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1. INTRODUCTION
Over the past decade, vehicle-sharing systems have ap-

peared as a new answer to mobility challenges, like reducing
congestion, pollution or travel time for numerous cities.

For bike-sharing systems, users make one-way trips.
The usage is the following: Users pick a bike at a station
if one is available. Otherwise usually they leave the sys-
tem and take another mode of transportation. After the
trip, they return the bike at another station if there is an
available space. Otherwise, they have to find a neighbor-
ing station to return the bike. In car-sharing systems, users
have the ability to reserve, for example the parking space,
avoiding the problem of looking for an available space at
destination. Again, they can only do this if there are cars
and spaces available. The lack of resources, both vehicles
and parking slots, is one of the major issues for operators to
maintain the reliability of the service (see [6], [1]).

In this paper we analyze a simple homogeneous model
for car-sharing systems with one-way trips where users re-
serve the parking space the moment the car is picked up. As
far as we know, it is the first stochastic model of a large-scale
vehicle-sharing system with reservation.

Model Description. The system is a set ofN stations
with capacity K with M cars. Users arrive at each station
according to a Poisson process with rate λ. An arriving user
at station i chooses a destination j at random. If there is no
car available in station i or if there is no available parking
space in station j, the user leaves the system. Otherwise,
he picks up a car at station i and simultaneously makes a
reservation at station j. Then, the trip between station i
and station j takes an exponentially distributed time with
mean 1/µ. At the end of the trip, the user returns his car
at station j and leaves the system.
In this paper, we focus on this homogeneous model. But we
can extend the result to a heterogeneous model consisting in
a finite number of clusters with capacity Ki and arrival rate
λi for a station in cluster i and probability pi of choosing a
destination in cluster i, instead of 1/N , as in [4].

Large Scale Behavior For this model, the state pro-
cess of the numbers of cars and reserved parking spaces is an
irreducible Markov process on a finite state space with no ex-
plicit expression for the unique invariant measure. Thus the
aim is to investigate the large scale behavior of the system.
This means asymptotics when the number of cars and sta-
tions are large together, i.e. that their ratio tends to a con-
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stant. Our first result (Theorem 1) is the convergence when
the system gets large of the distribution of a station state
to the distribution of a non linear inhomogeneous Markov
process. This distribution is given by a di↵erential equation
called Fokker-Planck equation. It is obtained as the limit
of the empirical distribution process, as the state process of
the model for fixed N has an untractable invariant measure.

Our second main result (Theorem 2) establishes the
existence and uniqueness of the equilibrium point of this
ODE. The proof uses a monotonicity argument similar as
in [3], but here with intricate calculations. We can fully
characterize it using probabilistic interpretation.

Our goal is to study the system behavior in terms of
large scale stationary proportion of empty and full stations,
especially the influence of the fleet size. For the optimal
fleet size, we give asymptotics for this quantity in light and
heavy traffic. We prove that, in light traffic case, reservation
has little impact, unlike the heavy traffic case.

2. STOCHASTIC MODEL

2.1 Empirical Measure Process
Let us define χ = {(k, l) 2 N

2, k+l  K} and let Y N
k,l(t)

be the proportion of stations with k reserved parking spaces
and l cars at time t,

Y N
k,l(t) =

1

N

NX

i=1

1{RN
i (t)=k,V N

i (t)=l}

where RN
i (t) is the number of reserved parking spaces and

V N
i (t) the number of cars at station i at t. Due to homo-

geneity, (Y N (t)) = (Y N
k,l(t))(k,l)2χ is a Markov process on

YN = {y = (yk,l) 2 P(χ), yk,l 2 N/N,
X

(k,l)2χ

(k+l)yk,lN = M}

where P(χ) is the set of probability measures on χ. Its
transitions from y are the following.

• Cars picked up. A user arrives at a station in state
(k, l) at rate λyk,lN if k > 0. At the same time he re-
serves in a station in state (k0, l0) with probability yk0,l0

if k0 + l0 < K. Thus, the transition rate is λyk0,l0yk,lN
if l > 0, k0 + l0 < K. Due to arrival, yk,l decreases by
1/N and yk,l−1 increases by 1/N . Due to reservation,
yk0,l0 decreases by 1/N and yk0+1,l0 increases by 1/N .

• Cars returned. When a car arrives at its reserved
parking space in a station in state (k, l), yk,l decreases
by 1/N and yk−1,l+1 increases by 1/N . The number of
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reserved parking spaces, in stations with state (k, l), is
lNyk,l. As the trips are exponentially distributed with
mean 1/µ, this transition occurs at rate µlNyk,l.

Jump matrix QN of process (Y N (t)) is given by, for y 2 YN ,

(
QN (y, y0) = λyk0,l0yk,lN if l > 0, k0 + l0 < K

QN (y, y + 1
N
(ek−1,l+1 − ek,l)) = µlNyk,l

with y0 = y+ 1
N
(ek,l−1−ek,l+ek0+1,l0−ek0,l0) and (ek,l)(k,l)2χ

the vectors of the canonical basis of R|χ|. As (Y N (t)) is ir-
reducible and on finite set YN , it is ergodic with a unique
invariant measure. We investigate its limit as N tends to
+1 via a mean-field approach.

2.2 Dynamical System
Let us define

Y = {y 2 P(χ),
X

(k,l)2χ

(k + l)yk,l = s}.

Theorem 1 (Mean-field convergence theorem).

For T > 0, (Y N (t))t2[0,T ] valued in YN
converges in dis-

tribution to (y(t))t2[0,T ] valued in Y, unique solution for a

given y(0) of the following ODE

ẏ(t) = y(t)Ly(t) (1)

where y(t)Ly(t), product of vector y(t) by jump matrix Ly(t),

is defined by this detailed form

ẏ(t) =
X

(k,l)2χ

yk,l(t) (λ(1− yS(t))(ek,l−1 − ek,l)1l>0

+λ(1− y.,0(t))(ek+1,l − ek,l)1k+l<K + µl(ek−1,l+1 − ek,l))

and yS(t) =
P

k+l=K

yk,l(t) and y.,0(t) =
KP

k=0
yk,0(t) are re-

spectively the limiting proportion of saturated stations at t
and the limiting proportion of stations with no cars at t.

Proof. By standard arguments, for T > 0, (Y N (t))t2[0,T ]

converges in distribution to (y(t))t2[0,T ] unique solution for
fixed y(0) of the previous ODE. The first term corresponds
to the rate at which users return cars at the reserved park-
ing space, and the second term corresponds to the rate of
simultaneous arrival and reservation.

3. STEADY-STATE BEHAVIOR

3.1 Probabilistic Interpretation of the ODE
The Markov process with generator Ly on χ defined in

Theorem 1 can be interpreted as the number of customers in
two queues in tandem (see Figure 1): a M/M/1 queue for
reservations, with arrival rate λ(1− y.,0) and service rate µ,
and a M/M/1 queue for cars, where customers come from
the former queue, with service rate λ(1−yS). Moreover, this
system is a loss system as the total number of customers is
less than or equal to K. An interesting point is the explicit
form for the invariant measure ⇡(y) of the Markov process.

Indeed, let ⇢R be the arrival-to-service rate ratio of the
M/M/1 queue, and ⇢V of the M/M/1 queue, defined as

⇢R(y) =
λ

µ
(1− y.,0), ⇢V (y) =

1− y.,0
1− yS

. (2)

λ(1− y.,0)

µ

λ(1− yS)

R: M/M/1

V: M/M/1

Figure 1: The state of a station as a tandem of two
queues with overall capacity K.

With these notations, (see [5] for example) the invariant
probability measure ⇡(y) associated to Ly has product form
given by, with a slight abuse of notations, for (k, l) 2 χ,

⇡k,l(⇢R(y), ⇢V (y)) =
1

Z(⇢R(y), ⇢V (y))

⇢R(y)
l

l!
⇢V (y)k (3)

where Z(⇢R(y), ⇢V (y)) is a normalization constant. In the
following, we will use both ⇡(⇢R(y), ⇢V (y)) and ⇡(y). Since
⇡(y) 2 P(Y), we also have

s =
X

(k,l)2χ

(k + l)⇡k,l(y). (4)

It can be rewritten s = E(V +R) where (R, V ) is a random
variable with distribution ⇡(y).

For the steady-state behavior of the model, we are in-
terested by the equilibrium points y of the ODE (1). Such
equilibrium points y satisfies

⇡(⇢R(y), ⇢V (y)) = y (5)

and equations (2) and (4). Thus, this is equivalent to find
couples (⇢R, ⇢V ) such that ȳ = ⇡(⇢R, ⇢V ), satisfying

⇢R =
λ

µ
(1− ⇡.,0(⇢R, ⇢V )) , ⇢V =

1− ⇡.,0(⇢R, ⇢V )

1− ⇡S(⇢R, ⇢V )
(6)

s = E(R+ V ) (7)

where (R, V ) is a random variable with distribution ⇡(⇢R, ⇢V ).
Hence, the question of finding a measure on χ is reduced to
find a couple of real numbers (⇢R, ⇢V ).

3.2 Existence and Uniqueness of the Equilib-
rium Point

Our second main result is the existence, uniqueness and
characterization of the equilibrium point.

Theorem 2 (A unique equilibrium point). There is

a unique equilibrium point ȳ for the solution of ODE (1)
given by ȳ = ⇡(⇢V , ⇢R) where ⇡ is the invariant measure of

a tandem of two queues with total capacity K and respective

rates ⇢R and ⇢V such that (⇢V , ⇢R) is the unique solution of

the first equation of (6) and equation (7).

Proof. We present a sketch of the proof (see [2, Theorem
2] for a full proof). Recall that finding ȳ is equivalent to
finding (⇢R, ⇢V ) solution of equations (6) and (7). First, the
second equation in (6) is true for any (⇢R, ⇢V ). Thus (6)
amounts to its first equation. Second, this first equation
of (6) is an implicit equation in ⇢R and ⇢V . It gives, by
implicit function theorem with combinatorial arguments, a
di↵eomorphism  : [0,λ/µ[! [0,+1[ such that ⇢V = (⇢R).
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Moreover we prove that  is strictly increasing. The third
step consists in a combinatorial proof of the monotonicity
of the right-hand side of equation (7) as a function of ⇢V
and ⇢R. Using the continuity and monotonicity of  related
⇢R and ⇢V , we conclude to the monotonicity of the right-
hand side of equation (7) as a function of ⇢R. It gives the
existence and uniqueness of a ⇢R thus of (⇢R, ⇢V ), solution
of (6) and (7). It ends the proof.

4. SYSTEM PERFORMANCE
The aim is to give insight into the optimal behavior for

the performance metric. The influence of the fleet size pa-
rameter s is investigated. In [2] the authors discuss di↵erent
performance metrics. Here we focus on the proportion of
empty and full stations called problematic. Its asymptotics
as the system and time gets large is a function of ȳ.

Definition 1 ( Problematic Stations). Let ȳ be the

unique equilibrium point of ODE (1). The stations with ei-

ther no car or no parking space available are called problem-

atic. The limiting stationary proportion Pb of problematic

stations is given by

Pb = P(V = 0 or V +R = K) = y.,0 + yS − y0,K

where (V,R) is a random variable with distribution ȳ.

4.1 Influence of the fleet size
All functions of (⇢R, ⇢V ) can be expressed on ⇢V only,

like ȳ(⇢V ), Pb(⇢V ) and s(⇢V ). Indeed by first equation in
(6), for a fixed ⇢V 2 [0,+1[, ⇢R = −1(⇢V ). Then we
get ȳ = ⇡(⇢R, ⇢V ) by (3) and s(⇢V ) by (4). Thus, with
abuse of notation, the proportion of problematic stations,
as a function of the fleet size, is given by the parametric
curve

⇢V 7! (s(⇢V ), Pb(⇢V )).

This curve gives the influence of the fleet size on the behavior
of the system. It is numerically plotted in Figure 2 and
compared to the same curve for bike sharing systems studied
in [3] using the same performance metric.
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Figure 2: Asymptotic stationary proportion of
empty and full stations as a function of the fleet
size s for station capacity K = 5 (parametric curve).

Figure 2 shows a minimum for Pb as a function of s.
We can characterize it by this result.

light traffic: λ/µ ! 0 heavy traffic: λ/µ ! +1
s⇤ K

2 + K2

2(K+1)2
λ
µ

K −
q

K
λ/µ

+ 2−K
λ/µ

P ⇤
b

2
K+1 + 2K

(K+1)3
λ
µ

1− K−1
λ/µ

+ 2(K−1)p
K

(λ
µ
)−3/2

Table 1: First terms for expansions in λ/µ at 0 (light
trac) and +1 (heavy trac) of the optimal pro-
portion of problematic stations P ⇤

b for s⇤ cars per
station.

Proposition 1. Pb has an extremum Pb* for ⇢V = 1.

Proof. The following interesting property of symmetry
can easily be checked. For ⇢V > 0, −1(1/⇢V ) = −1(⇢V )/⇢V
and Pb(1/⇢V ) = Pb(⇢V ). Thus P 0

b(⇢V ) = −P 0
b(1/⇢V )/⇢2V .

Therefore, P 0
b(1) = −P 0

b(1) = 0.

Uniqueness of the minimum should come from the con-
vexity of the parametric curve ⇢V 7! (s(⇢V ), Pb(⇢V )). Nev-
ertheless this convexity remains to prove, the implicit rela-
tion between ⇢V and ⇢R making calculations tedious. This
fact is similar to the result in [3, Theorem 1] for bike-sharing
systems, that the minimum is reached for ⇢V = 1.

4.2 Optimal fleet size
We can compute asymptotics for Pb and s for any ⇢V in

two cases: light (λ/µ ! 0) and heavy (λ/µ ! +1) traffic
(see [2] for details). Then taking ⇢V = 1 gives expansions in
λ/µ for the optimal value P ⇤

b for s⇤. The first terms of the
expansions are presented in Table 1.

For light traffic, the system has the same optimal per-
formance at first order in λ/µ as the homogeneous bike-
sharing model, where it is 2/(K + 1) for each λ/µ (see [3,
Theorem 1]). Indeed, intuitively, reservation does not in-
duce congestion in light traffic case. This result can be ob-
served on Figure 2 where curves for the bike-sharing and
car-sharing systems are quite close at optimum only for
λ/µ = 0.1. In case of heavy traffic, P ⇤

b tends to 1 quicker
compared to the convergence of s⇤ to K.
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