
HAL Id: hal-02387419
https://hal.inria.fr/hal-02387419v2

Submitted on 28 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

”I’m sorry Dave, I’m afraid I can’t do that” Deep
Q-Learning From Forbidden Actions
Mathieu Seurin, Philippe Preux, Olivier Pietquin

To cite this version:
Mathieu Seurin, Philippe Preux, Olivier Pietquin. ”I’m sorry Dave, I’m afraid I can’t do that” Deep
Q-Learning From Forbidden Actions. Internationnal Joint Conference on Neural Networks, Jul 2020,
Glasgow, United Kingdom. �hal-02387419v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395677188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02387419v2
https://hal.archives-ouvertes.fr

I’m Sorry Dave, I’m Afraid I Can’t Do That
Deep Q-Learning from Forbidden Actions

Mathieu Seurin
Univ. Lille, CNRS, Inria
UMR 9189 CRIStAL
mathieu.seurin@inria.fr

Philippe Preux
Univ. Lille, CNRS, Inria
UMR 9189 CRIStAL
philippe.preux@inria.fr

Olivier Pietquin
Google Research

Brain Team
pietquin@google.com

Abstract—The use of Reinforcement Learning (RL) is still
restricted to simulation or to enhance human-operated systems
through recommendations. Real-world environments (e.g. indus-
trial robots or power grids) are generally designed with safety
constraints in mind implemented in the shape of valid actions
masks or contingency controllers. For example, the range of
motion and the angles of the motors of a robot can be limited to
physical boundaries. Violating constraints thus results in rejected
actions or entering in a safe mode driven by an external controller,
making RL agents incapable of learning from their mistakes. In
this paper, we propose a simple modification of a state-of-the-
art deep RL algorithm (DQN), enabling learning from forbidden
actions. To do so, the standard Q-learning update is enhanced
with an extra safety loss inspired by structured classification. We
empirically show that it reduces the number of hit constraints
during the learning phase and accelerates convergence to near-
optimal policies compared to using standard DQN. Experiments
are done on a Visual Grid World Environment and the TextWorld
domain.

Index Terms—Deep Reinforcement Learning, Safety, con-
straints, Q-Learning

I. INTRODUCTION

Reinforcement Learning (RL) (Sutton and Barto, 2018)
is the main machine learning answer to address sequential
decision-making problems under uncertainty. Its genericity
allows application to a variety of domains such as Robotics
(Gu et al., 2017; Levine et al., 2016), Resource Management
(Mao et al., 2016), Chemical reaction (Zhou et al., 2017),
Traffic-light Management (El-Tantawy et al., 2013), Spoken
Dialogue Systems (Lemon and Pietquin, 2012) and sparked
interest in other industrial applications. Bringing reinforcement
learning to critical systems such as Surgery (Hashimoto et al.,
2018), Dam Management Wang and Xu (2012) or Autonomous
Driving (Leurent and Mercat, 2019; Sallab et al., 2017) remains
one of the most interesting open challenges in machine learning.
Unexpected behavior, inability to handle uncertainty and low
sampling efficiency are the Achilles heels of real-world RL
(Dulac-Arnold et al., 2019).

The major issue is that designing RL agents able to measure
uncertainty about their internal estimates (e.g. their state, the
outcome of their actions) is difficult (Geist and Pietquin, 2011)
and especially when associated with recent Deep Learning
methods (O’Donoghue et al., 2018). Even if available, using a
measure of uncertainty for safety is not straightforward either
(Bellemare et al., 2017; Daubigney et al., 2011). Uncertainty

is especially harmful when agents are meant to control a
physical system, where a wrong action can lead to catastrophic
consequences (e.g. damaging material or endangering people).

Fortunately, many real-world systems are equipped with
contingency measures, in the form of forbidden actions or
external controller taking over when the system is misbehaving.
For example, over-temperature monitoring regulates servo-
motors present in robots, preventing the motors from reaching
their heat limit. Cleaning robots also automatically u-turn in
the presence of an obstacle, preventing any damage to the
machine and its environment.

Beyond critical systems, many areas could benefit from
forbidden actions. In Natural Language Generation Reiter and
Dale (1997) or Dialogue systems Chandramohan et al. (2010);
Chen et al. (2017), syntax parser or auto-correct mechanism can
act as an external rejection signal. Indicating which word does
not fit a generated sentence or pointing out grammar mistakes
could improve language generation by greatly reducing word’s
space, leveraging language learning and generation.

These examples show a potential misalignment between
the standard RL frameworks and the potential real-world
applications. Of course, designing constraints to avoid critical
situations requires expert knowledge about the system to be
controlled. But it is often the case that environments already
implement such contingency measures (obstacle avoidance,
circuit breaker, etc.).

In this paper, we consider a simple type of external
constraints, prevalent in many real-world problems: when the
agent is about to perform a hazardous action, the system rejects
it and thus prevents the agent from doing so. The agent then
follows the natural dynamics of the environment (Alshiekh
et al., 2018). We aim at building an algorithm that learns from
these rejected actions.

In the general Markov Decision Process (MDP) framework
(Puterman, 2014), a rejected action, from the agent’s point of
view, would be seen as a transition to the same state. Everything
happens like if the action had no effect. This misrepresents
the potential harmfulness of the action and prevents the agent
from learning anything useful from the rejected action (See
subsection III-A for a detailed explanation). We want a model-
free reinforcement learning to benefit from those constraints
so as to learn faster to avoid hazardous states and alleviate
exploration problems.

In the coming sections, after introducing the RL paradigm,
we propose a constrained version of Deep Q-learning
(DQN) (Mnih et al., 2015) by adding a classification loss
that maintains Q-values of forbidden actions below valid ones.
We then validate our method empirically, showing that vanilla
DQN struggles at solving tasks with rejected actions while our
algorithm reduces the number of calls to forbidden actions. It
accelerates convergence to near-optimal policies compared to
standard DQN. Experiments are conducted on two tasks: A
maze navigation using visual features and a text-based game.

II. CONTEXT: REINFORCEMENT LEARNING

In the reinforcement learning (RL) paradigm (Sutton and
Barto, 2018), an agent learns to interact with its environment
so as to maximize a cumulative function of rewards. The
environment to be controlled is modeled as a Markov Decision
Process (MDP) that is a tuple {S,A,P,R, γ} which elements
are defined as follows. At each time step t, the agent is in a
state st ∈ S, where it selects an action at ∈ A according to
its policy π : S → A. It moves to state st+1 according to a
transition kernel P and receives a reward rt = r(st, at) drawn
from the environment’s reward function R : S ×A → R. The
quality of the policy is assessed by the Q-function defined by

Qπ(s, a) = Eπ

[∑
t

γtr(st, at)|s0 = s, a0 = a

]
for all (s, a) where γ ∈ [0, 1] is the discount factor. The optimal
Q-value is defined as Q∗(s, a) = maxπ Q

π(s, a), from which
the optimal policy π∗ is derived.

π∗(s) ∈ argmax
a

Q∗(s, a)

We here use the Deep Q-learning (DQN) algorithm (Mnih
et al., 2015) to approximate the optimal Q-function with
neural networks and perform off-policy updates by sampling
transitions (st, at, rt, st+1) from a replay buffer (Lin, 1992).

III. METHOD

A. Feedback Signal and MDP-F
In this section, we present a way to integrate forbidden

actions into the MDP framework. We augment the MDP
model with a Feedback Signal (Alshiekh et al., 2018), a
Boolean indicating whether an action was accepted by the
environment or rejected. A MDP-F is then defined as a tuple
< S,A,P,R, γ,F > where F is a function mapping a state
st and action at to a binary value.

F : S ×A → (0, 1)

with 0 meaning the action is valid and 1 meaning un-
safe/rejected action.

Vanilla Q-learning struggles to differentiate between actions
flagged as forbidden and valid ones. Consider the following
example: an agent in a state s takes action a flagged as
forbidden (F(a, s) = f = 1). When applying the Q-learning
update (Q(s, afeed) = r(s, afeed) + γmaxQ(s′, a′)), since
the action was rejected, r(s, a) = 0 and s = s′. Thus the

update becomes Q(s, afeed) = γmaxQ(s, a′). In current Deep
Reinforcement Learning setup γ is usually set between 0.99
(Mnih et al., 2015) and 0.999 (Pohlen et al., 2018). DQN-like
algorithm will require lots of transitions to make the Q-function
of forbidden actions smaller, thus loosing time to explore and
collect useful samples. We emphasize that an invalid action
indicates an action that could be harmful, so rapidly identifying
and avoiding those potentially dangerous situations is crucial.

B. Frontier loss

We take inspiration from the learning from demonstrations
paradigm where one wants to use expert demonstrations to
induce the usage of preferred actions in RL agents.

a) Expert loss and Imitation learning: In Imitation
learning, few expert demonstrations are available and extracting
as much information from those is essential. For example
(Hester et al., 2018; Piot et al., 2014) slightly modify the
Q-learning update to nudge expert actions-value above other
actions. This is done by adding a secondary loss inspired by
structured classification:

Minimize JE(Q) = max
a∈A

[Q(s, a) + l(aE , a)]−Q(s, aE)

where aE is the action of the expert, l(aE , a) = 0 when aE = a
and m otherwise. This nudges the Q-value of actions taken
by the expert above the Q-value of other actions by at most a
certain margin m.

Similarly, we want to derive a loss that penalizes the Q-
function when a forbidden action’s value excesses the value
of a valid one.

b) Frontier loss: The optimal policy π∗ (derived from
Q∗) will never take a forbidden action as it keeps the agent in
the same state. Based on this assumption we can derive the
following rule: for every state encountered during training, the
Q-values of all forbidden actions should be below the one of
each valid actions, within a certain margin m. This defines a
new loss we want to minimize that we call frontier loss JF :

JF (Q) = Q(s, a−)−min
a∈Vs

[Q(s, a)−m] (1)

where Vs = A(s) ∩ {a s.t. F(s, a) = 0}
and a− ∈ A(s) ∩ {a s.t. F(s, a) = 1}

The margin m is an hyper-parameter that depends mostly on
the Q-values magnitude. In our experiments, since the rewards
are bounded between 0 and 1, the margin is small (m = 0.1).

c) Frontier loss and classification: The main problem
regarding this objective function is the need to know which
actions are valid for every state. In most tasks, it’s unlikely
that the agent visits a specific state more than once (e.g. visual
domains). Thus, function approximation is required to estimate
which actions are valid in a given state. To achieve this, we
train a neural network to predict, for each state, which action
will be valid. Along agent’s trajectories, for every action taken,
we store the corresponding feedback, creating a dataset of
(s, a, f). The network, taking the state as input, predicts a

CNN

Valid UNK Not	Valid Not	ValidValid

Margin

Action	taken	by	π

Q-
Values

Figure 1. Illustration of frontier loss.

CNN MLP

1

0

0

1

1

Forward	pass
Backward	pass

State

UNK

UNK

UNK

1

UNK

Figure 2. Training procedure: the model predicts the validity for each action,
and we only backpropagate for the action the agent took.

binary value for every action (0 for valid, 1 for invalid). For
each state in our transition dataset, since most of the time only
one action is labelled, we need to adapt the training regime.
We can achieve this by masking the gradients from untaken
action, only backpropagating for the action the policy π took.
The training procedure is illustrated on Figure 2.

To consider an action as valid and to avoid early mis-
classifications, we put a threshold after the sigmoid function.
The action is considered to be valid if its activation is above
the threshold.

d) DQN-F : We construct a new algorithm, DQN-F , that
simply combines the frontier loss and Deep Q-learning. We
build a composite loss by using weighting factors λDQN and
λF to balance the DQN and the frontier losses. For all the
experiments described below, we use λDQN = 1 and λF = 0.5.
Not much tweaking is required regarding these hyper-parameter.

J(Q) = λDQNJDQN (Q) + λFJF (Q)

Algorithm 1: Frontier loss and classification network.
Data: minibatch b from replay buffer R, Q-network Q,

classification network C
Result: Frontier loss

1 loss = 0;
2 for (state s, action a, feedback f) in minibatch b do
3 if f = 1 then
4 a− ← a . Renaming for clarity
5 actionsvalid ← C(s); . Estimated valid action set
6 if min[Q(s, actionsvalid)] < Q(s, a−) - m then
7 loss = loss + ||min[Q(s, actionsvalid)]
8 - Q(s, a−) -m ||2

9 return loss;

Figure 3. An instance of the MiniGrid problem. The state is a partial view
of the maze (point of view of the agent) to avoid problem regarding partial
observability, we stacked the last 3 frames.

IV. EXPERIMENTS

We assess our method on two different tasks: a toy problem
(MiniGrid) and a text-based game (TextWorld).

A. MiniGrid Enviroment

The first environment is a simple visual gridworld presented
in (Chevalier-Boisvert et al., 2019). The goal is to reach the
green zone starting from a random point. Since we want to
study how the agent can integrate feedback about action’s
validity, we increase the action space size. To do so, we create
k different room types where the color of the background
indicates which set of actions is valid. The primary action
space is composed of 3 actions (Turning Left, Turning Right,
Going Forward) for navigation, but each action is duplicated
k times. The action space size becomes 3× k but only 3 are
valid in a given room. For example, in the red room, only
actions 11, 12, 13 are valid, and all the others are returning
a not valid feedback. In our setup, we use k = 5 making a
total of 15 actions.

The state space is an embedding of the agent’s point of
view represented as different features maps allowing the use of
convolution layers (more details in (Chevalier-Boisvert et al.,
2019)). Since the environment is partially observable, we stack
the last three frames as in Mnih et al. (2015) but we do not
use frame-skipping. An episode ends when the agent reaches
the green zone or after 200 environment steps as illustrated on
Figure 3.

Figure 4. An example of interaction in TextWorld. The agent has access to:
what happened after its latest action ("You open the door, it’s very dark in
here, [...]"), a room description ("Attic, an empty room, maybe you should
head back. You can go North, East") and its inventory content ("Keycard,
Mask").

B. TextWorld Environment

TextWorld (Côté et al., 2018) is a text-based game where
the agent interacts with the environment using short sentences.
We generated a game composed of 3 rooms, 7 objects, and
quest length of size 4. An example is shown on Figure 4. In
this context, we modified the environment to fit our needs.
The action space is composed of all <action> <object> pairs,
creating a total of 46 actions. Most of the actions created will
be rejected by the simulator since they will not fit the situation
the agent is facing. For example, the action "take sword" will
be rejected if no sword is available. An illustration of the game
can be found Figure 4.

C. Model and architecture

During all experiments, we use Double Deep Q-Network
(DQN) (Hasselt et al., 2016) with uniform Experience Replay
and ε-greedy exploration. In the Minigrid environment, we
use a Convolution Neural Network (LeCun et al., 1995)
with a fully-connected layer on top. In TextWorld, inventory,
observation, and room descriptions are each encoded by an
LSTM (Hochreiter and Schmidhuber, 1997) processed by a
fully-connected layer on top.

The classification network matches exactly the architecture
used by DQN, i.e. ConvNet for Minigrid and LSTM’s for
TextWorld, the only difference resides in training (explained
Figure 2)

V. RESULTS

In Figure 5, Figure 6, Figure 7, Figure 8, we compare DQN
and DQN-F . In the Minigrid domain, DQN struggles to find
the optimal policy and reaches only 20% of the time the exit.
Most of the time, DQN is able to solve one room but fails to
find the set of actions for each room, performing forbidden
actions over and over. On the contrary, the frontier loss is
guiding DQN-F , reducing the number of negative feedback
signals from the environment, and helping to find the optimal
policy. Those results are echoed in the TextWorld experiment.
DQN solves the game half of the time, and the other half does
not encounter the reward and as a result, can not solve the
game. This could be mitigated by having a better exploration
strategy, but it shows that shaping Q-values with the frontier

Figure 5. Minigrid results: Number of times a forbidden action is taken.
DQN-F (yellow) DQN (blue). Results are averaged over five random seeds.
The shaded area represents one standard deviation.

Figure 6. Minigrid results: Percentage of success over time. DQN-F
(yellow) DQN (blue). Results are averaged over 5 random seeds. The shaded
area represents one standard deviation.

loss is enough to reduce the sample complexity and guide
exploration. We want to emphasize that in early stages of the
training, the classification network performs poorly due to low
quantity of samples but it does not hurt the performances of
DQN-F , it’s able to quickly learn to avoid forbidden actions.
Visualization of Q-values at different stages of training can
be found on Figure 9, Figure 10. They clearly illustrate the
benefits of using the frontier loss in those setups. Even in the
early training stage, the separation between valid actions and
invalid is clear, alleviating the difficulty of finding the optimal
policy. Where as DQN Q-values are really hard to distinguish
from each other.

VI. RELATED WORKS

a) Action Elimination: Closely related to our work is the
notion of action elimination which was introduced in (Even-Dar
et al., 2006). The main idea developed in that work, applied
to Multi-Arm Bandits (Lai and Robbins, 1985; Lattimore and
Szepesvári, 2018; Robbins, 1952) is to get rid of a sub-optimal

Figure 7. Textworld results: Number of invalid action taken by the agent.
DQN-F (yellow) DQN (blue). Results are averaged over nine random seeds.
The shaded area represents one standard deviation.

Figure 8. Textworld results: Percentage of success over time. DQN-F
(yellow) DQN (blue). Results are averaged over 9 random seeds. The shaded
area represents one standard deviation.

action as soon as the value of this action is out of some
confidence interval.

A similar idea was applied in Deep Reinforcement Learning
by Zahavy et al. (2018). This article shares similarities with
ours as the authors are trying to eliminate actions based on
a signal given by the environment, indicating if the action is
valid or not. They are using a contextual bandit to assess the
elimination signal’s certainty, and remove actions from the
action set A when the confidence is above a certain threshold.
The main difference is in the way the elimination signal acts on
Q-learning. In their case, the elimination signal doesn’t change
Q-values but modifies the action set directly. They need extra
care because removing a valid action can irreversibly damage
the policy where as in our case, we only nudge values.

Alshiekh et al. (2018) define the term shielding similar to our
notion of feedback. The simulator rejects potentially harmful
actions. To learn from this process, the agent outputs a set of
actions, ordered by preferences, and the simulator picks the
best-allowed action.

b) Learning when the environment takes over: Orseau

Figure 9. Q-values, after 150 episodes of training (30 000) env steps) for
certain state. Left: DQN; Right: DQN with frontier loss. We can clearly see
how the frontier-loss shapes Q-values, clearly separating forbidden action from
good ones. This cherry-picked example illustrates well how the Q-distribution
is modified, even at that early training stage.

and Armstrong (2016) design agent to not take into account
feedback from the environment. For example, for an agent
operating in real-time, it may be necessary for a human operator
to prevent executing a harmful sequence and lead the agent
into a safer situation. However, if the learning agent expects
to receive rewards from this sequence, it may learn in the long
run to avoid such interruptions, for example, by disabling the
off-button. Under this setup, they showed that Q-learning could
be interrupted safely, supporting our hypothesis that Q-learning
is not integrating the feedback signal.

c) Reward Shaping: Lipton et al. (2016) introduced the
notion of Intrinsic Fear (IF) to deal with dangerous states. Deep
agents tend to periodically revisit these states upon forgetting
their existence under a new policy. IF is shaping the reward to
guard agents against periodic catastrophes. To achieve that they
train a model to predict the probability of imminent dangerous
state and it penalizes the true reward function R with an
intrinsic reward F

d) Large Discrete Action Space: A benefit of our method
is to simplify policy space search when using bigger action
space. Dealing with large discrete action space in Deep
Reinforcement Learning was studied by Dulac-Arnold et al.
(2015) where they use an action embedding in continuous space
and map it to a discrete action. Recent methods build upon this
by also learning the action embedding instead of using a pre-
computed one Adolphs and Hofmann (2019); Chandak et al.
(2019); Chen et al. (2019); Tennenholtz and Mannor (2019)
Another body of literature explores how to reduce combinatorial
action space by using an encoding dictionary (Dulac-Arnold
et al., 2012) rendering problems with large action sets tractable.
(He et al., 2016a,b) are dealing with variable action space,
meaning that at every time step, the action set size is different.
To cope with this challenge, they compute a state embedding
and action embedding for every action available then perform
a dot product between the two. This allows them to deal with
variable sized action set.

Figure 10. Q-values, after 100 000 training steps Left: DQN; Right: DQN-
F . Even after 100 000 network updates, DQN still struggles to differentiate
good action from bad ones. This cherry-picked example illustrates well how
the Q-distribution is modified and how Q-values are kept separated even later
during training.

VII. CONCLUSION

Critical real-world systems are constrained by safety mea-
sures that prevent hazardous action. We hypothesize that Q-
learning, a model-free reinforcement learning method struggles
with those constraints. In this paper, we proposed a frontier
loss, combined with a classification network, to help DQN.
This algorithm nudges rejected actions Q-values below Q-
values of valid actions. We showed empirically that the frontier
loss reduces the number of calls to rejected actions and
guides early exploration, helping Deep Q-learning achieving
higher performances. We demonstrate its effectiveness on two
benchmarks, a visual grid world and a TextWorld domain.

a) Limitations and Future Work: At the moment, applying
the frontier to continuous action space is non-trivial but it
would be a key to use this type of algorithm in robotics and
more realistic settings. Another future improvement would
be to combine the loss with action’s embedding could allow
generalization to unseen actions. For example, learning that
"Take sword" is rejected "Grab sword" shouldn’t be considered
by the algorithm.

Acknowledgments: The authors would like to acknowledge
the stimulating research environment of the SequeL INRIA
Project-Team. Special thanks to Florian Strub and Edouard
Leurent for fruitful discussions. We acknowledge the following
agencies for research funding and computing support: Project
BabyRobot (H2020-ICT-24-2015, grant agreement no.687831),
and CPER Nord-Pas de Calais/FEDER DATA Advanced data
science and technologies 2015-2020.

REFERENCES

Adolphs, L. and Hofmann, T. (2019). Ledeepchef: Deep
reinforcement learning agent for families of text-based games.
In NeurIPS Deep Reinforcement Learning Workshop.

Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum,
S., and Topcu, U. (2018). Safe reinforcement learning via
shielding. In Proc. of AAAI.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A
distributional perspective on reinforcement learning. In

Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 449–458. JMLR. org.

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., and
Thomas, P. (2019). Learning action representations for
reinforcement learning. In Proc. of ICML.

Chandramohan, S., Geist, M., and Pietquin, O. (2010). Optimiz-
ing spoken dialogue management with fitted value iteration.
In Proc. of ISCA.

Chen, H., Liu, X., Yin, D., and Tang, J. (2017). A survey on
dialogue systems: Recent advances and new frontiers. Acm
Sigkdd Explorations Newsletter, 19(2):25–35.

Chen, Y., Chen, Y., Yang, Y., Li, Y., Yin, J., and Fan, C. (2019).
Learning action-transferable policy with action embedding.
In Proc. of AAAI.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems, L.,
Saharia, C., Nguyen, T. H., and Bengio, Y. (2019). BabyAI:
First steps towards grounded language learning with a human
in the loop. In Proc. of ICLR.

Côté, M.-A., Kádár, A., Yuan, X., Kybartas, B., Barnes, T.,
Fine, E., Moore, J., Hausknecht, M., Asri, L. E., Adada, M.,
Tay, W., and Trischler, A. (2018). Textworld: A learning
environment for text-based games. CoRR, abs/1806.11532.

Daubigney, L., Gašić, M., Chandramohan, S., Geist, M.,
Pietquin, O., and Young, S. (2011). Uncertainty management
for on-line optimisation of a pomdp-based large-scale spoken
dialogue system.

Dulac-Arnold, G., Denoyer, L., Preux, P., and Gallinari, P.
(2012). Fast reinforcement learning with large action sets
using error-correcting output codes for mdp factorization. In
Proc. of ECML and PKDD. Springer.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P.,
Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., and
Coppin, B. (2015). Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. (2019).
Challenges of real-world reinforcement learning. In Real-
world Sequential Decision Making Workshop @ ICML 2019.

El-Tantawy, S., Abdulhai, B., and Abdelgawad, H. (2013).
Multiagent reinforcement learning for integrated network of
adaptive traffic signal controllers (marlin-atsc): methodology
and large-scale application on downtown toronto. Proc. of
TITS.

Even-Dar, E., Mannor, S., and Mansour, Y. (2006). Action
elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. Journal of
machine learning research, 7(Jun):1079–1105.

Geist, M. and Pietquin, O. (2011). Managing uncertainty within
the KTD framework. In Active Learning and Experimental
Design workshop @ AISTATS 2010, pages 157–168.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). Deep
reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In Proc. of ICRA. IEEE.

Hashimoto, D. A., Rosman, G., Rus, D., and Meireles, O. R.
(2018). Artificial intelligence in surgery: promises and perils.
Annals of surgery, 268(1):70.

Hasselt, H. v., Guez, A., and Silver, D. (2016). Deep

reinforcement learning with double q-learning. In Proc.
of AAAI.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., and Ostendorf,
M. (2016a). Deep reinforcement learning with a natural
language action space. In Proc. of ACL.

He, J., Ostendorf, M., He, X., Chen, J., Gao, J., Li, L., and
Deng, L. (2016b). Deep reinforcement learning with a
combinatorial action space for predicting popular reddit
threads. In Proc. of EMNLP.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T.,
Piot, B., Horgan, D., Quan, J., Sendonaris, A., Osband, I.,
et al. (2018). Deep Q-learning from demonstrations. In Proc.
of AAAI.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient
adaptive allocation rules. Advances in applied mathematics,
6(1):4–22.

Lattimore, T. and Szepesvári, C. (2018). Bandit algorithms.
LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks

for images, speech, and time series. The handbook of brain
theory and neural networks.

Lemon, O. and Pietquin, O. (2012). Data-driven methods for
adaptive spoken dialogue systems: Computational learning
for conversational interfaces. Springer Science & Business
Media.

Leurent, E. and Mercat, J. (2019). Social attention for
autonomous decision-making in dense traffic. In Machine
Learning for Autonomous Driving Workshop at NeurIPS
2019.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-
to-end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373.

Lin, L.-J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
learning, 8(3-4):293–321.

Lipton, Z. C., Azizzadenesheli, K., Kumar, A., Li, L., Gao,
J., and Deng, L. (2016). Combating reinforcement learn-
ing’s sisyphean curse with intrinsic fear. arXiv preprint
arXiv:1611.01211.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016).
Resource management with deep reinforcement learning. In
Proc. of ACM Workshop on Hot Topics in Networks.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529.

Orseau, L. and Armstrong, S. (2016). Safely interruptible
agents. In Proc. of UAI.

O’Donoghue, B., Osband, I., Munos, R., and Mnih, V. (2018).
The uncertainty bellman equation and exploration. In
International Conference on Machine Learning, pages 3836–
3845.

Piot, B., Geist, M., and Pietquin, O. (2014). Boosted Bell-
man residual minimization handling expert demonstrations.
Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8725 LNAI(PART 2):549–564.

Pohlen, T., Piot, B., Hester, T., Azar, M. G., Horgan, D.,
Budden, D., Barth-Maron, G., Van Hasselt, H., Quan, J.,
Večerík, M., et al. (2018). Observe and look further:
Achieving consistent performance on atari. arXiv preprint
arXiv:1805.11593.

Puterman, M. L. (2014). Markov Decision Processes.: Discrete
Stochastic Dynamic Programming. John Wiley & Sons.

Reiter, E. and Dale, R. (1997). Building applied natural
language generation systems. Natural Language Engineering,
3(1):57–87.

Robbins, H. (1952). Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society,
58(5):527–535.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2017).
Deep reinforcement learning framework for autonomous
driving. Electronic Imaging.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning:
An introduction.

Tennenholtz, G. and Mannor, S. (2019). The natural language
of actions. In Proc. of ICML.

Wang, R. and Xu, L. (2012). Multi-agent dam management
model based on improved reinforcement learning technology.
Applied Mechanics and Materials, 198.

Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D. J., and
Mannor, S. (2018). Learn what not to learn: Action
elimination with deep reinforcement learning. In Proc. of
NeurIPS.

Zhou, Z., Li, X., and Zare, R. N. (2017). Optimizing chemical
reactions with deep reinforcement learning. ACS central
science, 3(12):1337–1344.

APPENDIX

Convolution Layer 16, 32, 64
Kernel size 2,2,2
Pooling 2 on the first layer
Fully Connected hidden size 64
Optimizer Rmsprop
Learning rate 1× 10−5 decayed to 1× 10−7

Weight Decay 1× 10−4

Replay buffer size 10 000
Target update every 2 000
Action classifier learning rate 1× 10−4

Table I
MINIGRID NETWORK AND TRAININIG.

Word embedding size 128
Inventory RNN size 256
Description RNN size 256
Obs RNN size 256
Fully Connected hidden size 400
Optimizer Rmsprop
Learning rate 1× 10−5 decayed to 1× 10−7

Weight Decay 1× 10−4

Replay buffer size 10 000
Target update every 2 000
Action classifier learning rate 1× 10−4

Table II
TEXTWORLD NETWORK AND TRAINING.

