query answers. This occurs in many applications
where inconsistencies cannot be repaired due to data protection
and data ownership requirements. In this section, we rely on the
consistency measures introduced above, in order to define prob-
lems related to query answering for inconsistent databases. The
main idea is to compute query answers while taking into account
their inconsistency degrees to filter the answers, for instance for
bounding query answers with a given threshold or for selecting the
top-k query answers.

Definition 5 (Threshold-based filtering). Let I, Q and DC
be respectively an instance, an UCQ query and a set of denial
constraints over a database schema S. Let δ be an integer and let
α ∈ {ILsmin , IL

s
max , ILbmin , IL

b
max } then

(1) The less than δ answers of Q (called LA answers) over I w.r.t
DC denoted Qδ−,α is defined as follows:

Qδ−,α (I)
def
= { t ∈ Q(I) : α(t ,I,Q,DC) < δ }

(2) The greater than δ answers (called GA answers) of Q over I
w.r.t DC denoted Qδ+,α is defined as follows:

Qδ+,α (I)
def
= { t ∈ Q(I) : α(t ,q,I,DC) > δ }

(3) The equal to δ answers (called EA answers) of Q over I w.r.t
DC denoted Qδ=,α is defined as follows:
Qδ=,α (I) = { t ∈ Q(I) : α(t ,q,I,DC) = δ }

According to this definition, LA answers of a query Q w.r.t. an
inconsistency measure α and a treshold δ , consists in all answers
of Q that have an inconsistent degree less than δ using the incon-
sistency measure α . The GA (respectively, EA) answers of Q are
those answers of Q that have an inconsistent degree greater than
(respectively, equal to) δ using the inconsistency measure α .

We shall define below top-k queries w.r.t. inconsistency degrees.

Definition 6 (Top-k qeries). Let I, Q and DC be respectively
an instance, an UCQ query and a set of denial constraints over

A relational framework for inconsistency-aware
query answering BDA’19, October 15–18, 2019, Lyon, France

a database schema S. Let k be an integer and let α ∈ {ILsmin ,

ILsmax , ILbmin , IL
b
max }. The top-k query answers of Q over I w.r.t

DC and using the inconsistency measure α , denoted by Qtopk ,α (I),
is defined as follows:
• Qtopk ,α (I) ⊆ Q(I), and
• |Qtopk ,α (I)| = Min(k, |Q(I)|), and
• ∀(t1, t2) ∈ Qtopk ,α (I) × Q(I) then α(t1,Q,I,DC) ≤
α(t2,Q,I,DC)

The following example illustrates some threshold-base filetering
and top-k queries over our example database.

Example 11. Take δ = 2 and k = 3. Continuing with the database
example hdb and the queryQex of figure 1, we show below the results
of some threshold-based queries and top-k queries.

• Qtop−3, ILsmin (hdb) = Qtop−3, ILsmax (hdb) =

Qtop−3, ILbmin (hdb) = Qtop−3, ILbmax (hdb) =

{(D7,D5), (D1,D4), (D7,D4)}.
• Qδ−, ILsmin (hdb) = Qδ−, ILsmax (hdb) = Qδ−, ILbmin (hdb) =
Qδ−, ILbmax (hdb) = {(D1,D4), (D7,D5)}.
• Qδ+, ILsmin (hdb) = Qδ+, ILbmin (hdb) = {(D1,D2)}.
• Qδ+, ILsmax (hdb) = Qδ+, ILbmax (hdb) = {(D1,D2), (D7,D4)}.
• Qδ=, ILsmin (hdb) = Qδ=, ILbmin (hdb) = {(D7,D4)}.
• Qδ=, ILsmax (hdb) = Qδ=, ILbmax (hdb) = ∅.

Below, we describe two preliminary approaches to compute the
solutions to each of the problems defined above.

5.1 Full-materialized approach
Let I, Q and DC be respectively an instance, anUCQ query and
a set of denial constraints over a database schema S. Let δ and k
be two integers and let α ∈ {ILsmin , IL

s
max , ILbmin , IL

b
max }. The

simplest approach to compute the threshold-based and top-k query
answers ofQ is to compute beforehand all the tuples in the answers
of Q together with their associated provenance semiring anno-
tations (i.e., the materialization of the relation Q(IΓ)). Then, the
answers ofQ can be filtered using an α measure in order to compute
LA, GA or EA answers. Top-k queries can also be easily handled,
e.g., by sorting the answers w.r.t. inconsistency degrees. This ap-
proach is called full-materialized approach because it requires the
materialization of the K-relation Q(IΓ).

The shortcoming of this approach is the fact that we have to
materialize all the K-relation Q(IΓ) before filtering. Hence, the
time and space complexity of computing threshold-based and top-k
queries is a function of the size of query results. For the bounded
query answering, we can do filtering in linear time in the size of
query results since we have only to compare the inconsistency
degree with the threshold δ . However, for top-k query answering,
we have to sort the answers of a query thus obtaining a complexity
in n ∗ loд(n), with n = |Q(I)| being the size of the query answers.

5.2 Semi-materialized approach
In this section, we propose a second approach to deal with threshold-
based filtering and top-k queries. Let I, Q and DC be respectively
an instance, anUCQ query and a set of denial constraints over a
database schema S. Let δ and k be two integers and let α ∈ {ILsmin ,

ILsmax , ILbmin , IL
b
max }. We compute the set of inconsistent tuples

IncT (I,DC) and then use it to annotate each tuple in I with the
value 1 if t is inconsistent (i.e., id(t) ∈ IncT (I,DC)) and with the
value 0 if t is consistent. The result, a {0, 1}-instance denoted by Ib ,
is materialized and used to compute inconsistency-aware answers
to user queries. This second approach is called semi-materialized
because only the {0, 1}-instance Ib is precomputed and stored
beforehand while the entire set of query answers is not materialized
in advance as in the previous approach.

In this setting, we see each inconsistency measure α ∈ {ILsmin ,

ILsmax , ILbmin , IL
b
max } as a scoring function over the annotations

of the tuples in Ib . Then, given a queryQ , we consider the generic
enumeration problem of how to efficiently enumerate the answers
ofQ according to an order defined over their inconsistency degrees.
We investigate this problem in the enumeration framework defined
in [25], where an algorithm can be decomposed into two phases:

• a preprocessing phase that is performed in time linear in the
size of the database,
• an enumeration phase that outputs Q(I) with no repetition
and a delay depending only on Q between any two consec-
utive outputs. The enumeration phase has full read access
to the output of the preprocessing phase and can use extra
memory whose size depends only on Q .

We adapt the approach developped in [14] for enumerating the
results of conjunctive queries to our setting. [14] proposes an effi-
cient ranked enumeration algorithm for conjunctive query results
that combines the use of priority queues and hash maps in conjunc-
tion with query decomposition techniques. The proposed algorithm
starts with a preprocessing step and builds priority queues that
maintain partial tuples at each node of the query decomposition
tree. In second step, namely the enumeration phase, the algorithm
computes the output of the subquery formed by subtree rooted
at each node of the decomposition in sorted order according to
the ranking function. In order to allow partial aggregation of tu-
ple scores during the enumeration phase, the proposed approach
requires a ranking function that satisfies a decomposability and a
compatibility property w.r.t. a tree decomposition of the considered
query. We recall below the classical notion of tree decompostion of
a conjunctive query as well as the decomposability and compatibil-
ity properties introduced in [14].
Tree decomposition of a conjunctive query. A natural join is
a full CQ, with no constants and no repeated variables in the
same atom. A natural join can be represented as a hypergraph
HQ = (VQ ,EQ), where VQ is the set of variables that appear in Q ,
and for each hyperedge E ∈ EQ there exists a relation RF with
variables F . A tree decomposition of a natural join Q is a tuple
(T , (Bn)n∈V (T)) where T is a tree, and every Bn is a subset of V ,
called the bag of n, such that: (i) each edge in E is contained in some
bag; and (ii) for each variable x ∈ V , the set of nodes {n |x ∈ Bn } is
connected in T . Given a rooted tree decomposition, the notation
p(n) is used to denote the parent of a node n ∈ V (T) and the nota-
tion key(n) = Bn ∩ Bp(n) denotes the common variables that are
shared between the bage Bn and its parent Bp(n). Note that, results
of [14] applies to natural join queries that have bounded fractional
hypertree width (fhw) decompositions [23].

BDA’19, October 15–18, 2019, Lyon, France Ousmane Issa, et al.

Decomposable ranking functions. Let f be a ranking func-
tion over a set of variables Y . Let X ⊆ Y . We say that f is X -
decomposable if there exists a valuation φ∗ over Y \ X , such that
for every valuation φ over Y \X , and any two valuations θ1,θ2 over
X we have: f (φ∗ ◦θ1) ≥ f (φ∗ ◦θ2) ⇒ f (φ ◦θ1) ≥ f (φ ◦θ2), where
◦ denotes extension of two valuations to form an unique valuation.
Compatible ranking functions. Let f be a ranking function over
a set of variables V , and X ,Y ⊆ V such that X ∩ Y = ∅. We say
that f is Y -decomposable conditioned on X if for every valuation
θ over X , the function fθ (φ) = f (θ ◦ φ) defined over V \ X is Y -
decomposable. A ranking function f is compatible with a tree T
of a query Q if for every node n it is (B<

n \ key(n))-decomposable
conditioned on key(t), where B<

n denotes the union of all bags in
the subtree rooted at n (including Bn).
Ranked enumeration of conjunctive query results. Given a
natural join CQ, an instance I and a ranking function f compati-
ble with to tree associated to Q , then Shaleen et al. [14] generates,
in polynomial time and polynomial space in data complexity, a spe-
cific data structure associated with each node of the tree of Q . The
obtained tree is used to enumerate each tuple t in the answers of a
query Q over instance I, with complexity p ∗ loд(|I|) in data com-
plexity where p is the rank of t . The valuations are organized into a
hashmap structure where the keys are valuations of common vari-
ables of node with its parent in order to not loose the join condition.
By key (one valuation of common variable with nœud’s parent) of
the hashmap, we can have many such valuations. Moreover, these
valuations are organized in a priority queue (with a top value that
is always available in O(1)), and thanks to the fact that the ranking
function is compatible with a tree, we can locally choose the head
(minimum) of this queue and aggregate using this ranking function
along the tree. For more details about this technique, we refer the
reader to [14].
The hashmap of the root node contains one element (priority queue)
having as key an empty tuple (<>) because the root has no parent.
At each enumeration, the top (with minimum rank) in the priority
queue of root node is chosen with its children recursively in the tree.
After each enumeration, the structure is updated. During updating,
the top valuation is removed and recursively its children also are
removed. Some children of the top valuation previously chosen can
be involved in other valuations. For this reason, before removal of a
child c the valuation after c in the same priority queue is associated
to c (field ’next’ is used).
Enumerating query answers w.r.t. their inconsistency de-
grees. We first observe that under the bag semantics, the inconsis-
tency measures proposed in this paper are compatible with a tree
decomposition of a full natural join, hence the results of [14] can
be easily translated to our context to enable efficient enumeration
of query results w.r.t. inconsistency degrees. However, under the
set semantics, our inconsistency measures turn to be non decom-
posable and hence cannot be used in the context of the algorithm
of [14]. We shall show below that this limitation can be lifted in
the case of self-join free queries and hence, for this class of queries,
we can exploit the result of [14] using our inconsistency measures
both under bag and set semantics. To achieve this task, we first
show that for full conjunctive queries, using polynomial semirings
leads to an annotation of query answers by monomials.

Lemma 5.1. Given a full CQ Q , an instance I and a set of denial
constraintsDC . Using the polynomial semiring, for any tuple t ∈ Q(I)
then Q(IΓ)(t) is a monomial.

Proof. As Q is full (i.e all variables are in head of Q), for each
of two different valuations v1 and v2 of Q (i.e, there exists at least
one variable x ∈ Var (Q) where v1(x) , v2(x)) v1(head(Q)) ,
v2(head(Q)). Each tuple in the answers of query Q over IIC is
associated with one valuation, hence its polynomial provenance is
a monomial. □

As one can note if Q(IIC)(t) is a monomial then
ILsmin (t ,I,Q, IC) = ILsmax (t ,I,Q, IC) and ILbmin (t ,I,Q, IC) =

ILbmax (t ,I,Q, IC). The reason is that since there is one possible
monomial to choose, this makes the maximum and the minimum
coincide.

Lemma 5.2 states that for full self-join free conjunctive query,
the different inconsistency measures coincide.

Lemma 5.2. Given a full self-join free CQ Q , an instance I
and a set of denial constraints IC . For any tuple t ∈ Q(I) then
ILsmin (t ,I,Q, IC) = ILsmax (t ,I,Q, IC) = ILbmin (t ,I,Q, IC) =

ILbmax (t ,I,Q, IC).

Proof. By lemma 5.1, we know that the polynomial prove-
nance of a tuple t in answers of full query Q is a monomial so
ILsmax (t ,I,Q, IC) = ILsmin (t ,I,Q, IC) and ILbmax (t ,I,Q, IC) =
ILsmin (t ,I,Q, IC).Q is self-join free, there is no repeating in tuples
used in computing of each tuple in answers ofQ , so the bag seman-
tic and set semantic coincide (c.f., lemma 4.1). As a consequence
ILsmin (t ,I,Q, IC) = ILsmax (t ,I,Q, IC) = ILbmin (t ,I,Q, IC) =

ILbmax (t ,I,Q, IC) □

We show in the following theorem that the query answers in
our inconsistency-aware framework can be enumerated with loga-
rithmic delay.

Theorem 5.3. Given a natural join CQ Q with bounded f hw
decompositions, an instance I and a set of denial constraints IC , after
a preprocessing of Q over I in polynomial time in |I |:

(1) Qtopk , ILbmax (I) andQtopk , ILbmax (I) can be enumerated with
delay O(log(|I|)) between their ordered tuples.

(2) If Q is also self-join free, Qtopk , ILsmax (I) and Qtopk , ILsmin (I)

can be enumerated with delay O(log(|I|)) between their or-
dered tuples.

Proof. (1) The natural join CQ Q is Q(X) ←

P(X1), ..., Pn (Xn). Let C : I → R be a function
that assoicates to each tuple t in I a cost C(t) as follows: if
t ∈ IncT (I, IC) then C(t) = 1 Otherwise C(t) = 0.
Q is a natural join query⇒ ∀t ∈ I,Q(IIC)(t) = xn1

1 ∗...∗x
nk
k

(by lemma 5.1) and n1 + ... + nk = ILbmax (t ,I,Q, IC) =

ILbmin (t ,I,Q, IC) ≤ |Body(Q)| (by lemma 4.1) with
{x1, ...,xn } ⊆ {id(v(X1)), ..., id(v(Xn))}, v(X) = t and
v a valuation of Q over I. Then ILbmin (t ,I,Q, IC) =

ILbmax (t ,I,Q, IC) = n1 ∗ C(t1) + ... + nk ∗ C(tk) with
id(ti) = xi , ∀i ∈ {1, ..., n}. Also we have, n1 ∗C(t1) + ... +

A relational framework for inconsistency-aware
query answering BDA’19, October 15–18, 2019, Lyon, France

nk ∗ C(tk) = C(v(X1)) + ... + C(v(Xn)) =
n∑
i=1

C(v(Xi)). So,

ILbmin (t ,I,Q, IC) = ILbmax (t ,I,Q, IC) =
n∑
i=1

C(v(Xi)) and

the ranking function to use is r =
n∑
i=1

C(v(Xi)) that they call

in [14] tuple-based ranking function. In [14], in lemma 2,
they show that r is compatible with any tree decomposition
of a natural join CQ query. As a consequence, using a
technique in [14], Qtopk , ILbmax (I) and Qtopk , ILbmin (I) can
be enumerated in delay O(loд |I |) between their ranked
tuples with a prepocessing of I in polynomial time in data
complexity.

(2) By lemma 5.2 and (1) of Theorem 5.3.
□

It is easy to verify that the results of Theorem 5.3 extend to
threshold-based filtering problems under the same restrictions on
the considered queries.

Example 12. Consider an instance as in Figure 1, where each tuple
has an inconsistency degree equal to 1 if the tuple is inconsistent and
0 otherwise (the column with blue color), and consider a natural join
conjunctive query:

Q(x ,y, z, z′, z2) ← D(x ,y, z), S(x ,y, z′), V (x ,u,v)
The id column serves the need of identifying the tuples. A decom-

position tree ofQ and the data structure associated to each of its node
is shown in Figure 6. In this example, the ranking function is the sum
of the degrees of the corresponding valuations. Figure 7 shows the
first enumerated tuple as well as the content of the tree after this first
enumeration.

6 CONCLUSION
We have presented a novel framework for inconsistency-aware
query answering. We have defined inconsistency degrees of query
answers by leveraging four different measures of inconsistency.
We have grounded the computation of inconsistency degrees in
why-provenance annotations and used the polynomial semiring
provenance in order to define top-k and bounded query answering
in this setting. To this end, we have designed two algorithms (the
Full-materialized and Semi-materialized algorithms) that actually
carry out the above computation with different space requirements.

As future work, we plan to further explore the optimized com-
putation of top-k and bounded query answering and also see its
impact and performance in practice by means of an extensive exper-
imental study. It will also be fruitful to check whether a cost-based
computation is possible in this setting and to tune the latter compu-
tation in order to fit the cost computation of relational query plans,
in the spirit of top-k query processing in relational databases.

REFERENCES
[1] John R. Smith Chung-Sheng Li Apostol Natsev, Yuan-Chi Chang and Jeffrey Scott

Vitter. [n. d.]. Supporting Incremental Join Queries on Ranked Inputs. VLDB
’01 Proceedings of the 27th International Conference on Very Large Data Bases,
281–290.

[2] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent query
answers in inconsistent databases. In the eighteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, 68–79.

[3] Abdallah Arioua and Angela Bonifati. 2018. User-guided Repairing of Inconsistent
Knowledge Bases. In Proceedings of the 21th International Conference on Extending
Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018. 133–144.

[4] Leopoldo Bertossi. 2011. Database Repairing and Consistent Query Answering.
Morgan & Claypool.

[5] Leopoldo Bertossi, Anthony Hunter, and Torsten Schaub. 2005. Introduction to
Inconsistency Tolerance. Inconsistency Tolerance 3300, 1–14.

[6] Leopoldo E. Bertossi. 2018. Repair-Based Degrees of Database Inconsistency:
Computation and Complexity. CoRR abs/1809.10286 (2018). http://arxiv.org/abs/
1809.10286

[7] L. E. Bertossi and J. Chomicki. 2013. Query answering in inconsistent databases.
In In Logics for Emerging Applications of Databases, R. van der Meyden J. Chomicki
and G. Saake (Eds.).

[8] Andrea Calì, Domenico Lembo, and Riccardo Rosati. 2003. On the Decidability
and Complexity of Query Answering over Inconsistent and Incomplete Databases.
In Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS ’03). 260–271.

[9] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. 2004. Computing
Consistent Query Answers Using Conflict Hypergraphs. In Proceedings of the
Thirteenth ACM International Conference on Information and Knowledge Manage-
ment (CIKM ’04). 417–426.

[10] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.
PVLDB 6, 13 (2013), 1498–1509.

[11] J Lang D Dubois and H Prade. [n. d.]. Possibilistic logic. In Handbook of Logic in
Artificial Intelligence and Logic Programming (1994). 439–513. Oxford University
Press.

[12] Sudeepa Roy Daniel Deutch, Tova Milo and Val Tannen. 2014. Circuits for
Datalog Provenance. In 17th International Conference on Database Theory (ICDT),
At Athens, Greece. https://doi.org/10.5441/002/icdt.2014.22

[13] Hendrik Decker and Davide Martinenghi. 2009. Modeling, Measuring and Mon-
itoring the Quality of Information. In ER 2009 Workshops (CoMoL, ETheCoM,
FP-UML, MOST-ONISW, QoIS, RIGiM, SeCoGIS) on Advances in Conceptual Model-
ing - Challenging Perspectives. ACM.

[14] Shaleen Deep and Paraschos Koutris. 2019. Ranked Enumeration of Conjunctive
Query Results. (November 2019). arXiv:1902.02698.

[15] Todd J. Green. 2009. Containment of conjunctive queries on annotated relations.
In ICDT ’09 Proceedings of the 12th International Conference on Database Theory.
ACM, 296–309.

[16] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semir-
ings. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. ACM, 31–40.

[17] Ihab F. Ilyas Ihab F. Ilyas and Ihab F. Ilyas. [n. d.]. A survey of top-k query
processing techniques in relational database systems. ACM Computing Surveys
(CSUR) ([n. d.]).

[18] Walid G. Aref Ihab F. Ilyas and Ahmed K. Elmagarmid. [n. d.]. Supporting top-k
join queries in relational databases. The VLDB Journal âĂŤ The International
Journal on Very Large Data Bases ([n. d.]), 207–221. https://doi.org/10.1007/
s00778-004-0128-2

[19] Anthony Hunter John Grant. 2005. Measuring inconsistency in knowledgebases.
Journal of Intelligent Information Systems (2005).

[20] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On Approximating Optimum
Repairs for Functional Dependency Violations. In Proceedings of the 12th Interna-
tional Conference on Database Theory (ICDT ’09). 53–62.

[21] Jérôme Lang and Pierre Marquis. 2010. Reasoning under inconsistency: A
forgetting-based approach. Artif. Intell. 174, 12-13 (2010), 799–823.

[22] ELIEZER L. LOZINSKII. [n. d.]. Information and evidence in logic systems.
Journal of Experimental and Theo- retical Artificial Intelligence ([n. d.]), 163–193.

[23] Dániel Marx. 2017. Graphs, Hypergraphs, and the Complexity of Conjunctive
Database Queries (Invited Talk). In 20th International Conference on Database
Theory, ICDT 2017, March 21-24, 2017, Venice, Italy. 2:1–2:1.

[24] DanyMaslowski and JefWijsen. 2013. A dichotomy in the complexity of counting
database repairs. J. Comput. System Sci. (2013).

[25] Luc Segoufin. 2015. Constant Delay Enumeration for Conjunctive Queries. SIG-
MOD Rec. 44, 1 (May 2015), 10–17.

[26] Matthias Thimm. 2018. On the evaluation of inconsistency measures. Jhon. Grant
and Maria Vania Martinez, editors. 19–60 pages. College Publications.

[27] JEF WIJSEN. 2005. Database Repairing Using Updates. ACM Transactions on
Database Systems (TODS) (2005).

http://arxiv.org/abs/1809.10286
http://arxiv.org/abs/1809.10286
https://doi.org/10.5441/002/icdt.2014.22
https://doi.org/10.1007/s00778-004-0128-2
https://doi.org/10.1007/s00778-004-0128-2

BDA’19, October 15–18, 2019, Lyon, France Ousmane Issa, et al.

Diaдnosis(D)
PID RefD Date id
P01 R1 2 1 t1
P02 R7 4 1 t2
P03 R7 10 1 t3
P04 R1 3 0 t4
P04 R4 8 1 t5
P02 R4 7 1 t6
P01 R2 5 1 t7
P08 R7 4 0 t8
P10 R1 5 0 t9

Vaccination(V)
PID RefD Date id
P01 R2 3 1 t10
P02 R4 5 1 t11
P03 R4 6 0 t12
P04 R4 7 1 t13
P02 R5 10 0 t14
P08 R5 7 0 t15
P10 R3 8 0 t16

Surдery(S)
PID RefD Date id
P01 R1 1 1 t17
P02 R7 3 1 t18
P03 R7 9 1 t19
P04 R1 4 0 t20
P08 R7 5 0 t21

(< >)

< t1, [a, f], null > 3

< t2, [b, h], null > 2

< t3, [c, i], null > 2

< t4, [d, j], null > 1

< t8, [e, k], null > 0

x, y, z

x, y, z’ x, u, v

(<P01, R1>) < t17, [], null > 1 |adr = a

(<P02, R7>) < t18, [], null > 1 |adr = b

(<P03, R7>) < t19, [], null > 1 |adr = c

(<P04, R1>) < t20, [], null > 0 |adr = d

(<P08, R7>) < t21, [], null > 0 |adr = e

(<P01>) < t10, [], null > 1 |adr = f

(<P02>) < t11, [], null > 1 |adr = д

< t14, [], null > 0 |adr = h

(<P03>) < t12, [], null > 0 |adr = i

(<P04>) < t13, [], null > 1 |adr = j

(<P08>) < t15, [], null > 0 |adr = k

(<P10>) < t16, [], null > 0 |adr = l

Figure 6: An example of instance and a query tree for Example 12. The values in parentheses correspond to key of the hashmap
and each corresponding value (values in rectangle) is a priority key. The keys of a hashmap of a node are evaluation of common
variables of this node and its parent.

Structure after enumeration of first tuple

(< >)

< t1, [a, f],null > 3
< t2, [b,h],null > 2
< t3, [c, i],null > 2
< t4, [d, j],null > 1

x, y, z

x, y, z’ x, u, v

(<P01,R1>) < t17, [],null > 1 |adr = a

(<P02,R7>) < t18, [],null > 1 |adr = b

(<P03,R7>) < t19, [],null > 1 |adr = c

(<P04,R1>) < t20, [],null > 0 |adr = d

(<P01>) < t10, [],null > 1 |adr = f

(<P02>)
< t11, [],null > 1 |adr = д

< t14, [],null > 0 |adr = h

(<P03>) < t12, [],null > 0 |adr = i

(<P04>) < t13, [],null > 1 |adr = j

(<P10>) < t16, [],null > 0 |adr = l

First enumerated tuple
< t8, [e,k],null > 0

< t21, [],null > 1 |adr = e

< t15, [],null > 0 |adr = k

The corresponding tuple is Q(P08, R7, 2, 5, R5, 7)

Figure 7: The first enumerated tuple for Example 12 (left) and the query tree after the first enumeration (right)

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Basic notions
	3.2 Provenance Semirings

	4 Quantifying inconsistency degrees of query answers
	4.1 Identifying inconsistent tuples
	4.2 Annotating the initial database instance
	4.3 Defining inconsistency measures for query answers

	5 Inconsistency-aware query answering
	5.1 Full-materialized approach
	5.2 Semi-materialized approach

	6 Conclusion
	References

