
HAL Id: hal-03127118
https://hal.inria.fr/hal-03127118

Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transforming Abstract to Concrete Repairs with a
Generative Approach of Repair Values

Roland Kretschmer, Djamel Eddine Khelladi, Alexander Egyed

To cite this version:
Roland Kretschmer, Djamel Eddine Khelladi, Alexander Egyed. Transforming Abstract to Concrete
Repairs with a Generative Approach of Repair Values. Journal of Systems and Software, Elsevier,
2021, 175, pp.19. �10.1016/j.jss.2020.110889�. �hal-03127118�

https://hal.inria.fr/hal-03127118
https://hal.archives-ouvertes.fr


Transforming Abstract to Concrete Repairs with a
Generative Approach of Repair Values

Roland Kretschmera, Djamel Eddine Khelladib, Alexander Egyeda

aInstitute for Software Systems Engineering, Johannes Kepler University, Linz, Austria
bCNRS, IRISA UMR6074, University Rennes 1, Rennes, France

Abstract

Software models, often comprise of interconnected diagrams, change continu-
ously, and developers often fail in keeping these diagrams consistent. Detecting
inconsistencies quickly and efficiently is state of the art. However, repairing
them is not trivial, because there are typically multiple model elements that
need to be repaired, leading to an exponentially growing space of combinations
of repair choices. Despite extensive research on consistency checking, existing
approaches either provide abstract repairs only (i.e., identifying the model ele-
ment but failing to describe the change), which is not satisfactory. This paper
presents a novel approach that provides concrete repair choices based on values
from the inconsistent models. Thus, our approach first retrieves repair values
from the model, turn them to repair choices, and groups them based on their
effects. This grouping lets our approach explore the repair space in its entirety,
providing quick example-like feedback for all possible repairs. Our approach and
its tool implementation have been empirically assessed on 10 case studies from
industry, academia, and GitHub to demonstrate its feasibility and scalability.
A comparison with three versioned models shows that our approach identifies
useful repair values that developers have chosen.

Keywords: Model Repair, Inconsistency Repair, Abstract Repair, Concrete
Repair

1. Introduction

Model-Driven Engineering (MDE) has shown to be effective in the devel-
opment and maintenance of large scale and embedded systems [1, 2]. MDE
typically puts models as a central artifact in the various phases of the develop-
ment process [3, 4]. Indeed, models are used in all development stages, from
specifying the customer’s requirements, design, all the way to source code, with

Email addresses: roland.kretschmer@jku.at (Roland Kretschmer),
djamel-eddine.khelladi@irisa.fr (Djamel Eddine Khelladi), alexander.egyed@jku.at
(Alexander Egyed)

Preprint submitted to Elsevier February 1, 2021



the benefits of increased productivity and reduced time to market [5, 6, 7].
These benefits, however, hinge on the assumption that models remain consis-
tent during development. This is obviously a problem during evolution when
changes happen. Changes may cause inconsistencies and subsequent errors if
engineer do not recognize these inconsistencies in a timely manner. Moreover, if
models are inconsistent, all automation around them is untrustworthy and likely
causes further errors. Therefore, inconsistencies must not only be detected but
ultimately be repaired [8, 5, 9].

A repair is typically a set of model changes that together fix a given in-
consistency. Literature distinguishes abstract and concrete repairs [10, 11]. An
abstract repair identifies a model element to repair (a location in model) but
does not reveal how to change it. A concrete repair additionally identifies how to
change the model element (with a concrete value). A concrete repair can thus be
executed automatically on the inconsistent model to eliminate the inconsistency.

As an example, imagine that a message is passed among two components
and the name of this message is inconsistent, perhaps because its name was
not declared. One possible repair of this inconsistency is to change its name.
Knowing this, constitutes an abstract repair because it identifies the location
(i.e., the name of the message that needs repairing), but not the concrete value
to what the message should be renamed to. Adding this concrete value makes an
abstract repair a concrete repair. The challenge of providing concrete values for
abstract repairs to turn them into concrete repairs is a non trivial task, because
a large set of values may exist and identifying all that would fix the inconsistency
is difficult. Continuing on the previous example, the problem is that there are
infinite strings available for renaming that message. Thus, there are practically
infinite concrete repairs and it is infeasible to compute and impractical to list
them all. The challenge is thus to identify a subset of names that could form
actual useful repairs. Whereas abstract repairs for model inconsistencies are
computable in a scalable manner [12, 13, 14, 15], it is challenging to deal with
concrete repairs in a scalable manner and provide a sufficient amount of choices,
i.e., don’t overwhelm the engineer with too many options, yet provide the repairs
needed. This paper addresses these very particular challenges.

State of the art identifies two kinds of strategies for computing concrete
repairs for model inconsistencies. The first kind relies on predefined repair
strategies tailored to specific models or consistency rules [12, 16, 17]. Deriving
these strategies can be time consuming and they are not generic/reusable. The
second kind computes repairs for inconsistencies relying on solvers (e.g., SAT
or CSP solvers [18, 19]). However, their downside is that not all relevant repair
combinations may be explored, for example, through the use of heuristics for
generating repair values.

Our approach introduces a third kind of reasoning. We argue that there are
situations where exhaustive exploration of all possible repair values is unnec-
essary. The premise of our work lays in the fact that the inconsistent models
already have the ingredients for their repairs. The idea in itself is not new. Using
existing information for fixing inconsistencies has already shown to be effective
in fixing bugs [20] or programming recommender systems. This paper, hence,

2



explores the same idea in the context of the repairing of model inconsistencies.
That is when an engineer evolves a model, intermittent inconsistencies can arise
as a consequence of their initial changes. For example, a developer changing
one diagram of a model may cause inconsistencies between this diagram and
other diagrams that remain, as of yet, unchanged. Hence, these changes may be
treated as correct albeit incomplete. Based on this assumption, we can use use
information that already exists in the inconsistent models to repair the arising
intermittent inconsistencies. Continuing on the example above, if we assume
that message name and declaration were consistent originally and an engineer
changed the message name such that it does not match any declaration then a
repair is likely about adding or changing an existing declaration in the models
such that it matches the new message name. Hence, the name of the message
(a value) becomes a repair choice for the creation/renaming of a declaration.

The idea is also to use the information already present in the model for con-
sistent change propagation. In consistent change propagation an inconsistency
is introduced by an incomplete change performed by a developer. This change
should have been propagated to other parts of the model, but was not carried
out entirely. As our approach relies on the models’ values, including those in-
troduced by changes causing inconsistencies. Our approach, hence, can be used
to compute repairs in the context of consistent change propagation.

By leveraging on values for inconsistent models, this in turn limits the num-
ber of possible repair choices. However, limiting the repair choices in this manner
does not remedy the combinatorial effects of a sequence of changes. So, if there
are n model elements and m concrete values for each model element to repair,
then we need to explore mn combinations. All of these must be explored to
obtain a complete overview over all possible repairs even though only one is
selected by the engineer at the end.

To address this scalability problem, our approach builds on the work of
Reder et al. [21, 14] with the intent of understanding repair choices that have
the same effect(s) and need not be considered in isolation. Our paper proposes:

1. Various generator functions to generate concrete values for changing model
elements. The generator functions are designed independently from any
abstract repair, inconsistency, or model and are thus reusable.

2. An algorithm to transform abstract repairs to concrete repairs using the
concrete values from the generator functions. Our algorithm takes each ab-
stract repair and a set of generator functions, and transforms the abstract
repair into multiple correct concrete repairs. The algorithm is generic and
can easily be extended with new generator functions.
The algorithm explores in depth concrete repairs and keeps the ones that
fix the inconsistency entirely. In particular, when several values must be
combined to form an entire concrete repair, we only present to the user
combinations of values that are able to fix entire inconsistencies automat-
ically. This way the user is not overwhelmed.

3. A scalable exploration of combinations of repairs (i.e., possible mn). Sev-
eral key observations make this possible. When multiple values are com-

3



bined to form concrete repairs, one invalid value would result in many
invalid combinations (i.e., incorrect concrete repairs). Even valid values
on their own may contradict each other when combined. An example of
an obvious invalid combination is, if the above message name was to be
changed to a valid declaration name but at the same time the name of
that declaration is changed as well. Hence, making the renamed message
instantly inconsistent again. Moreover, if two values have the same im-
plication onto the inconsistency then they can be grouped. Our approach
combines groups of values if they have similar effects on the repair of in-
consistencies. The concrete values corresponding to those valid boolean
combinations (i.e., validating to true) are the only ones that are needed
to compute concrete repairs.

4. An evaluation of the usability of our approach by retrieving actual repairs
from three versioned models. If an inconsistency in an earlier version of a
model was not found in a later version then we identified the model changes
that resolved these inconsistencies. We then compared these retrieved
actual repairs with the ones our approach would generate. Among the
inconsistencies in our versioned models, our approach identified all actual
concrete repairs applied manually by the user. We also evaluated the
scalability of our approach by systematically computing concrete repairs
for inconsistencies found. For this part of the evaluation, we complemented
the above three models with an additional seven, larger models to cover a
wider range of model sizes. This evaluation showed that we were able to
discover concrete repairs within a few milliseconds on average.

This paper is an extension of our previous work (Kretschmer et. al. [22])
consisting of contributions 1 and 2. Contributions 3 and 4 are the new extensions
in this paper. Moreover, we added four additional models to the evaluation of
the new contributions in this paper.

This paper is structured as follows. Section 1 presents the introduction
and context for this paper. Section 2 introduces a running example showing the
problems encountered when transforming abstract to concrete repairs. Section 3
gives definitions of the concepts used in this paper. Section 4 presents the of how
to transform abstract to concrete repairs with the help of generator functions.
Section 5 extends and improves this algorithm by introducing a value filtering
mechanism before the transformation. Section 6 shows the evaluation and gives
promising results. Section 7 presents the threats to validity. Section 8 discussed
the related work. Section 9 summarizes this paper and gives ideas on future
work.

2. Running Example

To illustrate our approach, we use a motivating example of a secure mobile
phone environment (e.g., for managers of companies). Figure 1 depicts example
snippets of two different UML diagram types of this system: a class diagram
and a sequence diagram.

4



(a) Class diagram (b) Sequence diagram

Figure 1: UML model snippets of secure mobile system

The class Manager (Figure 1a) initiates the process of performing a secure
call to another phone. Class Mobile Phone handles the user interaction, e.g.,
receiving user input and ensures a secure workflow while being active. The
sequence diagram in Figure 1b describes the workflow of a manager performing
a call by calling operation login on an instance of class Mobile Phone, which
then enables security by calling operation init* and notifies the manager m via
operation notify. Manager m then performs a secure call via calling operation
doCall*.

The models shown in Figure 1 are extended with a UML Profile to fit the
domain of a mobile phone. The profile adds the isSecure attribute to mes-
sages and operations. If the isSecure attribute is enabled (i.e. set to true) the
corresponding operation or message has an appended asterisk(*) in its name.

For the model to be correct, a secured message from a lifeline must have
a secured corresponding operation in its corresponding class. This correctness
criteria can be defined as a consistency rule, as shown in Listing 1. We use the
Object Constraint Language (OCL) [23], a declarative language based on first
order logic, to define consistency rules (CRs) for UML models [24, 14, 12, 19].
Consistency rules define specific constraints that must hold in software models.
These constraints express relations among model elements that can range from
well-formedness conditions, non-functional properties such as maintainability or
usability [25, 26], or domain-specific rules such as the above one imposed by the
security UML profile. Listing 1 shows one example of a CR specified with OCL.
A consistency rule defines the type of model element it applies to as its context.
For example, this CR applies to lifelines which means that every lifeline has to
satisfy its condition.

Consistency Rule (CR1)
context: Lifeline
self.messages ->forAll(m: self.class.operations ->exists(o: o.name

= m.name and o.isSecure implies m.isSecure = true))

5



//Every message in the sequence diagram has an operation in the
corresponding class. And if the message is secure then the
operation has to be secure as well.

Listing 1: OCL consistency rules for the models in Figure 1

The condition of this CR1 is to ensure that every message in the sequence
diagram has an operation in the corresponding class. And if the message is
secure then the operation has to be secure as well. Now imagine that an engineer
renamed operation init* from class Mobile Phone to encrypt*, but forgot to
also rename message init* in the sequence diagram. Doing so violated the
above consistency rule and the following inconsistency occurs:

I Violation of CR1 Message init* has no corresponding secure operation in
class Mobile Phone.

This inconsistency occurs because the two diagrams are interconnected and
changing one affects the other. To resolve this inconsistency, the developer needs
to make another change – for example, to rename message init* in the sequence
diagram. We may think of the inconsistency the developer caused with the first
change is an intermittent inconsistency of a correct, albeit incomplete larger
change (involving multiple model elements of different diagrams).

If there are multiple, alternative changes that repair an inconsistency then
we speak of repair choices. The inconsistency above has at least one repair
choice: To change the name of the init* message in the sequence diagram.
This represents an abstract repair choice, since it does not reveal to which name
(value) the message should be renamed to. To provide a concrete repair choice
for this inconsistency we need concrete values. In this work, those values are
provided through generator functions [22]. Our approach uses those functions to
compute possible values for model elements or their attributes such as lifelines,
names for messages, operations, etc. To rename message init*, we thus need
to find values that are useful, meaningful names (regardless of whether they are
able to repair the inconsistency). As an example, consider a value generator
returning values for message init*. For simplicity, let us take names from
the class Mobile Phone which the lifeline phone instantiates. These values
are: {login, doCall*, turnOn, turnOff*, encrypt*}. All method names are valid
message names but are all of them valid concrete repair choices?

Consider again the inconsistency I. On closer inspection, we find two con-
ditions in the CR in Listing 1 which are combined through a logical and. Both
conditions are violated ("o.name = m.name" and "o.isSecure implies m.isSecure
= true"). All provided values from the above value generator function repair the
first condition, but only some of them repair the second condition. Thus, only
a subset of the values are able to fix the inconsistency (i.e., {doCall*, turnOff*,
encrypt*}). This is a simple example of how values can be useful for one con-
dition (o.name = m.name) of an inconsistency but not for another (o.isSecure
implies m.isSecure = true). Among all the possible values, we thus need to find
the ones which actually do repair the inconsistency.

6



Unfortunately, repairs get even more complicated in cases where multiple
model elements are involved. In this situation, combinations of their respective,
possible values have to be considered to repair the inconsistency. This leads to
an exponential number of value combinations.

The combination of values is exponential with: (#values#modelElements).
Exploring these combinations is made even more complicated, because valid
values for one model element might be invalid when combined with another
valid value from a different model element. As observed by Reder et al. and our
own previous work [24, 22], inconsistencies often have multiple model elements
which need to be repaired, and therefore an efficient way of exploring value
combinations is needed.

This paper proposes a novel approach for computing concrete repairs in
a scalable manner. Our approach identifies valid values and then efficiently
combines them into concrete repairs.

3. Background

This section provides definitions and examples of relevant terms used in
the paper. Our terminology differs substantially from our previous work (see
[21, 27, 24]), which we adopted and extended as follows:

3.1. Definitions
Definition 1. Model. A model M consists of model elements (e ∈ M) where
model elements can have properties p. A property of a model element is referred
to by element dot (.) property name, e.g. "encrypt*.name". A diagram is
simply a subset of model elements from the model. We also define the set of all
possible models as MΣ where M ∈MΣ.

Examples for model elements are classes, associations, messages, etc. Ex-
amples for properties are a name of a class, the multiplicity of an association,
the lifeline of a message.

Definition 2. Consistency Rule. A consistency rule is a condition defined
for a context. The condition itself is a hierarchically ordered (tree-based) set of
expressions, where the root expression corresponds to the condition as a whole
and its subexpressions correspond to parts of the condition. An expression iden-
tifies an operation, has a single parent and one or more children and values to
be validated.

For example, CR1 from Section 2 defines a condition that every lifeline has
to satisfy. Recall that the above CR has two parts connected by a logical and.
The and expression has children: o.name = m.name and o.isSecure implies
m.isSecure = true, where o.name = m.name is an equals subexpression with
two leaf expression o.name and m.name. Typically, leaf expressions either ac-
cess model elements or constants.

7



Definition 3. Expression. An expression is a part of a condition. Each ex-
pression has one or more children, zero to one parents, and an operation over
the children.

e :=〈op, children, parent, se2v〉

We define the following special kinds of expressions:

er The root expression, which is expected to validate to true (if not, there is
an inconsistency).

ep The property call expression (without children) provides model values (e.g.,
the name of operation turnOn).

ec The constant expression, which returns a constant value.
eb The boolean expression, which performs boolean operations (e.g., NOT,

AND, etc.) and returns true or false based on its validation.
ev The value comparison expression, which is used to determine if a value is

suitable for fixing an inconsistency.

For example, the and expression in CR1 computes the logical and of its
two child expressions. Obviously, these two child expressions must validate to
boolean results for well-formedness.

Definition 4. Validation Tree. A consistency rule validated on a specific
model element is a validation. A validation tree mirrors the tree-structure of
the consistency rule condition. However, in case of repetitions (e.g., forAll
quantifier above) their (sub)tree-structures repeat for every iteration. Hence, the
validation tree is an exact log of each operation computed during the validation
of a condition.

For example, there are two lifelines in Figure 1b: m:Manager and phone:Mobile
Phone. Hence, there are two validations, one for each lifeline. Each validation
checks if a consistency rule’s condition validates to true for its given context.
This can be done recursively for every expression/subexpression of a condition.
The root expression of a condition is expected to validate to true, however, as
earlier work has shown, this expectation may change with subexpressions (e.g.,
because of negations [24]). As an example, Figure 2 shows a validation tree for
CR. This validation tree will be explained in detail in the next section.

Definition 5. Scope Element. A scope element is a model element and its
properties (e.p) accessed during the validation of a consistency rule. A set of
scope elements is called a scope. The scope is derived from the various property
call expressions of the validation tree.

Definition 6. Cause. A causei of an inconsistency i is all the expressions
whose validation caused the root expression (the condition) to validate to false.
Only these expressions caused the inconsistency and only these expressions need
repairing. A cause is a subset of the scope.

8



self.messages[phone]r

A

m:Message in {login, init*, notify, doCall*} 

o:Operation in {login, ..., encrypt*} E

m=init*m=login

...

...

...

...

m=...

o=login
o=...

o=encrypt*

=>

>

=

=

o.name["encrypt*"]m.name["init*"]

o.isSecure[true]

m.isSecure[true] true

Figure 2: A Validation Tree for CR

Definition 7. Repair Action. A repair action defines a change of a model
element property that resolves an inconsistency in part or full (often multiple
repairs actions are needed to resolve an inconsistency). A repair action identifies
the model element (e) and the property (p) it applies to (that it will change), the
type of operation (op), and a value (v, which can be a model element v ∈M, or
a primitive value v ∈ V) or no value(∅) applied to the property. The following
types of operations are possible: ⊕ adds a value to a property that is a collection,
	 deletes a value from a a collection and � modifies the value of a property.
In addition there are the constraining operations: 6=, <, >, where respectively
a property has to be different from the value, less than the value, or greater
than the value. P(x) is the power set of x. Please note that the definition of
an repair action’s operation is not the same as the operation of an expression.

ra := 〈e.p, op, v〉, op ∈ {⊕,	,�, 6=, <,>},
v ∈ P(V) ∪ P(M)

execute : 〈MΣ,RA〉 → {M ∈MΣ, 〈e.p, op, v〉} 7→

x ∈MΣ|x = (M \ e) ∪ e′|



e′.p = e.p ∪ v if op is ⊕
e′.p = e.p \ v if op is 	
e′.p = v if op is � and v is not ∅
e′ = e if op is 6= or < or >

e′ = e if v is ∅

9



Furthermore we define the function execute, which performs a given repair
action by applying the above model changes to the model. This function maps
from a tuple of repair action and model (〈MΣ,RA〉), where RA is the set of
all possible repair actions and MΣ all possible models) by defining a new model
state x in which the old model element e is replaced with a new model element
e′ ((M \ e) ∪ e′). For this new model element e′ its corresponding property is
changed based on the provided repair action operation op (⊕, 	, �). If no value
(v is ∅) has been provided or the operation is different ( 6=), greater than (>) or
less than (<) nothing changes in the model (e′ = e).

Definition 8. Abstract Repair Action. An abstract repair action is a repair
action, without values (∅). We also define the function isAbstract which checks
if a given repair action is abstract, i.e., if the value is equal to ∅ (ra.v ⇔ ∅) or
the operation is either 6=, > or <. This function returns a boolean value (B),
where true is abstract and false is not abstract.

isAbstract : RA→ B, ra 7→ ra.v ⇔ ∅ ∨ ra.op ∈ {6=, >,<}

As an example the inconsistency I discussed in Section 2 can be fixed by
changing the name of message init*. Expressed as an abstract repair action
this leads to: 〈init ∗ .name,=,∅〉. Note that this abstract repair action is a
hint and is not automatically executable yet, because we do not have a value
for init*.name.

Definition 9. Concrete Repair Action. A concrete repair action is a repair
action with always a concrete value (v ∈ P(V) ∪ P(M))

We also define an operation eliminate (�) which takes a specific set of con-
crete repair actions (CRA) and removes their corresponding scope elements from
the cause (causei) via execution (execute). Please note that execute only re-
moves the concrete repair action’s corresponding scope element and not the entire
cause.

cra := ra ∈ RA|¬isAbstract(ra) ∧ execute(ra) � causei

To eliminate the cause for I (from Section 2) we have to execute the concrete
repair action: cra = 〈init∗ .name,=, ”encrypt∗”〉 that renames message init*
to encrypt*. After cra has been executed message init* is removed from the
cause and does not take part in the inconsistency anymore. Note that it might
be necessary to change multiple scope elements to fix an inconsistency. For that
purpose, we define groups of repair actions as follows.

Definition 10. Repair. A repair is a non empty collection of repair actions
(ra) that resolve a cause of an inconsistency (i), where I is the set of all possible
inconsistencies and RAi the set of all possible repair actions for i. This set may
contain abstract and/or concrete repair actions. If a repair action is concrete it
also eliminates its cause by execution (execute(x) � causei).

10



〈i ∈ I, ra ⊆ RAi|{x ∈ ra|isAbstract(x) ∨ ¬isAbstract(x)⇒
(execute(x) � causei)}〉

We speak of an abstract repair if the set of repair actions contains at
least one abstract repair action (ra ⊆ RAi|(∃x ∈ RA|isAbstract(x)), and we
speak of a concrete repair if all repair actions are concrete (ra ⊆ RAi|(∀x ∈
RA|¬isAbstract(x)). Please note that only a concrete repair is able to elimi-
nate a cause entirely and therefore can fix an inconsistency.

As presented above, the abstract repair 〈I, {〈init∗ .name,=,∅〉}〉 for the the
inconsistency I can be turned into a concrete repair by changing the message’s
name to a specific name, i.e., 〈I, {〈init ∗ .name,=, ”encrypt ∗ ”〉}〉.

Definition 11. Generator Function. We define a generator function which
maps the tuple set of all scope elements and model (〈SE,M〉, where SE is the
set of all possible scope elements) to multiple model elements and their property
values (P(M) ∪ P(V), where P is the power set).

gf : 〈SE,M〉 → P(M) ∪ P(V)

As an example, let us consider the abstract repair action from the previous
definition (Definition 10). It is obvious that we need concrete values (i.e., specific
operations from classes) for this abstract repair to become a concrete repair. For
this we use the generator function: gf(〈init ∗ .classes.operations〉,M), which
returns all operations from the model (M): login, doCall*, turnOn, turnOff
and encrypt* from class Mobile Phone, and notify and answer from class
Manager. A more optimized way to return operations would be to return only
Mobile Phone’s operations, because instances from class Mobile Phone cannot
call operations from class Manager. However, this would limit the versatility
of this generator function to only inconsistencies involving class Mobile Phone.
We also map this generator function to the type lifeline and the property
messagesReceived, so we can get all needed operation names if we discover an
instance of type lifeline.

3.2. Consistency Checking
Consistency checking is a well-covered topic in literature. In this section, we

explain one such approach on a simple example. To illustrate the consistency
checking mechanism we use a simple consistency rule CR2.

context: Message self.class.operations->exists(o:self.name = o.name) CR2 checks
if a messages has an operation with the same name in its correpsonding class.

Figure 2 shows the instantiation of this consistency rule for the message
init*. The root expression represents the model element, for which the con-
sistency rule is instantiated self[init*:Message]. The next expression is an
exists expression (∃) where at least one of its children has to fulfill the con-
dition defined in CR2 (self.name = o.name).

11



self[init*:Message]

Eo:Operation in {login, doCall*, ...}
o=login

o=doCall*= =

self.name["init*"] o.name["login"]

F

F

...

...

Figure 3: A Simple Validation Tree for CR2

At the exists expression we create one subtree for every operation in class
Mobile Phone. For simplicity we only show the subtree for operation login.
Please note that the subtrees for the other operations have the same subtrees,
except with different names for the message and operation. The subtree for
operation login represents an equals expression (=) which compares the values
returned by their children for equality. The comparison is between the message’s
name init* and the operation’s name login.

The scope elements of those expressions in the validation tree in Figure 3
are all operations from class Mobile Phone: [login:Operation].name,
[doCall*:Operation].name, [turnOn:Operation].name,
[turnOff*:Operation].name, [encrypt*:Operation].name, Message init*
[init*:Message].name, Mobile Phone:Class and phone:Lifeline. Together
those eight scope elements form the scope for CR2.

In the validation tree, the root expression is expected to validate to true (i.e.,
consistent) and so its children expressions. For example, the ∃ and = expressions
in Figure 3 are also expected to validate to true. If the root expression validates
to false, then we detect an inconsistency. To compute the validation result of
a validation tree, we start from the leafs (bottom) and start computing the
validation result of the subexpressions (parent nodes) and continue this process
until the root expression.

In Figure 3, since the name "init*" is unequal to "login" the subtrees’
validation results is false (denoted with a red F). At the exists expression (∃)
there has to exist at least one subtree in its children with the validated result
true, but in this example the subtree validates to false, because there is no
operation with the name init*. Thus, the exists expression validates to false,
which is the same validation result of the root expression. This is how our
approach detects an inconsistency I2 in the model.

3.3. Repair Generation
In the previous subsection, we explained how inconsistecy I2 is detected

in our model. In this section we introduce, how we can repair I2. Before to
compute the repairs, we first need to identify the cause of an inconsistency.

Take again the inconsistency from CR2. To identify the cause
for this inconsistency we take the scope from the previous section

12



Consistency Rule Validation Tree

Expression

PropertyCall

Constant

ValueComparison

Boolean

Model Model Element

Scope Element

Repair ActionOperation

Repair

ScopeElementValue

Property Value
1..*

*

*

1

* *

1..*

1..*

1..*

1..*

1..*

1..*

1

1

1

*

1

1 1

1

1..*

1

1

1

*

*

*

*

1 1

1 1

1

0..1

*

11

1

1

context

root

parent

scope

cause

true/falseSet

Consistency Rule

Figure 4: UML class diagram for the definitions

scope = {[login:Operation].name, [doCall*:Operation].name,
[turnOn:Operation].name, [turnOff*:Operation].name,
[encrypt*:Operation].name, [init*:Message].name, Mobile Phone:Class,
phone:Lifeline}. We then check for every scope element, if it is part
of a violated expression, i.e., validation result 6= expected result (valida-
tion result of those expressions is false in Figure 3), we add it to the
cause of the inconsistency. The cause of our example shown in Figure 3
is cause = {[login:Operation].name, [doCall*:Operation].name,
[turnOn:Operation].name, [turnOff*:Operation].name,
[encrypt*:Operation].name, [init*:Message].name}.

To generate repair actions we iterate over every scope element in the cause
and look for every violated expression were the scope element is used. We then
generate a repair action so that the direct violated expression is validated. For
instance, the scope element [login:Operation].name is used in the violated =
expression in the right hand side of the validation tree shown in Figure 3. Based
on this expression we know that the equals condition = is not fulfilled, since
name login is unequal to name init*. Therefore, the repair action for the scope
element init* would be to rename it to login 〈init ∗ .name,�, ”login”〉, which
leads to the repair 〈I2, {〈init ∗ .name,�, ”login”〉}〉 that fixes the inconsistency
when executed.

However, changing the name of message init* to login is not the only valid
repair for fixing I2. Based on the = expression in Figure 3, another repair can
be generated for the scope element login which is to rename operation login
to init* 〈I2, {〈login.name,�, ”init ∗ ”〉}〉. This repair also fixes I2.

3.4. Relations of the Defined Terms
For a better understanding of how our defined terms are related to each other

we given an overview in Figure 4. This figure shows a UML class diagram of

13



Figure 5: Overall approach.

the definitions from the previous section depicted as classes (without attributes)
and their associations. For instance a Validation Tree has exactly one Model
Element as context element, depicted as association from Validation Tree to
Model Element with the name context. In turn, one Model Element can be
used by multiple Validation Trees as their context element.

The boxes highlighted in grey are the foundation of our approach and are
provided by an engineer.

4. Approach

This section presents our algorithm to convert abstract repairs to concrete
repairs. It is important to note that the efficient computation of abstract repairs
is essentially a solved problem. In providing an algorithm for efficiently com-
puting concrete repairs, we essentially provide values to abstract repairs. Since
there are often multiple useful values or value combinations, our algorithm typ-
ically provides a set of concrete repairs for any given abstract repair.

4.1. Overview
This section describes our approach and explains the main ideas of our ab-

stract to concrete repair algorithm.
Figure 5 shows the basic workflow, which consists of the following four stages:

The first stage (denoted with 1) checks a model for inconsistencies based on
the provided consistency rules. We build on the work of Reder et al. [24, 21]
to compute abstract repairs for a given inconsistency. Those inconsistencies
are converted into validation trees. Note that trees for abstract repairs do not
yet have concrete values as leaves (e.g., concrete values to repair an inconsis-
tency). This means that abstract repairs identify which model elements should
change but not how to change them. The main purpose of validation trees is to
match expected validation results with actual validation results for computing
the cause(s) of an inconsistency and subsequently the repair tree. If there is
a mismatch between the expected and the actual result then we know which
model element and its corresponding property needs to be repaired.

14



The second stage (2) then applies generator functions to retrieve value
sets (e.g., v1, v2, v3) for model elements and corresponding properties identified
by the abstract repair. Those values are then explored to test whether they are
able to fix the corresponding inconsistency - in part or full. Incorrect values are
removed from the value sets.

The third stage (3) explores repairs by starting at the leaf expressions of the
validation tree from stage 1 and applies the value sets from stage 3. This is done
by checking the values with the conditions of each expression and putting them
in a true or in a false set recursively until the root expression is reached.
This stage also provides two sets, one for values which fix the inconsistency
(referred to as true set) and one with values that do not fix the inconsis-
tency (referred to as false set). The elements of those sets are referred to
as ScopeElementValue. The values in the true set are guaranteed to fix the
inconsistency, since we checked them with the conditions from the validation
tree, i.e., the consistency rule itself. Finally, the values in the true set is used
to form concrete repairs that can be executed automatically on the inconsistent
model.

The fourth stage (4) explores combinations of values from stage three using
again the tree structure from stage one. The tree structure reveals how the
values relate and whether or not the values resolve the inconsistency in part
or in full. This final stage leads to combinatorial exploration to identify which
value combinations do repair the inconsistency.

4.2. Generator Functions
Central to our approach are the generator functions, which provide values

model element properties. These values are derived from the model and not
invented. Essentially, we presume that engineers already provided the infor-
mation needed for repairs through previous changes. The generator functions
thus mine the model for possible values. Obviously values need to respect type
compatibility (i.e., if a name is to be repaired then strings are needed).

The following identifies 42 generator functions that follow one of two types
(21 type 1, 21 type 2). Engineers can easily add additional generator functions
if needed, or modify existing ones. These two types of generator functions are
discussed next.

Type 1: All values of a specific type: This type of generator functions
returns all values of a specific type, for example, all existing strings or operations
from the model. The benefit of this type of generator functions is that they
are very generic and can be reused over a wide range of abstract repairs and
models without having to adapt or change them. The disadvantage of this type
of generator functions is that it tends to lead to a large number of values to
validate. For example, consider again that a name needs repairing. A name is
of type string and such a string might already exist elsewhere (e.g., in another
diagram that was changed earlier). However, there are typically thousands of
such strings in medium to larger size models; even if we restrict the time scale
to changes within the last days or weeks, there are still many string. Still, these
generator functions can provide useful values.

15



Algorithm 1 Generator function for all strings within a model

1: function GetAllStrings(m ∈M, p ∈M,M) : P(M) ∪ P(V) . m is a
model element, p the corresponding property and M the model

2: values← ∅
3: if p isType ’string’ then
4: values←M.getElementsOfType(’string’) . Utility function
5: end if
6: return values
7: end function

Algorithm 1 shows the implementation of a generator function of type 1 for
a property of type ’string’. The generator function is registered for a specific
type and property (e.g. type class and its property name). This allows our
algorithm to call the generator function on all abstract repairs which involve
fixing strings.

Type 2: All values of a specific type for a specific property: In con-
trast to type 1 generator functions, this type of generator functions is tailored
not only to a type but also to a specific model element property (e.g. names for
classes, names for lifelines, messages for lifelines, etc). The advantage of this
type of generator functions is that they return a much smaller subset of values
than type 1 generator functions. For instance all class names are a subset of all
strings, which leads to a reduced amount of value validations. The disadvantage
of this type of generator functions is that in large software models this still can
lead to many values, for instance there can be thousands of classes in a large
software project.

4.3. Transforming abstract repairs to concrete repairs
4.3.1. Main Algorithm

This section explains our main algorithm on how to transform abstract to
concrete repairs.

Algorithm 2 shows the pseudo code for our approach. The algorithm is
divided into several phases for a better understanding.

Phase A: input and initialization (Lines 1–4). The input of our al-
gorithm is a specific inconsistency i, a specific model element m for which we
want all abstract repairs to be transformed, and a set of generator functions gf.
The model element m helps to focus only on those abstract repairs where m is
involved.

Phase B: main iteration, preparing scope elements (Lines 6–14 and
Line 35). This phase iterates over all relevant abstract repairs selected in phase
one. First it selects the corresponding abstract repair actions from which scope
elements are collected. This is needed for the generator functions.

Phase C: Iteration over all scope elements (Lines 16–34). This phase
iterates over all previously acquired scope elements and retrieves all values from

16



Algorithm 2 Abstract repair to concrete repair transformation algorithm

1: function ConvertAbstractRepairsForM(i ∈ I, m ∈ M, gf ⊆ GF, M)
: {x|x ∈ RA} . i is an inconsistency, m a model element contained
in at least one abstract repair, and gf a set of generator functions, and M a
model

2: concreteRepairs← ∅ . Contains all converted repairs in the end
3: . Contains all abstract repairs from i containing m
4: repairs ← {x ∈ R|i = x.i ∧ (∃y ∈ x.ra|y.e = m.e ∧ y.p = m.p) ∧

isAbstract(x)}
5: . Iterate over all relevant abstract repairs in i to convert them to concrete

repairs
6: for all r ∈ repairs do
7: . Only convert abstract repair actions
8: repairActions← {x ∈ r.ra|isAbstract(x)}
9: scopeElements← ∅ . Set of all relevant scope elements

10: se2v ← ∅ . Map for scope elements to values from their gf
11: . Collect all scope elements from repairActions to get model values
12: for all ra ∈ repairActions do
13: scopeElements← scopeElements ∪ 〈ra.e〉
14: end for
15: . Prepare values for every scope element depending on property type
16: for all se ∈ scopeElements do
17: root← validateV alues(i.root, gf)
18: values← root.true[se]
19: if isMultiV alue(ra.e.p) then . Property is a collection
20: actualSize← |ra.e.p| . Current size of the collection
21: . Needed size of r.p to resolve i
22: requiredSize← getRequiredSize(ra.e.p, i)
23: if actualSize < requiredSize then
24: . Collection has not enough values, calculate difference
25: diff ← requiredSize− actualSize
26: . Generate value combinations
27: values← getCombinations(values, diff)
28: else if actualSize > requiredSize then
29: . Collection has too many values
30: diff ← actualSize− requiredSize
31: values← getCombinations(ra.e.p, diff)
32: end if
33: end if
34: end for
35: se2v ← se2v ∪ 〈se, values〉 . Add scope element with its values
36: end for
37: combinations← combineScopeElements(se2v)
38: . Convert combinations into concrete repairs
39: concreteRepairs← getRepairs(combinations, i)
40: return validateRepairs(concreteRepairs, i)
41: end function

17



the generator function by calling getValues(). If a property is a collection then
we enter phase D.

Phase D: Collection type properties (Lines 19–32). This phase com-
putes if values have to be added or removed to property p (which is a collection
of values), and performs the necessary generation of combinations. First the
actual size of p is calculated (actualSize), and then the needed size p is com-
puted to fix the corresponding inconsistency (requiredSize, this information is
embedded in the inconsistency itself). If the collection e.p has too few elements
(actualSize < requiredSize), the algorithm then calculates the needed amount
of elements to be added (diff). We then generate all combinations of size diff
from the value set. The combination generation process implements the bino-
mial coefficient

(
n
k

)
, where the order of elements is not relevant and elements

are unique. If the collection has too many values the procedure is analogously
executed.

As example, consider the abstract repair action 〈phone.messages− > size(),
≥, 2〉, which states that phone has to have at least two message calls (maybe
one to turn the device on, and another one to turn it off). Furthermore in
this example, phone has no message call from another class. To convert this
abstract repair a generator function returns the value set of all operations from
class Mobile Phone: login, doCall*, turnOn, turnOff* and encrypt*. Now(|values|

2

)
= 10 combinations are generated: login, doCall*; login, turnOn;

login, turnOff*, etc.
Phase E: Combination of scope elements , validation (Lines 37–40).

This phase of our algorithm performs the combination of scope elements (i.e.,
several scope elements in an abstract repair with the help of the Cartesian prod-
uct) and validates the resulting concrete repairs. First, the Cartesian product
is generated for all scope elements involved in the current abstract repair.

Finally, all the combinations have to be checked if they are indeed able
to fix I [14]. However, this process is very time consuming in cases where
generator functions return many values and multiple model elements have to be
repaired at the same time. In this case abstract repairs might not be able to
be transformed into concrete repairs (i.e., too many combinations). In the next
Section we introduce a novel mechanism to determine which values provided by
any generator function are able to fix an inconsistency before combining them
in Phase E. This means that if the values have to be combined for concrete
repairs those combinations do not have to be checked for their correctness any
more.

4.3.2. Helper Functions
This section gives and explanation of the used helper functions in Algo-

rithm 2. For simplicity, we will give the signature of those functions and one
example to illustrate the usage.

Allgortihm 3 shows the signature of the getRequiredSize function. The
inputs are a model element me with its property p and an inconsistency i. This
function assumes that property p is a collection, i.e. it can store multiple values,
and returns the required size of that collection to fix i. Consider the following

18



Algorithm 3 Get required size

1: function getRequiredSize(me.p ∈M, i ∈ I) : integer
2: . Only signature given
3: end function

Algorithm 4 Combine scope elements

1: function combineScopeElements(se2v ← {x|x ← 〈se ∈ SE, values ←
{y|y ∈ "arbitrary value"}〉}) : {x|x ← {y|y ∈ RA}}

2: . Only signature given
3: end function

consistency rule: context: Class self.operations->size() < 3 This rule checks if
a class has less than three operations. The function getRequiredSize takes
now a class model element and its operation property and gets the required
size from i. The inconsistency i contains the validation tree with the necessary
amount of elements in the collection (contained in a less than expression).

Algorith 4 shows the signature of the function combineScopeElements. Here
se2v is the input set where every element represents a tuple of one scope element
se and its corresponding value set values. Such a tuple can be interpreted as
a repair action, since it contains a scope element and a value. This input set is
then converted to a set of repair actions (following the Definition 7).

As an example consider the following input set {〈a, {1, 2}〉, 〈b, {X,Y, Z}〉}
where a and b are scope elements and 1, 2, X, Y, Z are valid values from
the model. This input set is then converted to the following result with the
help of the Cartesian product: {{〈a,�, 1〉, 〈b,�, X〉}, {〈a,�, 1〉, 〈b,�, Y 〉}, . . . ,
{〈a,�, 2〉, 〈b,�, Z〉}}

Algorithm 5 shows the signature of the function getRepairs. It converts
the set of repair actions to a repair by appending the inconsistency i to the
corresponding repair actions.

For example, consider inconsistency i and the following repair action: {{〈a,
�, 1〉, 〈b,�, X〉}, {〈a,�, 1〉, 〈b,�, Y 〉}, . . . , {〈a,�, 2〉, 〈b,�, Z〉}}

This is converted to the following repairs: {〈i, {〈a,�, 1〉, 〈b,�, X〉}〉, 〈i, {〈a,
�, 1〉, 〈b,�, Y 〉}〉, . . . , 〈i, {〈a,�, 2〉, 〈b,�, Z〉}〉}

4.4. Value Filtering
This section presents our automated algorithms to instantly discover valid

values for all model elements that could be changed (i.e., scope elements) to
repair a given inconsistency. The valid values can then be immediately used
to create concrete repairs while filtering invalid values. First we give a general
overview, then we describe how we divide the initial provided values into a set
of valid and invalid values with the help of the validation tree.

19



Algorithm 5 Get repairs

1: function getRepairs({x|x ← {y|y{x|x ← {y|y ∈ RA}, i ∈ I}) : {x|x ∈
R}

2: . Only signature given
3: end function

4.4.1. Value validation
In this section, we describe in detail the first step from stage three of our

value filtering mechanism. In this step, we recursively iterate over the expres-
sions in the validation tree, and separate the provided values for the scope
elements into a true set and a false set, i.e. we abstract from concrete values
to boolean value sets true and false. The true set contains for every scope
element the values which validate its corresponding expression (e.g., ∧, =, >,
. . . ) to true. The false set contains for every scope element the values which
validated its corresponding expression to false. This step is crucial because it
automatically groups concrete values based on their effects on the causes of the
inconsistency into true and false sets. Algorithm 6 shows the pseudo-code of
our value validation. For a better understanding, this algorithm is split into
three phases.

Phase 1: (Line 2-10) This phase checks, if the current expression is not able
to compare two values (e.g., AND, OR, IMPLIES expressions, etc). In this case
validateValues is called recursively on every child of the current expression
e until a comparison expression is reached (those are the parent nodes of the
leafs). After a child of e has been validated, the true and false value sets are
added to the parent expression e. At the end of phase 1 we combine the collected
value sets, and return them to the parent expression (this step is explained in
detail in the next Section 4.4.2).

Phase 2: (Line 11-21 and Line 29) This phase iterates over every scope
element se in the current expression e, and over every value for se provided
in the value set se2v. First, it retrieves the values of the corresponding scope
element (i.e., getValues(se, se2v)). Then e is checked if it is able to compare
two values while checking its type (e.g., equals(3,4) would return false). Please
note that in this phase all expression types are considered that are able to
compare two values (in contrast to phase 1).

Phase 3: (Line 23-27 and Line 30) This phase adds the checked values
from phase 2 to the corresponding true or false value set of e, based on the
previous validation result. After iterating over all values and scope elements the
value sets have to be combined according to expression specific conditions (i.e.,
combinations that lead to true for AND, OR, IMPLIES, etc).

As an example for the first step from stage 3 of our approach, consider the
validation tree from Figure 6. It represents the instantiation of the inconsistency rule
from Section 2, and the corresponding value sets m.name={login, doCall*, turnOn,
turnOff*, encrypt*} (where m is a Message), and for the repair 〈I, {init ∗ .name,=,
∅}〉. Please note that for simplicity we do not show the whole validation tree, but
only the important parts.

20



Algorithm 6 Validate Values

1: function validateValues(expression e, se2v ← {x|x ← 〈se ∈ SE, {y|y ∈
"arbitrary value"}〉}) : expression e

2: if e is-not-a ValueComparsionExpression then
3: . Every other expression like and, or, . . .
4: for all child in e.children do
5: expr = validateValues(child, se2v)
6: e.true = e.true ∪ expr.true
7: e.false = e.false ∪ expr.false
8: end for
9: return combineValues(e)

10: end if
11: for all se in e.se do
12: values = getValues(se, se2v)
13: for all value in values do
14: if e is-a equals then
15: result = equals(value, e.conditionValue)
16: else if e is-a unequals then
17: result = unequals(value, e.conditionValue)
18: else if e is-a greaterThan then
19: result = greaterThan(value, e.conditionValue)
20: else if . . . then
21: . only value comparison expressions (<, ≤, =, . . . )
22: end if
23: if result then
24: e.true = e.true ∪〈 se, value 〉
25: else
26: e.false = e.false ∪〈 se, value 〉
27: end if
28: end for
29: end for
30: return combineValues(e)
31: end function

21



self.messages[phone]r

A

m:Message in {login, init*, notify, doCall*} 

o:Operation in {login, ..., encrypt*} E

m=init*m=login

...

...

...

...

m=...

o=login
o=...

o=encrypt*

=>

>

=

=

o.name["encrypt*"]m.name["init*"]

o.isSecure[true]

m.isSecure[true] true

m.name={login, ..., encrypt*}

m.name={login, ..., encrypt*}

m.name={login, ..., encrypt*}

T: m.name={doCall*, turnOff*,
encrypt*}
F: m.name={login, turnOn}

T: m.name={encrypt*}
F: m.name={login, turnOn,
turnOff*, doCall*}

1

2

3

4
5

6

7

Figure 6: Example of value validation

We start at the root expression er, and see in phase 1 that er is not able to compare
two values (by definition). This means that we have to iterate over all children, which
is the for all expression (∀) in this example (arrow denoted with 1 in Figure 6). In
for all expressions we are not able to check any values, and therefore continues with
the corresponding child expression. For simplicity we show only the iteration for the
right hand side sub tree, which represents the validation for message init* (arrow
denoted with 2, the other sub trees are for other messages). The next child is the
exists expression (∃), which has child expressions for every operation in class Mobile
Phone. Also, in the exists expression (∃) we cannot check for valid values and continue
with the next child expression. Again for simplicity, we focus in Figure 6 on the
operation encrypt* sub tree (denoted with 3). However, the same would be done for
the other subtrees with their corresponding operations. We continue traversing to the
left hand side sub tree to the equals expression (=, steps 4 and 5), since the AND
expression will only be handled in the next stage.

Finally, when we reach the equals expression (arrow denoted with 5), we are able
to check for valid values, thus we enter phase 2 of our algorithm. This expression has
two scope elements m.name (the message’s name) and o.name (the operation’s name).
To determine which scope element has to be exchanged during the value validation we
look at the provided values set se2v, and see that we only have values for messages
(arrow denoted with 6). Therefore, we keep the value for o.name (which is in this case
the operation with name "encrypt*") and check every value from the provided value
set m.name={login, doCall*, turnOn, turnOff*, encrypt*} for equality. After validating
the values for the equals expression we end up with the following true and false sets
(denoted with 7): true = {m.name = {encrypt∗}} and false = {m.name = {login,
turnOn, turnOff∗, doCall∗}}

The same process is executed at the equals expression on the right hand side

22



subtree where we check at the equals expression if the provided operations are indeed
marked as secure. At this equals expression we get additional true and false sets:
true = {m.name = {doCall∗, turnOff∗, encrypt∗}} and false = {m.name = {login,
turnOn}}

How those true and false sets from the two subtrees are then combined in the
function combineValues(e) (Line 30) is described in the next section.

4.4.2. Back propagation
This section describes in detail the second step from stage 3 of our value filtering

mechanism. It combines the value sets generated in the first step according to expres-
sion specific rules. After this step, the values (and possible value combinations) in
the true set of the root expression contains only those values for scope elements that
indeed fix the corresponding inconsistency.

Algorithm 7 shows the pseudo-code of our value combination algorithm which is
called at the end of stage 3 of our approach. For a prompt understanding we split
this algorithm into three phases.

Phase 1: (Line 3-6) This phase checks if the provided expression is a negation
(logical not), and assigns the false set of its child to its own true set, and the true
set of its child to its own false set. This is done, because every value of the child
which validates to false, now validates to true after the negation (i.e., swapping the
true and false sets). Please note that a negation always has exactly one child.

Phase 2: (Line 7-20) This phase handles the combination of values of a conjunc-
tion (logical AND). A conjunction always has exactly two children where every child
has its own true and false set. To validate an AND expression to true, the true sets
from both children have to be combined. The false values of the current expression e
is the mathematical unification of the children’s false sets, e.g. {1, 2} ∪ {A,B} = {1,
2, A,B}.

A special case occurs when those children have the same scope element in common.
Then, only the values those two true sets for the scope element have in common
(intersection ∩) are able to validate the AND expression to true. To this end, we
iterate over every ScopeElementValue of scope elements from the true set (i.e., we
only consider the scope elements, not the values) and check if those scope elements are
the same. We calculate the intersection of those two value sets, and assign them to
the true set of the current expression. We then add every value which was not part of
the intersection (symmetric difference ∆) to the false set of the current expression.
Finally, we remove the true values from se2, because they are now either partly in the
true or false set of e.

Phase 3: (Line 21-31) Here we handle the rest of the logical expression like the
OR, IMPLIES, forAll, etc. To simplify the value combination process, we translate
every boolean expression into negations and conjunction equivalents. Table 1 shows
some examples on how those operations are translated. For example, the forAll ex-
pression (as shown in Table 1) is applied to a collection with and expression expr.
The expression expr is then applied for every element in the collection, where expr1,
expr2, ... are the applications for the first, second, ... element in the collection. Those
expressions are then concatenated with conjunctions ∧. Please keep in mind that an
expression can consist of multiple sub expressions. After phase 3, the back propagation
ends at the root expression, which now contains valid values for scope elements in the
true set and invalid values in the false set.

As an example for the back propagation, consider the validation tree shown in

23



Algorithm 7 Combine Values

1: function combineValues(expression e) : expression
2: children = e.children
3: if e is-a negation then
4: . Negation has exactly one child
5: e.false = children[0].true
6: e.true = children[0].false
7: else if e is-a conjunction then
8: . Conjunction has exactly two children
9: c1 = children[0]

10: c2 = children[1]
11: e.true = c1.true ∪ c2.true
12: e.false = c1.false ∪ c2.false
13: for all se1, se2 in e.true do
14: if se1 == se2 then
15: e.true[se1] = (e.true[se1] ∩ e.true[se2])
16: . Symmetric difference
17: e.false[se1] = e.false[se1] ∪ (e.true[se1] ∆ e.true[se2])
18: e.true = e.true \ e.true[se1]
19: end if
20: end for
21: else if e is-a disjunction then
22: . a ∨ b treated as ¬(¬a ∧ ¬b)
23: . . .
24: else if e is-a implication then
25: . a =⇒ b treated as ¬a ∨ b
26: . . .
27: else if e is-a forall then
28: . Same as ∧ with n children, see Table 1
29: else if e is-a exists then
30: . Treated as ¬∀
31: end if
32: return e
33: end function

Table 1: NAND Logic reduction

Expression Equivalent
a ∨ b ¬(¬a ∧ ¬b)
a =⇒ b ¬a ∨ b
∀(exp) exp1 ∧ exp2 ∧ . . .
∃(exp) ¬∀(exp)
. . .

24



self.messages[phone]r

A

E...

...

...

...

=>

>

=

=

o.name["encrypt*"]m.name["init*"]

o.isSecure[true]

m.isSecure[true] true

T: m.name={encrypt*}
F: m.name={login, turnOn, doCall*, turnOff*}

T: m.name={encrypt*}
F: m.name={login, turnOn,
turnOff*, doCall*}

T: m.name={doCall*, turnOff*, encrypt*}
F: m.name={login, turnOn}

T: m.name={encrypt*, doCall*, turnOff*}
F: m.name={login, turnOn, doCall*, turnOff*, encrypt*}

1

X

Y

Z

1

22
2

3

Figure 7: Example of value back propagation

Figure 7 after the value validation step shown in Figure 6. In both equals expressions
we have true and false values for their corresponding scope element after the value
validation phase. At those expression we do not have to combine values, since they are
value comparison expressions. Also at the implication expression (=>) we do not need
to perform an additional value combination, since the right hand side (o.isSecure)
does not have a value set assigned to its scope element.

The AND expression now checks if the two child expressions do have a scope
element in common (gray arrows denoted with 1). In this example, message init*
from the left and right hand side subtree are the same, so the intersection set of the
true sets is calculated and added to the true set of the AND expression (denoted
with X). Since those two subtrees have only the name encrypt* in common this value
is added to the true set and every other value is added to the false set.

The next step (denoted with three arrows labeled with 2) is the exists expression
which will be handled as explained in Table 1. In this step all valid values from the sub
trees true sets are added to the true set of the exists expression, which are encrpyt*,
doCall* and turnOff*. Every message name from those subtrees are able to fix the
inconsistency. Please note that the false set also contains the values from the true
set. However, this is not a contradiction, since in every subtree two of the three secure
operations encrypt*, doCall* and turnOff* are put into the false set (like shown in
Figure 7 at the exists expression). We also must not remove the values contained
in the true set from the false set since they might be important for subsequent
expressions (e.g. a subsequent negation which swaps the false set with the true set).

As a last step (denoted with 3), the resulting true and false sets are investigated
at the for all expression (∀). Here nothing has to be done, since the other subtrees
(which investigate messages login, notify and doCall*) are already consistent, thus
the true and false sets from the exists expression are propagated. At the root

25



expression the true set of its child can be used for constructing concrete repairs
directly (denoted with Z). An example for a concrete repair would be: 〈I, {〈init∗.name,
=, ”encrypt ∗ ”〉}〉, i.e., renaming message init* to encrypt*.

5. Evaluation

This section evaluates our abstract to concrete repair transformation, as well the
new contribution of the value filtering mechanism. We do this by assessing the cor-
rectness, applicability and usefulness.

For the evaluation we applied 20 consistency rules to 10 UML models (consisting
of class, sequence state machine diagrams, etc.) taken from three different sources:
academia (VOD), industry (eBullition, MVC, Micro, DESI, Dice, oodt) and GitHub
(Pro11, fullAdder, activityMngr) [28]. Examples for the applied consistency rules are:
Parent Class should not have an Attribute referring to a Child Class, AssociationEnds
must have unique Names within the Association, At most one AssociationEnd may
be an Aggregation or Composition. However, during our evaluation we applied more
consistency rules, which can be found in the provided evaluation data. The domains
of the models range from control of a micro wave oven to a model view controller of
software. Three of these models from GitHub have two versions each, where version
one had inconsistencies that had been fixed in version two by a developer. This further
allowed us to assess the quality of our approach and the relevance of our repairs, i.e.
whether the manually applied repairs by the developers could be replicated by our
approach. The model sizes ranged from 300 to 12000 model elements and the number
of inconsistencies from 16 to 2000. Table 2 shows details, such as number of model
elements, number of inconsistencies, number of abstract repairs for all models used in
the evaluation. Note that our implementation has a compilation module integrated
to check the syntactical correctness of the OCL consistency rules. Details about the
dataset and consistency rules can be found on our companion web page 1.

In the following Sections we first evaluate our basic abstract to concrete trans-
formation mechanism to measure how efficient it is. Then we evaluate our enhanced
abstract repair to concrete repair transformation with the value filtering mechanism
to measure its benefits.

5.1. Research Questions: Abstract to Concrete Repair Transformation
In this section we define three research questions to evaluate our abstract to con-

crete repair transformation approach.
RQ 1: Abstract to concrete transformation. How many abstract repairs

can be converted to concrete repairs (e.g. abstract repairs with no concrete repair vs
abstract repairs with at least one concrete repair) for every model?

RQ 2: Relevant concrete repairs. Are our generated repairs relevant for real
world consistency fixing (e.g, are we able to find repairs a engineer would also have
applied to the models manually)?

RQ 3: Relevant generator functions. Are our used generator functions on the
one hand sufficient to find relevant concrete repairs, and on the other hand are they
able to limit the amount of concrete repairs per abstract repair (i.e., compare results
of type 1 and type 2 generator functions)? Limiting the amount helps the engineer in

1https://figshare.com/s/a8038848c5ae1ec0faa6

26



Table 2: Model information

Model Name #Model
Elements

#Inconsistencies #Abstract
Repairs

Source

pro11 284 16 134 GitHub
fullAdder 992 37 203 GitHub
activity
Manager

1185 51 270 GitHub

VOD 467 9 43 Academia
eBullition 1346 74 630 Industry
MVC 1410 71 554 Industry
Micro 2346 76 412 Industry
DESI 3600 276 1472 Industry
Dice 4485 207 1961 Industry
oodt 11655 2067 755 Industry

6
4

8
3 1

0
1

1
3

0 1
2

0

1
6

4

2
5

2
9 3

0
4

3
8

2

8
2

0

7
5

2

7
0

5
1 1

0
2

7
3

1
5

0

1
0

6

1
8

1
4 2

5
0

1
7

2

1
1
4

1

1
2

0
9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

pro11 fullAdder activityMngr VOD MVC Dice

with concrete without concrete

Figure 8: Abstract Transformation.

the end to easily select one desired concrete repair without iterating over a large list
of repairs.

5.2. Results
RQ 1: We applied all consistency rules to every model, and applied our approach

and generator functions to all abstract repairs (we get from [14]) to transform them
to concrete repairs. On average we were able to find at least one concrete repair for
more than 55% (50% for type 1, 60% for type 2) of the abstract repairs.

Figure 8 shows the percentage of abstract repairs that was transformed to concrete
(grey), and the percentage of those repairs that were not transformed (white).

The numbers in the bars show the absolute amount of abstract repairs with and
without concrete repairs. Note that the number of scope elements varied from 1 to
7, and we were able to find concrete repairs regardless the number of scope elements.
However, the more scope elements we had, the more concrete repairs we generated.

27



1-5
6-
20

>20 1-5
6-
20

>20 1-5
6-
20

>20 1-5
6-
20

>20 1-5
6-
20

>20 1-5
6-
20

>20

pro11 fullAdder activityMngr VOD MVC Dice

t1 47 0 17 76 0 25 86 0 34 18 0 7 234 5 65 461 153 206

t2 70 13 0 101 16 13 121 25 18 27 2 0 285 46 51 490 170 92

1E+00

1E+01

1E+02

1E+03103

102

101

100

Figure 9: Concrete Repairs Count.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

pro11 fullAdder activityMngr VOD MVC Dice

valid repairs repairs to validate

1010

109

108

107

106

105

105

103

102

101

100

4
.7

*1
0

4

7
.4

*1
0

4

1
.6

*1
0

4

9
.6

*1
0

4

2
.6

*1
0

4

1
.3

*1
0

4

7
.7

*1
0

3

1
.4

*1
0

3

4
.4

*1
0

6

5
.7

*1
0

5

2
.2

*1
0

9

7
.9

*1
0

8

1
.8

*1
0

3

2
.6

*1
0

3

3
.5

*1
0

3

6
.4

*1
0

3

2
.9

*1
0

3

7
.6

*1
0

3

2
.1

*1
0

4

6
.7

*1
0

1

2
.8

*1
0

2

6
.2

*1
0

2

9
.4

*1
0

2

7
.1

*1
0

2

Figure 10: Validation Count.

Abstract repairs for which we could not find concrete repairs needed information not
present in the model but new information to be created. This was expected since only
the engineer can create new knowledge that only she is aware of.

As an example for the Video on Demand model (VOD) we were able to find
at least one concrete repair for 29 abstract repairs when applying type 2 generator
functions. For 14 abstract repairs we could not find any concrete repairs, because of
the reason mentioned earlier. For instance, applying a consistency rule which states
that "a message direction must match the class direction", to the model presented in
Section 2 results also in the following abstract repair for lifeline s: 〈I3, {〈s.type,�,
∅〉}〉. This abstract repair states that to resolve I3 the type of s has to be changed
to a class which has the correct association, and also the correct operation. But since
there is no class already present in the model which satisfies the conditions of CR1,
we did not find any concrete repair for this abstract repair. Again, only the engineer
would be able to create this class. Creating classes based on pattern generation could

28



fix the inconsistency. However, it could also reduce the quality of the concrete repairs
[18], since there might be nonsense generated values. For instance, a pattern generator
can create a class with an empty name or the name X20SZ together with a bidirectional
association to class Display, which repairs I3. However, an empty name or the name
X20SZ is not guaranteed to be understood by a human and most likely needs to be
changed by the engineer after generation.

Finally, although we could not transform all abstract repairs to concrete repairs,
we were able to generate at least one concrete repair for every inconsistency i.e., there
was at least one abstract repair per inconsistency which could be transformed to at
least one concrete repair.

RQ 2: In this evaluation, we applied our approach to three versioned models
(pro11, fullAdder, activityMngr) taken from GitHub. Every model contains several
inconsistencies in version 1 and the model designer has manually fixed those incon-
sistencies in version 2 (they are not present anymore). In the set of our generated
concrete repairs for version one, with both generator function types (1 and 2) we were
able to find every concrete repair the designer has applied manually for every incon-
sistency in every model to version one. For instance, example for inconsistencies in
pro11 were messages with incorrect names (no corresponding operations) and incor-
rect type specifications for the lifelines. Examples of the computed concrete repairs
were to rename the messages with existing operations and to change the lifeline’s type
with existing classes. This means that our approach covers all (both type 1 and type
2 generator functions) of the designer’s needs regarding the repair of inconsistencies,
with respect to our three versioned models. Of course our approach also suggested
additional concrete repairs, which may be of interest for other model designers.

RQ 3: Figure 9 shows the amount of concrete repairs per abstract repair separated
into three classes. Those classes range from 1 to 5, 6 to 20 and more than 20 concrete
repairs. On the y-axis you can see the amount of abstract repairs in the correspond-
ing class (note the logarithmic scale). We furthermore calculated for both generator
functions types 1 and 2 the average percentage of concrete repairs per category, e.g.,∑

repairs1−5/
∑

repairs. Where repairs1−5 is the class from 1 to 5 concrete repairs.
From Figure 9 we can also see that type 2 generator functions are able to convert 71
of all abstract repairs into one or up to five concrete repairs, 18% have 6-20 and 11%
have more than 20 concrete repairs. Type 1 was able to convert 64% of all abstract
repairs into one or up to five concrete repairs, 11% have 6-20 and 25% have more than
20 concrete repairs.

This means that in addition to finding relevant repairs, in 71% (64% for genera-
tor functions type 1) of the cases the engineer is not overwhelmed, but chooses only
between one to five concrete choices for a given abstract repair to repair the inconsis-
tency. Note that the very large number of concrete repairs per model in Figure 10 is
due to the few abstract repairs for which more than 20 concert repairs were computed
(e.g., 100 in some cases).

Figure 10 shows the amount of generated repairs per generator function type and
model. This amount has been summed up over all abstract repairs from the specific
generator function type and model (note the logarithmic scale on the y-axis). This
figure shows that type 2 generator functions have a large impact (reduced by one
order of magnitude) on the amount of repairs to be validated, thus they improve the
performance for the validation process.

However, this also might lead to a reduction of concrete repairs, since they do not
return every possible value. For example, for the pro11 model and its 16 inconsis-
tencies, type 1 generator functions produced around 50 thousand potential repairs,

29



whereas type 2 produced 7700 (this large amount is the result of the combination of
multiple scope elements), which after validation, it resulted in about 1800 (type 1)
and 280 (type 2) concrete repairs. This results on average in 13 concrete repairs per
abstract repair for type 1, and two concrete repairs per inconsistency for type 2.

As we have seen in this section, due to the exponential problem of computing
concrete repairs, our approach explores all combinations of values and tests whether
they fix the inconsistencies or not. The main reason for this is the combination of
values of multiple scope elements. For instance, if we have seven scope elements to
repair in an inconsistency, where every scope element has just 10 values from generator
functions, this results in 107 combinations, and thus to the same amount of repairs to
check. This results in the limitation that we also test invalid value combinations due to
two main reasons, either because 1) an invalid value exists for one scope element or 2)
values from two or more scope elements are contradictory with each other (although
the values are valid on their own). Our value filtering mechanism deals with this
particular limitation.

5.3. Research Questions: Value Filtering
In this section, we define three research questions (RQ) to evaluate our value

filtering mechanism.
RQ 4: To what extent can our approach reduce the set of provided values? This

aims to evaluate the scalability benefit that can be gained during the generation of
value combinations for concrete repairs.

RQ 5: Does the true set of our approach lead to relevant concrete repairs? This
aims to assess the quality of our approach whether it always proposes relevant values
in the true set.

RQ 6: How fast does our approach separate the provided values? This aims to
measure the benefit with respect to time scalability of our approach.

5.4. Results
We applied the abstract to concrete repair transformation with our value filter on

all 10 models from Table 2. With the additional value filtering this allows us to run
the evaluation on all 10 models. Furthermore, we used type 2 generator functions,
since they provide an optimal trade-off between correct an incorrect values compared
to type 1 generator functions (as can be seen in Figure 10).

RQ 4: We applied all consistency rules to every model, and performed our value
discovery algorithms to every abstract repair (and therefore, to every inconsistency),
and executed the corresponding concrete repairs. Figure 11 shows the amount of
reduction for our value discovery approach (in percent and absolute) for every model.
The numbers in the bars show the absolute amount of invalid value combinations of
false sets in white and the absolute amount of valid value combinations of true sets in
gray. On average we were able to reduce the amount of values by 83% of the theoretical
maximum of value combinations. The theoretical maximum of value combinations per
model has been determined by the formula

∑|ARM|
i

∏|SEi|
j |valuesj |, where

∑|ARM|
i is

the sum over all abstract repairs ARM for all inconsistencies of a specific model M,∏|SEi|
j is the product over all scope elements from the abstract repair i, and |valuesj |

is the amount of values the scope element j has. Imagine an abstract repair has three
scope elements, and those scope elements have seven, eight and nine values. This leads
to 7 ∗ 8 ∗ 9 = 504 possible combinations of concrete repairs for this abstract repair.
Then the sum of all those products for every abstract repair is calculated. The amount

30



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

pro11 fullAdder activityMgr VOD eBullition MVC Micro DESI Dice oodt

valid invalid

5
.5
*1
0
2

1
.6
*1
0
3

3
.0
*1
0
3

4
.4
*1
0
3

4
.7
*1
0
6

2
.9
*1
0
4

9
.6
*1
0
3

2
.6
*1
0
1
6

1
.6
*1
0
1
2

5
.2
*1
0
1
9

1
.8
*1
0
2

6
.0
*1
0
2

1
.3
*1
0
3

1
.8
*1
0
3

8
.2
*1
0
3

1
.2
*1
0
4

4
.2
*1
0
3

2
.6
*1
0
5

9
.9
*1
0
4

2
.0
*1
0
6

Figure 11: Reduction in % discovering valid (true set) and invalid (false set) values

Table 3: Reduction of values per scope element count

#SE All Com-
binations

Valid Com-
binations

% of discovered
valid combinations

1 6.2 ∗ 105 1.3 ∗ 105 21%
2 3.2 ∗ 108 2.2 ∗ 106 6.6 ∗ 10−3%
3 5.1 ∗ 1011 4 ∗ 104 7.7 ∗ 10−8%
4 9.4 ∗ 1014 104 10−11%
5 1.2 ∗ 1018 230 1.7 ∗ 10−16%
6 1015 51 4.9 ∗ 10−14%

of valid value combinations was determined the same way, but the amount of values
|valuesj | has been reduced by our approach (it contains only combinations of valid
values). The invalid value combinations were determined by subtracting the amount of
valid value combinations from the maximum. For instance, in Figure 11 for the model
pro11 the theoretical maximum was 7.3 ∗ 102 (computed with the formula previously
shown) and our approach reduced that amount to 1.8 ∗ 102, which is a reduction of
75%.

The percentage of the models eBullition, DESI, Dice, and oodt was reduced by
more than 99.99%. For instance for the model oodt in Figure 11, our approach was
able to reduce the amount of value combinations from 5.2∗1019 to 2∗106 (representing
10−14% of all the theoretical maximum values), which is a reduction of 14 orders of
magnitude.

Table 3 further shows the amount of reduction per scope element (needed to repair
an inconsistency) summed up over all evaluated models. It shows that the more scope
elements we have to repair in combination in a single inconsistency, the more efficient
the reduction is performed by our approach. For instance we were able to reduce the
amount of values for five scope elements from 1.2∗1018 to 230 which is a reduction of 16
orders of magnitude. This is because many invalid combinations occurred due to either
invalid values or invalid combinations of valid values (i.e., from Section 4.4.2 with the
intersection set). Our approach was able to reduce the amount of combinations by 79%
for one scope element (the maximum was 6.2∗105), while the reduction for five and six

31



Figure 12: Runtime for the validation

scope element exceeded 99.99% leading to 1.7∗10−16% (from a maximum of 1.2∗1018)
and 4.9∗10−14% (from a maximum of 1015). Ultimately, the true set of values are then
turned into concrete repairs presenting the model elements that need to be changed
and the change operations (with concrete values), which is more understandable for
developers and automatically executable. In contrast to the first part of our evaluation
(Section 5.2) we do not need to generate concrete repairs containing invalid values,
since those values already have been filtered out (i.e., they are contained in the false
set). Thus we do not waste time checking them.

RQ 5: This research question In this evaluation, we applied our mechanism to the
three versioned models (pro11, fullAdder, activityMngr) taken again from GitHub.
Every model contains several inconsistencies in version 1 and the model developer
had manually fixed those inconsistencies in version 2 (since the inconsistencies are not
present anymore). Hence, we investigated the set of our validated values in the true
sets for version 1, and we were able to find every value the developer had used to
manually repair their inconsistencies in every model of version 2. This means that
our approach did not miss valid values (i.e., did not incorrectly put a valid value
in the false set) and covered all of the developer’s needs regarding the repair of
inconsistencies. Of course our approach also suggested additional values in the true
set, which may be of interest for other developers, i.e. additional repair alternatives.
Example of repairs were to add a reference between classes and to rename messages
and lifelines in the sequence diagram. For example, in pro11 the engineer applied a
repair by renaming an operation "search" in the class diagram, which was a repair we
computed.

RQ 6: To measure the time scalability of our approach, we determined the time
performance for discovering the valid values among the provided ones. We built up
the validation tree (already during the inconsistency detection phase), collected the
values, and then started to record the time for the value discovery for every abstract
repair. Figure 12 shows the time it took to separate all values into true and false sets
via box-plots. The x-axis shows the time in milliseconds, and the y-axis shows every
model we have evaluated. As an example, for the model MVC our implementation took
1ms as median execution time, 10ms as maximum and 0.5ms as minimum recorded
time (note the outliers in bold dots). The average execution time over all models for

32



the validation was 1.5ms with a maximum of 47ms (outlier) observed for oodt model.
We also observed that the values’ size varied from 2 to 16173 with an average of 1200
values to be separated into valid and invalid values. The execution time remained
stable with couple of ms even for large sets of values. This is because once we abstract
from the set of values to boolean, the discovery of the true and false sets is computed
instantly, which allows our approach to scale to large sets of values.

6. Threats to validity

In this section we discuss internal, external and conclusion threats to validity after
Wohlin et. al. [29].

Internal Validity: The internal threats to validity for the first part of the evalu-
ation (abstract to concrete repair transformation) are centered on the cutoff threshold
during the repair computation process. This threshold limits the validation process
to a fixed amount of 5000 concrete repairs for one abstract repair. With this limit
set, the evaluation might miss some valid concrete repairs in seldom cases, where an
abstract repair contains a large amount of scope elements (in our evaluation 25% AR
had more than 4 scope elements). However, only type 1 generator functions are mainly
affected, because they return the largest amount of values. We chose the threshold to
be 5000 after trying different sizes (500, 1000, 5000 and 10000), because we observed
that after 5000 the number of validated concrete repairs becomes stable while relevant
repairs (that are applied by the engineer in case of the three versioned models) are
still computed in our case studies. Thus, we deem this threat to validity as acceptable
here.

The internal threats to validity for both parts of the evaluation (the transformation
and value validation) are centered on the generator functions [27] we used for retrieving
possible values for repairing inconsistencies. Those generator functions only return
existing values in the model, and cannot create new information. This means, that
our evaluation did not validate values for abstract repairs which state that some new
information has to be introduced to the model to fix the corresponding inconsistency.
For instance, if an abstract repair states that a class with specific attributes has to
be added, the used generator functions would not be able to return values for the
new class name. To further mitigate this threat, in our tool we allow the engineer to
provide new values as input or use a different source for values which are used to turn
those abstract repairs into concrete repairs. Moreover, our approach depends on the
expressed OCL consistency rules which are specified by the engineer. We only check
their syntactic correctness, but not their semantic correctness/completeness since only
the engineer knows its intent.

For the internal validity, we additionally performed an analysis on all detected
inconsistencies to identify which type of model elements and properties they affect,
i.e., what types of model element properties the corresponding repairs change. For
instance a repair could change a name, add an operation to a class, or change the
type of an element. Figure 13 shows the percentage of all inconsistency types. As an
example, 2.32% were about the messages being received by an object (receiveEvent)
and 5.58% were about names of model elements. However, keep in mind that the
type of inconsistencies highly depends on the defined consistency rules, e.g., if there is
no consistency rule defined that checks names, then there will not be inconsistencies
about names.

External Validity: We implemented our approach for UML and OCL, although
we are confident that the computation of concrete repairs and the discovery of valid

33



5.58%
78.88%

5.90%

2.32%

0.40%

3.43%

3.23%

0.25%

name type represents

receiveEvent owner ownedAttribute

memberEnd stateMachine

Figure 13: Inconsistency Types

values is also applicable to other modeling and constraint languages, we cannot gener-
alize our results to all modeling constraint languages. However, The only requirement
to apply our approach to other domains, is to provide an equivalent of the validation
trees (i.e., AST) that has the consistency rules’ conditions, and to retrieve values for
fixing inconsistencies. In future work we plan to evaluate on other modeling and con-
straint languages as well. Moreover, we also cannot generalize our results to other
sources of values (e.g., from search-based or heuristic approaches). The reduction %
would vary depending on the quality of the provided values. Nonetheless our approach
was able to separate instantly valid from invalid values efficiently, and the processing
time is independent from the total amount of provided values and the ratio of the
valid/invalid values.

Conclusion Validity: Our evaluation gives promising results (quantitatively and
qualitatively), demonstrating that repairing a model with only internal information
is possible and relevant/useful, thus we achieved all three goals from Section 5.2.
Furthermore, we demonstrated that our value validation algorithm is very fast and
reduces the amount of values significantly. The results in our case studies indicate
that we are able to validate a large amount of values within milliseconds. To have
more evident results, we plan to evaluate on more models.

7. Related Work

This section focuses on approaches that repair model inconsistencies. Finding
concrete and executable repairs in software models is an active field of research. This
section presents and discusses the works closest to ours.

Inconsistency checking: Our approach relies on validation trees and abstract re-
pairs as input for finding corresponding concrete values, and therefore concrete repairs.
All approaches that provide abstract repairs and an expression based tree structure
may be used as input for our approach to generate concrete repairs. For instance
Xiong et al., Reder et al. and Jackson et al. use a very similar notation of abstract

34



repairs [12, 13, 14, 21]). In summary, the only requirement for other approaches is that
they provide affected model elements, their properties and the corresponding repair
operation and also expression which can be validated with the provided values.

Abstract repairs: As presented in Section 4.3, our approach relies on abstract
repairs as input for finding corresponding concrete repairs. Abstract repairs have
been shown to be an effective and easy way of providing inconsistency information
[24, 14, 12, 13]. However, our approach would also work with triple graph grammar
rules [30] or plain rule parsing. For our prototype implementation, we employed the
Model/Analyzer consistency checking framework for finding inconsistencies and ob-
taining abstract repairs [14]. However, other approaches that provide abstract repairs
may also be used as input for our approach to generate concrete repairs. For instance
Xiong et al. and Jackson et al. use a very similar notation of abstract repairs, which
would be suitable for our abstract to concrete repair algorithm [12, 13]. In summary,
the only requirement for other approaches is that they provide affected model elements,
their properties and the corresponding repair operation. Note that the Model/Ana-
lyzer is able to find concrete repairs in rare cases [21], but does not aim entirely at
finding concrete repairs as in our paper.

Concrete repairs: There are multiple approaches for repairing models. For
instance, da Silva et al. generate concrete repairs by defining cause detection rules
combined with effect canceling functions [16]. Similarly, the approach presented by
Xiong et al. requires engineers to adapt OCL constraints to provide fixing information
within a consistency rule [12]. In contrast our approach does not require to manually
define how certain inconsistencies should be fixed, instead it only requires defining
generator functions to obtain meaningful values for the model elements and their
properties.

Nentwich et al. also define repair actions and repairs, and they are able to perform
consistency checking on UML models [11]. Da Silva et al. also use repairs to resolve
inconsistencies in their UML models and try to find concrete versions of abstract
repairs [16]. Also Xiong et al. may be used to define consistency rules and fix model
inconsistencies with the Beanbag language [12]. We extended the approach of Reder
et al. that was built for usage with the employed incremental consistency checker [14].
Moreover, this approach does not require fixing-related statements to be added to the
applied OCL constraints, as it is in [12]. Neither does it try to execute adaptations
automatically as it is proposed by [16, 12].

Kolovos et al. specify cross-model constraints to define consistency rules over model
elements and provide fixing strategies for those constraints [17]. However in case of an
inconsistency it is necessary to manually select which of the provided fixing strategies
has to be executed. In contrast to our approach we perform this task automatically
by validating all previously generated concrete repairs.

Another relevant approach for getting concrete repairs for models is shown in
Hegedues et al. where a Constraint Satisfaction Problem solver (CSP solver) is used
to repair inconsistencies for Domain-Specific Modeling Languages (DSMLs) [18]. In
contrast to this approach we are able to get concrete repairs not only for DSMLs but
any modeling language and our approach is capable of providing not only syntactically
correct values, but also semantically correct values through generator functions.

Le et al. propose repairs for bugs in programs by applying structured specification,
deductive verification and genetic programming [31]. They also further elaborated
this approach with automated example extraction and repair synthesis based on those
examples [32]. Similarly Ma et al. focus on vulnerability repair in source code by
learning from training sets and deducing repair templates to fix those vulnerabilities

35



[33]. In contrast to those approaches, we do not need test cases or training sets to
check the correctness/fitness of the generated repairs, and therefore no additional user
input is necessary.

Puissant et al. [34, 35] proposed a planning technique to generate repair plans
for inconsistencies while aiming at a fast computation of repairs without assessing the
relevance of the repair plans. In their repair plans, they use probabilistic generation
of values [36] which can reduce the quality of the models and can lead to invalid
combinations of values. Taentzer et al. [37] proposed to repair inconsistent models
w.r.t. their metamodels. They relied on the model change history which helps in
reducing the amount of repairs and hence does not explore all possible concrete values
and repairs.

Model Transformation: Another related area of research is the multi-directional
model synchronization /transformation.

Giese et al. [30] use triple graph grammar rules to bidirectionally synchronize
models. In contrast to their approach, our work is not based on transformation rules,
but uses consistency rules to identify inconsistencies and transform abstract to concrete
repairs based on values from the model itself.

Greenyer et al. [38] compare triple graph grammar rules to query/view/transfor-
mation, and discover that those two techniques have many common concepts. Based
on this observation they propose a mapping between those two techniques and show
that a triple graph grammar rule transformation engine can execute query/view/trans-
formations.

Cicchetti et al. [39] propose the Janus Transformation Language (JTL), a bidi-
rectional model transformation language , to provide a mechanism for non-bijective
transformation and change propagation. This allows the authors to propagate changes
from one model to multiple other models without being restricted to the transforma-
tion direction.

Wimmer et al. [40] test model to code, and code to model transformation by ex-
tending a model to model transformation approach (Tracts [41]). The authors do this
by transforming M2T/T2M transformation specifications to equivalent M2M transfor-
mations.

The main difference between our approach and model transformation approaches
is that we do not transform models from one meta-model to another meta-model. Our
approach performs consistency checking and repair based on the same meta-model.

Finally, in contrast to fuzzing in automated bug detection, we do not utilize ran-
domness in our value detection.

In contrast to the existing approaches, we explore the set of potential values to
discover the values that will lead to executable concrete repairs. The originality of
our work, is that when transforming abstract to concrete repairs, we abstract from
concrete values to boolean sets, to rapidly reason about combinations that repair given
inconsistencies. Another benefit of our approach in contrast to the existing approaches
is that we are able to suggest fixing inconsistencies partially as well. This means for
instance if three scope elements have to be fixed, but one of them has no valid value,
our approach still provides valid values for the other two scope elements. To the best
of our knowledge, this is not supported by the existing approaches.

8. Conclusion and Future Work

In this paper we presented a novel approach for automatically generating concrete
and executable repairs for models in software development. Our approach is based

36



on inconsistency information, abstract repairs and a set of generator functions. We
proposed different types of generator functions which can be used generically for dif-
ferent models and inconsistencies. This means, the engineer can always add generator
functions that are specific to her context and models. Furthermore we presented a
novel mechanism for discovering and validating values automatically to get relevant
values for concrete repairs of model inconsistencies. This mechanism utilized valida-
tion trees (i.e., instances of consistency rules) that reveal details about the causes of
inconsistency but also the structure of the consistency rules. It validates the provided
values based on the consistency rule’s conditions, groups them into true and false
sets, and then combines them based on boolean expressions found in the validation
tree. Valid values are then in the true set to be used for concrete repairs.

Our evaluation applied 20 consistency rules to 10 models. To check the relevance
of our generated repairs, we have used 3 versioned models from GitHub and showed
that we are able to replicate 100% of the modeler’s fixing actions. In addition, we
have shown that on average we are able to find at least one concrete repair for more
than 55% on average, and 65% for type 2 generator functions of all abstract repairs.
Furthermore, we have shown on larger models that our approach is scalable thanks to
our value filtering mechanism. It was able to reduce the amount of combinations by
83% on average in less than 1.5ms by several orders of magnitude mostly in best cases.
This saves time and effort that would have been spent on exploring invalid concrete
repairs. Our contribution can thus be integrated with existing or future approaches
of inconsistency repairs to accelerate significantly the process of computing concrete
repairs.

For future work, we plan to further group valid values based on different criteria.
For instance, group integers into positive and negative, or ranges from zero to 100,
100 to 1000, etc. This might help in those cases, where there are still a lot of valid
combinations in the end. We also plan to consider constraints on the valid values to
further reduce the size of the true set (e.g. among positive integers consider only
odd values). Finally, as alternative repairs are proposed per inconsistency, in [42] we
proposed one heuristic and evaluated it, we plan to provide other ranking heuristics
to support the developers in quickly choosing repairs and to evaluate their benefit.

9. Acknowledgments

This research was supported by the Austrian Science Fund FWF P 31989, by
Pro2Future, a COMET K1-Centre of the Austrian Research Promotion Agency (FFG),
grant no. 854184, and by the LIT Secure and Correct System Lab funded by the State
of Upper Austria.This research was also supported by funding from the CNRS PEPS
2019 and from the AIS Rennes Métropole under grant no. 190270

References

[1] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical as-
sessment of mde in industry,” in Proceedings of the 33rd International Conference
on Software Engineering, pp. 471–480, ACM, 2011.

[2] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Assessing the state-of-
practice of model-based engineering in the embedded systems domain,” in Model-
Driven Engineering Languages and Systems, pp. 166–182, Springer, 2014.

37



[3] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engineering prac-
tices in industry,” in Proceedings of the 33rd International Conference on Software
Engineering, pp. 633–642, ACM, 2011.

[4] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COMPUTER
SOCIETY-, vol. 39, no. 2, p. 25, 2006.

[5] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-
driven engineering,” IEEE software, vol. 31, no. 3, pp. 79–85, 2014.

[6] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2alloy: A challenging
model transformation,” in MODELS, pp. 436–450, 2007.

[7] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Automating co-
evolution in model-driven engineering,” in EDOC, pp. 222–231, IEEE, 2008.

[8] W. B. Frakes and K. Kang, “Software reuse research: Status and future,” IEEE
TSE, vol. 31, no. 7, pp. 529–536, 2005.

[9] A. Demuth, R. Kretschmer, A. Egyed, and D. Maes, “Introducing traceability and
consistency checking for change impact analysis across engineering tools in an
automation solution company: An experience report,” in Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on, pp. 529–538,
IEEE, 2016.

[10] C. Nentwich, W. Emmerich, and A. Finkelstein, “Static consistency checking for
distributed specifications,” in ASE, p. 115, 2001.

[11] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency management with
repair actions,” in ICSE, pp. 455–464, 2003.

[12] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei, “Supporting auto-
matic model inconsistency fixing,” in FSE, pp. 315–324, 2009.

[13] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM Trans. Softw.
Eng. Methodol., vol. 11, no. 2, pp. 256–290, 2002.

[14] A. Reder and A. Egyed, “Incremental consistency checking for complex design
rules and larger model changes,” in MODELS, pp. 202–218, 2012.

[15] T. Mens, R. Van Der Straeten, and M. D’Hondt, “Detecting and resolving
model inconsistencies using transformation dependency analysis,” in International
Conference on Model Driven Engineering Languages and Systems, pp. 200–214,
Springer, 2006.

[16] M. A. A. da Silva, A. Mougenot, X. Blanc, and R. Bendraou, “Towards automated
inconsistency handling in design models,” in CAiSE, pp. 348–362, 2010.

[17] D. S. Kolovos, R. F. Paige, and F. Polack, “Detecting and repairing inconsistencies
across heterogeneous models,” in ICST, pp. 356–364, 2008.

[18] Á. Hegedüs, Á. Horváth, I. Ráth, M. C. Branco, and D. Varró, “Quick fix gener-
ation for DSMLs,” in VL/HCC, pp. 17–24, 2011.

38



[19] S. M. Shah, K. Anastasakis, and B. Bordbar, “From UML to alloy and back
again,” in MODELS, pp. 158–171, Springer, 2009.

[20] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients already
exist? an empirical inquiry into the redundancy assumptions of program repair
approaches,” in ICSE ’14, Companion Proceedings, pp. 492–495, 2014.

[21] A. Reder and A. Egyed, “Computing repair trees for resolving inconsistencies in
design models,” in ASE, pp. 220–229, 2012.

[22] R. Kretschmer, D. E. Khelladi, A. Demuth, R. E. Lopez-Herrejon, and A. Egyed,
“From abstract to concrete repairs of model inconsistencies: An automated ap-
proach,” in APSEC 2017, pp. 456–465, 2017.

[23] OMG, “Object Constraint Language,” 2014.

[24] A. Reder and A. Egyed, “Determining the cause of a design model inconsistency,”
IEEE TSE, vol. 39, no. 11, pp. 1531–1548, 2013.

[25] D. Torre, Y. Labiche, and M. Genero, “Uml consistency rules: a systematic map-
ping study,” in Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, p. 6, ACM, 2014.

[26] L. C. Briand, Y. Labiche, and L. O’sullivan, “Impact analysis and change manage-
ment of uml models,” in Software Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on, pp. 256–265, IEEE, 2003.

[27] A. Egyed, E. Letier, and A. Finkelstein, “Generating and evaluating choices for
fixing inconsistencies in UML design models,” in ASE, pp. 99–108, 2008.

[28] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A. Fernandez, “The
quest for open source projects that use UML: mining github,” pp. 173–183, ACM,
2016.

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer Science & Business Media,
2012.

[30] H. Giese and R. Wagner, “From model transformation to incremental bidirectional
model synchronization,” Software and Systems Modeling, vol. 8, no. 1, pp. 21–43,
2009.

[31] X.-B. D. Le, Q. L. Le, D. Lo, and C. Le Goues, “Enhancing automated program
repair with deductive verification,” in ICSME, 2016 IEEE International Confer-
ence on, pp. 428–432, IEEE, 2016.

[32] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-and
semantic-guided repair synthesis via programming by examples,” FSE. ACM,
2017.

[33] S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng, “Vurle: Automatic vulnerability
detection and repair by learning from examples,” in European Symposium on
Research in Computer Security, pp. 229–246, Springer, 2017.

39



[34] J. P. Puissant, R. Van Der Straeten, and T. Mens, “Resolving model inconsisten-
cies using automated regression planning,” Software & Systems Modeling, vol. 14,
no. 1, pp. 461–481, 2015.

[35] J. P. Puissant, R. Van Der Straeten, and T. Mens, “Badger: A regression planner
to resolve design model inconsistencies,” in European Conference on Modelling
Foundations and Applications, pp. 146–161, Springer, 2012.

[36] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria, “Uniform random gener-
ation of huge metamodel instances,” in European Conference on Model Driven
Architecture-Foundations and Applications, pp. 130–145, Springer, 2009.

[37] G. Taentzer, M. Ohrndorf, Y. Lamo, and A. Rutle, “Change-preserving model
repair,” in International Conference on Fundamental Approaches to Software En-
gineering, pp. 283–299, Springer, 2017.

[38] J. Greenyer and E. Kindler, “Comparing relational model transformation tech-
nologies: implementing query/view/transformation with triple graph grammars,”
Software & Systems Modeling, vol. 9, no. 1, p. 21, 2010.

[39] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Jtl: a bidirectional
and change propagating transformation language,” in International Conference
on Software Language Engineering, pp. 183–202, Springer, 2010.

[40] M. Wimmer and L. Burgueño, “Testing m2t/t2m transformations,” in Interna-
tional Conference on Model Driven Engineering Languages and Systems, pp. 203–
219, Springer, 2013.

[41] M. Gogolla and A. Vallecillo, “Tractable model transformation testing,” in Eu-
ropean Conference on Modelling Foundations and Applications, pp. 221–235,
Springer, 2011.

[42] D. E. Khelladi, R. Kretschmer, and A. Egyed, “Detecting and exploring side effects
when repairing model inconsistencies,” in Proceedings of the 12th ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2019, Athens,
Greece, October 20-22, 2019, pp. 113–126, 2019.

40


