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Abstract—This paper shows the details of an implementation of
variable radix floating-point complex division based on previous
implementations of the algorithm. This implementation takes
advantage of the easier prescaling offered by low-radix division
and recodes it as necessary for higher radix iterations throughout
the design. This, along with proper use of redundant digit
sets, allows us to significantly altar performance characteristics
relative to exclusively high-radix division implementations. Com-
parisons to existing architectures are shown, as well as common
implementation optimizations for future iterations. Results are
given in cmos32soi 32nm MTCMOS technology using ARM-
based standard-cells and commercial EDA toolsets.

I. INTRODUCTION

As silicon manufacturing technology gets ever smaller fea-
ture sizes, the corresponding increased number of transistors
requires ever more power to drive devices [1], [2]. Further-
more, special-purpose and application-specific hardware has
placed further demands on processor in terms of operation,
speed and energy costs [3]. Moreover, specialized arithmetic
is also needed to handle higher performance at a lower power
for applications such as signal processing and Internet of
Things (IoT) [4]. This is evident for operations such as division
that can dramatically impact energy and performance [5].
Looking forward, new architectures will have to redesign
existing division and other arithmetic operations with more
power-efficient techniques as more computation grows within
hardware [6].

Division can be computed in a varied number of
ways, however, many current architectures tend to perform
multiplicative-based division and square root by sharing it
with a multiplier [5]. One method that is particularly well
suited to handling division is by using a recurrence for the
division operation [7]. More importantly, recurrence methods
are typically lower in energy per digit than multiplier-based
architectures [8].

Real and complex division architectures have, historically,
fallen into few categories. Algorithms such as SRT division
and similar designs based on a recurrence, typically give
smaller die footprints and lower power consumption [8]. This
fixes one of the primary issues for high radix division, but the
hardware requirements of SRT division, and algorithms like
it, are prohibitively large. Faster algorithms and architectures
exist, such as those based on Newton-Raphson iterations or

series expansions [9], [10], but since these designs use large
multipliers, power consumption and area can easily become
unmanageable for real-world constraints. Some of these draw-
backs can be mitigated either directly with expanded look-up
tables, prescaling tables and postscaling that can be used for
higher radix architectures [11]. Implementing these for very
large radices, however, can be nearly impossible in practice,
due to the considerable size required for these tables.

Variable radix designs fix this problem by dynamically
changing the effective prescaling as the operation occurs.
Initially, a small prescaling value is applied at the beginning
of an operation. And, a prescaling table is utilized, the design
is small enough to be easily implemented and managed. Once
sufficient precision is achieved, the partial remainder is scaled
again to a higher radix. This prescaling can occur repeatedly
to create architectures that produce an otherwise unachievable
ultra-high radix output, such as radix 256, in a comparable
number of cycles to more standard division architectures at a
much lower radix.

This paper demonstrates the implementation of variable
radix architecture based on [12]. This architecture uses a vari-
able radix prescaling methodology and replaces a significant
amount of its datapath with a redundant scheme for both
partial remainder and quotient generation. Left-to-Right (LR)
multiplication [13] is used for faster carry generation for re-
dundant signals, and rounding using on-the-fly conversion [14]
is also implemented on the final variable radix stage for this
architecture to reduce delay.

Synthesis results use a cmos32soi 32nm MTCMOS tech-
nology with ARM-based standard cells. The combination of
design improvements over standard architectures yields com-
petitive results for ultra-high radix implementations, especially
in terms of power consumption and area used. Although this
method can be applied here to both real and complex division,
the implementation results are only applied to 32-bit complex
division as a proof of concept. Future work can be easily
done combining both units into one system for minimal impact
and lower energy operations per digit as well as higher input
operand widths.



II. BACKGROUND

Digit-recurrence division [7] uses a recursive equation
where w[j] is the partial remainder for iteration j, d is the
divisor, r is the radix, and q[j] is the quotient digit for iteration
j:

w[j + 1] = r · w[j]− d · q[j + 1] .

The quotient selection function is based on comparisons
between low-precision estimates of the divisor and the shifted
partial remainder.

q[j + 1] = QST ( ̂r · w[j], d̂) ,

where QST is the Quotient Selection Table [7]. The QST can
be implemented using different methodologies including ROM
tables, PLAs, and combinational logic [7].

To reduce the complexity of the quotient-digit selection
and the generation of the divisor multiples, a signed-digit
notation is typically utilized for the quotient. Different levels
of redundancy can be also utilized where the maximum digit
a is such that a ≤ r − 1 to avoid having numbers that are
overredundant [7]. The selection of a ultimately influences
the complexity of the hardware.

A prominent advantage of utilizing recurrence methods for
algorithms such as division is that they can also be combined
with other key algorithms at low cost, such as convolution,
video processing and machine learning giving rise to new com-
puting architectures [6]. More importantly, recurrence methods
for division and square root have significant advantages over
other methods, such as other multiplicative-based methods in
that it is much easier to get a correctly-rounded result [15].
And, by using a redundant number systems [16], the QST
becomes simpler and easier to implement than other division-
based methods [7]. With a larger radix, fewer iterations are
needed; unfortunately the QST grows exponentially with the
radix.

An elegant method for reducing the complexity of the QST
is to employ prescaling of the operands [17]. Prescaling tech-
niques makes the quotient-digit selection function independent
of divisor d by thus reducing its complexity. That is, prescaling
works by multiplying the numerator and divisor via shifting
and adding so that its value is closer to its maximum value
(e.g., d ≈ 1) to simplify the QST. Although this works
relatively well for low radices, as the radix increases more
accurate prescaling factors are needed to allow the correct
computation. This ultimately makes prescaling for a given
radix difficult as it imposes unnecessary memory requirements
to store the correct prescaling factors.

A. Complex Division by Recurrence

Complex division is an important application in the sci-
entific and engineering community [15]. A straightforward
method to implement complex division is to use several
multiplications and additions [15]

nR + i · nI
dR + i · dI

=
nR · dR + nI · dI + i · (nI · dR − nR · dI)

d2R + d2I
,

where n = nR + i · nI is the numerator or dividend,
d = dR+i ·dI is the denominator or divisor. For this research,
the numerator and denominator are assumed to be between
0 ≤ n, d < 1 although it can be computed between [1, 2) by
shifting. There is additional discussion in literature in utilizing
different ordering of operations using fixed-size arithmetic for
complex division to avoid multiple combinations of arithmetic
that can potentially overflow [18], [19]. Consequently, methods
that implement brute-force methods based on the equations
above can result in non-optimal or not practical implementa-
tions [20].

As for, real division, an efficient and novel method to handle
complex division in hardware is by using digit recurrence and
prescaling in an intelligent way [15]. This works by using the
recurrence relation for division shown earlier where w[j] is the
j-th partial remainder, w[0] = n = (nR, nI) is the dividend,
d = (dR, dI) is the divisor, and qj+1 = (qRj+1, dIj+1) is the
quotient digit obtained in the j-th iteration.

Prescaling computations of the dividend and divisor are
computed before the operation starts with the scaling factor
K = K1 + i · K2. This produces the following complex
prescaling factors such that

yR = dR ·K1 − dI ·K2 ,
yI = dI ·K1 + dR ·K2 ,
xR = nR ·K1 − nI ·K2 ,
xI = nI ·K1 + nR ·K2 .

Each of the recurrences contains one additional term com-
pared to the conventional digit-recurrence division algorithm
producing the following two recurrences where (xR, xI) and
(yR, yI) are the prescaling factors:

wR[j + 1] = r · wR[j]− qR[j + 1] · yR+ qI[j + 1] · yI
wI[j + 1] = r · wI[j]− qI[j + 1] · yR− qR[j + 1] · yI .

As mentioned earlier, a key advantage to these digit-
recurrence methods is that obtaining a correctly rounded
result is straightforward and much easier hardware wise than
more complex methods that use a multiplier. However, careful
attention has to be placed to the prescaling values as well as
the number of bits required to select the quotient to compute
the result in the correct number of cycles [15]. For recurrence
methods, the number of cycles is:

ncycles =

⌈
Q[length]

log2 r

⌉
,

where Q[length] denotes the size of the quotient for a given
recurrence.

In [15], the algorithm is designed so that is used to select the
correct quotient digits given the radix and prescaling factor.
The requirements to satisfy a correct result is given as:

2−p+1 · a+
1

2
+ 2−σ ≤ Ω =

1

r
· (a+

1

2
− 2−σ) ,

where p, σ, and Ω are chosen based on the values of r and
a. In order to simplify the prescaling operation, the prescaling
factor (1/d̂) is calculated and rounded to a reduced precision.
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Fig. 1. Block Diagram of Complex Division using Recurrence.

For example, for r = 8, a = 15, one can choose σ = 4 and
p = 8. As mentioned in [15], there is an inverse relation-
ship between p and a potentially affecting the hardware for
prescaling and subsequently its implementation. For example,
for 32-bit input operands of n = (0.359308 − i · 0.922485)
and d = (0.996379 + i · 0.986769), the prescaling fac-
tors are K1 = 0x82 and K2 = 0x80 produce a result of
q = (−0.280846−i ·0.6576796) with 36.819 bits of accuracy
in 9 cycles satisfying the precision of the input operands.

III. IMPLEMENTATION

Implementations of recurrence equations are simplified by
using redundant notations within the hardware, such as carry-
save logic [7]. The basic block diagram of the logic looks
like Figure 1 Although combinational approaches have been
utilized for recurrence architectures, this work uses sequential-
logic with registers. Since the result digits are in redundant
form in Figure 1, the quotient must be converted into conven-
tional form. Therefore, on-the-fly conversion units are utilized
after ncycles to convert and round the quotient appropriately.
On-the-fly conversion (OTFC) is an innovative way to convert
the quotient from redundant to conventional form without a
carry-propagate adder and involves only shifting and concate-
nation [21].

The implementation of this complex architecture is effi-
cient but requires large amounts of resources for prescaling
especially for higher radix implementations. Table I shows
sizes that are required for prescaling the dividend and divisor
using exhaustive techniques. Techniques in [22] and [23] have
utilized some ancillary logic and interpolation, respectively, to
reduce the memory requirements. Unfortunately, interpolation
methods may take longer to compute the prescaling step as it
takes longer to interpolate the correct value. Bipartite methods
can also be utilized at the expense of some additional logic, as
suggested in [15]. Despite these advancements in optimization,
a large amount of memory is required just to handle prescaling

size Memory Size Total (bits)
4 4× 8 256
8 12× 8 128 KiB
16 28× 16 16 GiB

TABLE I
PRESCALING LOOKUP MEMORY SIZES

for larger radices. The value of p is utilized to determine the
memory requirements for prescaling.

A. Variable Radix Division by Recurrence

One novel way to prevent issues related to the size in
precaling is to use a method discussed in [12]. Variable radix
methods use lower radix methods to start for recurrence, since
the scaling factor M is an approximation to 1/d. After a few
iterations of a low-radix division, called “preliminary” in the
original work [12], M is then utilized in the higher radix after
a specific number of iterations. This simplifies the prescaling
of the operands since Table I shows that with low radices,
prescaling tables are easily feasible.

This paper utilizes the values given in [12] where radix 4
iterations are utilized initially followed by radix 16 iterations,
and finally radix 256 iterations. It is important to understand
that the architecture for recurrence is built from higher radix
operations (i.e., in this case r = 256). Since r = 22, 24, 28

are all powers of two, the hardware can be shared during the
recurrence without harming the intermediate results.

The block diagram of the design is shown in Figure 2. The
RR module produces the five radix 4 digits by rounding and
recoding the recurrence from the main unit. This is basically
a multiplexer that chooses between different number of digits
during each radix change. Instead of utilizing four different
adders and multiplexors to handle the scaling a left-to-right
(LR) [13] multiple generator is utilizing to make things easier
for conversion between radices

The LR multipliers utilized in this architecture are designed
to handle the scaling in an efficient manner and generate
results in a redundant notation that can be utilized for the main
recurrence. Therefore, the LR multipliers do not use carry-
propagate adders (CPA) and deploy a carry-save structure
within the implementation. Additionally, partial-product reduc-
tion mechanisms are utilized within the block to reduce the
scaled values down to obtain the correct implementation. Each
LR multiplier also generates the correct redundant notation
and multiple generations accordingly. Again, the OTFC unit
is utilized to convert the quotient into its conventional form.

The method shown in Figure 2 is shown only for real
division. The basic recurrence block is repeated to exchange
values between each other for the real and imaginary blocks as
in Figure 1. As stated previously, this unit could conceivably
be utilized for a combined division and complex division unit
with some additional hardware.

We assume 53-bit input operands so that our operator could
potentially be utilized for a floating-point unit. A maximally
redundant notation (a = r − 1) is utilized within the blocks
to reduce the complexity of hardware. The implementation
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presented here also requires several iterations to achieve a
result that is accurate enough for each prescaling. This results
in the following sequence in operation: R4 → R16 → R256
where the RR block in Figure 2 shifts the partial remainder
based on the appropriate radix. A finite-state machine (FSM)
is incorporated into the design to make sure the unit completes
the appropriate number of steps and controls the datapath
accordingly. One iteration is utilized at the beginning of the
recurrence to determine the prescaling values. Afterwards,
12 iterations, the unit completes approximately 56 bits of
precision for a given 53-bit input operand.

IV. RESULTS

The proposed design is implemented in RTL-compliant
System Verilog and designs are then synthesized using
an ARM 32nm CMOS library for Global Foundries (GF)
cmos32soi technology optimizing on delay. Where appropri-
ate, Verilog is written to take advantage of any Intellectual
Property (IP) through Synopsys ® DesignWare (DW) (e.g.,
assign Sum=A+B). To verify the correctness, all implemen-
tations are tested against several thousand random test vectors
generated by a MATLAB program. MATLAB is utilized
heavily in this work to provide good verification of the results
at each step of the iteration so that it was easier to debug the
implementation.

An ARM standard-cell library is utilized with multiple
values of VT to aid in synthesis (i.e., MTCMOS). Synthesis
is optimized for delay utilizing Synopsys® (SNPS) Design
Compiler™ (DC) in topographical mode using a PVT process
at 25◦ C using TT corners. Topographical synthesis or physical
synthesis is provided by Synopsys® DC™ (DC) to accurately
predict timing, area and power by including information from
the standard-cell layouts and underlying interconnect. The
fanout-of-4 (FO4) delay is a good metric to give comparisons
of designs compared to other methods. FO4 is unitless and

gives a good delay regardless of process, supply voltage and
temperature (PVT) [1]. The average fanout-of-4 (FO4) delay
measured with SPICE for this GF cmos32soi technology is
measured at 5.95ps.

All designs are synthesized at 1 GHz in order to give fair
comparisons between each algorithm. This frequency allows
all designs to meet the necessary speed constraint and not be
inflated due to non-constraining paths. Table II shows the post-
synthesis results with the cmos12soi IBM/GF 32nm CMOS
technology using the Synopsys® DC™ synthesis software.
Results show a significant drop in area and power compared
to multiplication-based methods for division with 53 bits
(−50.92% area and −53.21% power).

Energy and power results are obtained in Table II by use of
vector history. Approximately 1, 000 vectors were input into
the architecture via a Value Change Dump (VCD). VCD files
are converted to SAIF files and imported into Synopsys DC™

to produce the energy results. Static and Leakage are combined
into column within Table II and dynamic power is inferred
from the subtraction of Total− Static/Leakage.

The design are compared against several division designs
written for this work. This includes a design found in [15],
a conventional r = 64 division by recurrence unit using
overlapping, and Goldschmidt’s algorithm for division. The
Goldschmidt unit utilizes a simple lookup for its initial seed
to avoid excessive area for memory and utilizes a Booth
multiplier within the multiplier.

Division by recurrence architectures do not converge as
quickly as other multiplicative-based methods for division,
however, they consume significantly smaller amounts of area
and potentially produce significant savings in energy [7].
Goldschmidt’s algorithm quadratically converges to the final
quotient and although it takes 5 iterations to compute the result
with a 2-bit initial approximation, only 1 multiplier is utilized
within this paper. Consequently, it takes 5× 2 = 10 cycles to



TABLE II
PHYSICAL SYNTHESIS IMPLEMENTATION RESULTS IN 32NM

Division Architecture Power [mW]
Cells Area [um2] Static/Leakage Total

Variable Complex (this work) 6, 683 5, 301.3839 2.930 4.019
Complex r = 8 using [15] approach 5, 030 4, 301.0331 2.703 3.930
r = 64 division with overlapping 4, 328 3, 806.3610 2.537 3.228

Goldschmidt’s algorithm 8, 140 8, 764.0019 4.218 8.400

converge or iterate to the correct result. Although pipelining
can be utilized for the multiplier to reduce the number of
cycles, a single-cycle multiplier is employed to compute each
iteration.

Comparing this work to [15], this work consumes some
additional area mainly due to the LR multiplier units. However,
the implementation in Table II for [15] is only for r = 8
compared to this work that eventually goes up to r = 256.
The real division unit in Table II is a r = 4 unit that utilizes
overlapping to increase its radix to r = 64. The real division
unit is obviously smaller than the two complex units in that
it does not perform complex division. It is also worth noting
that the Goldschmidt unit shown in Table II only performs
division and does not compute complex division.

V. SUMMARY

This paper demonstrates that with variable radix one can
make prescaling realizable for high-radix division. The results
indicate a dramatic decrease in area and energy compared
to a division unit that employs multiplication. Prescaling is
beneficial in lowering QST complexity especially with the use
of a variable-radix unit. Simple additions of hardware can be
made to this unit to allow it to compute both conventional and
complex division. In addition, with additional optimizations in
HDL coding, perhaps using new UPF-style constructs, further
reduction can occur in energy and power. In summary, one can
avoid the demand for rather large prescaling tables by starting
with a small radix and gradually increasing it.
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