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Abstract—Information theoretic sparse attacks that min-
imize simultaneously the information obtained by the
operator and the probability of detection are studied in a
Bayesian state estimation setting. The attack construction
is formulated as an optimization problem that aims to
minimize the mutual information between the state vari-
ables and the observations while guaranteeing the stealth
of the attack. Stealth is described in terms of the Kullback-
Leibler (KL) divergence between the distributions of the
observations under attack and without attack. To overcome
the difficulty posed by the combinatorial nature of a sparse
attack construction, the attack case in which only one
sensor is compromised is analytically solved first. The
insight generated in this case is then used to propose a
greedy algorithm that constructs random sparse attacks.
The performance of the proposed attack is evaluated in
the IEEE 30 Bus Test Case.

I. INTRODUCTION

State estimation enables efficient, scalable, and secure
operation of power systems. This is in part thanks to
monitoring and control processes that are supported by
Supervisory Control and Data Acquisition (SCADA)
systems and more recently by advanced communication
systems that acquire and transmit observations to a state
estimator [1]. This cyber layer exposes the system to
malicious attacks that exploit the vulnerabilities of the
sensing and communication infrastructure. One of the
main threats faced by modern power systems are data
injection attacks (DIAs) [2] that alter the state estimate of
the operator by compromising the system observations.
A large body of literature is concerned with the case
in which attack detection is performed by a residual
test [3] under the assumption that state estimation is
deterministic. In this setting, constructing DIAs that
require access to a small set of observations yields
optimization problems with sparsity constraints, which
are often difficult to solve. In [4], it is shown that the
operator can secure a small fraction of observations to
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make the attack construction significantly harder. This
problem has been studied extensively in the literature
in both centralized and decentralized scenarios [5],
[6], [7], [8].

The unprecedented data acquisition capabilities in
the smart grid elevate the threat of attack precisely
because accurate stochastic models can be generated
for the system. In view of this, attack constructions
that exploit this prior knowledge can be posed within
a Bayesian framework [9]. In this setting, the attack
detection problem is no longer cast as a residual test.
Instead, detection strategies consider the likelihood ratio
test [10] or alternatively machine learning methods [11].
The operator produces a stochastic model of the system
based on the observations generated by the monitoring
system. Moreover, data analytics on the system depend
on the reliability of the observations that are used with
a variety of estimation, statistical and machine learning
tools that provide the operator with different insight.
In view of this, it is essential to assess attacks in
fundamental terms to understand the impact over a wide
range of estimation and data analysis paradigms.

Information theoretic attacks are first introduced
in [12] and then generalized in [13]. In this approach,
attack disruption is measured in terms of two information
measures: (a) the mutual information between the state
variables and the observations under attack; and (b)
the probability of detection, which is governed by the
Kullback-Leibler (KL) divergence. The advantage of
using these information measures is that the attack dis-
rupts a wide range of estimation, statistical and machine
learning methods that are available to the operator. Given
that the attack vector corrupts the observations in an
additive fashion, mutual information minimization yields
a Gaussian attack construction that has the maximum
entropy, i.e. maximum uncertainty, among all the dis-
tributions with fixed variance [14]. From a practical
point of view, the assumption is validated given the data
shared by Electricity North West Limited [15]. In this
case, mutual information decreases monotonically with



the variance of the attack vector entries [16] and the
converse holds for the probability of attack detection.
The information theoretic attacks in [13] require that
the attacker tampers with all the observations used by
the operator [17]. Hence, incorporating sparsity con-
straints with information theoretic attacks is still an open
problem that requires novel approaches. In this paper,
we present a novel information theoretic sparse attack
construction based on a greedy observation selection
mechanism.

A brief description of notation follows. Consider
matrix A ∈ Rm×n, then (A)ij denotes the entry in
row i and column j. We denote by AI the matrix
formed with the rows of A ∈ Rm×n given by the
indices in I ⊆ {1, . . . ,m} in increasing order. We
denote the complement of set I by Ic. The elementary
vector ei is a vector of zeros with a one in the entry
i. Random variables are denoted by capital letters and
their realizations by the correponding lower case, e.g.
x is a realization of the random variable X . Vectors of
n random variables are denoted by a superscript, e.g.
Xn = (X1, . . . , Xn) with corresponding realizations
denoted by x. The set of positive semidefinite matrices
of size n× n is denoted by Sn

+.

II. SYSTEM MODEL

A. Power system state estimation

In a power system the state vector x ∈ Rn containing
the voltages and angles at all the generation and load
buses describes the operation state of the system. State
vector x is observed by the acquisition function F :
Rn → Rm. A linearized observation model is considered
for state estimation, yielding the observation model

Y m = Hx+ Zm, (1)

where H ∈ Rm×n is the Jacobian of the function F at
a given operating point and is determined by the system
components and the topology of the network. The vector
containing observations Y m is corrupted by additive
white Gaussian noise introduced by the sensors [1], [18].
The noise vector Zm follows a multivariate Gaussian
distribution Zm ∼ N (0, σ2Im), where σ2 is the noise
variance.

In a Bayesian estimation framework, the state vari-
ables are described by a vector of random variables Xn

with a given distribution. As the Gaussian distribution
has the maximum entropy among all distributions with
the same variance, we assume Xn follows a multivari-
able Gaussian distribution with zero mean and covari-
ance matrix ΣXX ∈ Sn

+. From (1), it follows that the

vector of observations is zero mean and with covariance
matrix

ΣYY = HΣXXHT + σ2Im. (2)

The resulting observations are corrupted by the mali-
cious attack vector

Am ∼ PAm , (3)

where PAm is the distribution of the random attack
vector Am. Since the Gaussian distribution minimizes
the mutual information between the state variables and
the compromised observations with a fixed covariance
matrix [16], we adopt a Gaussian random attack frame-
work given by

Am ∼ N (0,ΣAA), (4)

where ΣAA is the covariance matrix of attack vector Am.
Consequently, the compromised observations denoted by
Y m
A are given by

Y m
A = HXn + Zm +Am, (5)

where Y m
A follows a multivariate Gaussian distribution

given by
Y m
A ∼ N (0,ΣYAYA

) (6)

with ΣYAYA
= HΣXXHT + σ2Im +ΣAA.

B. Attack Detection

As a part of a security strategy, the operator imple-
ments an attack detection procedure prior to performing
state estimation. Detection is cast as a hypothesis testing
problem given by:

H0 : There is no attack, (7)
H1 : Observations are compromised. (8)

In this setting, the optimal test is the likelihood ratio test
(LRT) [19] given by

L(y) =
fY m

A
(y)

fY m(y)
H1

≷
H0

τ, (9)

where y is the realization of the observations to be tested
for attack; fY m

A
(y) is the probability density function

(pdf) of Y m
A in (5), fY m(y) is the pdf of Y m in (1), and

τ ∈ R+ in (9) is the decision threshold. The performance
of the test is assessed in terms of the Type I error,
defined as α

∆
= P

[
L(Ȳ m) ≥ τ

]
with Ȳ m ∼ PY m , and

the Type II error, denoted by β
∆
= P

[
L(Ȳ m) < τ

]
with

Ȳ m ∼ PY m
A

. Note that the LRT is optimal, and therefore,
changing the value of τ is equivalent to changing the
tradeoff between Type I and Type II errors.
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III. SPARSE INFORMATION THEORETIC ATTACKS

A. Information theoretic setting

The attack construction in [13] incorporates a detec-
tion constraint based on the KL divergence between the
distributions PY m

A
in (5) and PY m in (1) which results

in the construction of stealth attacks. Specifically, the
construction is given by the solution to the following
optimization problem:

min
PAm

I(Xn;Y m
A ) + λD(PY m

A
∥PY m), (10)

where I(X;Y ) is the mutual information between ran-
dom variables X and Y , D(P∥Q) denotes the KL
divergence between distributions P and Q, and λ ≥ 1
is the weighting parameter that determines the tradeoff
between attack disruption and probability of detection.
Note that the optimization in (10) searches for the
distribution of the attack vector of random variables
over the set of Gaussian multivariate distributions of
m dimensions, or equivalently, it chooses the optimal
covariance matrix for the distribution of the attack. It is
shown in [13] that the optimal Gaussian attack is given
by P̄Am = N (0, Σ̄) where

Σ̄ = λ−1HΣXXHT. (11)

Note that in [13], the construction of the stealth attack
vector is not sparse, indeed all the components of the
attack realizations are nonzero with probability one, i.e.
P [|supp(Am)| = m] = 1. We define the support of the
attack vector Am by

supp(Am)
∆
= {i : P [Ai = 0] = 0} . (12)

B. Sparse attack formulation

Given that the operator is likely to have access control
policies in place [20], an attack construction that requires
access to all the observations is costly and unrealistic for
the attacker in most scenarios. For that reason, in the fol-
lowing we study stealth attack constructions that require
access to a limited number of sensors. In particular, we
pose the optimization problem with sparsity constraints
by considering distributions over the attack vector that
put non-zero mass on at most k ≤ m attack vector
components. Thus, we include the additional requirement
that |supp(Am)| = k in the attack construction. In view
of this, the attacker chooses the distribution of the attack
vector over the set of multivariate Gaussian distributions
given by

Pk
∆
= {PAm : |supp(Am)| = k} . (13)

The resulting k-sparse stealth attack construction is
therefore posed as the optimization problem:

min
PAm∈Pk

I(Xn;Y m
A ) + λD(PY m

A
∥PY m). (14)

Solving this problem is hard in general owing to the
combinatorial nature of the attack vector support selec-
tion. For that reason, in Section IV we tackle the problem
by proposing a greedy attack construction algorithm that
results in k-sparse attack vectors.

C. Gaussian sparse attack construction

In the following, we particularize the attack construc-
tion in (10) by considering Gaussian distributed state
variables, i.e. Xn ∼ N (0,ΣXX), and assuming that
the attack vector follows the Gaussian distribution given
in (4). In this setting, the optimization problem in (10) is
equivalent [13] to the following optimization problem:

min
ΣAA∈Sm

+

(1− λ) log |Im +WΣAA|

− log |σ2Im +ΣAA|+ λtr(WΣAA)),
(15)

where W
∆
= Σ−1

YY . In order to incorporate sparsity con-
straints in (15), the minimization domain is constrained
to the set of covariance matrices that induce k-sparse
supports over the attack vectors, i.e., the set given by

Sk
∆
=
{
S ∈ Sm

+ : ∥diag(S)∥0 = k
}
, (16)

where diag(S) denotes the vector formed by the diagonal
entries of S. Solving (15) within the optimization domain
specified by (16) re-casts the equivalent k-sparse stealth
attack construction problem in (14) as follows:

min
ΣAA∈Sk

(1− λ) log |Im +WΣAA|

− log |σ2Im +ΣAA|+ λtr(WΣAA)).
(17)

D. Optimal single observation attack case

Despite having narrowed it down to Gaussian distribu-
tions, the above optimization problem is still challenging
and combinatorial in nature. For that reason, we first
tackle the case in which the attacker only comprises one
sensor, i.e. k = 1. The rationale for this is that we use
the insight developed for the single sensor case in the
construction of the general k-sparse case. The following
theorem provides the optimal solution for the case in
which the attacker corrupts a single sensor.

Theorem 1. The solution to the sparse stealth attack
construction problem in (17) for the case k = 1 is given
by

Σ̄AA = σ̄2eαe
T
α, (18)

3



where

α = argmin
i

{(W)ii} , (19)

σ̄2= −σ2

2
+

1

2

(
σ4 − 4(wσ2 − 1)

λw2

) 1
2

, (20)

with w
∆
= (W)αα.

Proof: We start by noting that for k = 1 the set of
attack covariance matrices is given by

S1
∆
=
∪

i=1,...,m

{
S ∈ Sm

+ :S = σ2
i eie

T
i with σi∈R+

}
. (21)

The covariance matrices in set S1 comprise matrices with
a single nonzero element in the diagonal. The non-zero
entry i denotes the index of the sensor that is attacked.
Let i ∈ {1, 2, ...,m} be the index of the non-zero entry of
the covariance matrix Σ̄AA. The non-zero entry denoted
by σ2

i is the variance of the random variable used to
attack observation i.

Let λ > 1 and restrict the optimization domain
in (17) to S1. Thus, the resulting optimization problem
is equivalent to:

min
σ̄>0

min
i

log
(1 + (W)iiσ̄

2)1−λ

(σ2 + σ̄2)
+ λ(W)iiσ̄

2. (22)

We proceed by solving the inner part of the optimization
problem above. Consider the cost given by

f((W)ii)
∆
= log

(1 + (W)iiσ̄
2)1−λ

(σ2 + σ̄2)
+λ(W)iiσ̄

2, (23)

which can be rewritten as

f(t) = (1− λ) log t− log(σ2 + σ̄2) + λt− λ, (24)

where t = 1 + (W)iiσ̄
2. It follows that (24) is convex

with respect to t because λt is a linear term and (1 −
λ) log t is convex in t for λ > 1. Therefore, f((W)ii)
is convex with respect to (W)ii and the minimum is
attained for (W)ii = − 1

λσ̄2 . Since (W)ii > 0 the inner
minimization in (22) is equivalent to selecting the index
i that minimizes (W)ii. The definition of α in (19) and
w in (20) follow from this observation.

We now proceed to solve the outer optimization. In
this case, the cost is given by

g(r) = (1− λ) log(1+wr)− log(σ2 + r) + λwr, (25)

where r
∆
= σ̄2. Noticing that the above function has a

single minimizer given by

r = −σ2

2
+

1

2

(
σ4 − 4(wσ2 − 1)

λw2

) 1
2

(26)

completes the proof.

Algorithm 1 k-sparse stealth attack construction

Input: the observation matrix H; the covariance matrix
of the state variables ΣXX ; the variance of the
noise σ2; and the weighting parameter λ; number
of nonzero attack vector components k.

Output: the covariance matrix of the attack vector
Σ̄AA; and the set of indices of attacked sensors A.

1: Set A0 = {∅}
2: for j = 1 to k do
3: Set Hj = HAc

j−1

4: Compute Wj =
(
HjΣXXHT

j + σ2I|Ac
j−1|

)−1

5: Set αj = argmini {(Wj)ii},
6: Set wj

∆
= (Wj)αjαj

7: Set σ̄2
j = −σ2

2 + 1
2

(
σ4 − 4(wjσ

2−1)

λw2
j

) 1
2

8: Set Aj = Aj−1 ∪ {αj}
9: end for

10: Set A = Ak

11: Set Σ̄AA =
∑

i∈A σ̄2
i eie

T
i

IV. GREEDY CONSTRUCTION OF SPARSE ATTACKS

The extension to the k-sparse case of the solution
proposed in Section III-D does not get around the
combinatorial optimization in (17). For that reason, in
the following we propose a greedy construction that
leverages the insight distilled in the k = 1 case to select
the set of k attacked sensors. The construction is based
on a classical greedy procedure that sequentially selects
an observation to attack by maximizing the performance
in terms of the decision at each step. Let us denote
by A the set of observation indices that are attacked,
i.e. A ∆

= supp(Am). The greedy algorithm operates
by sequentially updating the entries in A by adding a
new index in each step until k indices are selected. For
that reason, the resulting entries of the attack vector are
independent, and therefore, the covariance matrix of the
attack vector obtained via the proposed greedy approach
belongs to the set

S̃k
∆
=
∪
K

{
S∈Sm

+ : S=
∑
i∈K

σ2
i eie

T
i with σi∈R+

}
, (27)

where the union is over all subsets K ⊆ {1, 2, . . . ,m}
with |K| = k ≤ m. The proposed greedy construction is
described in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we present the simulation results on a
direct current (DC) state estimation setting for the IEEE
30 Bus Test Case [21]. The voltage magnitudes are set
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Figure 1: Performance of the sparse attack in terms of
mutual information, probability of detection for different
values of λ when SNR = 30dB, ρ = 0.1, τ = 2 on the
IEEE 30 Bus Test Case.

to 1.0 per unit, which implies that the state estimation is
based on the observations of active power flow injections
to all the buses and the active power flow between
physically connected buses. The Jacobian matrix H is
determined by the reactances of the branches and the
topology of the system. MATPOWER [22] is adopted
to generate H. To capture the statistical dependence
between the state variables we adopt a Toeplitz model
for the covariance matrix ΣXX that arises in a wide
range of practical settings, such as autoregressive sta-
tionary processes. Specifically, we model the correlation
between state variables Xi and Xj with the exponential
decay parameter ρ that results in (ΣXX)ij = ρ|i−j| with
i, j = 1, 2, . . . , n.

In this setting, the performance of the proposed sparse
stealth attack is a function of the correlation parameter
ρ, noise variance σ2, and the topology of the system
as described by H. We define the signal to noise ratio
(SNR) as

SNR ∆
= 10 log10

(
tr(HΣXXHT)

mσ2

)
. (28)

The results in this section are obtained by averaging
2× 104 realizations of the observations as described
in (5). Fig. 1 depicts the mutual information and the
probability of detection that the attack constructed via
Algorithm 1 induces for different values of the number
of compromised observations and the weighting param-
eter λ. As expected, the mutual information decreases
monotonically, approximately linearly with the num-
ber of compromised observations, while the probability

of detection increases monotonically. Interestingly, the
probability of detection exhibits an abrupt increase that
suggests a threshold effect when a critical number of
compromised observations is reached. The weighting
parameter λ governs the minimum achievable probability
of detection, e.g. a probability of detection of 10−2 is
not attainable when λ = 2. Indeed, increasing the value
of λ to 30 yields a smaller probability of detection for
small values of k but the threshold effect takes place
for the same number of compromised observations, for
both values of λ. This suggests that the topology of the
system governs the position of the threshold.

The variance of the random variables used to attack
each sensor, the probability of detection, and the prob-
ability of false alarm as a function of the number of
compromised observations are illustrated in Fig. 2 and
Fig. 3 for λ = 2 and λ = 30, respectively. As shown in
Theorem 1, λ is a scaling factor on the variances of the
attack vector, and therefore, the values of the variance
for the case λ = 2 are simply scaled in the case λ = 30.
There are two distinguishable attack regimes depending
on the variance of the attack vector entries. Algorithm 1
does not yield a monotonically decreasing profile of
variances. Instead the variance of the entries selected by
the algorithm switches between small and large values
as the number of compromised observations increases.
This suggests, that certain entries are significantly more
sensitive to additive attack than others and the existence
of more vulnerable sensors that are determined by the
topology of the system, as shown in (20). For both cases,
the probability of false alarm exhibits non-monotonic
behavior with the number of compromised observations,
and interestingly, the change in monotonicity coincides
with the threshold.

VI. CONCLUSION

We have proposed an information theoretic sparse
attack construction within a smart grid Bayesian state
estimation framework. The proposed attack construction
minimizes the mutual information between the state
variables in the smart grid and the observations obtained
by the operator while minimizing the probability of
detection. To that end, we have proposed a cost function
that combines the mutual information and the KL diver-
gence that is amenable to sparse attack constructions. We
have theoretically characterized the single observation
attack case by proving that the resulting cost function is
convex and obtaining the optimal attack construction for
this case. We distill the insight obtained from the single
observation case to propose a sparse attack construction
via a greedy algorithm that overcomes the combinatorial
challenge posed by the observation selection problem.
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Figure 2: Variance of the attack vector entries, probability
of detection, and probability of false alarm of the sparse
attack when λ = 2, SNR = 30 dB, ρ = 0.1, τ = 2 on the
IEEE 30 Bus Test Case.
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Figure 3: Variance of the attack vector entries, probability
of detection, and probability of false alarm of the sparse
attack when λ = 30, SNR = 30 dB, ρ = 0.1, τ = 2 on
the IEEE 30 Bus Test Case.

We have numerically assessed the performance of the
proposed attack in the IEEE 30 Bus Test Case and
observed that the probability of detection exhibits a
threshold effect when a critical number of observations
are compromised.
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