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Abstract

A good paraphrase is semantically similar to the original sentence but it must be also
well formed, and syntactically different to ensure diversity. To deal with this trade-
off, we propose to cast the paraphrase generation task as a multi-objectives search
problem on the lattice of text transformations. We use BERT and GPT2 to measure
respectively the semantic distance and the correctness of the candidates. We study
two search algorithms: Monte-Carlo Tree Search For Paraphrase Generation
(MCPG) and Pareto Tree Search (PTS) that we use to explore the huge sets of
candidates generated by applying the PPDB-2.0 edition rules. We evaluate this
approach on 5 datasets and show that it performs reasonably well and that it
outperforms a state-of-the-art edition-based text generation method.

1 Introduction

The generation of paraphrase, i.e. the transformation of a sentence into a well-formed but lexically
different one while preserving its original meaning, is a fundamental task of NLP. Its ability to
provide diversity and coverage finds applications in several domains like question answering [5],
machine-translation [4], dialog systems [15], privacy [22] or more recently adversarial learning [19].
The formal definition of paraphrase may vary according to the targeted application and the tolerance
we set along several axes including:

1. the semantic distance from the source that we want to minimize;
2. the quality of the syntax that we want to keep high;
3. the lexical distance from the source that we want to maximize to ensure diversity.

Automatically generating paraphrases that are semantically accurate, diverse, and well-formed
remains a challenging problem, and with the lack of large and high-quality aligned paraphrase
corpora, it is difficult to train generic supervised models on this task.

On the other hand, assessing the quality of a given sentence as a paraphrase has become a much more
tractable task. Indeed, the availability of contextual embeddings networks trained on huge corpora
have led to the development of high-quality semantic distances [18, 17, 25, 26]. Regarding the quality
of the syntax, the perplexity of a large-scale language model like GPT2 [24] is an excellent ranking
criterion as well. For the lexical distance we use a simple Levenshtein edition distance. Leveraging
on these three metrics, we cast the paraphrase generation task as a multi-criteria search problem. In
this experiment we use PPDB 2.0 [13], a large-scale database of rewriting rules derived from bilingual

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.



corpora, to potentially generate billions of ’naive’ candidate paraphrases by edition from the source
sentence.

To sort efficiently the good candidates from the others, we experiment two algorithms. The first one,
called MCPG for Monte-Carlo Paraphrase Generation, is a variant of the Monte-Carlo Tree Search
algorithm (MCTS) [6, 7, 9]. This algorithm is famous for its successes on mastering the – highly
combinatorial – game of Go [7, 14]. The second one is a novel search algorithm that we call Pareto
Tree Search (PTS). In contrast to MCTS which is a single-criterion search algorithm, we designed
PTS to retrieve an approximation of the whole Pareto optimal set. This allows for more flexibility
on paraphrase generation where the balance between semantic distance, lexical distance, and syntax
quality is hard to tune a priori.

2 Paraphrase Generation Lattice

We model the paraphrase generation as a sequence of editions and transformations from a source
sentence into its paraphrase. In this work, we only consider local transformations, i.e. replacement of
certain words or phrases by others, but the method we propose should work with more sophisticated
transformations schemes as well.

Source sentence : he is speaking on june 14 .
PPDB rule Edited sentence
is→ is found he is found speaking on june 14 .
is speaking→ ’s talking he ’s talking on june 14 .
speaking→ speak now he is speak now on june 14 .
14→ 14th he is speaking on june 14th .

Table 1: PPDB rules samples applied to a source sentence

The Paraphrase Database (PPDB) [12,
13] is a large collection of paraphrase
edition rules that was automatically
constructed from various bilingual
corpora using a pivoting alignment
method [8]. The PPDB database is di-
vided into increasingly large and de-
creasingly accurate subsets1 We used
the XL subset, and we removed the rules labeled as ”Independent”. This left us with a set of 5.5
million rewriting rules. We give some examples of these rules on Table 1. By iteratively applying the
rules from a source sentence like the one on Table 1, we obtain a vast lattice of candidate paraphrases.
Some of these candidates like ”he’s talking on june 14” are well formed, but many like ”he is speak
now on june 14” are syntactically broken. The number of rules that apply, depends on the size of
the source sentence and the words it contains. For instance on the MSRPARAPHRASE dataset (see
section 4), the sentences are quite long and the median number of PPDB-XL rules that apply is around
450. After two steps of rewriting, the median number of candidates is around 105 and by iterative
rewriting, we quickly reach a number of paraphrase candidates that is greater than 108.

3 Searching Algorithms function MCPG(input sentence)
candidates← REWRITE(input sentence)
depth← 1
while time/space < budget do

while time/space < layer-budget do
nodes← MAB.SELECTS FROM(candidates)
paths← ROLLOUT FROM(nodes)
scored← scored ∪ NN.SCORE(paths.leaves)
Backward node rewards along paths
MAB.UPDATES POLICY(node rewards)

end while
layer best← ARGMAX(scored)
candidates← candidates ∪ REWRITE(layer best)
depth← depth + 1

end while
return ARGMAX(all scored nodes)

end function

Table 2: Monte-Carlo Tree Search (MCPG)
algorithm

Searching for good paraphrases in the large lattice of
candidates generated by PPDB is a costly task. The two
algorithms that we propose are described as pseudo-
code on Tables 2 and 3. They share a similar structure:
the outer loop explores the lattice at different depths,
while the inner loop explores the candidates at each
depth. Both algorithms are anytime: they return the
best solutions found so far when the time or space
budget is depleted.

MCPG: Monte-Carlo Tree Search for Paraphrase
Generation Following the idea of [9], we used
Monte-Carlo Tree Search (MCTS) to explore the PPDB
lattice. The three key ingredients of MCTS are: the
use of a bandit policy at each node of a search-tree to select the most promising paths, the use of
randomized roll-outs to estimate the quality of these paths, and the back-propagation of rewards
along the paths to update the bandit. We opted here for the EXP3 [2] randomized bandit policy which
proved to be robuster than UCB [1].

1PPDB is available on http://paraphrase.org
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Figure 1: Cloud of candidates generated from a sample of the MSRPARAPHRASE. The optima of any
positive combination of BERT score, Levenshtein distance, and GPT2 perplexity belong to the Pareto
front (orange dots). We plotted the projections of MCPG combined score with dashed isolines. The
BERT score and Levenshtein distance being clearly anti-correlated, the balance between these two
criteria is difficult to tune.

The MCTS algorithm being not designed for multi-objective problems, we had to combine semantic
similarity BERTS, syntax correctness GPT2 and surface diversity LevS into a single criterion.
The simplest option was a linear scalarization but after some quantitative analysis of the scores
distributions like in 1, we realized that it was easy for the search algorithm to maximize the score by
just applying a lot of editions to the source sentence. To overcome this, we replaced the LevS term by
LevS · BERTS which led us to the polynomial form α · BERTS + β · LevS · BERTS − γ ·GPT2.
After a few experiments on train sets, we tuned empirically the weights to α = 3, β = 0.5 and
γ = 0.025 in order to obtain a balanced policy.

function PTS(input sentence)
candidates← REWRITE(input sentence)
depth← 1
while time/space < budget do

while time/space < layer-budget do
batch← SAMPLE(candidates)
scored← scored ∪ NN.SCORES(batch)

end while
layer front set← PARETO-FRONT(scored)
candidates← REWRITE(layer front set)
depth← depth + 1

end while
return PARETO-FRONT(all scored nodes)

end function

Table 3: Pareto Tree Search (PTS)

PTS: Pareto Tree Search in the paraphrase lattice The
MCTS algorithm is powerful but we observed two drawbacks
for paraphrase generation. First, it was designed for com-
binatorial problems like Go where the evaluation is only
possible on the leaves of the search tree. This is not the
case for paraphrase generation where our neural models
can cheaply evaluate any rewriting step and where rewriting
from good candidates is more likely to provide good para-
phrases than rewriting from bad ones. Secondly, because
it was designed for single criterion search it requires to set
the balance between semantic similarity, lexical distance
and syntax quality definitively before any paraphrase search
begins. This is not very flexible and it becomes painful when
we want to generate sets of candidates.

By plotting the distributions of the scores as on Figure 1, we noticed that most of the candidates
were dominated in the Pareto sense: it was possible to eliminate most of the bad candidates without
any hyper-parameter tuning. We hence adapted MCPG in order to explore the paraphrase lattice and
recover an approximation of the Pareto front, postponing the balance between the criteria as a quick
post-optimization stage. This flexibility is also useful for specific tasks like adversarial learning [19]
where a valid paraphrase is selected in post-optimization according to its ability to deceive a given
text classification model.

4 Experiments

Datasets and metrics To evaluate the paraphrase generation models, we rely on machine translation
metrics that compare the generated paraphrase to one or several references [11].
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We report the surface metric BLEU [10] and the semantic metric BERT [26] : the average BERT score
of the generated sentence with respect to the ground truth sentences2.

Corpus Size Len PPDB@1 PPDB@3
MSCOCO 2.4 · 106 11 119 7.4 · 104
MSRPARA. 7.8 · 103 23 454 7.0 · 106

OPUSPAR. 4.2 · 107 6 113 1.5 · 104
PAWS 3.6 · 105 20 289 1.3 · 106
QQP 1.5 · 105 10 141 1.3 · 105

Table 4: Datasets statistics. ’Size’ is the number of
instances. ’Len’ is the median number of words per
sentence. The ’PPDB@x’ columns give the median
number of candidates that PPDB-XL generates from one
sentence respectively at one and three rewriting steps.

On Table 4 we give a summary of the
datasets we used. On one hand we have
large datasets like MSCOCO or OPUSPAR-
CUS (OPUSPAR.) that are noisy and very
specific. On the other hand we have MSR-
PARAPHRASE (MSRPARA.), a high-quality
but small human-labeled dataset.

Baseline Constrained Sentence Gener-
ation by Metropolis-Hastings Sampling
(CGMH) [20] is an approach that uses
Metropolis-Hastings sampling [3] for con-
strained sentence generation.

Corpus Model BLEU BERT

MSCOCO

CGMH 17.3 0.7
MCPG 16.5 0.71
PTS 17.0 0.64
PTS upper-b. 17.6 0.64
PTS random 6.4 0.56

MSRPARA.

CGMH 9.7 0.48
MCPG 39.3 0.81
PTS 40.3 0.80
PTS upper-b. 49.9 0.82
PTS random 28.3 0.74

OPUSPAR.

CGMH 7.6 0.58
MCPG 9.6 0.67
PTS 9.1 0.68
PTS upper-b. 14.5 0.68
PTS random 4.3 0.57

PAWS

CGMH 15.4 0.61
MCPG 55.5 0.93
PTS 57.9 0.92
PTS upper-b. 65.3 0.93
PTS random 36.5 0.82

QQP

CGMH 22.5 0.72
CGMH [20] 18.8 -
MCPG 24.1 0.78
PTS 25.6 0.78
PTS upper-b. 32.7 0.79
PTS random 9.8 0.66

Table 5: Experiments summary. Higher values
are better, best in bold. The PTS policy maximizes
the MCPG criterion among the Pareto candidates.
The PTS random policy picks a random candidate
in the Pareto set. The PTS upper-bound (upper-b.)
policy is ”cheating” by taking a candidate that max-
imizes individual BLEU against the target. These
two former policies are given to assess the ”quality”
of the generated set of candidates.

Starting from the source sentence, the CGMH
model samples a sequence of sentences by using
local editions: word replacement, deletion, and
insertion. For paraphrase generation, CGMH con-
straints the sentence generation using a match-
ing function that combines a measure of seman-
tic similarity and a measure of English fluency.
This model is therefore directly comparable with
the MCPG and PTS approaches.

Results On Table 5 we report the evaluation
of the CGMH, MCPG and PTS models on the five
datasets of aligned paraphrases pairs. MCPG
and PTS models outperform the CGMH baseline
model on all corpora except on the MSCOCO
dataset where the results are mixed. The low
PTS upper-bound on MSCOCO and OPUSPAR-
CUS indicates that PPDB-XL vocabulary does
not match well with these datasets.

5 Discussion

We experimented two search-based approaches
for paraphrase generation. These approaches
are pragmatic and flexible. When com-
pared against CGMH, another search-based
and weakly-supervised method, our algorithms
proved to be faster and more efficient. The use of
local transformations however lead our models
to produce paraphrases that are a bit too con-
servative, especially when starting from short
sentences. For future work, we plan to refine
the scoring with deep reinforcement learning
techniques and enrich the rules with more so-
phisticated patterns like phrases permutations.
We also plan to hybridize the search method
with supervised seq2seq models [16] by data-augmentation, or through a planning-then-realization
scheme like in [23] and [21].

2This usage of BERT score against reference/ground-truth must not be confused with the BERT score
against source sentence (BERTS) that we use in the MCPG score.
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