
HAL Id: hal-03123809
https://hal.inria.fr/hal-03123809

Submitted on 28 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Change Rate Estimation and Optimal Freshness in Web
Page Crawling

Konstantin Avrachenkov, Kishor Patil, Gugan Thoppe

To cite this version:
Konstantin Avrachenkov, Kishor Patil, Gugan Thoppe. Change Rate Estimation and Optimal Fresh-
ness in Web Page Crawling. VALUETOOLS 2020 - 13th EAI International Conference on Performance
Evaluation Methodologies and Tools, May 2020, Tsukuba, Japan. �hal-03123809�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395677187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03123809
https://hal.archives-ouvertes.fr


Change Rate Estimation and Optimal Freshness in Web

Page Crawling

Konstantin Avrachenkov 1, Kishor Patil1, and Gugan Thoppe2

1INRIA Sophia Antipolis, France 06902∗
2Indian Institute of Science, Bengaluru, India 560012

Abstract

For providing quick and accurate results, a search engine maintains a local snapshot
of the entire web. And, to keep this local cache fresh, it employs a crawler for tracking
changes across various web pages. However, finite bandwidth availability and server
restrictions impose some constraints on the crawling frequency. Consequently, the
ideal crawling rates are the ones that maximise the freshness of the local cache and
also respect the above constraints.

Azar et al. [2] recently proposed a tractable algorithm to solve this optimisation
problem. However, they assume the knowledge of the exact page change rates, which
is unrealistic in practice. We address this issue here. Specifically, we provide two
novel schemes for online estimation of page change rates. Both schemes only need
partial information about the page change process, i.e., they only need to know if the
page has changed or not since the last crawled instance. For both these schemes, we
prove convergence and, also, derive their convergence rates. Finally, we provide some
numerical experiments to compare the performance of our proposed estimators with
the existing ones (e.g., MLE).

1 Introduction

The world wide web is gigantic: it has a lot of interconnected information and both the
information and the connections keep changing. However, irrespective of the challenges
arising out of this, a user always expects a search engine to instantaneously provide accurate
and up-to-date results. A search engine deals with this by maintaining a local cache of all
the useful web pages and their links. As the freshness of this cache determines the quality
of the search results, the search engine regularly updates it by employing a crawler (also
referred to as a web spider or a web robot). The job of a crawler is (a) to access various
web pages at certain frequencies so as to determine if any changes have happened to the
content since the last crawled instance and (b) to update the local cache whenever there is
a change. To understand the detailed working of crawlers, see [13, 6, 14, 17, 12].

In general, a crawler has two constraints on how often it can access a page. The first
one is due to limitations on the available bandwidth. The second one—also known as the
politiness constraint—arises when a server imposes limits on the crawl frequency. The latter
implies that the crawler can not access pages on that server too often in a short amount of
time. Such constraints cannot be ignored, since otherwise the server may forbid the crawler
from all future accesses.

In summary, to identify the ideal rates for crawling different web pages, a search engine
needs to solve the following optimisation problem: Maximise the freshness of the local
database subject to constraints on the crawling frequency.
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In the early variants of this problem, the freshness of each page was assumed to be
equally important [8, 12]. In such cases, experimental evidence surprisingly shows that the
uniform policy—crawl all pages at the same frequency irrespective of their change rates—is
more or less the optimal crawling strategy.

Starting from the pioneering work in [9], however, the freshness definition was modified to
include different weights for different pages depending on their importance, e.g., represented
as the frequency of requests for the pages. The motivation for this change was the fact that
only a finite number of pages can be crawled in any given time frame. Hence, to improve
the utility of the local database, important pages should be kept as fresh as possible. Not
surprisingly, under this new definition, the optimal crawling policy does indeed depend on
the page change rates. This was numerically demonstrated first in [9] for a setup with a
small number of pages. A more rigorous derivation of this fact was recently given in the
path breaking paper [2] by Azar et al. In fact, this work also provides a near-linear time
algorithm to find a near-optimal solution.

A separate study [1, 16] provides a Whittle index based dynamic programming approach
to optimise the schedule of a web crawler. In that context, the page/catalogue freshness
estimate also influences the optimal crawling policy and its good estimation is needed.

Our work is mainly motivated by the work from Azar et al. [2]. In particular, input to
their algorithm is the actual page change rates. However, in practice, these values are not
known in advance and, instead, have to be estimated. This is the issue that we address in
this paper.

Our main contributions can be summarised as follows. First, we propose two novel ap-
proaches for online estimation of the actual page change rates. The first is based on the Law
of Large Numbers (LLN), while the second is derived using the Stochastic Approximation
(SA) principles. Second, we theoretically show that both these estimators almost surely
(a.s.) converge to the actual change rate values, i.e., both our estimators are asymptoti-
cally consistent. Furthermore, we also derive their convergence rates in the expected error
sense. Finally, we provide some simulation results to compare the performance of our online
schemes to each other and also to that of the (offline) MLE estimator. Alongside, we also
show how our estimates can be combined with the algorithm in [2] to obtain near-optimal
crawling rates.

The rest of this paper is organised as follows. The next section provides a formal summary
of this work in terms of the setup, goals, and key contributions. It also gives the explicit
update rules for our two online schemes. In Section 3, we discuss their convergence and
converge rates and also provide the formal analysis for the same. The numerical experiments
discussed above are given in Section 4. We conclude in Section 5 with some future directions.

2 Setup, Goal, and Key Contributions

The three topics are individually described below.

Setup: We assume the following. The local cache consists of copies of N pages and wi
denotes the importance of the i−th page. Further, each page changes independently and
the actual times at which page i changes is a homogeneous Poisson point process in [0,∞)
with a constant but unknown rate ∆i. Independent of everything else, page i is crawled
(accessed) at the random instances {tk}k≥0 ⊂ [0,∞), where t0 = 0 and the inter-arrival
times, i.e., {tk− tk−1}k≥1, are iid exponential random variables with a known rate pi. Thus,
the times at which page i is crawled is also a Poisson point process but with rate pi. At time
instance tk, we get to know if page i got modified or not in the interval (tk−1, tk], i.e., we
can access the value of the indicator

Ik :=

{
1, if page i got modified in (tk−1, tk],

0, otherwise.

We emphasise that each page is crawled independently. In other words, the notations
{tk} and {Ik} defined above do depend on i. However, we hide this dependence for the sake
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of notational simplicity. We shall follow this practice for the other notations as well; the
dependence on i should be clear from the context.

Although the above assumptions are standard in the crawling literature, nevertheless,
we now provide a quick justification for the same. Our assumption that the page change
process is a Poisson point process is based on the experiments reported in [4, 5, 7]. Some
generalised models for the page change process have also been considered in the literature
[15, 18]; however, we do not pursue these ideas here. Separately, our assumption on {Ik}
is based on the fact that a crawler can only access incomplete knowledge about the page
change process. In particular, a crawler does not know when and how many times a page
has changed between two crawling instances. Instead, all it can track is the status of a page
at each crawling instance and know if it has changed or not with respect to the previous
access. Sometimes, it is possible to also know the time at which the page was last modified
[6, 10], but we do not consider this case here.

Goal: Develop online algorithms for estimating ∆i in the above setup. Subsequently, find
optimal crawling rates {p∗i } so that the overall freshness of the local cache defined by

E
[

1

T

T∫
0

( N∑
i=1

wi1{Fresh(i, t)}
)
dt

]
(1)

is maximised subject to
∑N
i=1 pi ≤ B. Here, T > 0 is some finite horizon, B ≥ 0 is a bound

on the overall crawling frequency, 1{} is the indicator, and Fresh(i, t) is the event that page
i is fresh at time t, i.e., the local copy matches the actual page.

Key Contributions: We present two online methods for estimating ∆i, the first based on
the LLN and the second based on SA. If {xk} and {yk} denote the iterates of these two
methods, then their update rules are as shown below.

• LLN Estimator : For k ≥ 1,

xk = piÎk/(k + αk − Îk). (2)

Here, Îk =
∑k
j=1 Ij ; hence, Îk = Îk−1 + Ik. And, {αk} is any positive sequence satis-

fying the conditions in Theorem 1; e.g., {αk} could be {1}, {log k}, or {
√
k}.

• SA Estimator : For k ≥ 0 and some initial value y0,

yk+1 = yk + ηk[Ik+1(yk + pi)− yk]. (3)

Here, {ηk} is any stepsize sequence that satisfies the conditions in Theorem 2. For
example, {ηk} could be {1/(k + 1)γ} for some γ ∈ (0, 1].

We call these methods online because the estimates can be updated on the fly as and
when a new observation Ik becomes available. This contrasts the MLE estimator in which
one needs to start the calculation from scratch each time a new data point arrives. Also,
unlike MLE, our estimators are never unstable. See Section 3.3 for the complete details on
this.

Our main results include the following. We show that both {xk} and {yk} converge to
∆i a.s. Further, we show that

1. E‖xk −∆i‖ = O
(
max

{
k−1/2, αk/k

})
, and

2. E‖yk −∆i‖ = O(k−γ/2) if ηk = (k + 1)γ with γ ∈ (0, 1).

Finally, we provide three numerical experiments for judging the strength of our two
estimators. In the first one, we compare the performance of our estimators to each other
and also to that of the Naive estimator and the MLE estimator described in [10]. In the
second one, we combine our estimates with the algorithm in [2] and compute the optimal
crawling rates. Subsequently, we use this to measure the overall freshness of the local cache.
In the last and final experiment, we look at the behaviour of our estimators for different
choices of the sequences {αk} and {ηk}.
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3 Change rate estimation

Here, we provide a formal convergence and convergence rate analysis for our two estimators.
Thereafter, we compare their behaviours to that of the estimators that already exist in
the literature—the Naive estimator, the MLE estimator, and the Moment Matching (MM)
estimator.

3.1 LLN Estimator

Our first aim here is to obtain a formula for E[I1]. We shall use this later to motivate the
form of our LLN estimator.

Let τ1 = t1 − t0 = t1. Then, as per our assumptions in Section 2, τ1 is an exponential
random variable with rate pi. Also, E[I1|τ1 = τ ] = 1 − exp (−∆iτ). These two facts put
together show that

E
[
I1
]

= ∆i/(∆i + pi). (4)

This gives the desired formula for E[I1].
From this last calculation, we have

∆i = piE[I1]/(1− E[I1]) (5)

Separately, because {Ik} is an iid sequence and E|I1| ≤ 1 , it follows from the strong law of

large numbers that E
[
I1
]

= limk→∞
∑k
j=1 Ij/k a.s. Thus,

∆i = pi
limk→∞

∑k
j=1 Ij/k

1− limk→∞
∑k
j=1 Ij/k

a.s.

Consequently, a natural estimator for ∆i is

x′k = pi

∑k
j=1 Ij/k

1−
∑k
j=1 Ij/k

= pi
Îk

k − Îk
, (6)

where Îk is as defined below (2).
Unfortunately, the above estimator faces an instability issue, i.e., x′k =∞ when I1, . . . , Ik

are all 1. To fix this, one can add a non-zero term in the denominator. The different choices
then gives rise to the LLN estimator defined in (2).

The following result discusses the convergence and convergence rate of this estimator.

Theorem 1. Consider the estimator given in (2) for some positive sequence {αk}.

1. If limk→∞ αk/k = 0, then limk→∞ xk = ∆i a.s.

2. Additionally, if limk→∞ log(k/αk)/k = 0, then

E|xk −∆i| = O
(

max
{
k−1/2, αk/k

})
.

Proof. Let µ = E[I1], Ik = Îk/k, and αk = αk/k. Then, observe that (2) can be rewritten as
xk = piIk/(1+αk−Ik). Now, limk→∞ Ik = µ a.s. and limk→∞ αk = 0. The first claim holds
due to the strong law of large numbers, while the second one is true due to our assumption.
Statement (1) is now easy to see.

We now derive Statement (2). From (5), we have

|xk −∆i| =
∣∣∣∣xk − pi µ

1− µ

∣∣∣∣ ≤ pi (|Ak|+ |Bk|) ,

where

Ak =
Ik

αk + 1− Ik
− µ

αk + 1− µ
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and
Bk =

µ

αk + 1− µ
− µ

1− µ
.

Since αk > 0 and, hence, αk > 0,

|Bk| = αk
µ

(1− µ)(αk + (1− µ))
≤ αk

µ

(1− µ)2
.

Similarly,

|Ak| ≤
(

1 + αk
1− µ

)(
|Ik − µ|

αk + 1− Ik

)
.

Because we have assumed αk → 0, we get limk→∞ E[Bk] = 0. It remains to show
limk→∞ E[Ak] = 0. Towards that, let {δk} be a positive sequence that we will pick later.
Then,

E
[
|Ik − µ|

αk + 1− Ik

]
≤ E[Ck] + E[Dk]

where

Ck =
|Ik − µ|

αk + 1− Ik
1
{
Ik − µ ≤ δkµ

}
and

Dk =
|Ik − µ|

αk + 1− Ik
1
{
Ik − µ ≥ δkµ

}
.

On the one hand,

E[Ck] ≤ E|Ik − µ|
αk + 1− (1 + δk)µ

≤
√

Var[I1]√
k(αk + 1− (1 + δk)µ)

.

On the other hand, since |Ik − µ| ≤ 2 and 1 − Ik ≥ 0, it follows by applying the Chernoff
bound that

E[Dk] ≤ 2

αk
Pr{Ik ≥ (1 + δk)µ} ≤ 2

αk
exp

(
−kδ2

kµ/3
)
.

We now pick {δk} so that δ2
k = 6 log(1/αk)/(kµ) for all k ≥ 1. Then, E[Dk] ≤ 2αk. Now,

due to our assumptions on {αk}, limk→∞ E[Dk] = 0. Similarly, limk→∞ δk = 0, whence it
follows that limk→∞ E[Ck] = 0. These relations together then show that limk→∞ E[Ak] = 0.

The desired result now follows.

3.2 SA Estimator

Here, we use the theory of stochastic approximation to study the behaviour of our SA
estimator.

Theorem 2. Consider the estimator given in (3) for some positive stepsize sequence {ηk}.

1. Suppose that
∑∞
k=0 ηk =∞ and

∑∞
k=0 η

2
k <∞. Then, limk→∞ yk = ∆i a.s.

2. Suppose that ηk = 1/(k + 1)γ with γ ∈ (0, 1). Then,

E‖yk −∆i‖ = O
(
k−γ/2

)
.

Proof. For k ≥ 0, let Fk := σ(∆0, I1, . . . , Ik). Then, from (4) and the fact that {Ik} is an
iid sequence, we get

E[Ik+1(yk + pi)− yk|Fk] =
∆i

∆i + pi
(yk + pi)− yk = h(yk),

where h(y) = (∆i − y)pi/(∆i + pi). Hence, one can rewrite (3) as

yk+1 = yk + ηk[h(yk) +Mk+1], (7)
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where

Mk+1 = [Ik+1(yk + pi)− yk]− h(yk)

=

[
Ik+1 −

∆i

∆i + pi

]
(yk + pi).

Since E[Mk+1|Fk] = 0 for all k ≥ 0, {Mk} is a martingale difference sequence. Consequently,
(7) is a classical SA algorithm whose limiting ODE is

ẏ(t) = h(y). (8)

Now, Statement (1) follows from Corollary 4 and Theorem 7 in Chapters 2 and 3, re-
spectively, of [3], provided we show that:

i.) h is a globally Lipschitz continuous function.

ii.) ∆i is an unique globally asymptotically stable equilibrium of (8).

iii.)
∑∞
k=0 ηk =∞ and

∑∞
k=0 η

2
k <∞.

iv.) {Mk} is a martingale difference sequence with respect to the filtration {Fk}. Further,
there is a constant C ≥ 0 such that E[M2

k+1|Fk] ≤ C(1 + y2
k) a.s. for all k ≥ 0.

v.) There exists a continuous function h∞ such that the functions hc(x) := h(cx)/c, c ≥ 1,
satisfy hc(x)→ h∞(x) uniformly on compact sets as c→∞.

vi.) The ODE ẏ(t) = h∞(y) has origin as its unique globally asymptotically stable equilib-
rium.

Since h is linear, the Lipschitz continuity condition trivially holds. Separately, observe
that h(∆i) = 0; this shows that ∆i is an equilibrium point of (8). Now, L(y) = (y−∆i)

2/2 is
a Lyapunov function for (8) with respect to ∆i. This is because L(y) ≥ 0, while∇L(y)h(y) =
−p(y −∆i)

2/(pi + ∆i) ≤ 0; the equality holds in both these relations if and only if y = ∆i.
This shows that ∆i is a unique globally asymptotically stable equilibrium of (8), which
establishes Condition ii.).

Condition iii.) trivially holds due to our assumption about {ηk}. Regarding the next
condition, observe that {Mk} is indeed a martingale difference sequence. Further, |Mk+1| ≤
|yk|+ pi, whence it follows that Condition iv.) also holds.

Next, let h∞(y) := −ypi/(∆i + pi). Then, it is easy to see that Condition v.) trivially
holds. Similarly, it is easy to see that Condition vi.) holds as well.

Statement (1) now follows, as desired.
We now sketch a proof for Statement (2). First, note that

yk+1 −∆i = (1− ληk)(yk −∆i) + ηkMk+1,

where λ = pi/(∆i + pi). Now, since E[Mk+1|Fk] = 0,

E[(yk+1 −∆i)
2|Fk] = (1− ληk)2(yk −∆i)

2 + η2
kE[M2

k+1|Fk].

Recall that E[M2
k+1|Fk] ≤ C(1 + y2

k) for some constant C ≥ 0. Using this above and then
repeating all the steps from the proof of [11, Theorem 3.1] gives Statement (2), as desired.

3.3 Comparison with Existing Estimators

As far as we know, there are three other approaches in the literature for estimating page
change rates—the Naive estimator, the MLE estimator, and the MM estimator. The details
about the first two estimators can be found in [10] while, for the third one, one can look at
[19]. We now do a comparison, within the context of our setup, between these estimators
and the ones that we have proposed.

The Naive estimator simply uses the average number of changes detected to approximate
the rate at which a page changes. That is, if {zk} denote the values of the Naive estimator
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then, in our setup, zk = piÎk/k, where Îk is as defined below in (2). The intuition behind
this is the following. If τ1 is as defined at the beginning of Section 3.1, then observe that
E[N(τ1)] = ∆i/pi. Hence, the Naive estimator tries to approximate E[N(τ1)] with Îk/k so
that the previous relation can then be used for guessing the change rate.

Clearly, E[zk] = pi∆i/(∆i + pi) 6= ∆i. Also, from the strong law of large numbers,

zk
a.s.→ pi∆i/(∆i+pi) 6= ∆i. Thus, this estimator is not consistent and is also biased. This is

to be expected since this estimator does not account for all the changes that occur between
two consecutive accesses.

Next, we look at the MLE estimator. Informally, this estimator identifies the parameter
value that has the highest probability of producing the observed set of observations.In our
setup, the value of the MLE estimator is obtained by solving the following equation for ∆i :

k∑
j=1

Ij τj/(exp (∆i τj)− 1) =

k∑
j=1

(1− Ij) τj , (9)

where τk = tk − tk−1 and {tk} is as defined in Section 2. The derivation of this relation is
given in [10, Appendix C]. As mentioned in [10, Section 4], the above estimator is consistent.

Note that the MLE estimator makes actual use of the inter-arrival crawl times {τk}
unlike our two estimators and also the Naive estimator. In this sense, it fully accounts
for the randomness in crawling intervals. And, as we shall see in the numerical section,
the quality of the estimate obtained via MLE improves rapidly in comparison to the Naive
estimator as the sample size increases.

However, MLE suffers in two aspects— computational tractability and mathematical
instability. Specifically, note that the MLE estimator lacks a closed form expression. There-
fore, one has to solve (9) by using numerical methods such as the Newton–Raphson method,
Fisher’s Scoring Method, etc. Unfortunately, using these ideas to solve (9) takes more and
more time as the number of samples grow. Also note that, under the above solution ideas,
the MLE estimator works in an offline fashion. In that, each time we get a new observation,
(9) needs to be solved afresh. This is because there is no easy way to efficiently reuse the
calculations from one iteration into the next. One reasonable alternative is to perform MLE
estimation in a batch mode, i.e., wait until we gather a large number of samples and then
apply one of the above-mentioned methods. However, even then the computation time will
be long when k is large.

Besides the complexity, the MLE estimator is also unstable in two situations. One,
when no changes have been detected (Ij = 0, ∀k ∈ {1, . . . , k}), and the other, when all the
accesses detect a change (Ij = 1, ∀k ∈ {1, . . . , k}). In the first setting, no solution exists; in
the second setting, the solution is ∞. One simple strategy to avoid these instability issues
is to clip the estimate to some pre-defined range whenever one of bad observation instances
occur.

Finally, we talk about the MM estimator. Here, one looks at the fraction of times no
changes were detected during page accesses and, then, using a moment matching method
tries to approximate the actual page change rate. In our context, the value of this estimator
is obtained by solving

∑k
j=1(1− Ij) =

∑k
j=1 e

−∆iτj for ∆i. The details of this equation are
given in [19, Section 4]. While the MM idea is indeed simpler than MLE, the associated
estimation process continues to suffer from similar instability and computational issues like
the ones discussed above.

We emphasise that none of our estimators suffer from any of the issues mentioned above.
In particular, both our estimators are online and have a significantly simple update rule;
thus, improving the estimate whenever a new data point arrives is extremely easy. Also,
both our estimators are stable, i.e., the estimated values will almost surely be finite. More
importantly, the performance of our estimators is comparable to that of MLE. This can be
seen from the numerical experiments in Section 4.
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Figure 1: Comparison between Different Estimators.

4 Numerical Results

In this section, we provide three simulations to help evaluate the strength of our estimators.
In the first experiment, we look at how well our estimation ideas perform in comparison to
the Naive and the MLE estimator. In the second experiment, we substitute the change rate
estimates obtained via the above approaches into the algorithm given in [2] and compute
the optimal crawling rates. To judge the quality of the crawling policy so obtained, we also
look at the associated average freshness as defined in (1). Finally, in the third experiment,
we compare the performance of our two estimators for different choices of {αk} and {ηk},
respectively.

Expt. 1: Comparison of Estimation Quality

Here, we compare four different page rate estimators: LLN, SA, Naive, and MLE. Their
performances can be seen in Fig 1. We now describe what is happening in the two figures
there. Unless specified, the notations are as in Section 2.

In Fig. 1(a), we work with exactly one page. We suppose that the times at which this
page changes is a homogeneous Poisson point process with rate ∆1 = 5. Separately, we set
the crawling frequency arbitrarily to be p1 = 3. This implies that the times at which we
crawl this page is another Poisson point process with rate p1 = 3.

Using the above parameters, we now generate the random time instances at which this
page changes. Alongside, we also sample the time instances at which this page is crawled.
We then check if the page has changed or not between two successive page accesses. This
generates the values of indicator sequence {Ik}.

We now give {Ik}, {τk}, and pi as input to the four different estimators mentioned above
and analyse their performances. The trajectory shown in Fig. 1(a) corresponds to exactly
one run of each estimator. Note that the trajectory of the estimates obtained by the SA
estimator is labelled ∆SA

1 , etc. For the SA estimator, we had set ηk = (k + 1)−γ with
γ = 0.75. On the other hand, for our LLN estimator, we had set αk ≡ 1.

In Fig. 1(b), the parameter values are exactly in Fig. 1(a). However, we now run the
simulation 1000 times; the page change times and the page access times are generated afresh
in each run. We then look at the 95% confidence interval of the obtained estimates.

We now summarise our findings. Clearly, in each case, we can observe that performances
of the MLE, LLN, and the SA estimators are comparable to each other and all of them
outperform the Naive estimator. This last observation is not surprising since the Naive
estimator completely ignores the missing changes between two crawling instances. However,
the fact that the estimates from our approaches are close to that of the MLE estimator—both
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Figure 2: Optimal Crawling Rates and Freshness

in terms of mean and variance—was indeed surprising to us. This is because, unlike MLE,
our estimators completely ignore the actual lengths of the intervals between two accesses.
Instead, they use pi, which only accounts for the mean interval length.

While the plots do not show this, we once again draw attention to the fact that the time
taken by each iteration in MLE rapidly grows as k increases. However, our estimators take
roughly the same amount of time for each iteration.

Expt. 2: Optimal Crawling rates and Freshness

In this experiment, we consider N = 100 pages together. The {∆i} sequence—the mean
change rates for different pages—is obtained by sampling independently from the uniform
distribution on [0, 1], i.e., ∆i ∼ U [0, 1]. We further assume that the bound on the overall
bandwidth is B = 80. The initial crawling frequencies for different pages are set by breaking
up B evenly across all pages, i.e., pi = B/N = 0.8 for all i. Because the pi values are
arbitrarily chosen, these are not the optimal crawling rates. We then independently generate
the change and access times for each page as in Expt. 1. Subsequently, we estimate the
unknown change rate for each page individually.

For each k, we then substitute the change rate estimates given by the different estimators
into [2, Algorithm 2] and obtain the associated optimal crawling rates. In the same way, we
substitute the actual ∆i values there and obtain the true optimal crawling rates. Fig. 2(a)
provides a comparison between these values for a single page. We can see that the estimate
of the optimal crawling rate obtained from our approaches is much better than that of the
Naive estimator.

To check how good our estimate of the true optimal crawling policy is, we look at the
associated average freshness given by1

F (p) =

N∑
i=0

wipi
pi + ∆i

(10)

and compare the same to that of the true optimal crawling policy. This comparison is given
in Fig. 2(b). Somewhat surprisingly, the average freshness does not vary much for all the
three estimators. However, eventually, the average freshness captured by our estimators
becomes much closer to the true optimal average freshness.

1In [2], it was shown that maximising (1) under a bandwidth constraint for large enough T corresponds
to maximising (10) under the same bandwidth constraint.
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Figure 3: Impact of {αk} and {ηk} choices on Performance.

Expt. 3: Impact of {αk} and {ηk} choices

The theoretical results presented in Section 3 showed that the convergence rate of our
estimators is affected by the choice of {αk} and {ηk}, respectively. Figures 3(a) and 3(b)
provide a numerical verification of the same.

The details are as follows. Here, again, we restrict our attention to one single page. For
Fig. 3(a), we chose ∆ = 1000 and p = 200. Notice that the page change rate is very high,
whereas the crawling frequency is relatively a low value. We then used the LLN estimator
with three different choices of {αk}; these choices are shown in the figure itself. The LLN
estimator with αk = k0.75 has the worst performance. This behaviour matches the prediction
made by Theorem 1.

In Fig. 3(b), we again consider the same setup as above. However, this time we run
the SA estimator with three different choices of {ηk}; the choices are given in the figure
itself. We see that the performance for γ = 0.75 is better than the γ = 0.5 case. This is as
predicted in Theorem 2. However, it worsens for the γ = 1 case. Notice that the latter case
is not covered by Theorem 2.

5 Conclusion and Future work

We proposed two new online approaches for estimating the rate of change of web pages.
Both these estimators are computationally efficient in comparison to the MLE estimator.
We first provide theoretical analysis on the convergence of our estimators and then provide
numerical simulations to compare their performance with the existing estimators in the
literature. From numerical experiments, we have verified that the proposed estimators
perform significantly better than the Naive estimator and have extremely simple update
rules which make them computationally attractive.

The performance of both our estimators currently depend on the choice of {αk} and
{ηk}, respectively. One aspect to analyse in the future would be to ask what would be the
ideal choice for these sequences that would help attain the fastest convergence rate. Another
interesting research direction is to combine the online estimation with dynamic optimisation.
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