
HAL Id: hal-03119732
https://hal.inria.fr/hal-03119732

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Space Exploration of Heterogeneous-Accelerator
SoCs with Hyperparameter Optimization

Thanh Cong, François Charot

To cite this version:
Thanh Cong, François Charot. Design Space Exploration of Heterogeneous-Accelerator SoCs with
Hyperparameter Optimization. ASP-DAC 2021 - 26th Asia and South Pacific Design Automation
Conference, Jan 2021, Virtual Conference, Japan. pp.1-6. �hal-03119732�

https://hal.inria.fr/hal-03119732
https://hal.archives-ouvertes.fr


Design Space Exploration of Heterogeneous-Accelerator SoCs
with Hyperparameter Optimization

Thanh Cong
minh-thanh.cong@irisa.fr

Univ Rennes, INRIA, CNRS, IRISA
Rennes, France

François Charot
francois.charot@inria.fr

INRIA, Univ Rennes, CNRS, IRISA
Rennes, France

ABSTRACT
Modern SoC systems consist of general-purpose processor cores
augmented with large numbers of specialized accelerators. Building
such systems requires a design flow allowing the design space to
be explored at the system level with an appropriate strategy. In this
paper, we describe a methodology allowing to explore the design
space of power-performance heterogeneous SoCs by combining
an architecture simulator (gem5-Aladdin) and a hyperparameter
optimization method (Hyperopt). This methodology allows differ-
ent types of parallelism with loop unrolling strategies and memory
coherency interfaces to be swept. The flow has been applied to a
convolutional neural network algorithm. We show that the most
energy efficient architecture achieves a 2x to 4x improvement in
energy-delay-product compared to an architecture without paral-
lelism. Furthermore, the obtained solution is more efficient than
commonly implemented architectures (Systolic, 2D-mapping, and
Tiling). We also applied the methodology to find the optimal archi-
tecture including its coherency interface for a complex SoC made
up of six accelerated-workloads. We show that a hybrid interface ap-
pears to be the most efficient; it reaches 22% and 12% improvement
in energy-delay-product compared to just only using non-coherent
and only LLC-coherent models, respectively.

KEYWORDS
Heterogeneous architecture design, System-on-chip, Hardware
accelerators, Hyperparmeter optimization, Simulation

1 INTRODUCTION
The energy efficiency gap between application-specific integrated
circuits (ASICs) and general-purpose processors motivates the de-
sign of heterogeneous-accelerator system-on-chip (SoC) architec-
tures, the latter have received increasing interest in recent years [22].
To support several heavy demanding workloads simultaneously,
and reduce unpowered silicon area, computer architects design
many special-purpose on-chip accelerators implemented in ASIC
and share them among multiple processor cores. Such architec-
tures offer much better performance and lower power compared
to performing the same task on a general-purpose CPU. Designing
heterogeneous-accelerator SoCs is extremely expensive and time-
consuming. The designer has to face many design issues such as
the choice of the parallelism degree and the resource utilization
of accelerators, their interfaces with the memory hierarchy, etc.
Design space exploration methodologies are of major importance.

In this paper, we present a methodology for designing modern
SoC architectures which combine many specialized hardware accel-
erators and processor cores. We explore the design space of power-
performance accelerator-based systems with a SoC simulator and

determine the optimal configuration using a hyperparameter op-
timization algorithm. The proposed simulation infrastructure is
based on the use of two tools: gem5-Aladdin [24] and Hyperopt [1].
gem5-Aladdin is an architectural simulator that supports the mod-
eling of complex systems made up of heterogeneous accelerators.
Hyperopt is a library implementing different hyperparameter op-
timization algorithms for solving optimization problems with an
unknown objective function [21], such as architecture simulation
in our case. The main contributions of this work are as follows.
• A framework for determining, at the system-level, the mi-
croarchitecture with the best efficiency, in terms of perfor-
mance-power ratio.
• A case study allowed us identifying the most energy efficient
architecture for a convolutional neural network (CNN). We
showed that the solution obtained achieves a 2x to 4x im-
provement in energy-delay-product (EDP) compared to an
architecture without parallelism. Furthermore this solution
is more efficient than commonly implemented architectures
(Systolic, 2D-mapping, and Tiling).
• To demonstrate the efficiency of the heterogeneous-accelera-
tor SoC design approach, we determined the optimal archi-
tecture including its coherency interface for a complex SoC
made up of six common accelerated-workloads. Three possi-
ble coherency models are considered: a software-managed
direct memory access (DMA), a shared last level cache (LLC-
coherent) and a fully-coherent cache. Our framework al-
lowed to determine that a hybrid interface appears to be
the most efficient; it reaches 22% and 12% improvement in
EDP compared to just only using non-coherent and only
LLC-coherent models, respectively.

2 RELATEDWORK
Simulation platforms adapted to accelerator-centric architectures
are proposed in PARADE [7] and gem5-Aladdin [24]. Both provide
simulation platforms enabling the exploration of many-accelerator
designs. PARADE is a simulation platform that can be automatically
generated through a high-level synthesis (HLS) description of the
accelerator. Unlike PARADE, gem5-Aladdin models accelerators
based on a dataflow representation extracted from the profiling of
the dynamic execution of the program, enabling fast design space
exploration. The gem5 simulator [4] is then used for the simulation.
With such approaches, the designer is faced with the problem of
compromise between accuracy and speed of the simulation. To
speed up the simulation, there exist approaches where performance
models are deployed on FPGA-based platforms [8].

There are several projects whose goal is to be able to rapidly
evaluate accelerator-based hardware design. Embedded Scalable



Thanh Cong and François Charot

Platforms (ESP) [19] uses HLS to design accelerator SoCs. Cos-
mos [18] leverages both HLS and memory optimization tools to
improve exploration of the accelerator design space. Centrifuge [12]
is able to generate and evaluate heterogeneous accelerators SoCs
by combining HLS with FireSim [13], a FPGA-accelerated simu-
lation platform. All these works provide design frameworks for
evaluating accelerators and it is up to the user to select the optimal
one. Unlike these projects, we aim to provide a unified framework
for the design, simulation and optimization of the architecture of
accelerator-based SoCs.

Machine learning quickly became a powerful tool in computer
architecture, with established applicability to design, optimization,
simulation, etc., as attested by the survey proposed by Penny et
al. [17]. These techniques offer interesting opportunities for ar-
chitecture simulation, especially in the early stages of the design
process. Bhardwaj et al. present in [3] a Bayesian optimization-
based framework for determining the optimal hybrid coherency
interface for many-accelerator SoCs in terms of performance.

3 DESIGN APPROACH OVERVIEW
3.1 Heterogeneous-Accelerator SoC
Figure 1 shows the organization of a typical heterogeneous-accele-
rator SoC architecture. It includes a number of processor cores and
many specialized accelerators. Each accelerator is made up of sev-
eral dedicated datapaths that implement parts or all of an algorithm
of a specific application domain. Each accelerator has a local mem-
ory (scratchpad memory or private cache) to speed up data transfer.
The architecture also includes DMA, last level cache controller, and
coherent memory controllers shared by both processor cores and
accelerators. At the system-level, a customized network-on-chip
enables the communications between these different components.

Figure 1: View of a heterogeneous-accelerator SoC.

3.2 Accelerator Modeling and SoC Simulation
The Aladdin trace-based accelerator simulator [23] profiles the
dynamic execution trace of an accelerated workload initially ex-
pressed in C and estimates its performance, power, and area. The
process mainly consists in building a dynamic data dependence
graph (DDDG) of the workload which can be viewed as a data flow
representation of the accelerator. This graph is then scheduled tak-
ing into account the resource constraints by the way of user-defined

hardware parameters such as loop unrolling, loop pipelining, and
number of memory ports. The underlying model of the Aladdin
simulator is a standalone datapath and its local memories.

The interactions at the SoC view level, that is to say between the
accelerators and the other components of the system, are managed
by gem5-Aladdin [24], which realizes the coupling of Aladdin with
the gem5 architectural simulator [4]. gem5-Aladdin is capable of
evaluating interactions between accelerators and processor cores,
DMAs, caches, virtual memory, in SoC architectures such as the
one illustrated in Figure 1. gem5-Aladdin supports three coherency
models for accelerators. (i) non-coherent: using software-managed
DMAs (ii) LLC-coherent: by directly accessing the coherent data
in the last-level-cache (LLC) without having a private cache; (iii)
fully-coherent caches: each accelerator can use its private cache to
access the main memory.

3.3 Hyperparameter Optimization Method
Performing design space exploration manually leads to inefficient
and time-consuming processes. Approaches based on hyperparam-
eter optimization prove to be very effective in optimizing unknown
objective functions as stated in works presented in [3, 21]; they are
more powerful than heuristic optimization in terms of convergence
and quality of obtained solutions.

There are several approaches to hyperparameter optimization.
Bayesian hyperparameter optimization (also known as sequential
model-based optimization, SMBO) is used here. The approach is to
build a probability model of the objective function which is used
to select the most promising hyperparameters to evaluate in the
true objective function. Several variants of SMBO methods exist in
practice, based on Gaussian Processes, Random Forests Regressions
and Tree Parzen Estimators (TPE). Hyperopt package implements
TPE [2]. One of the main advances of TPE over other probabilistic
methods is that it is able to retain dependencies between parameters
as it models the density of a parameter for "good" experiments and
compares this to its density for "bad" experiments. It can then
use these models to determine an expected improvement of the
objective function for any values a parameter can take. 𝑃 (𝑥 | 𝑦),
which is the probability of the hyperparameters given the score on
the objective function, is expressed as:

𝑃 (𝑥 | 𝑦) =
{
𝑙 (𝑥) if 𝑦 < 𝑦∗
𝑔(𝑥) if 𝑦 ≥ 𝑦∗

(1)

where 𝑦 < 𝑦∗ represents a lower value of the objective function
than the threshold. As equation 1 shows, two different distributions
for the hyperparameters are calculated: one where the value of the
objective function is less than the threshold, 𝑙 (𝑥), and one where the
value of the objective function is greater than the threshold, 𝑔(𝑥).
Once 𝑙 (𝑥) and 𝑔(𝑥) have been expressed, TPE is able to identify the
next parameter 𝑥𝑛𝑒𝑥𝑡 considering that 𝑥𝑛𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥

𝑔(𝑥 )
𝑙 (𝑥 )

.
TPE builds a search history and predicts at each iteration the best

trial to try next. TPE itself has many parameters that can be tuned
to improve the effectiveness of the TPE algorithm. Adaptive-TPE
(ATPE), a modified version of TPE, uses a pre-trained machine-
learning model to help optimize faster and more accurately.



Design Space Exploration of Heterogeneous-Accelerator SoCs with Hyperparameter Optimization

Figure 2: Overview of our generic design flow using the hyperparameter optimization-based method.

4 DESIGNING SOCWITH THIS FLOW
4.1 Parallel Accelerator Exploration
To improve the performance of applications, computation-intensive
parts, typically loops, are mapped to hardware accelerators. Loop
nests of the considered workloads define the exploration space,
as illustrated in Figure 3, with the convolutional layer of a Con-
volutional Neural Network (CNN) application. This layer exhibits
intensive parallelism at the feature map, neuron, and kernel levels.
There are four parameters:𝑀 (number of output feature maps), 𝑁
(number of input feature maps), 𝑆 (output feature map size, or num-
ber of neurons), and 𝐾 (kernel size). These 6 nested-loops offer an
interesting exploration space as it is possible to play with different
loop unrolling factors.

Figure 3: Convolutional layer operation of a CNN.

4.2 Memory Coherency Models Exploration
Giri et al. [11] identified three common coherency interfaces used
to integrate accelerators with the memory hierarchy in a loosely-
coupled architecture.
• In a non-coherent interfacing model, the accelerator has a
scratchpad memory (SPM) for local storage and uses DMA
to load data from DRAM, as illustrated in Figure 1.
• LLC-coherent accelerators send DMA requests to the LLC.
Their implementation is similar to non-coherent accelerators,
but the LLC-coherent DMA requests/responses are routed
to the cache-coherent module instead of the DMA.
• In a fully-coherent model, each accelerator has its private
cache which implements a cache coherence protocol such
as MESI or MOESI, similar to a processor’s cache.

Each of these three coherency models offers interesting power-
performance trade-offs. In a SoC integrating several accelerators to
support a versatile application, a single coherency interface used
by all accelerators may not be the most optimal in terms of power
and performance as shown by Giri et al. [11]. Each accelerator may
have its own coherency model, and this is what we explore here.

4.3 Hyperopt-gem5-Aladdin Framework
As shown in Figure 2, the parallelism of an accelerator is set by
design pragma directives such as the loop unrolling factor during
the accelerator modeling phase. This phase is used to evaluate and
update the power-performance of accelerators.

The gem5-Aladdin simulator is able to model SoCs including
several accelerators that can use different coherency models, and
run various workloads concurrently. The complete SoC is specified
using a SoC configuration file which describes the configuration of
processors, accelerators, memories/caches, and interconnect. The
gem5-Aladdin simulator is an objective function of the optimiza-
tion method; it provides performance, power, delay time of SoC
architectures that we want to optimize.

Algorithm 1: Hyperopt-based method Pseudo-Code
1 Define architecture search spaces (coherent or non-coherent

cache, loop_m, loop_n, loop_r, loop_c, loop_i, loop_j);
2 Randomly simulate 𝑘 architecture configurations;
3 Define initial search history with 𝑘 pairs (𝑥, 𝐸𝐷𝑃𝑥 );
4 while 𝑛 ≤ (𝑁 − 𝑘) do
5 Construct models density functions 𝑔(𝑥), 𝑙 (𝑥);
6 𝑥𝑛𝑒𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥

𝑔(𝑥 )
𝑙 (𝑥 )

;
7 Simulate 𝑥𝑛𝑒𝑥𝑡 ;
8 Update search history← (𝑥𝑛𝑒𝑥𝑡 , 𝐸𝐷𝑃𝑛𝑒𝑥𝑡 );
9 𝑛 + +;

10 Return the best (𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝐸𝐷𝑃);

Algorithm 1 presents the pseudo-code of the method used in Hy-
peropt. The algorithm starts by randomly selecting 𝑘 architecture
configurations and simulates them with the gem5-Aladdin simula-
tor (line 2). The search history is initiated (line 3), it consists of 𝑘
pairs of configuration and its associated EDP. The next steps of the
method are iterative and are performed 𝑁 −𝑘 times, where 𝑁 is the
budget on the number of architecture simulations. The search space



Thanh Cong and François Charot

is narrowed down from the search history and a new configuration
for the next simulation step is suggested using equations presented
in Section 3.3 (lines 4, 5, 6, 7, 8, 9). Once all the iterations have
been completed, the optimal architecture configuration set which
reaches the minimum EDP is selected (line 10).

5 EXPERIMENTS
To show the effectiveness of our design approach, we present two
experiments: the first one concerns the design of CNN accelerators
and the second one the design of a SoC including six accelerator
tiles. The SoC configuration set up of the gem5-Aladdin simulator
of the two experiments is given in Table 1.

Table 1: gem5-Aladdin SoC Architecture Configuration

Component Description
CPU Type Out-of-order X86
System Clock 100MHz
Cache Line Size 64 bits
L2 Cache (LLC) 2 MB, 16-way, LRU
Memory DDR3_1600_8x8, 4 GB
Hardware Prefetchers Strided
Data Transfer Mechanism DMA/Cache

5.1 CNN Accelerator in a SoC
As discussed in Section 4.1, CNN layers are highly computation
intensive and exhibit fine-grained parallelism at feature map (FP),
neuron (NP), and synapse (SP) levels. This potential parallelism
offers many opportunities to speed up the calculations. However,
most of existing CONV accelerators exploit the parallelism only
at one level [16]. Systolic architectures can only exploit synapse
parallelism [5], 2D-Mapping architectures neuron parallelism [10],
and Tiling architectures feature map parallelism [6]. There is a lack
of architectural studies trying to exploit these different types of
fine-grained parallelism simultaneously. By exploring all possible
types of parallelism, and depending on user constraints, greater
efficiency can be expected.

The calculations of a CONV layer, as shown with the code in
Figure 3, can be unrolled in different ways. The labels in the code
(𝑙𝑜𝑜𝑝_𝑚, 𝑙𝑜𝑜𝑝_𝑛, 𝑙𝑜𝑜𝑝_𝑟, 𝑙𝑜𝑜𝑝_𝑐, 𝑙𝑜𝑜𝑝_𝑖, 𝑙𝑜𝑜𝑝_ 𝑗 ) are used to set the
unrolling factors and quantify the parallelism degree of each loop.
According to the different unrolling strategies of the loops, there
are three types of parallelism.
• Feature map Parallelism (FP), 𝑙𝑜𝑜𝑝_𝑚 output feature maps,
and 𝑙𝑜𝑜𝑝_𝑛 input feature maps are processed at a time (max-
imum factors are𝑀 and 𝑁 respectively).
• Neuron Parallelism (NP), 𝑙𝑜𝑜𝑝_𝑟 , and 𝑙𝑜𝑜𝑝_𝑐 neurons of one
output feature map are processed at a time (maximum factor
is 𝑆).
• Synapse Parallelism (SP), 𝑙𝑜𝑜𝑝_𝑖 , and 𝑙𝑜𝑜𝑝_ 𝑗 synapses of one
kernel are computed at a time (maximum factor is 𝐾 ).

The design space is built by combining these three types of par-
allelism. As an example, an architecture may handle a single in-
put feature map and a single output feature map (𝑙𝑜𝑜𝑝_𝑚 = 1 and
𝑙𝑜𝑜𝑝_𝑛 = 1), one neuron of each output feature map (𝑙𝑜𝑜𝑝_𝑟 = 1 and

Figure 4: EDP improvement for CNN workloads.

𝑙𝑜𝑜𝑝_𝑐 = 1), but multiple synapses of each kernel at a time (𝑙𝑜𝑜𝑝_𝑖
> 1 or 𝑙𝑜𝑜𝑝_ 𝑗 > 1). This style of parallel computing is named Single
Feature map, Single Neuron, Multiple Synapses (SFSNMS). It is ob-
viously possible to define other processing styles: SFSNSS, SFMNSS,
SFMNMS, MFSNSS, MFSNMS, MFMNSS and MFMNMS [16].

Table 2: Unrolling factors for CNN-Workloads(M,N,K,S)
(loop_m,loop_n,loop_r,loop_c,loop_i,loop_j)

Workloads Systolic 2Dmapping Tiling Selection
LN5_C1(6,1,5,28) 1,1,1,1,5,5 1,1,28,28,1,1 6,1,1,1,1,1 1,1,15,15,5,5
LN5_C3(16,6,5,10) 1,1,1,1,5,5 1,1,10,10,1,1 16,6,1,1,1,1 2,2,7,7,5,5
FR_C1(4,1,5,28) 1,1,1,1,5,5 1,1,28,28,1,1 4,1,1,1,1,1 1,1,15,15,5,5
FR_C3(16,4,4,10) 1,1,1,1,4,4 1,1,10,10,1,1 16,4,1,1,1,1 1,1,10,10,4,4
HG_C1(6,1,5,24) 1,1,1,1,5,5 1,1,24,24,1,1 6,1,1,1,1,1 1,1,16,16,5,5
HG_C3(12,6,4,8) 1,1,1,1,4,4 1,1,8,8,1,1 12,6,1,1,1,1 1,1,7,7,4,4

We evaluated three common workloads. LeNet-5 [14], the most
famous handwriting recognition model, FR[9] implementing a face
recognition model and HG [15] used to recognize hand gestures
of human. In this experiment, we used a non-coherent interface
model, it has a private scratchpad memory for local storage and
uses DMA to request data from the main memory.

Table 2 gives the configuration of three well-known parallel
architectures (tiling, 2D-mapping and systolic) for each of the con-
sidered workloads. The fourth architecture, called selection, corre-
sponds to that resulting from our exploration.

Figure 4 shows the EDP results for the six workloads. The hor-
izontal axis denotes the workloads and the vertical axis denotes
EDP value normalized by EDP of a baseline architecture without
any parallelism whose parameters are (1,1,1,1,1,1). The columns
in one benchmark represent the normalized EDP of the different
architectures.

The different EDP improvements of these architectures, illus-
trated in Figure 4, can be explained by two main reasons: data
reuse and use of computing resources. Systolic and 2D-Mapping
architectures have a comparable improvement in terms of energy.
Systolic has a higher latency than 2D-Mapping because of the long
initialization phase to fill the chain of processing elements. But
systolic has a higher data reuse factor than 2D-Mapping, therefore
systolic consumes less energy than 2D-Mapping for most work-
loads. At the SoC level, most of the energy is consumed by the data



Design Space Exploration of Heterogeneous-Accelerator SoCs with Hyperparameter Optimization

movement, so if data reuse increases, EDP also increases. In the case
of tiling, the EDP improvement is very low because of low comput-
ing resource utilization. It has the poorest energy efficiency due to
high latency and poor data reuse. Our selected configuration com-
bines systolic and 2D-Mapping. This corresponds to configurations
having maximal synapse parallelism to increases data reuse, and a
high neuron parallelism to balance computing resource utilization
and local memory load/store power consumption. In summary, the
configuration proposed with our flow allows obtaining a better
EDP than usual architectures (Systolic, 2D-mapping and Tiling) for
accelerator-based SoCs. This results in an improvement of the EDP
by a factor between 2 and 4 compared to a sequential architecture.

5.2 Hyperopt Convergence Study
We studied the convergence of the hyperparameter optimization
algorithm and compared three implementations: random search,
conventional TPE and ATPE. LeNet-5 workload is used as a case
study. The three implementations are executed in the same search
space and the convergence results are illustrated in Figure 5. The
total number of possible configuration is 840. The simulation of
all possible configurations confirmed the solution obtained with
our optimization method. As illustrated in Figure 5, the optimal
solution is obtained after a small number of iterations, since 40
are sufficient. The EDP improvement values are distributed into
four groups. This distribution can be explained by the complexity
of the exploration space, since we try to mix three types of paral-
lelism, as mentioned in 5.1. The ATPE algorithm requires around

Figure 5: Convergence of the hyperparameter optimization.

30 iterations to converge in the lowest group and achieves the best
EDP improvement after 40 iterations. Each iteration requires 30
minutes of CPU time (Intel Xeon E5-2609 at 1.9GHz), considering
that gem5-Aladdin represents most of the CPU time. Using this
hyperparameter optimization method, and as shown here, we can
get a solution faster, which is really useful in the presence of large
design spaces.

5.3 Coherency Interface Choice Study
The SoC configuration used for evaluating heterogeneous-accelera-
tor architectures is a tiled architecture consisting of one CPU and

six accelerator tiles, along with L2 cache controller and main mem-
ory controller tiles. The processing units all perform a different task,
which means that all the accelerators operate in parallel. Table 3
gives the features of the accelerated-workloads used for the experi-
ment. Two LeNet-5 convolutional neural network layers perform an
image classification task. The others correspond to four benchmarks
from MachSuite[20]: AES-256, GEMM-nCubed, FFT-Transpose, and
Stencil-3D.

Table 3: Accelerated-workloads in a SoC

Workloads Description
LeNet5_C1 Convolutional layer (5x5), 32x32 input, 6x28x28 ouput
LeNet5_C3 Convolutional layer (5x5), 28x28 input, 16x10x10 ouput
AES-256 AES encryption 256 bits
GEMM_nCubed Matrix multiplication, 64x64 input
FFT-Transpose Fast Fourier transform (512-point)
Stencil-3D Stencil computation, 32x32x16 input

The goal of this experiment is to determine the best coherency
interface for each accelerator separately and for the SoC made up
of these six accelerators. The performance of each accelerator is af-
fected not only by its computation time andmemory access patterns
but also by possible conflicts when accessing shared resources. Con-
sequently, the coherency models adapted to each accelerator are dif-
ficult to predict at design time. The input space of hyperparameter
is six dimensional due to the six accelerators. Each accelerator in-
terface can be either non-coherent, LLC-coherent or fully-coherent,
this results in a total of 729 possible configurations. Figure 6 shows
the EDP results for each accelerator and for the six-accelerator
version. The horizontal axis denotes the different accelerators and
the vertical axis denotes EDP normalized with respect to the non-
coherent configuration. The columns in one benchmark represent
the normalized EDP of the different interfaces.

In most cases, with the exception of FFT-transpose, the full-
coherent interface performs worst due to its significant hardware
and performance overheads. In particular, for CONV-accelerators
such as LeNet-5_C1 and LeNet-5_C3. They access a large amount of
data (kernels, inputs, and outputs), which cannot fit in the L1 caches
and can therefore lead to significant cache misses, penalizing the
overall latency. FFT-transpose performs better with fully-coherent
than with non-coherent because only eight bytes per 512 bytes of
data are read per iteration whereas with the DMA system almost
all the data must be available before the computation starts. Fur-
thermore, LLC-coherent shows a better EDP than non-coherent
since the memory requests are first sent to the LLC, and when the
LLC hits, this results in much shorter access latency.

For the six-accelerator version, hybrid selection offers better
EDP than systems using a single coherency interface. The solu-
tion obtained is the following: LeNet-5_C1 and LeNet-5_C3 use
non-coherent while the other accelerators use LLC-coherent in-
terface. This hybrid solution results in an improvement in EDP
of 22% and 12% respectively, compared to only non-coherent and
LLC-coherent. Although the average (geometric mean) of the EDP
improvement over the six accelerators gives the benefit to the only
LLC-coherent model, it appears that in the global system view, the
hybrid coherent model achieves better EDP improvement. There



Thanh Cong and François Charot

Figure 6: EDP improvement for coherency interface.

are many reasons that explain the EDP improvement brought by the
hybrid solution. Having a subset of accelerators with non-coherent
interfaces reduces pressure at the LLC level. Indeed, if only four
accelerators share the last-level cache, the time spent in data move-
ment compared to an all LLC-coherent solution is reduced. In ad-
dition, CONV accelerators benefit from the use of a non-coherent
interface with streaming data access patterns applications.

6 CONCLUSION AND FUTUREWORK
In this paper, we described a flow helping in the design of heteroge-
neous-accelerator SoCs. The flow combines the gem5-Aladdin sim-
ulator and a hyperparameter optimization method. It identifies au-
tomatically the optimal architecture for heterogeneous-accelerator
SoCs. To evaluate our approach, we explored the design space
of accelerators for convolutional neural networks including their
memory coherency interfaces.

In the near future, we plan to add more parameters to expand
our design space (scratchpad partitioning, system bus width, cache
size, network on chip, etc.). In addition, we are also interested in
measuring the efficiency of the optimization algorithms, and are
looking to integrate new algorithms into our framework, in order
to compare them.

REFERENCES
[1] J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model Search: Hy-

perparameter Optimization in Hundreds of Dimensions for Vision Architectures.
In Proceedings of the 30th International Conference on International Conference on
Machine Learning (Atlanta, GA, USA) (ICML’13). 115–123.

[2] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algo-
rithms for Hyper-Parameter Optimization. In Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger (Eds.). Curran Associates, Inc., 2546–2554.

[3] K. Bhardwaj, M. Havasi, Y. Yao, D. M. Brooks, J. M. H. Lobato, and G. Wei. 2019.
Determining Optimal Coherency Interface for Many-Accelerator SoCs Using
Bayesian Optimization. IEEE Computer Architecture Letters 18, 2 (2019), 119–123.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7.

[5] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi.
2010. A Dynamically Configurable Coprocessor for Convolutional Neural Net-
works. SIGARCH Comput. Archit. News 38, 3 (June 2010), 247–257.

[6] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS’14). 269–284.

[7] J. Cong, Z. Fang, M. Gill, and G. Reinman. 2015. PARADE: A cycle-accurate
full-system simulation Platform for Accelerator-Rich Architectural Design and
Exploration. In 2015 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). 380–387.

[8] T. Cong and F. Charot. 2019. Designing Application-Specific Heterogeneous Ar-
chitectures from Performance Models. In 2019 IEEE 13th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). 265–272.

[9] S. A. Dawwd and B. S. Mahmood. 2009. A reconfigurable interconnected filter for
face recognition based on convolution neural network. In 2009 4th International
Design and Test Workshop (IDT). 1–6.

[10] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O.
Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 92–104.

[11] D. Giri,, P. Mantovani, and L. P. Carloni. 2018. Accelerators and Coherence: A
SoC Perspective. IEEE Micro 38, 6 (2018), 36–45.

[12] Q. Huang, C. Yarp, S. Karandikar, N. Pemberton, B. Brock, L. Ma, G. Dai, R.
Quitt, K. Asanovic, and J. Wawrzynek. 2019. Centrifuge: Evaluating full-system
HLS-generated heterogenous-accelerator SoCs using FPGA-Acceleration. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–8.

[13] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,
E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz,
J. Bachrach, and K. Asanovic. 2018. FireSim: FPGA-Accelerated Cycle-Exact
Scale-Out System Simulation in the Public Cloud. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 29–42.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[15] H. Lin, M. Hsu, and W. Chen. 2014. Human hand gesture recognition using a
convolution neural network. In 2014 IEEE International Conference on Automation
Science and Engineering (CASE). 1038–1043.

[16] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li. 2017. FlexFlow: A Flexible
Dataflow Accelerator Architecture for Convolutional Neural Networks. In 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA).
553–564.

[17] Drew Penney and Lizhong Chen. 2019. A Survey of Machine Learning Applied
to Computer Architecture Design. ArXiv abs/1909.12373 (2019).

[18] Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca Carloni.
2017. COSMOS: Coordination of High-Level Synthesis andMemory Optimization
for Hardware Accelerators. ACM Transactions on Embedded Computing Systems
16 (09 2017), 1–22.

[19] L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. 2017. Broadening
the exploration of the accelerator design space in embedded scalable platforms.
In 2017 IEEE High Performance Extreme Computing Conference (HPEC). 1–7.

[20] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks. 2014. MachSuite: Bench-
marks for accelerator design and customized architectures. In 2014 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). 110–119.

[21] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. 2016. Taking
the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 104,
1 (2016), 148–175.

[22] Yakun Sophia Shao and David M. Brooks. 2015. Research Infrastructures for
Hardware Accelerators. Morgan & Claypool Publishers.

[23] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks. 2015. The Aladdin Approach to
Accelerator Design and Modeling. IEEE Micro 35, 3 (May 2015), 58–70.

[24] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Wei, and D. Brooks. 2016. Co-designing accel-
erators and SoC interfaces using gem5-Aladdin. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1–12.


	Abstract
	1 Introduction
	2 Related work
	3 Design approach overview
	3.1 Heterogeneous-Accelerator SoC
	3.2 Accelerator Modeling and SoC Simulation
	3.3 Hyperparameter Optimization Method

	4 Designing Soc with this flow
	4.1 Parallel Accelerator Exploration
	4.2 Memory Coherency Models Exploration
	4.3 Hyperopt-gem5-Aladdin Framework

	5 Experiments
	5.1 CNN Accelerator in a SoC
	5.2 Hyperopt Convergence Study
	5.3 Coherency Interface Choice Study

	6 Conclusion and Future Work
	References

